1
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
2
|
Ugrumov MV. Hypothalamic neurons fully or partially expressing the dopaminergic phenotype: development, distribution, functioning and functional significance. A review. Front Neuroendocrinol 2024; 75:101153. [PMID: 39128801 DOI: 10.1016/j.yfrne.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
4
|
Piet R. Circadian and kisspeptin regulation of the preovulatory surge. Peptides 2023; 163:170981. [PMID: 36842628 DOI: 10.1016/j.peptides.2023.170981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Fertility in mammals is ultimately controlled by a small population of neurons - the gonadotropin-releasing hormone (GnRH) neurons - located in the ventral forebrain. GnRH neurons control gonadal function through the release of GnRH, which in turn stimulates the secretion of the anterior pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In spontaneous ovulators, ovarian follicle maturation eventually stimulates, via sex steroid feedback, the mid-cycle surge in GnRH and LH secretion that causes ovulation. The GnRH/LH surge is initiated in many species just before the onset of activity through processes controlled by the central circadian clock, ensuring that the neuroendocrine control of ovulation and sex behavior are coordinated. This review aims to give an overview of anatomical and functional studies that collectively reveal some of the mechanisms through which the central circadian clock regulates GnRH neurons and their afferent circuits to drive the preovulatory surge.
Collapse
Affiliation(s)
- Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, United States.
| |
Collapse
|
5
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System. Reprod Sci 2023; 30:802-822. [PMID: 35799018 DOI: 10.1007/s43032-022-01027-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
6
|
Jamieson BB, Piet R. Kisspeptin neuron electrophysiology: Intrinsic properties, hormonal modulation, and regulation of homeostatic circuits. Front Neuroendocrinol 2022; 66:101006. [PMID: 35640722 DOI: 10.1016/j.yfrne.2022.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
The obligatory role of kisspeptin (KISS1) and its receptor (KISS1R) in regulating the hypothalamic-pituitary-gonadal axis, puberty and fertility was uncovered in 2003. In the few years that followed, an impressive body of work undertaken in many species established that neurons producing kisspeptin orchestrate gonadotropin-releasing hormone (GnRH) neuron activity and subsequent GnRH and gonadotropin hormone secretory patterns, through kisspeptin-KISS1R signaling, and mediate many aspects of gonadal steroid hormone feedback regulation of GnRH neurons. Here, we review knowledge accrued over the past decade, mainly in genetically modified mouse models, of the electrophysiological properties of kisspeptin neurons and their regulation by hormonal feedback. We also discuss recent progress in our understanding of the role of these cells within neuronal circuits that control GnRH neuron activity and GnRH secretion, energy balance and, potentially, other homeostatic and reproductive functions.
Collapse
Affiliation(s)
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
7
|
Ugrumov MV, Pavlova EN, Kolacheva AA, Dil’mukhametova LK, Bogdanov VV, Blokhin V, Pronina TS. The Periventricular Nucleus as a Brain Center Containing Dopaminergic Neurons and Neurons Expressing Individual Enzymes of Dopamine Synthesis. Int J Mol Sci 2022; 23:ijms23126739. [PMID: 35743179 PMCID: PMC9224269 DOI: 10.3390/ijms23126739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022] Open
Abstract
Since the 1980s, the concept of dopamine-rich brain centers as clusters of only dopaminergic neurons has been fundamentally revised. It has been shown that, in addition to dopaminergic neurons, most of these centers contain neurons expressing one of the enzymes of dopamine synthesis: tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). We have obtained convincing evidence that in rats, the hypothalamic periventricular nucleus (PeVN) is one of the largest dopamine-rich centers, containing dopaminergic and monoenzymatic neurons. Indeed, using double immunostaining for TH and AADC, the PeVN was shown to contain almost three thousand dopaminergic and monoenzymatic neurons. According to high-performance liquid chromatography, PeVN contains L-DOPA and dopamine, which, apparently, are synthesized in monoenzymatic TH neurons and bienzymatic neurons, respectively. According to confocal microscopy, neurons (cell bodies, fibers), which were immunopositive only to TH, only to AADC, or both, are in close topographic relationships with each other and with the 3rd ventricle. These data suggest the mutual regulation of the neurons, as well as the delivery of dopamine and L-DOPA to the third ventricle, which is confirmed by their detection in the cerebrospinal fluid. Thus, evidence has been obtained that PeVN is one of the largest dopamine-rich centers of the brain, containing dopaminergic and monoenzymatic neurons.
Collapse
|
8
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
9
|
Trouillet AC, Ducroq S, Naulé L, Capela D, Parmentier C, Radovick S, Hardin-Pouzet H, Mhaouty-Kodja S. Deletion of neural estrogen receptor alpha induces sex differential effects on reproductive behavior in mice. Commun Biol 2022; 5:383. [PMID: 35444217 PMCID: PMC9021208 DOI: 10.1038/s42003-022-03324-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Estrogen receptor (ER) α is involved in several estrogen-modulated neural and peripheral functions. To determine its role in the expression of female and male reproductive behavior, a mouse line lacking the ERα in the nervous system was generated. Mutant females did not exhibit sexual behavior despite normal olfactory preference, and had a reduced number of progesterone receptor-immunoreactive neurons in the ventromedial hypothalamus. Mutant males displayed a moderately impaired sexual behavior and unaffected fertility, despite evidences of altered organization of sexually dimorphic populations in the preoptic area. In comparison, males deleted for both neural ERα and androgen receptor (AR) displayed greater sexual deficiencies. Thus, these data highlight a predominant role for neural ERα in females and a complementary role with the AR in males in the regulation of sexual behavior, and provide a solid background for future analyses of neuronal versus glial implication of these signaling pathways in both sexes. Neural deletion of the estrogen receptor, ERα, inhibits sexual behavior in female mice, but only has moderately effect in male mice. These results contrast with previous studies using global ERα knockouts, which found that ERα is mandatory for reproductive behavior in both sexes.
Collapse
Affiliation(s)
- Anne-Charlotte Trouillet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Suzanne Ducroq
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Daphné Capela
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sally Radovick
- Unit of Pediatric Endocrinology, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
10
|
Dairaghi L, Constantin S, Oh A, Shostak D, Wray S. The Dopamine D4 Receptor Regulates Gonadotropin-Releasing Hormone Neuron Excitability in Male Mice. eNeuro 2022; 9:ENEURO.0461-21.2022. [PMID: 35165199 PMCID: PMC8896547 DOI: 10.1523/eneuro.0461-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH)-secreting neurons control fertility. The release of GnRH peptide regulates the synthesis and release of both luteinizing hormone (LH) and Follicle stimulation hormone (FSH) from the anterior pituitary. While it is known that dopamine regulates GnRH neurons, the specific dopamine receptor subtype(s) involved remain unclear. Previous studies in adult rodents have reported juxtaposition of fibers containing tyrosine hydroxylase (TH), a marker of catecholaminergic cells, onto GnRH neurons and that exogenous dopamine inhibits GnRH neurons postsynaptically through dopamine D1-like and/or D2-like receptors. Our microarray data from GnRH neurons revealed a high level of Drd4 transcripts [i.e., dopamine D4 receptor (D4R)]. Single-cell RT-PCR and immunocytochemistry confirmed GnRH cells express the Drd4 transcript and protein, respectively. Calcium imaging identified changes in GnRH neuronal activity during application of subtype-specific dopamine receptor agonists and antagonists when GABAergic and glutamatergic transmission was blocked. Dopamine, dopamine with D1/5R-specific or D2/3R-specific antagonists or D4R-specific agonists decreased the frequency of calcium oscillations. In contrast, D1/5R-specific agonists increased the frequency of calcium oscillations. The D4R-mediated inhibition was dependent on Gαi/o protein coupling, while the D1/5R-mediated excitation required Gαs protein coupling. Together, these results indicate that D4R plays an important role in the dopaminergic inhibition of GnRH neurons.
Collapse
Affiliation(s)
| | | | - Andrew Oh
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | - David Shostak
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
11
|
Kumar V, Sharma A, Tripathi V. Physiological effects of food availability times in higher vertebrates. J Exp Biol 2022; 225:274142. [PMID: 35089336 DOI: 10.1242/jeb.239004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Food availability is a crucial ecological determinant of population size and community structure, and controls various life-history traits in most, if not all, species. Food availability is not constant; there are daily and seasonal differences in food abundance. When coupled to appetite (urge to eat), this is expressed as the eating schedule of a species. Food availability times affect daily and seasonal physiology and behaviour of organisms both directly (by affecting metabolic homeostasis) and indirectly (by altering synchronization of endogenous rhythms). Restricted food availability times may, for example, constrain reproductive output by limiting the number or quality of offspring or the number of reproductive attempts, as has been observed for nesting frequency in birds. Consuming food at the wrong time of day reduces the reproductive ability of a seasonal breeder, and can result in quality-quantity trade-offs of offspring. The food availability pattern serves as a conditioning environment, and can shape the activity of the genome by influencing chromatin activation/silencing; however, the functional linkage of food availability times with epigenetic control of physiology is only beginning to emerge. This Review gives insights into how food availability times, affected by changes in eating schedules and/or by alterations in feeding environment or lifestyle, could have hitherto unknown consequences on the physiology and reproductive fitness of seasonally breeding vertebrates and those that reproduce year round.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi 110003, India
| |
Collapse
|
12
|
Bizzozzero-Hiriart M, Di Giorgio NP, Libertun C, Lux-Lantos VAR. GABAB Receptor Antagonism from Birth to Weaning Permanently Modifies Kiss1 Expression in the Hypothalamus and Gonads in Mice. Neuroendocrinology 2022; 112:998-1026. [PMID: 34963114 DOI: 10.1159/000521649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The kisspeptin gene Kiss1 is expressed in two hypothalamic areas: anteroventral periventricular nucleus/periventricular nucleus (AVPV/PeN) and arcuate nucleus (ARC), and also in gonads. Several pieces of evidence suggests that gamma-amino butyric acid B receptors (GABAB) signaling can regulate Kiss1 expression. Here, we inhibited GABAB signaling from PND2 to PND21 and evaluated the hypothalamic-pituitary-gonadal (HPG) axis. METHODS BALB/c mice were treated on postnatal days 2-21 (PND2-PND21) with CGP55845 (GABAB antagonist) and evaluated in PND21 and adulthood: gene expression (qPCR) in the hypothalamus and gonads, hormones by radioimmunoassay, gonad histochemistry (H&E), puberty onset, and estrous cycles. RESULTS At PND21, CGP inhibited Kiss1 and Tac2 and increased Pdyn and Gabbr1 in the ARC of both sexes and decreased Th only in female AVPV/PeN. Serum follicle-stimulating hormone (FSH) and testis weight were decreased in CGP-males, and puberty onset was delayed. In adults, Kiss1, Tac2, Pdyn, Pgr, Cyp19a1, and Gad1 were downregulated, while Gabbr1 was upregulated in the ARC of both sexes. In the AVPV/PeN, Kiss1, Th, Cyp19a1, and Pgr were decreased while Gad1 was increased in CGP-females, whereas Cyp19a1 was increased in CGP-males. Serum FSH was increased in CGP-males while prolactin was increased in CGP-females. Testosterone and progesterone were increased in ovaries from CGP-females, in which Kiss1, Cyp19a1, and Esr1 were downregulated while Hsd3b2 was upregulated, together with increased atretic and decreased ovulatory follicles. Testes from CGP-males showed decreased progesterone, increased Gabbr1, Kiss1, Kiss1r, and Esr2 and decreased Cyp19a1, and clear signs of seminiferous tubules atrophy. CONCLUSION These results demonstrate that appropriate GABAB signaling during this critical prepubertal period is necessary for the normal development of the HPG axis.
Collapse
Affiliation(s)
- Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Libertun
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria A R Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
14
|
Göcz B, Takács S, Skrapits K, Rumpler É, Solymosi N, Póliska S, Colledge WH, Hrabovszky E, Sárvári M. Estrogen differentially regulates transcriptional landscapes of preoptic and arcuate kisspeptin neuron populations. Front Endocrinol (Lausanne) 2022; 13:960769. [PMID: 36093104 PMCID: PMC9454256 DOI: 10.3389/fendo.2022.960769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Kisspeptin neurons residing in the rostral periventricular area of the third ventricle (KPRP3V) and the arcuate nucleus (KPARC) mediate positive and negative estrogen feedback, respectively. Here, we aim to compare transcriptional responses of KPRP3V and KPARC neurons to estrogen. Transgenic mice were ovariectomized and supplemented with either 17β-estradiol (E2) or vehicle. Fluorescently tagged KPRP3V neurons collected by laser-capture microdissection were subjected to RNA-seq. Bioinformatics identified 222 E2-dependent genes. Four genes encoding neuropeptide precursors (Nmb, Kiss1, Nts, Penk) were robustly, and Cartpt was subsignificantly upregulated, suggesting putative contribution of multiple neuropeptides to estrogen feedback mechanisms. Using overrepresentation analysis, the most affected KEGG pathways were neuroactive ligand-receptor interaction and dopaminergic synapse. Next, we re-analyzed our previously obtained KPARC neuron RNA-seq data from the same animals using identical bioinformatic criteria. The identified 1583 E2-induced changes included suppression of many neuropeptide precursors, granins, protein processing enzymes, and other genes related to the secretory pathway. In addition to distinct regulatory responses, KPRP3V and KPARC neurons exhibited sixty-two common changes in genes encoding three hormone receptors (Ghsr, Pgr, Npr2), GAD-65 (Gad2), calmodulin and its regulator (Calm1, Pcp4), among others. Thirty-four oppositely regulated genes (Kiss1, Vgf, Chrna7, Tmem35a) were also identified. The strikingly different transcriptional responses in the two neuron populations prompted us to explore the transcriptional mechanism further. We identified ten E2-dependent transcription factors in KPRP3V and seventy in KPARC neurons. While none of the ten transcription factors interacted with estrogen receptor-α, eight of the seventy did. We propose that an intricate, multi-layered transcriptional mechanism exists in KPARC neurons and a less complex one in KPRP3V neurons. These results shed new light on the complexity of estrogen-dependent regulatory mechanisms acting in the two functionally distinct kisspeptin neuron populations and implicate additional neuropeptides and mechanisms in estrogen feedback.
Collapse
Affiliation(s)
- Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - William H. Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| | - Miklós Sárvári
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| |
Collapse
|
15
|
Stephens SBZ, Kauffman AS. Estrogen Regulation of the Molecular Phenotype and Active Translatome of AVPV Kisspeptin Neurons. Endocrinology 2021; 162:6226761. [PMID: 33856454 PMCID: PMC8286094 DOI: 10.1210/endocr/bqab080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/11/2022]
Abstract
In females, ovarian estradiol (E2) exerts both negative and positive feedback regulation on the neural circuits governing reproductive hormone secretion, but the cellular and molecular mechanisms underlying this remain poorly understood. In rodents, estrogen receptor α-expressing kisspeptin neurons in the hypothalamic anteroventral periventricular region (AVPV) are prime candidates to mediate E2 positive feedback induction of preovulatory gonadotropin-releasing hormone and luteinizing hormone (LH) surges. E2 stimulates AVPV Kiss1 expression, but the full extent of estrogen effects in these neurons is unknown; whether E2 stimulates or inhibits other genes in AVPV Kiss1 cells has not been determined. Indeed, understanding of the function(s) of AVPV kisspeptin cells is limited, in part, by minimal knowledge of their overall molecular phenotype, as only a few genes are currently known to be co-expressed in AVPV Kiss1 cells. To provide a more detailed profiling of co-expressed genes in AVPV Kiss1 cells, including receptors and other signaling factors, and test how these genes respond to E2, we selectively isolated actively translated mRNAs from AVPV Kiss1 cells of female mice and performed RNA sequencing (RNA-seq). This identified >13 000 mRNAs co-expressed in AVPV Kiss1 cells, including multiple receptor and ligand transcripts positively or negatively regulated by E2. We also performed RNAscope to validate co-expression of several transcripts identified by RNA-seq, including Pdyn (prodynorphin), Penk (proenkephalin), Vgf (VGF), and Cartpt (CART), in female AVPV Kiss1 cells. Given the important role of AVPV kisspeptin cells in positive feedback, E2 effects on identified genes may relate to the LH surge mechanism and/or other physiological processes involving these cells.
Collapse
Affiliation(s)
- Shannon B Z Stephens
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Wilheim T, Nagy K, Mohanraj M, Ziarniak K, Watanabe M, Sliwowska J, Kalló I. Expression of type one cannabinoid receptor in different subpopulation of kisspeptin neurons and kisspeptin afferents to GnRH neurons in female mice. Brain Struct Funct 2021; 226:2387-2399. [PMID: 34263407 PMCID: PMC8354884 DOI: 10.1007/s00429-021-02339-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/02/2021] [Indexed: 12/03/2022]
Abstract
The endocannabinoids have been shown to target the afferents of hypothalamic neurons via cannabinoid 1 receptor (CB1) and thereby to influence their excitability at various physiological and/or pathological processes. Kisspeptin (KP) neurons form afferents of multiple neuroendocrine cells and influence their activity via signaling through a variation of co-expressed classical neurotransmitters and neuropeptides. The differential potency of endocannabinoids to influence the release of classical transmitters or neuropeptides, and the ovarian cycle-dependent functioning of the endocannabinoid signaling in the gonadotropin-releasing hormone (GnRH) neurons initiated us to study whether (a) the different subpopulations of KP neurons express CB1 mRNAs, (b) the expression is influenced by estrogen, and (c) CB1-immunoreactivity is present in the KP afferents to GnRH neurons. The aim of the study was to investigate the site- and cell-specific expression of CB1 in female mice using multiple labeling in situ hybridization and immunofluorescent histochemical techniques. The results support that CB1 mRNAs are expressed by both the GABAergic and glutamatergic subpopulations of KP neurons, the receptor protein is detectable in two-thirds of the KP afferents to GnRH neurons, and the expression of CB1 mRNA shows an estrogen-dependency. The applied estrogen-treatment, known to induce proestrus, reduced the level of CB1 transcripts in the rostral periventricular area of the third ventricle and arcuate nucleus, and differently influenced its co-localization with vesicular GABA transporter or vesicular glutamate transporter-2 in KP neurons. This indicates a gonadal cycle-dependent role of endocannabinoid signaling in the neuronal circuits involving KP neurons.
Collapse
Affiliation(s)
- Tamás Wilheim
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, P.O. Box 67, Budapest, 1450, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Krisztina Nagy
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, P.O. Box 67, Budapest, 1450, Hungary
| | - Mahendravarman Mohanraj
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, P.O. Box 67, Budapest, 1450, Hungary
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Department of Zoology, Poznan University of Life Sciences, Poznan, Poland
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Joanna Sliwowska
- Laboratory of Neurobiology, Department of Zoology, Poznan University of Life Sciences, Poznan, Poland
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, P.O. Box 67, Budapest, 1450, Hungary.
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary.
- Doctoral School of Neurosciences "János Szentágothai", Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Membrane and nuclear initiated estrogenic regulation of homeostasis. Steroids 2021; 168:108428. [PMID: 31229508 PMCID: PMC6923613 DOI: 10.1016/j.steroids.2019.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Reproduction and energy balance are inextricably linked in order to optimize the evolutionary fitness of an organism. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy and produce unhealthy or obesity-prone offspring. The quintessential function of the hypothalamus is to act as a bridge between the endocrine and nervous systems, coordinating fertility and autonomic functions. Across the female reproductive cycle various motivations wax and wane, following levels of ovarian hormones. Estrogens, more specifically 17β-estradiol (E2), coordinate a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool of cells, this triumvirate is composed of the kisspeptin (Kiss1ARH), proopiomelanocortin (POMC), and neuropeptide Y/agouti-related peptide (AgRP) neurons. Although the excitability of these neuronal subpopulations is subject to genomic and rapid estrogenic regulation, kisspeptin neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we will review the recent findings on the synaptic interactions between Kiss1, AgRP and POMC neurons and how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
18
|
Corona R, Jayakumar P, Carbajo Mata MA, Del Valle-Díaz MF, Luna-García LA, Morales T. Sexually dimorphic effects of prolactin treatment on the onset of puberty and olfactory function in mice. Gen Comp Endocrinol 2021; 301:113652. [PMID: 33122037 DOI: 10.1016/j.ygcen.2020.113652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
The onset of puberty is associated with the psychophysiological maturation of the adolescent to an adult capable of reproduction when olfactory signals play an important role. This period begins with the secretion of the gonadotropin-releasing hormone (GnRH) from GnRH neurons within the hypothalamus. This is regulated by kisspeptin neurons that express high levels of transmembrane prolactin receptors (PRLR) that bind to and are activated by prolactin (PRL). The elevated levels of serum PRL found during lactation, or caused by chronic PRL infusion, decreases the secretion of gonadotropins and kisspeptin and compromised the estrous cyclicity and the ovulation. In the present work, we aimed to evaluate the effects of either increased or decreased PRL circulating levels within the peripubertal murine brain by administration of PRL or treatment with cabergoline (Cab) respectively. We showed that either treatment delayed the onset of puberty in females, but not in males. This was associated with the augmentation of the PRL receptor (Prlr) mRNA expression in the arcuate nucleus and decreased Kiss1 expression in the anteroventral periventricular zone. Then, during adulthood, we assessed the activation of the mitral and granular cells of the main (MOB) and accessory olfactory bulb (AOB) by cFos immunoreactivity (ir) after the exposure to soiled bedding of the opposite sex. In the MOB, the PRL treatment promoted an increased cFos-ir of the mitral cells of males and females. In the granular cells of male of either treatment an augmented activation was observed. In the AOB, an impaired cFos-ir was observed in PRL and Cab treated females after exposure to male soiled bedding. However, in males, only Cab impaired its activation. No effects were observed in the AOB-mitral cells. In conclusion, our results demonstrate that PRL contributes to pubertal development and maturation of the MOB-AOB during the murine juvenile period in a sex-dependent way.
Collapse
Affiliation(s)
- Rebeca Corona
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico.
| | - Preethi Jayakumar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | - Teresa Morales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
19
|
Rumpler É, Skrapits K, Takács S, Göcz B, Trinh SH, Rácz G, Matolcsy A, Kozma Z, Ciofi P, Dhillo WS, Hrabovszky E. Characterization of Kisspeptin Neurons in the Human Rostral Hypothalamus. Neuroendocrinology 2021; 111:249-262. [PMID: 32299085 DOI: 10.1159/000507891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS Immunohistochemical techniques were used. RESULTS The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.
Collapse
Affiliation(s)
- Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sarolta H Trinh
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Kozma
- Department of Forensic Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary,
| |
Collapse
|
20
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
21
|
Tsukahara S, Morishita M. Sexually Dimorphic Formation of the Preoptic Area and the Bed Nucleus of the Stria Terminalis by Neuroestrogens. Front Neurosci 2020; 14:797. [PMID: 32848568 PMCID: PMC7403479 DOI: 10.3389/fnins.2020.00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Testicular androgens during the perinatal period play an important role in the sexual differentiation of the brain of rodents. Testicular androgens transported into the brain act via androgen receptors or are the substrate of aromatase, which synthesizes neuroestrogens that act via estrogen receptors. The latter that occurs in the perinatal period significantly contributes to the sexual differentiation of the brain. The preoptic area (POA) and the bed nucleus of the stria terminalis (BNST) are sexually dimorphic brain regions that are involved in the regulation of sex-specific social behaviors and the reproductive neuroendocrine system. Here, we discuss how neuroestrogens of testicular origin act in the perinatal period to organize the sexually dimorphic structures of the POA and BNST. Accumulating data from rodent studies suggest that neuroestrogens induce the sex differences in glial and immune cells, which play an important role in the sexually dimorphic formation of the dendritic synapse patterning in the POA, and induce the sex differences in the cell number of specific neuronal cell groups in the POA and BNST, which may be established by controlling the number of cells dying by apoptosis or the phenotypic organization of living cells. Testicular androgens in the peripubertal period also contribute to the sexual differentiation of the POA and BNST, and thus their aromatization to estrogens may be unnecessary. Additionally, we discuss the notion that testicular androgens that do not aromatize to estrogens can also induce significant effects on the sexually dimorphic formation of the POA and BNST.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
22
|
Bizzozzero-Hiriart M, Di Giorgio NP, Libertun C, Lux-Lantos V. GABAergic input through GABA B receptors is necessary during a perinatal window to shape gene expression of factors critical to reproduction such as Kiss1. Am J Physiol Endocrinol Metab 2020; 318:E901-E919. [PMID: 32286880 DOI: 10.1152/ajpendo.00547.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/drug effects
- Arcuate Nucleus of Hypothalamus/metabolism
- Estradiol/metabolism
- Female
- Follicle Stimulating Hormone/metabolism
- GABA-B Receptor Antagonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamus, Anterior/drug effects
- Hypothalamus, Anterior/metabolism
- Kisspeptins/genetics
- Kisspeptins/metabolism
- Luteinizing Hormone/metabolism
- Male
- Mice
- Ovary/drug effects
- Ovary/metabolism
- Phosphinic Acids/pharmacology
- Propanolamines/pharmacology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Puberty/drug effects
- Puberty/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reproduction/drug effects
- Reproduction/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sex Differentiation/drug effects
- Sex Differentiation/genetics
- Tachykinins/genetics
- Tachykinins/metabolism
- Testis/drug effects
- Testis/metabolism
- Testosterone/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos Libertun
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
23
|
Mishra I, Agarwal N, Prabhat A, Batra T, Bhardwaj SK, Kumar V. Changes in brain peptides associated with reproduction and energy homeostasis: Putative roles of gonadotrophin-releasing hormone-II and tyrosine hydroxylase in determining reproductive performance in response to daily food availability times in diurnal zebra finches. J Neuroendocrinol 2020; 32:e12825. [PMID: 31889349 DOI: 10.1111/jne.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
Previous studies have demonstrated 'quality-quantity' trade-offs with daily food availability times in zebra finches. Compared with food access ad lib., zebra finch pairs with restricted food access for 4 hours in the morning produced poor quality offspring, whereas those with the same food access in the evening produced fewer but better quality offspring. The present study investigated whether food-time-dependent differential effects on reproductive performance involved brain peptides associated with reproduction and energy homeostasis in zebra finches. We measured peptide/protein expression of gonadotrophin-releasing hormone (GnRH)-I, GnRH-II, gonadotrophin-inhibitory hormone (GnIH), tyrosine hydroxylase (TH), neuropeptide Y (NPY), cocaine- and amphetamine regulated transcript (CART) and ZENK (a neuronal activation marker) by immunohistochemistry and mRNA expression of genes coding for the type 2 (DIO2) and type 3 (DIO3) deiodinase by a quantitative polymerase chain reaction in male and female zebra finches that were paired and kept under a 12:12 hour light/dark photocycle at 24 ± 2°C temperature for > 12 months with access to food ad lib., or for only 4 hours in the morning or evening. In both sexes, GnRH-I, DIO2 and DIO3 expression did not differ significantly between the three feeding conditions, although levels showed an overall food effect. However, in males, GnIH expression was significantly higher in evening-fed birds compared to ad lib. fed birds. Interestingly, GnRH-II and TH levels were significantly lower in restricted feeding compared to the ad lib. group and, importantly, GnRH-II and TH-immunoreactivity levels were negatively and positively correlated with egg laying latency and reproductive success (offspring/brood/pair), respectively. At the same time, we found no effect on the hypothalamic expression of orexigenic (NPY) and anorexigenic (CART) peptides, or ZENK protein (ie, the neuronal activity marker). These results suggest the involvement of reproductive neuropeptides, with putative roles for GnRH-II and TH, in the food-time-dependent effect on reproductive performance, albeit with subtle sex differences, in diurnal zebra finches, which possess the ability to reproduce year-round, in a manner similar to other continuously breeding vertebrates.
Collapse
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi, India
| | - Neha Agarwal
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
24
|
Ponti G, Farinetti A, Marraudino M, Panzica G, Gotti S. Postnatal genistein administration selectively abolishes sexual dimorphism in specific hypothalamic dopaminergic system in mice. Brain Res 2019; 1724:146434. [PMID: 31491419 DOI: 10.1016/j.brainres.2019.146434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/26/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
As demonstrated in previous studies, early postnatal genistein (GEN) administration to mice pups of both sexes, at doses similar to that of infant soy-based formulas, may affect the development of some steroid-sensitive neuronal circuits (i.e. nitrergic and vasopressinergic systems), causing irreversible alterations in adults. Here, we investigated the hypothalamic and mesencephalic dopaminergic system (identified with tyrosine hydroxylase immunohistochemistry). GEN administration (50 mg/kg) to mice of both sexes during the first week of postnatal life specifically affected tyrosine hydroxylase immunohistochemistry in the hypothalamic subpopulation of neurons, abolishing their sexual dimorphism. On the contrary, we did not observe any effects in the mesencephalic groups. Due to the large involvement of dopamine in circuits controlling rodent sexual behavior and food intake, these results clearly indicate that the early postnatal administration of GEN may irreversibly alter the control of reproduction, of energetic metabolism, and other behaviors. These results suggest the need for a careful evaluation of the use of soy products in both human and animal newborns.
Collapse
Affiliation(s)
- Giovanna Ponti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy; Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco (T0), Italy.
| | - Alice Farinetti
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - Marilena Marraudino
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - GianCarlo Panzica
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - Stefano Gotti
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| |
Collapse
|
25
|
Moore AM, Coolen LM, Lehman MN. Kisspeptin/Neurokinin B/Dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Sci Rep 2019; 9:14768. [PMID: 31611573 PMCID: PMC6791851 DOI: 10.1038/s41598-019-51201-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/25/2019] [Indexed: 02/01/2023] Open
Abstract
Neurons in the hypothalamic arcuate nucleus (ARC) that co-express kisspeptin, neurokinin B and dynorphin (KNDy cells) are essential for mammalian reproduction as key regulators of gonadotropin-releasing hormone (GnRH) secretion. Although multiple endogenous and exogenous signals act indirectly via KNDy neurons to regulate GnRH, the identity of upstream neurons that provide synaptic input to this subpopulation is unclear. We used rabies-mediated tract-tracing in transgenic Kiss1-Cre mice combined with whole-brain optical clearing and multiple-label immunofluorescence to create a comprehensive and quantitative brain-wide map of neurons providing monosynaptic input to KNDy cells, as well as identify the estrogen receptor content and peptidergic phenotype of afferents. Over 90% of monosynaptic input to KNDy neurons originated from hypothalamic nuclei in both male and female mice. The greatest input arose from non-KNDy ARC neurons, including proopiomelanocortin-expressing cells. Significant female-dominant sex differences in afferent input were detected from estrogen-sensitive hypothalamic nuclei critical for reproductive endocrine function and sexual behavior in mice, indicating KNDy cells may provide a unique site for the coordination of sex-specific behavior and gonadotropin release. These data provide key insight into the structural framework underlying the ability of KNDy neurons to integrate endogenous and environmental signals important for the regulation of reproductive function.
Collapse
Affiliation(s)
- Aleisha M Moore
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA.
| | - Lique M Coolen
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| | - Michael N Lehman
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
26
|
Dodd LD, Nowak E, Lange D, Parker CG, DeAngelis R, Gonzalez JA, Rhodes JS. Active feminization of the preoptic area occurs independently of the gonads in Amphiprion ocellaris. Horm Behav 2019; 112:65-76. [PMID: 30959023 DOI: 10.1016/j.yhbeh.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
Sex differences in the anatomy and physiology of the vertebrate preoptic area (POA) arise during development, and influence sex-specific reproductive functions later in life. Relative to masculinization, mechanisms for feminization of the POA are not well understood. The purpose of this study was to induce sex change from male to female in the anemonefish Amphiprion ocellaris, and track the timing of changes in POA cytoarchitecture, composition of the gonads and circulating sex steroid levels. Reproductive males were paired together and then sampled after 3 weeks, 6 months, 1 year and 3 years. Results show that as males change sex into females, number of medium cells in the anterior POA (parvocellular region) approximately double to female levels over the course of several months to 1 year. Feminization of gonads, and plasma sex steroids occur independently, on a variable timescale, up to years after POA sex change has completed. Findings suggest the process of POA feminization is orchestrated by factors originating from within the brain as opposed to being cued from the gonads, consistent with the dominant hypothesis in mammals. Anemonefish provide an opportunity to explore active mechanisms responsible for female brain development in an individual with male gonads and circulating sex steroid levels.
Collapse
Affiliation(s)
- Logan D Dodd
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Ewelina Nowak
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Dominica Lange
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Coltan G Parker
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Ross DeAngelis
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Jose A Gonzalez
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA
| | - Justin S Rhodes
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, 405 N. Mathews Ave, Urbana, IL 61801, USA.
| |
Collapse
|
27
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
28
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
29
|
Voigt C, Bennett N. Reproductive status affects the expression of prolactin receptor mRNA in the brain of female Damaraland mole-rats. J Chem Neuroanat 2018; 94:1-7. [DOI: 10.1016/j.jchemneu.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/12/2018] [Accepted: 08/13/2018] [Indexed: 01/25/2023]
|
30
|
Giatti S, Diviccaro S, Panzica G, Melcangi RC. Post-finasteride syndrome and post-SSRI sexual dysfunction: two sides of the same coin? Endocrine 2018; 61:180-193. [PMID: 29675596 DOI: 10.1007/s12020-018-1593-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Sexual dysfunction is a clinical condition due to different causes including the iatrogenic origin. For instance, it is well known that sexual dysfunction may occur in patients treated with antidepressants like selective serotonin reuptake inhibitors (SSRI). A similar side effect has been also reported during treatment with finasteride, an inhibitor of the enzyme 5alpha-reductase, for androgenetic alopecia. Interestingly, sexual dysfunction persists in both cases after drug discontinuation. These conditions have been named post-SSRI sexual dysfunction (PSSD) and post-finasteride syndrome (PFS). In particular, feeling of a lack of connection between the brain and penis, loss of libido and sex drive, difficulty in achieving an erection and genital paresthesia have been reported by patients of both conditions. It is interesting to note that the incidence of these diseases is probably so far underestimated and their etiopathogenesis is not sufficiently explored. To this aim, the present review will report the state of art of these two different pathologies and discuss, on the basis of the role exerted by three different neuromodulators such as dopamine, serotonin and neuroactive steroids, whether the persistent sexual dysfunction observed could be determined by common mechanisms.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Giancarlo Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Università degli studi di Torino, Neuroscience Institute Cavallieri Ottolenghi (NICO), Orbassano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
31
|
Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation. J Neurosci 2018; 38:6310-6322. [PMID: 29899026 DOI: 10.1523/jneurosci.0658-18.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
A population of kisspeptin-GABA coexpressing neurons located in the rostral periventricular area of the third ventricle (RP3V) is believed to activate gonadotropin-releasing hormone (GnRH) neurons to generate the luteinizing hormone (LH) surge triggering ovulation. Selective optogenetic activation of RP3V kisspeptin (RP3VKISS) neurons in female mice for >30 s and ≥10 Hz in either a continuous or bursting mode was found to reliably generate a delayed and long-lasting activation of GnRH neuron firing in brain slices. Optogenetic activation of RP3VKISS neurons in vivo at 10 Hz generated substantial increments in LH secretion of similar amplitude to the endogenous LH surge. Studies using GABAA receptor antagonists and optogenetic activation of RP3V GABA (RP3VGABA) neurons in vitro revealed that low-frequency (2 Hz) stimulation generated immediate and transient GABAA receptor-mediated increases in GnRH neuron firing, whereas higher frequencies (10 Hz) recruited the long-lasting activation observed following RP3VKISS neuron stimulation. In vivo, 2 Hz activation of RP3VGABA neurons did not alter LH secretion, whereas 10 Hz stimulation evoked a sustained large increase in LH identical to RP3VKISS neuron activation. Optogenetic activation of RP3VKISS neurons in which kisspeptin had been deleted did not alter LH secretion. These studies demonstrate the presence of parallel transmission streams from RP3V neurons to GnRH neurons that are frequency dependent and temporally distinct. This comprises a rapid and transient GABAA receptor-mediated activation and a slower onset kisspeptin-mediated stimulation of long duration. At the time of the LH surge, GABA release appears to be functionally redundant with the neuropeptide kisspeptin being the dominant cotransmitter influencing GnRH neuron output.SIGNIFICANCE STATEMENT Miscommunication between the brain and ovaries is thought to represent a major cause of infertility in humans. Studies in rodents suggest that a population of neurons located in the rostral periventricular area of the third ventricle (RP3V) are critical for activating the gonadotropin-releasing hormone (GnRH) neurons that trigger ovulation. The present study provides evidence that an RP3V neuron population coexpressing kisspeptin and GABA provides a functionally important excitatory input to GnRH neurons at the time of ovulation. This neural input releases GABA and/or kisspeptin in the classical frequency dependent and temporally distinct nature of amino acid-neuropeptide cotransmission. Unusually, however, the neuropeptide stream is found to be functionally dominant in activating GnRH neurons at the time of ovulation.
Collapse
|
32
|
Cellular fate decisions in the developing female anteroventral periventricular nucleus are regulated by canonical Notch signaling. Dev Biol 2018; 442:87-100. [PMID: 29885287 DOI: 10.1016/j.ydbio.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/05/2018] [Indexed: 01/20/2023]
Abstract
The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number. Based on these findings, we hypothesized that the Notch signaling pathway may act similarly in the AVPV by promoting development of kisspeptin neurons at the expense of other neuronal subtypes. To address this hypothesis, we utilized a genetic mouse model with a conditional loss of Rbpj in Nkx2.1 expressing cells (Rbpj cKO). We noted an increase in cellular proliferation, as marked by Ki-67, in the hypothalamic ventricular zone (HVZ) in Rbpj cKO mice at E13.5. This corresponded to an increase in general neurogenesis and more TH-positive neurons. Additionally, an increase in OLIG2-positive early oligodendrocytic precursor cells was observed at postnatal day 0 in Rbpj cKO mice. By 5 weeks of age in Rbpj cKO mice, TH-positive cells were readily detected in the AVPV but few kisspeptin neurons were present. To elucidate the direct effects of Notch signaling on neuron and glia differentiation, an in vitro primary hypothalamic neurosphere assay was employed. We demonstrated that treatment with the chemical Notch inhibitor DAPT increased mKi67 and Olig2 mRNA expression while decreasing astroglial Gfap expression, suggesting Notch signaling regulates both proliferation and early glial fate decisions. A modest increase in expression of TH in both the cell soma and neurite extensions was observed after extended culture, suggesting that inhibition of Notch signaling alone is enough to bias progenitors towards a dopaminergic fate. Together, these data suggest that Notch signaling restricts early cellular proliferation and differentiation of neurons and oligodendrocytes both in vivo and in vitro and acts as a fate selector of kisspeptin neurons.
Collapse
|
33
|
Trudeau VL. Facing the Challenges of Neuropeptide Gene Knockouts: Why Do They Not Inhibit Reproduction in Adult Teleost Fish? Front Neurosci 2018; 12:302. [PMID: 29773976 PMCID: PMC5943551 DOI: 10.3389/fnins.2018.00302] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 12/05/2022] Open
Abstract
Genetic manipulation of teleost endocrine systems started with transgenic overexpression of pituitary growth hormone. Such strategies enhance growth and reduce fertility, but the fish still breed. Genome editing using transcription activator-like effector nuclease in zebrafish and medaka has established the role of follicle stimulating hormone for gonadal development and luteinizing hormone for ovulation. Attempts to genetically manipulate the hypophysiotropic neuropeptidergic systems have been less successful. Overexpression of a gonadotropin-releasing hormone (gnrh) antisense in common carp delays puberty but does not block reproduction. Knockout of Gnrh in zebrafish does not impact either sex, while in medaka this blocks ovulation in females without affecting males. Spawning success is not reduced by knockout of the kisspeptins and receptors, agouti-related protein, agouti signaling peptide or spexin. Hypotheses for the lack of effect of these genome edits are presented. Over evolutionary time, teleosts have lost the median eminence typical of mammals. There is consequently direct innervation of gonadotrophs, with the possibility of independent regulation by >20 neurohormones. Removal of a few may have minimal impact. Neuropeptide knockout could leave co-expressed stimulators of gonadotropins functionally intact. Genetic compensation in response to loss of protein function may maintain sufficient reproduction. The species differences in hypothalamo-hypophysial anatomy could be an example of compensation over the evolutionary timescale as teleosts diversified and adapted to new ecological niches. The key neuropeptidergic systems controlling teleost reproduction remain to be uncovered. Classical neurotransmitters are also regulators of luteinizing hormone release, but have yet to be targeted by genome editing. Their essentiality for reproduction should also be explored.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
34
|
Burger LL, Vanacker C, Phumsatitpong C, Wagenmaker ER, Wang L, Olson DP, Moenter SM. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice. Endocrinology 2018; 159. [PMID: 29522155 PMCID: PMC6287592 DOI: 10.1210/en.2018-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Charlotte Vanacker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | | | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor,
Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor,
Michigan
- Correspondence: Laura L. Burger, PhD, University of Michigan, 7725 Med Sci II, 1137 E. Catherine
Street, Ann Arbor, Michigan 48109-5622. E-mail:
| |
Collapse
|
35
|
Dufourny L, Delmas O, Teixeira-Gomes AP, Decourt C, Sliwowska JH. Neuroanatomical connections between kisspeptin neurones and somatostatin neurones in female and male rat hypothalamus: a possible involvement of SSTR1 in kisspeptin release. J Neuroendocrinol 2018; 30:e12593. [PMID: 29543369 DOI: 10.1111/jne.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
Somatostatin (SST) a neuropeptide involved in the central modulation of several physiological functions, is co-distributed in the same hypothalamic areas as kisspeptin (KP), the most potent secretagogue of the gonadotropin-releasing hormone (GnRH) secretion known to date. As SST infused intracerebroventricularly (icv) evoked a potent inhibition of GnRH release, we explored neuroanatomical relationships between KP and SST populations in male and female rats. For that, intact males and ovariectomised oestradiol-replaced females were killed and their brains processed in order to simultaneously detect KP, SST and synapsin, a marker for synapses. We observed numerous appositions of KP on SST neurones both in female and male arcuate nucleus (ARC) and ventromedial hypothalamus. A large association between SST terminals and KP neurones at the level of the pre-optic area (POA) was also observed in female rats and in a more limited frame in males. Finally, most KP neurones from the ARC showed SST appositions in both sexes. To determine whether SST could affect KP cell activity, we assessed whether SST receptors (SSTR) were present on KP neurones in the ARC. We also looked for the presence of SSTR1 and SSTR2A in the brain of male rats. Brains were processed through a sequential double immunocytochemistry in order to detect KP and SSTR1 or KP and SSTR2A. We observed overlapping distributions of immunoreactive neurones for SSTR1 and KP and counted approximately one third of KP neurones with SSTR1. In contrast, neurones labelled for SSTR2A or KP were often juxtaposed in the ARC and the occurrence of double-labelled neurones was sporadic (<5%). These results suggest that SST action on KP neurones would pass mainly through SSTR1 at the level of the ARC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laurence Dufourny
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Oona Delmas
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
- INRA UMR INRA 1282 Infectiologie et Santé Publique, Université François Rabelais, F-37380, Nouzilly, France
| | - Caroline Decourt
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Joanna H Sliwowska
- Lab. of Neurobiology, Dpt of Veterinary Medicine and Animal Sciences, Poznan University of Life Science, 60-625, Poznan, Poland
| |
Collapse
|
36
|
Yeo SH, Colledge WH. The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2018; 9:188. [PMID: 29755406 PMCID: PMC5932150 DOI: 10.3389/fendo.2018.00188] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023] Open
Abstract
Kisspeptin-GPR54 signaling in the hypothalamus is required for reproduction and fertility in mammals. Kiss1 neurons are key regulators of gonadotropin-releasing hormone (GnRH) release and modulation of the hypothalamic-pituitary-gonadal (HPG) axis. Arcuate Kiss1 neurons project to GnRH nerve terminals in the median eminence, orchestrating the pulsatile secretion of luteinizing hormone (LH) through the intricate interaction between GnRH pulse frequency and the pituitary gonadotrophs. Arcuate Kiss1 neurons, also known as KNDy neurons in rodents and ruminants because of their co-expression of neurokinin B and dynorphin represent an ideal hub to receive afferent inputs from other brain regions in response to physiological and environmental changes, which can regulate the HPG axis. This review will focus on studies performed primarily in rodent and ruminant species to explore potential afferent inputs to Kiss1 neurons with emphasis on the arcuate region but also considering the rostral periventricular region of the third ventricle (RP3V). Specifically, we will discuss how these inputs can be modulated by hormonal, metabolic, and environmental factors to control gonadotropin secretion and fertility. We also summarize the methods and techniques that can be used to study functional inputs into Kiss1 neurons.
Collapse
|
37
|
Bardóczi Z, Wilheim T, Skrapits K, Hrabovszky E, Rácz G, Matolcsy A, Liposits Z, Sliwowska JH, Dobolyi Á, Kalló I. GnRH Neurons Provide Direct Input to Hypothalamic Tyrosine Hydroxylase Immunoreactive Neurons Which Is Maintained During Lactation. Front Endocrinol (Lausanne) 2018; 9:685. [PMID: 30524376 PMCID: PMC6261975 DOI: 10.3389/fendo.2018.00685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/01/2018] [Indexed: 01/09/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons provide neuronal input to the preoptic area (POA) and the arcuate nucleus (Arc), two regions involved critically in the regulation of neuroendocrine functions and associated behaviors. These areas contain tyrosine hydroxylase immunoreactive (TH-IR) neurons, which play location-specific roles in the neuroendocrine control of both the luteinizing hormone and prolactin secretion, as well as, sexually motivated behaviors. Concerning changes in the activity of GnRH neurons and the secretion pattern of GnRH seen under the influence of rising serum estrogen levels and during lactation, we tested the hypothesis that the functional state of GnRH neurons is mediated via direct synaptic connections to TH-IR neurons in the POA and Arc. In addition, we examined putative changes of these inputs in lactating mice and in mothers separated from their pups. Confocal microscopic and pre-embedding immunohistochemical studies on ovariectomized mice treated with 17β-estradiol (OVX+E2) provided evidence for direct appositions and asymmetric synapses between GnRH-IR fiber varicosities and TH-IR neurons in the POA and the Arc. As TH co-localizes with kisspeptin (KP) in the POA, confocal microscopic analysis was continued on sections additionally labeled for KP. The TH-IR neurons showed a lower level of co-labeling for KP in lactating mice compared to OVX+E2 mice (16.1 ± 5% vs. 57.8 ± 4.3%). Removing the pups for 24 h did not alter significantly the KP production in TH-IR neurons (17.3 ± 4.6%). The mean number of GnRH-IR varicosities on preoptic and arcuate TH cells did not differ in the three animal models investigated. This study shows evidence that GnRH neurons provide direct synaptic inputs to POA and Arc dopaminergic neurons. The scale of anatomical connectivity with these target cells was unaltered during lactation indicating a maintained GnRH input, inspite of the altered hormonal condition.
Collapse
Affiliation(s)
- Zsuzsanna Bardóczi
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Tamás Wilheim
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Joanna H. Sliwowska
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Poznań, Poland
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
- *Correspondence: Imre Kalló
| |
Collapse
|
38
|
Dufourny L, Lomet D. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus. Gen Comp Endocrinol 2017; 254:68-74. [PMID: 28935581 DOI: 10.1016/j.ygcen.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined.
Collapse
Affiliation(s)
- Laurence Dufourny
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| | - Didier Lomet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| |
Collapse
|
39
|
Vastagh C, Liposits Z. Impact of Proestrus on Gene Expression in the Medial Preoptic Area of Mice. Front Cell Neurosci 2017; 11:183. [PMID: 28725181 PMCID: PMC5495965 DOI: 10.3389/fncel.2017.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/15/2017] [Indexed: 11/13/2022] Open
Abstract
The antero-ventral periventricular zone (AVPV) and medial preoptic area (MPOA) have been recognized as gonadal hormone receptive regions of the rodent brain that-via wiring to gonadotropin-releasing hormone (GnRH) neurons-contribute to orchestration of the preovulatory GnRH surge. We hypothesized that neural genes regulating the induction of GnRH surge show altered expression in proestrus. Therefore, we compared the expression of 48 genes obtained from intact proestrous and metestrous mice, respectively, by quantitative real-time PCR (qPCR) method. Differential expression of 24 genes reached significance (p < 0.05). Genes upregulated in proestrus encoded neuropeptides (kisspeptin (KP), galanin (GAL), neurotensin (NT), cholecystokinin (CCK)), hormone receptors (growth hormone secretagogue receptor, μ-opioid receptor), gonadal steroid receptors (estrogen receptor alpha (ERα), progesterone receptor (PR), androgen receptor (AR)), solute carrier family proteins (vesicular glutamate transporter 2, vesicular monoamine transporter 2), proteins of transmitter synthesis (tyrosine hydroxylase (TH)) and transmitter receptor subunit (AMPA4), and other proteins (uncoupling protein 2, nuclear receptor related 1 protein). Proestrus evoked a marked downregulation of genes coding for adenosine A2a receptor, vesicular gamma-aminobutyric acid (GABA) transporter, 4-aminobutyrate aminotransferase, tachykinin precursor 1, NT receptor 3, arginine vasopressin receptor 1A, cannabinoid receptor 1, ephrin receptor A3 and aldehyde dehydrogenase 1 family, member L1. Immunocytochemistry was used to visualize the proteins encoded by Kiss1, Gal, Cck and Th genes in neuronal subsets of the AVPV/MPOA of the proestrous mice. The results indicate that gene expression of the AVPV/MPOA is significantly modified at late proestrus including genes that code for neuropeptides, gonadal steroid hormone receptors and synaptic vesicle transporters. These events support cellular and neuronal network requirements of the positive estradiol feedback action and contribute to preparation of the GnRH neuron system for the pre-ovulatory surge release.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
40
|
Effects of Selective Deletion of Tyrosine Hydroxylase from Kisspeptin Cells on Puberty and Reproduction in Male and Female Mice. eNeuro 2017; 4:eN-NRS-0150-17. [PMID: 28660243 PMCID: PMC5480141 DOI: 10.1523/eneuro.0150-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022] Open
Abstract
The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Kiss1-syntheizing neurons reside primarily in the hypothalamic anteroventral periventricular (AVPV/PeN) and arcuate (ARC) nuclei. AVPV/PeN Kiss1 neurons are sexually dimorphic, with females expressing more Kiss1 than males, and participate in estradiol (E2)-induced positive feedback control of GnRH secretion. In mice, most AVPV/PeN Kiss1 cells coexpress tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis (in this case, dopamine). Dopamine treatment can inhibit GnRH neurons, but the function of dopamine signaling arising specifically from AVPV/PeN Kiss1 cells is unknown. We generated a novel TH flox mouse and used Cre-Lox technology to selectively ablate TH specifically from Kiss1 cells. We then examined the effects of selective TH knock-out on puberty and reproduction in both sexes. In control mice, 90% of AVPV/PeN Kiss1 neurons coexpressed TH, whereas in mice lacking TH exclusively in Kiss1 cells (termed Kiss THKOs), TH was successfully absent from virtually all Kiss1 cells. Despite this absence of TH, both female and male Kiss THKOs displayed normal body weights, puberty onset, and basal gonadotropin levels in adulthood, although testosterone (T) was significantly elevated in adult male Kiss THKOs. The E2-induced LH surge was unaffected in Kiss THKO females, and neuronal activation status of kisspeptin and GnRH cells was also normal. Supporting this, fertility and fecundity were normal in Kiss THKOs of both sexes. Thus, despite high colocalization of TH and Kiss1 in the AVPV/PeN, dopamine produced in these cells is not required for puberty or reproduction, and its function remains unknown.
Collapse
|
41
|
Marraudino M, Miceli D, Farinetti A, Ponti G, Panzica G, Gotti S. Kisspeptin innervation of the hypothalamic paraventricular nucleus: sexual dimorphism and effect of estrous cycle in female mice. J Anat 2017; 230:775-786. [PMID: 28295274 DOI: 10.1111/joa.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/11/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is the major autonomic output area of the hypothalamus and a critical regulatory center for energy homeostasis. The organism's energetic balance is very important for both the regular onset of puberty and regulation of fertility. Several studies have suggested a relationship among neural circuits controlling food intake, energy homeostasis and the kisspeptin peptide. The kisspeptin system is clustered in two main groups of cell bodies [the anterior ventral periventricular region (AVPV) and the arcuate nucleus (ARC)] projecting mainly to gonadotropin-releasing hormone (GnRH) neurons and to a few other locations, including the PVN. In the present study, we investigated the distribution of the kisspeptin fibers within the PVN of adult CD1 mice. We observed a significant sexual dimorphism for AVPV and ARC, as well as for the PVN innervation. Kisspeptin fibers showed a different density within the PVN, being denser in the medial part than in the lateral one; moreover, in female, the density changed, according to different phases of the estrous cycle (the highest density being in estrus phase). The presence of a profound effect of estrous cycle on the kisspeptin immunoreactivity in AVPV (with a higher signal in estrus) and ARC, and the strong co-localization between kisspeptin and NkB only in ARC and not in PVN suggested that the majority of the kisspeptin fibers found in the PVN might arise directly from AVPV.
Collapse
Affiliation(s)
- Marilena Marraudino
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Dèsirèe Miceli
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Alice Farinetti
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Giovanna Ponti
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - GianCarlo Panzica
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Stefano Gotti
- Department of Neuroscience, Laboratory of Neuroendocrinology, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| |
Collapse
|
42
|
Evans MC, Anderson GM. Neuroendocrine integration of nutritional signals on reproduction. J Mol Endocrinol 2017; 58:R107-R128. [PMID: 28057770 DOI: 10.1530/jme-16-0212] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
43
|
Vastagh C, Rodolosse A, Solymosi N, Liposits Z. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice. Front Cell Neurosci 2016; 10:230. [PMID: 27774052 PMCID: PMC5054603 DOI: 10.3389/fncel.2016.00230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2), glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6), cholinergic (Chrnb2, Chrm4) and dopaminergic (Drd3, Drd4), adrenergic (Adra1b, Adra2a, Adra2c), adenosinergic (Adora2a, Adora2b), glycinergic (Glra), purinergic (P2rx7), and serotonergic (Htr1b) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins (Gnai1, Gnai2, Gnas), adenylate-cyclases (Adcy3, Adcy5), protein kinase A (Prkaca, Prkacb) protein kinase C (Prkca) and certain transporters (Slc1a4, Slc17a6, Slc6a17) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB Barcelona)Barcelona, Spain
| | - Norbert Solymosi
- Department of Animal Hygiene, Herd-Health and Veterinary Ethology, University of Veterinary MedicineBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
44
|
Bogus-Nowakowska K, Równiak M, Hermanowicz-Sobieraj B, Wasilewska B, Najdzion J, Robak A. Tyrosine hydroxylase-immunoreactivity and its relations with gonadotropin-releasing hormone and neuropeptide Y in the preoptic area of the guinea pig. J Chem Neuroanat 2016; 78:131-139. [PMID: 27650206 DOI: 10.1016/j.jchemneu.2016.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/16/2022]
Abstract
The present study examines the distribution of tyrosine hydroxylase (TH) immunoreactivity and its morphological relationships with neuropeptide Y (NPY)- and gonadoliberin (GnRH)-immunoreactive (IR) structures in the preoptic area (POA) of the male guinea pig. Tyrosine hydroxylase was expressed in relatively small population of perikarya and they were mostly observed in the periventricular preoptic nucleus and medial preoptic area. The tyrosine hydroxylase-immunoreactive (TH-IR) fibers were dispersed troughout the whole POA. The highest density of these fibers was observed in the median preoptic nucleus, however, in the periventricular preoptic nucleus and medial preoptic area they were only slightly less numerous. In the lateral preoptic area, the density of TH-IR fibers was moderate. Two morphological types of TH-IR fibers were distinguished: smooth and varicose. Double immunofluorescence staining showed that TH and GnRH overlapped in the guinea pig POA but they never coexisted in the same structures. TH-IR fibers often intersected with GnRH-IR structures and many of them touched the GnRH-IR perikarya or dendrites. NPY wchich was abundantly present in the POA only in fibers showed topographical proximity with TH-IR structures. Althoug TH-IR perikarya and fibers were often touched by NPY-IR fibers, colocalization of TH and NPY in the same structures was very rare. There was only a small population of fibers which contained both NPY and TH. In conclusion, the morphological evidence of contacts between TH- and GnRH-IR nerve structures may be the basis of catecholaminergic control of GnRH release in the preoptic area of the male guinea pig. Moreover, TH-IR neurons were conatcted by NPY-IR fibers and TH and NPY colocalized in some fibers, thus NPY may regulate catecholaminergic neurons in the POA.
Collapse
Affiliation(s)
- Krystyna Bogus-Nowakowska
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | - Maciej Równiak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland
| | - Beata Hermanowicz-Sobieraj
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland
| | - Barbara Wasilewska
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland
| | - Janusz Najdzion
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland
| | - Anna Robak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
45
|
Grachev P, Porter KL, Coolen LM, McCosh RB, Connors JM, Hileman SM, Lehman MN, Goodman RL. Surge-Like Luteinising Hormone Secretion Induced by Retrochiasmatic Area NK3R Activation is Mediated Primarily by Arcuate Kisspeptin Neurones in the Ewe. J Neuroendocrinol 2016; 28:10.1111/jne.12393. [PMID: 27059932 PMCID: PMC5157122 DOI: 10.1111/jne.12393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 01/17/2023]
Abstract
The neuropeptides neurokinin B (NKB) and kisspeptin are potent stimulators of gonadotrophin-releasing hormone (GnRH)/luteinsing hormone (LH) secretion and are essential for human fertility. We have recently demonstrated that selective activation of NKB receptors (NK3R) within the retrochiasmatic area (RCh) and the preoptic area (POA) triggers surge-like LH secretion in ovary-intact ewes, whereas blockade of RCh NK3R suppresses oestradiol-induced LH surges in ovariectomised ewes. Although these data suggest that NKB signalling within these regions of the hypothalamus mediates the positive-feedback effects of oestradiol on LH secretion, the pathway through which it stimulates GnRH/LH secretion remains unclear. We proposed that the action of NKB on RCh neurones drives the LH surge by stimulating kisspeptin-induced GnRH secretion. To test this hypothesis, we quantified the activation of the preoptic/hypothalamic populations of kisspeptin neurones in response to POA or RCh administration of senktide by dual-label immunohistochemical detection of kisspeptin and c-Fos (i.e. marker of neuronal activation). We then administered the NK3R agonist, senktide, into the RCh of ewes in the follicular phase of the oestrous cycle and conducted frequent blood sampling during intracerebroventricular infusion of the kisspeptin receptor antagonist Kp-271 or saline. Our results show that the surge-like secretion of LH induced by RCh senktide administration coincided with a dramatic increase in c-Fos expression within arcuate nucleus (ARC) kisspeptin neurones, and was completely blocked by Kp-271 infusion. We substantiate these data with evidence of direct projections of RCh neurones to ARC kisspeptin neurones. Thus, NKB-responsive neurones in the RCh act to stimulate GnRH secretion by inducing kisspeptin release from KNDy neurones.
Collapse
Affiliation(s)
- P Grachev
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - K L Porter
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - L M Coolen
- Department of Neurobiology & Anatomical Sciences, The University of Mississippi Medical Center, Jackson, MS, USA
- Department of Physiology & Biophysics, The University of Mississippi Medical Center, Jackson, MS, USA
| | - R B McCosh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - J M Connors
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - S M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - M N Lehman
- Department of Neurobiology & Anatomical Sciences, The University of Mississippi Medical Center, Jackson, MS, USA
| | - R L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
46
|
Zuure WA, Quennell JH, Anderson GM. Leptin Responsive and GABAergic Projections to the Rostral Preoptic Area in Mice. J Neuroendocrinol 2016; 28:12357. [PMID: 26716764 DOI: 10.1111/jne.12357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
Abstract
The adipocyte-derived hormone leptin plays a critical role in the control of reproduction via signalling in hypothalamic neurones. The drivers of the hypothalamic-pituitary-gonadal axis, the gonadotrophin-releasing hormone (GnRH) neurones, do not have the receptors for leptin. Therefore, intermediate leptin responsive neurones must provide leptin-to-GnRH signalling. We investigated the populations of leptin responsive neurones that provide input to the rostral preoptic area (rPOA) where GnRH cell bodies reside. Fluorescent retrograde tracer beads (RetroBeads; Lumafluor Inc., Naples, FL, USA) were injected into the rPOA of transgenic leptin receptor enhanced green fluorescent protein (Lepr-eGFP) reporter mice. Uptake of the RetroBeads by Lepr-eGFP neurones was assessed throughout the hypothalamus. RetroBead uptake was most evident in the medial arcuate nucleus (ARC), the dorsomedial nucleus (DMN) and the ventral premammillary nucleus (PMV) of the hypothalamus. The uptake of RetroBeads specifically by Lepr-eGFP neurones was highest in the medial ARC (18% of tracer-labelled neurones Lepr-eGFP-positive). Because neurones that are both leptin responsive and GABAergic play a critical role in the regulation of fertility by leptin, we next focussed on the location of these populations. To address whether GABAergic neurones in leptin-responsive hypothalamic regions project to the rPOA, the experiment was repeated in GABA neurone reporter mice (Vgat-tdTomato). Between 10% and 45% of RetroBead-labelled neurones in the ARC were GABAergic, whereas uptake of tracer by GABAergic neurones in the DMN and PMV was very low (< 5%). These results show that both leptin responsive and GABAergic neurones from the ARC project to the region of the GnRH cell bodies. Our findings suggest that LEPR-expressing GABA neurones from the ARC may be mediators of leptin-to-GnRH signalling.
Collapse
Affiliation(s)
- W A Zuure
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - J H Quennell
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - G M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
47
|
Treen AK, Luo V, Chalmers JA, Dalvi PS, Tran D, Ye W, Kim GL, Friedman Z, Belsham DD. Divergent Regulation of ER and Kiss Genes by 17β-Estradiol in Hypothalamic ARC Versus AVPV Models. Mol Endocrinol 2016; 30:217-33. [PMID: 26726951 DOI: 10.1210/me.2015-1189] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Kisspeptin (Kiss) and G-protein-coupled receptor (Gpr)54 have emerged as key regulators of reproduction. 17β-estradiol (E2)-mediated regulation of these neurons is nuclei specific, where anteroventral periventricular (AVPV) Kiss neurons are positively regulated by E2, whereas arcuate nucleus (ARC) neurons are inhibited. We have generated immortalized Kiss cell lines from male and female adult-derived murine hypothalamic primary culture, as well as cell lines from microdissected AVPV and ARC from female Kiss-green fluorescent protein (GFP) mice. All exhibit endogenous Kiss-1 expression, estrogen receptors (ER)s (ERα, ERβ, and Gpr30), as well as known markers of AVPV Kiss neurons in the mHypoA-50 and mHypoA-Kiss/GFP-4, vs markers of ARC Kiss neurons in the mHypoA-55 and the mHypoA-Kiss/GFP-3 lines. There was an increase in Kiss-1 mRNA expression at 24 hours in the AVPV lines and a repression of Kiss-1 mRNA at 4 hours in the ARC lines. An E2-mediated decrease in ERα mRNA expression at 24 hours in the AVPV cell lines was detected, and a significant decrease in Gpr30, ERα, and ERβ mRNA levels at 4 hours in the ARC cell lines was evident. ER agonists and antagonists determined the specific ERs responsible for mediating changes in gene expression. In the AVPV, ERα is required but not ERβ or GPR30, vs the ARC Kiss-expressing cell lines that require GPR30, and either ERα and/or ERβ. We determined cAMP response element-binding protein 1 was necessary for the down-regulation of Kiss-1 mRNA expression using small interfering RNA knockdown in the ARC cell model. These studies elucidate some of the molecular events involved in the differential E2-mediated regulation of unique and specific Kiss neuronal models.
Collapse
Affiliation(s)
- Alice K Treen
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Vicky Luo
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Jennifer A Chalmers
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Prasad S Dalvi
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Dean Tran
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Wenqing Ye
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Ginah L Kim
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Zoey Friedman
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| | - Denise D Belsham
- Departments of Physiology (A.K.T., V.L., J.A.C., P.S.D., D.T., W.Y., G.L.K., Z.F., D.D.B.), Medicine (D.D.B.), and Obstetrics and Gynaecology (D.D.B.), University of Toronto, and Division of Cellular and Molecular Biology (D.D.B.), Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
48
|
Putteeraj M, Soga T, Ubuka T, Parhar IS. A "Timed" Kiss Is Essential for Reproduction: Lessons from Mammalian Studies. Front Endocrinol (Lausanne) 2016; 7:121. [PMID: 27630616 PMCID: PMC5005330 DOI: 10.3389/fendo.2016.00121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/19/2016] [Indexed: 11/26/2022] Open
Abstract
Reproduction is associated with the circadian system, primarily as a result of the connectivity between the biological clock in the suprachiasmatic nucleus (SCN) and reproduction-regulating brain regions, such as preoptic area (POA), anteroventral periventricular nucleus (AVPV), and arcuate nucleus (ARC). Networking of the central pacemaker to these hypothalamic brain regions is partly represented by close fiber appositions to specialized neurons, such as kisspeptin and gonadotropin-releasing hormone (GnRH) neurons; accounting for rhythmic release of gonadotropins and sex steroids. Numerous studies have attempted to dissect the neurochemical properties of GnRH neurons, which possess intrinsic oscillatory features through the presence of clock genes to regulate the pulsatile and circadian secretion. However, less attention has been given to kisspeptin, the upstream regulator of GnRH and a potent mediator of reproductive functions including puberty. Kisspeptin exerts its stimulatory effects on GnRH secretion via its cognate Kiss-1R receptor that is co-expressed on GnRH neurons. Emerging studies have found that kisspeptin neurons oscillate on a circadian basis and that these neurons also express clock genes that are thought to regulate its rhythmic activities. Based on the fiber networks between the SCN and reproductive nuclei such as the POA, AVPV, and ARC, it is suggested that interactions among the central biological clock and reproductive neurons ensure optimal reproductive functionality. Within this neuronal circuitry, kisspeptin neuronal system is likely to "time" reproduction in a long term during development and aging, in a medium term to regulate circadian or estrus cycle, and in a short term to regulate pulsatile GnRH secretion.
Collapse
Affiliation(s)
- Manish Putteeraj
- Brain Research Institute (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Tomoko Soga
- Brain Research Institute (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Takayoshi Ubuka
- Brain Research Institute (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar,
| |
Collapse
|
49
|
Brown RSE, Herbison AE, Grattan DR. Effects of Prolactin and Lactation on A15 Dopamine Neurones in the Rostral Preoptic Area of Female Mice. J Neuroendocrinol 2015; 27:708-17. [PMID: 26132331 DOI: 10.1111/jne.12297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/28/2022]
Abstract
There are several distinct populations of dopamine neurones in the hypothalamus. Some of these, such as the A12 tuberoinfundibular dopamine neurones and the A14 periventricular dopamine neurones, are known to be regulated by the anterior pituitary hormone prolactin, whereas others, such as the A13 zona incerta dopaminergic neurones, are not. The present study aimed to investigate the role of prolactin in the regulation of a fourth population of hypothalamic dopamine neurones: the A15 dopamine population in the rostral hypothalamus. These neurones may play a role in the regulation of gonadotrophin-releasing hormone (GnRH) secretion, and we hypothesised that they might contribute to the suppression of GnRH release and infertility caused by hyperprolactinaemia. Under basal (low prolactin) conditions, only 8% of A15 dopamine neurones in the anteroventral periventricular nucleus (AVPV) of vehicle-treated dioestrous mice expressed phosphorylated signal transducer and activator of transcription 5 (pSTAT5), as labelled by immunohistochemistry. We have previously shown that this transcription factor can be used as an index of prolactin-receptor activation. Following acute prolactin administration, 35% of AVPV dopamine neurones co-expressed pSTAT5, whereas, during lactation, when endogenous prolactin levels are chronically elevated, 55% of AVPV dopamine neurones expressed pSTAT5. There was also a significant increase in dopamine turnover in the rostral hypothalamus, both in the diagonal band of Broca at the level of the organum vasculosum of the lamina terminalis and in the rostral preoptic area during lactation, with the 3,4-dihydroxyphenylacetic acid/dopamine ratio increasing from 0.28 ± 0.04 and 0.14 ± 0.01 in dioestrous mice to 0.82 ± 0.06 and 0.38 ± 0.03, respectively, in day 7 lactating mice. It is not yet known whether this change is driven by the hyperprolactinaemia of lactation, or another lactation-specific signal. These data demonstrate that the A15 dopaminergic neurones of the rostral hypothalamus are responsive to exogenous prolactin and may be regulated by endogenous prolactin during lactation.
Collapse
Affiliation(s)
- R S E Brown
- Centre for Neuroendocrinology, Department of Anatomy, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - A E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Centre for Neuroendocrinology, Department of Anatomy, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Taziaux M, Bakker J. Absence of Female-Typical Pheromone-Induced Hypothalamic Neural Responses and Kisspeptin Neuronal Activity in α-Fetoprotein Knockout Female Mice. Endocrinology 2015; 156:2595-607. [PMID: 25860032 DOI: 10.1210/en.2015-1062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pheromones induce sexually dimorphic neuroendocrine responses, such as LH secretion. However, the neuronal network by which pheromones are converted into signals that will initiate and modulate endocrine changes remains unclear. We asked whether 2 sexually dimorphic populations in the anteroventral periventricular and periventricular nuclei that express kisspeptin and tyrosine hydroxylase (TH) are potential candidates that will transduce the olfactory signal to the neuroendocrine system. Furthermore, we assessed whether this transduction is sensitive to perinatal actions of estradiol by using female mice deficient in α-fetoprotein (AfpKO), which lack the protective actions of Afp against maternal estradiol. Wild-type (WT) and AfpKO male and female mice were exposed to same- versus opposite-sex odors and the expression of Fos (the protein product of the immediate early gene c-Fos) was analyzed along the olfactory projection pathways as well as whether kisspeptin, TH, and GnRH neurons are responsive to opposite-sex odors. Male odors induced a female-typical Fos expression in target forebrain sites of olfactory inputs involved in reproduction in WT, but not in AfpKO females, whereas female odors induced a male-typical Fos expression in males of both genotypes. In WT females, opposite-sex odors induced Fos in kisspeptin and TH neurons, whereas in AfpKO females and WT males, only a lower, but still significant, Fos expression was observed in TH but not in kisspeptin neurons. Finally, opposite-sex odors did not induce any significant Fos expression in GnRH neurons of both sexes or genotypes. Our results strongly suggest a role for fetal estrogen in the sexual differentiation of neural responses to sex-related olfactory cues.
Collapse
Affiliation(s)
- Melanie Taziaux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences (M.T., J.B.), University of Liège, 4000 Liège, Belgium; and Netherlands Institute for Neuroscience (J.B.), Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Julie Bakker
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences (M.T., J.B.), University of Liège, 4000 Liège, Belgium; and Netherlands Institute for Neuroscience (J.B.), Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|