1
|
Klöhn M, Burkard T, Janzen J, Haase JA, Gömer A, Fu R, Ssebyatika G, Nocke MK, Brown RJP, Krey T, Dao Thi VL, Kinast V, Brüggemann Y, Todt D, Steinmann E. Targeting cellular cathepsins inhibits hepatitis E virus entry. Hepatology 2024; 80:1239-1251. [PMID: 38728662 PMCID: PMC11486972 DOI: 10.1097/hep.0000000000000912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND AIMS HEV is estimated to be responsible for 70,000 deaths annually, yet therapy options remain limited. In the pursuit of effective antiviral therapies, targeting viral entry holds promise and has proven effective for other viruses. However, the precise mechanisms and host factors required during HEV entry remain unclear. Cellular proteases have emerged as host factors required for viral surface protein activation and productive cell entry by many viruses. Hence, we investigated the functional requirement and therapeutic potential of cellular protease during HEV infection. APPROACH AND RESULTS Using our established HEV cell culture model and subgenomic HEV replicons, we found that blocking lysosomal cathepsins (CTS) with small molecule inhibitors impedes HEV infection without affecting replication. Most importantly, the pan-cathepsin inhibitor K11777 suppressed HEV infections with an EC 50 of ~0.02 nM. Inhibition by K11777, devoid of notable toxicity in hepatoma cells, was also observed in HepaRG and primary human hepatocytes. Furthermore, through time-of-addition and RNAscope experiments, we confirmed that HEV entry is blocked by inhibition of cathepsins. Cathepsin L (CTSL) knockout cells were less permissive to HEV, suggesting that CTSL is critical for HEV infection. Finally, we observed cleavage of the glycosylated ORF2 protein and virus particles by recombinant CTSL. CONCLUSIONS In summary, our study highlights the pivotal role of lysosomal cathepsins, especially CTSL, in the HEV entry process. The profound anti-HEV efficacy of the pan-cathepsin inhibitor K11777, especially with its notable safety profile in primary cells, further underscores its potential as a therapeutic candidate.
Collapse
Affiliation(s)
- Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Burkard
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Juliana Janzen
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Jil A. Haase
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Rebecca Fu
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Richard J. P. Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Viet Loan Dao Thi
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Volker Kinast
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
2
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Shahini E, Argentiero A, Andriano A, Losito F, Maida M, Facciorusso A, Cozzolongo R, Villa E. Hepatitis E Virus: What More Do We Need to Know? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:998. [PMID: 38929615 PMCID: PMC11205503 DOI: 10.3390/medicina60060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hepatitis E virus (HEV) infection is typically a self-limiting, acute illness that spreads through the gastrointestinal tract but replicates in the liver. However, chronic infections are possible in immunocompromised individuals. The HEV virion has two shapes: exosome-like membrane-associated quasi-enveloped virions (eHEV) found in circulating blood or in the supernatant of infected cell cultures and non-enveloped virions ("naked") found in infected hosts' feces and bile to mediate inter-host transmission. Although HEV is mainly spread via enteric routes, it is unclear how it penetrates the gut wall to reach the portal bloodstream. Both virion types are infectious, but they infect cells in different ways. To develop personalized treatment/prevention strategies and reduce HEV impact on public health, it is necessary to decipher the entry mechanism for both virion types using robust cell culture and animal models. The contemporary knowledge of the cell entry mechanism for these two HEV virions as possible therapeutic target candidates is summarized in this narrative review.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy;
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Erica Villa
- Gastroenterology Unit, CHIMOMO Department, University of Modena & Reggio Emilia, Via del Pozzo 71, 41121 Modena, Italy
| |
Collapse
|
4
|
Li X, Sun X, Pinpin J, Zhao Q, Sun Y. Multifunctional ORF3 protein of hepatitis E virus. J Med Virol 2024; 96:e29691. [PMID: 38783788 DOI: 10.1002/jmv.29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is transmitted primarily through the fecal-oral route and can cause acute hepatitis in humans. Since HEV was identified as a zoonotic pathogen, different species of HEV strains have been globally identified from various hosts, leading to an expanding range of hosts. The HEV genome consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. The ORF3 protein is the smallest but has many functions in HEV release and pathogenesis. In this review, we systematically summarize recent progress in understanding the functions of the HEV ORF3 protein in virion release, biogenesis of quasi-enveloped viruses, antigenicity, and host environmental regulation. This review will help us to understand HEV replication and pathogenesis mechanisms better.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ji Pinpin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
In Vitro Replication of Swine Hepatitis E Virus (HEV): Production of Cell-Adapted Strains. Animals (Basel) 2023; 13:ani13020276. [PMID: 36670816 PMCID: PMC9854997 DOI: 10.3390/ani13020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The hepatitis E caused by the virus HEV of genotypes HEV-3 and HEV-4 is a zoonotic foodborne disease spread worldwide. HEV is currently classified into eight different genotypes (HEV-1-8). Genotypes HEV-3 and HEV-4 are zoonotic and are further divided into subtypes. Most of the information on HEV replication remains unknown due to the lack of an efficient cell cultivation system. Over the last couple of years, several protocols for HEV cultivation have been developed on different cell lines; even if they were troublesome, long, and scarcely reproducible, they offered the opportunity to study the replicative cycle of the virus. In the present study, we aimed to obtain a protocol ready to use viral stock in serum free medium that can be used with reduced time of growth and without any purification steps. The employed method allowed isolation and cell adaptation of four swine HEV-3 strains, belonging to three different subtypes. Phylogenetic analyses conducted on partial genome sequences of in vitro isolated strains did not reveal any insertion in the hypervariable region (HVR) of the genomes. A limited number of mutations was acquired in the genome during the virus growth in the partial sequences of Methyltransferase (Met) and ORF2 coding genes.
Collapse
|
6
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Liu X, Qi S, Yin X. Morphogenesis of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:159-169. [PMID: 37223865 DOI: 10.1007/978-981-99-1304-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus, a leading cause of acute hepatitis worldwide, has been recognized as non-enveloped virus since its discovery in the 1980s. However, the recent identification of lipid membrane-associated form termed as "quasi-enveloped" HEV has changed this long-held notion. Both naked HEV and quasi-enveloped HEV play important roles in the pathogenesis of hepatitis E. However, the biogenesis and the mechanisms underlying the composition, biogenesis regulation, and functions of the novel quasi-enveloped virions remain enigmatic. In this chapter, we highlight the most recent discoveries on the dual life cycle of these two different types of virions, and further discuss the implication of the quasi-envelopment in our understanding of the molecular biology of HEV.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuhui Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
8
|
Lambidis E, Chen CC, Lumen D, Sánchez AIF, Sarparanta M, Cheng RH, Airaksinen AJ. Biological evaluation of integrin α 3β 1-targeted 68Ga-labeled HEVNPs in HCT 116 colorectal tumor-bearing mice. Eur J Pharm Sci 2023; 180:106336. [PMID: 36403717 DOI: 10.1016/j.ejps.2022.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Integrins are cell surface receptors involved in multiple functions vital for cellular proliferation. Various tumor cells overexpress αβ-integrins, making them ideal biomarkers for diagnostic imaging and tumor-targeted drug delivery. LXY30 is a peptide that can specifically recognize and interact with the integrin α3β1, a molecule overexpressed in breast, ovarian and colorectal cancer. Hepatitis E virus nanoparticles (HEVNPs) are virus-like particles that have been investigated as drug delivery agents for the targeted delivery of nucleic acids and small proteins. HEVNPs can be a theranostic platform for monitoring and evaluating tumor-targeted therapies if tagged with a suitable diagnostic marker. Herein, we describe the radiolabeling and biological evaluation of integrin α3β1-targeted HEVNPs. HEVNPs were conjugated with DOTA and radiolabeled with gallium-68 (t1/2 = 67.7 min), a short-lived positron emitter used in positron emission tomography (PET). The synthesized [68Ga]Ga-DOTA-HEVNPs were used to evaluate the efficacy of conjugated LXY30 peptide to improve HEVNPs binding and internalization to integrin α3β1 expressing human colorectal HCT 116 cells. In vivo tumor accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 was evaluated in HCT 116 colorectal tumor-bearing mice. [68Ga]Ga-DOTA-HEVNP-LXY30 and non-targeted [68Ga]Ga-DOTA-HEVNP were radiolabeled with radiochemical yields (RCY) of 67.9 ± 3.3% and 73.7 ± 9.8%, respectively. [68Ga]Ga-DOTA-HEVNP-LXY30 exhibited significantly higher internalization in HCT 116 cells than the non-targeted [68Ga]Ga-DOTA-HEVNPs (21.0 ± 0.7% vs. 10.5 ± 0.3% at 3 h, ****P<0.0001). After intravenous administration to mice, accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 to HCT 116 xenograft tumors was at its highest rate of 0.8 ± 0.4%ID/g at 60 min. [68Ga]Ga-DOTA-HEVNP-LXY30 accumulated mainly in the liver and spleen (39.8 ± 13.0%%ID/g and 24.6 ± 24.1%ID/g, respectively). Despite the low targeting efficiency in vivo, we demonstrated that [68Ga]Ga-DOTA-HEVNP is a promising diagnostic platform for quantitative analysis of HEVNP distribution in vivo. This nanosystem can be utilized in future studies assessing the success of further engineered HEVNP structures with optimized targeting efficiency in vivo.
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Chun-Chieh Chen
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A
| | - Dave Lumen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, U.S.A..
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland; Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland.
| |
Collapse
|
9
|
Lambidis E, Chen CC, Baikoghli M, Imlimthan S, Khng YC, Sarparanta M, Cheng RH, Airaksinen AJ. Development of 68Ga-Labeled Hepatitis E Virus Nanoparticles for Targeted Drug Delivery and Diagnostics with PET. Mol Pharm 2022; 19:2971-2979. [PMID: 35857429 PMCID: PMC9346612 DOI: 10.1021/acs.molpharmaceut.2c00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Targeted delivery of diagnostics and therapeutics offers
essential
advantages over nontargeted systemic delivery. These include the reduction
of toxicity, the ability to reach sites beyond biological barriers,
and the delivery of higher cargo concentrations to diseased sites.
Virus-like particles (VLPs) can efficiently be used for targeted delivery
purposes. VLPs are derived from the coat proteins of viral capsids.
They are self-assembled, biodegradable, and homogeneously distributed.
In this study, hepatitis E virus (HEV) VLP derivatives, hepatitis
E virus nanoparticles (HEVNPs), were radiolabeled with gallium-68,
and consequently, the biodistribution of the labeled [68Ga]Ga-DOTA-HEVNPs was studied in mice. The results indicated that
[68Ga]Ga-DOTA-HEVNPs can be considered as promising theranostic
nanocarriers, especially for hepatocyte-targeting therapies.
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Chun-Chieh Chen
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - You Cheng Khng
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland.,Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland
| |
Collapse
|
10
|
Zhang B, Fan M, Fan J, Luo Y, Wang J, Wang Y, Liu B, Sun Y, Zhao Q, Hiscox JA, Nan Y, Zhou EM. Avian Hepatitis E Virus ORF2 Protein Interacts with Rap1b to Induce Cytoskeleton Rearrangement That Facilitates Virus Internalization. Microbiol Spectr 2022; 10:e0226521. [PMID: 35138149 PMCID: PMC8826821 DOI: 10.1128/spectrum.02265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/31/2022] Open
Abstract
Avian hepatitis E virus (HEV) causes liver diseases and multiple extrahepatic disorders in chickens. However, the mechanisms involved in avian HEV entry remain elusive. Herein, we identified the RAS-related protein 1b (Rap1b) as a potential HEV-ORF2 protein interacting candidate. Experimental infection of chickens and cells with an avian HEV isolate from China (CaHEV) led to upregulated expression and activation of Rap1b both in vivo and in vitro. By using CaHEV capsid as mimic of virion to treat cell in vitro, it appears that the interaction between the viral capsid and Rap1b promoted cell membrane recruitment of the downstream effector Rap1-interacting molecule (RIAM). In turn, RIAM further enhanced Talin-1 membrane recruitment and retention, which led to the activation of integrin α5/β1, as well as integrin-associated membrane protein kinases, including focal adhesion kinase (FAK). Meanwhile, FAK activation triggered activation of downstream signaling molecules, such as Ras-related C3 botulinum toxin substrate 1 RAC1 cell division cycle 42 (CDC42), p21-activated kinase 1 (PAK1), and LIM domain kinase 1 (LIMK1). Finally, F-actin rearrangement induced by Cofilin led to the formation of lamellipodia, filopodia, and stress fibers, contributes to plasma membrane remodeling, and might enhance CaHEV virion internalization. In conclusion, our data suggested that Rap1b activation was triggered during CaHEV infection and appeared to require interaction between CaHEV-ORF2 and Rap1b, thereby further inducing membrane recruitment of Talin-1. Membrane-bound Talin-1 then activates key Integrin-FAK-Cofilin cascades involved in modulation of actin kinetics, and finally leads to F-actin rearrangement and membrane remodeling to potentially facilitate internalization of CaHEV virions into permissive cells. IMPORTANCE Rap1b is a multifunctional protein that is responsible for cell adhesion, growth, and differentiation. The inactive form of Rap1b is phosphorylated and distributed in the cytoplasm, while active Rap1b is prenylated and loaded with GTP to the cell membrane. In this study, the activation of Rap1b was induced during the early stage of avian HEV infection under the regulation of PKA and SmgGDS. Continuously activated Rap1b recruited its effector RIAM to the membrane, thereby inducing the membrane recruitment of Talin-1 that led to the activation of membrane α5/β1 integrins. The triggering of the signaling pathway-associated Integrin α5/β1-FAK-CDC42&RAC1-PAK1-LIMK1-Cofilin culminated in F-actin polymerization and membrane remodeling that might promote avian HEV virion internalization. These findings suggested a novel mechanism that is potentially utilized by avian HEV to invade susceptible cells.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajing Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, Sun Y, Nan Y, Hiscox JA, Zhao Q, Zhou EM. Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. Front Microbiol 2021; 12:775083. [PMID: 34790187 PMCID: PMC8591454 DOI: 10.3389/fmicb.2021.775083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Involvement of adaptor proteins in clathrin-mediated endocytosis of virus entry. Microb Pathog 2021; 161:105278. [PMID: 34740810 DOI: 10.1016/j.micpath.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
The first step in the initiation of effective viral infection is breaking through the cytomembrane to enter the cell. Clathrin-mediated endocytosis is a key vesicular trafficking process in which a variety of cargo molecules are transported from the outside to the inside of the cell. This process is hijacked by numerous families of enveloped or non-enveloped viruses, which use it to enter host cells, followed by trafficking to their replicating sites. Various adaptor proteins that assist in cargo selection, coat assembly, and clathrin-coated bud maturation are important in this process. Research data documented on the involvement of adaptor proteins, such as AP-2, Eps-15, Epsin1, and AP180/CALM, in the invasion of viruses via the clathrin-mediated endocytosis have provided novel insights into understanding the viral life cycle and have led to the development of novel therapeutics. Here, we summarize the latest discoveries on the role of these adaptor proteins in clathrin-mediated endocytosis of virus entry and also discuss the future trends in this field.
Collapse
|
13
|
Zhou Z, Xie Y, Wu C, Nan Y. The Hepatitis E Virus Open Reading Frame 2 Protein: Beyond Viral Capsid. Front Microbiol 2021; 12:739124. [PMID: 34690982 PMCID: PMC8529240 DOI: 10.3389/fmicb.2021.739124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen causing hepatitis in both human and animal hosts, which is responsible for acute hepatitis E outbreaks worldwide. The 7.2 kb genome of the HEV encodes three well-defined open reading frames (ORFs), where the ORF2 translation product acts as the major virion component to form the viral capsid. In recent years, besides forming the capsid, more functions have been revealed for the HEV-ORF2 protein, and it appears that HEV-ORF2 plays multiple functions in both viral replication and pathogenesis. In this review, we systematically summarize the recent research advances regarding the function of the HEV-ORF2 protein such as application in the development of a vaccine, regulation of the innate immune response and cellular signaling, involvement in host tropism and participation in HEV pathogenesis as a novel secretory factor. Progress in understanding more of the function of HEV-ORF2 protein beyond the capsid protein would contribute to improved control and treatment of HEV infection.
Collapse
Affiliation(s)
- Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi’an, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
14
|
Ji H, Chen S, He Q, Wang W, Gong S, Qian Z, Zhang Y, Wei D, Yu W, Huang F. The different replication between nonenveloped and quasi-enveloped hepatitis E virus. J Med Virol 2021; 93:6267-6277. [PMID: 34076903 DOI: 10.1002/jmv.27121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. However, the understanding of the HEV life cycle is limited. In the present study, cells were separately infected with nonenveloped HEV (derived from feces or bile) or quasi-enveloped HEV (derived from the cell culture after serial passages, eHEV) and observed by confocal fluorescence microscopy to investigate the life cycle of HEV. HEV finished its binding and entry into host cells at first 6 h postinoculation (hpi). Cells inoculated with eHEV showed less infectivity than cells inoculated with nonenveloped HEV. Newly synthesized progeny virions were released into the supernatant of cell cultures from 48 hpi. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis results showed that the supernatant's progeny viruses were infectious even after five serial passages. These results show the significant difference between nonenveloped HEV and eHEV, which will provide novel insights into the HEV replication cycle. The efficient cell culture of HEV will promote the development of anti-HEV drugs and vaccines.
Collapse
Affiliation(s)
- Hanbin Ji
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shuangfeng Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Qiuxia He
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenjing Wang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shilin Gong
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Zhongyao Qian
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yike Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Daqiao Wei
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China.,Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, PR China
| |
Collapse
|
15
|
Virus-Host Cell Interplay during Hepatitis E Virus Infection. Trends Microbiol 2020; 29:309-319. [PMID: 32828646 PMCID: PMC7437515 DOI: 10.1016/j.tim.2020.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
The molecular interplay between cellular host factors and viral proteins is a continuous process throughout the viral life cycle determining virus host range and pathogenesis. The hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans worldwide. However, the mechanisms of liver pathology and clinical disease remain poorly understood for HEV infection. This review summarizes our current understanding of HEV-host cell interactions and highlights experimental strategies and techniques to identify novel host components required for the viral life cycle as well as restriction factors. Understanding these interactions will provide insight into the viral life cycle of HEV and might further help to devise novel therapeutic strategies and antiviral targets.
Collapse
|
16
|
On the Host Side of the Hepatitis E Virus Life Cycle. Cells 2020; 9:cells9051294. [PMID: 32456000 PMCID: PMC7291229 DOI: 10.3390/cells9051294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the most common causes of acute hepatitis in the world. HEV is an enterically transmitted positive-strand RNA virus found as a non-enveloped particle in bile as well as stool and as a quasi-enveloped particle in blood. Current understanding of the molecular mechanisms and host factors involved in productive HEV infection is incomplete, but recently developed model systems have facilitated rapid progress in this area. Here, we provide an overview of the HEV life cycle with a focus on the host factors required for viral entry, RNA replication, assembly and release. Further developments of HEV model systems and novel technologies should yield a broader picture in the future.
Collapse
|
17
|
Kanade GD, Pingale KD, Karpe YA. Protein Interactions Network of Hepatitis E Virus RNA and Polymerase With Host Proteins. Front Microbiol 2019; 10:2501. [PMID: 31736926 PMCID: PMC6838024 DOI: 10.3389/fmicb.2019.02501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022] Open
Abstract
Host-pathogen interactions are crucial for the successful propagation of pathogens inside the host cell. Knowledge of interactions between host proteins and viral proteins or viral RNA may provide clues for developing novel antiviral strategies. Hepatitis E virus (HEV), a water-borne pathogen that causes acute hepatitis in humans, is responsible for epidemics in developing countries. HEV pathology and molecular biology have been poorly explored due to the lack of efficient culture systems. A contemporary approach, to better understand the viral infection cycle at the molecular level, is the use of system biology tools depicting virus-host interactions. To determine the host proteins which participate in the regulation of HEV replication, we indentified liver cell proteins interacting with HEV RNA at its putative promoter region and those interacting with HEV polymerase (RdRp) protein. We employed affinity chromatography followed by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) to identify the interacting host proteins. Protein-protein interaction networks (PPI) were plotted and analyzed using web-based tools. Topological analysis of the network revealed that the constructed network is potentially significant and relevant for viral replication. Gene ontology and pathway enrichment analysis revealed that HEV RNA promoter- and polymerase-interacting host proteins belong to different cellular pathways such as RNA splicing, RNA metabolism, protein processing in endoplasmic reticulum, unfolded protein response, innate immune pathways, secretory vesicle pathway, and glucose metabolism. We showed that hnRNPK and hnRNPA2B1 interact with both HEV putative promoters and HEV RdRp, which suggest that they may have crucial roles in HEV replication. We demonstrated in vitro binding of hnRNPK and hnRNPA2B1 proteins with the HEV targets in the study, assuring the authenticity of the interactions obtained through mass spectrometry. Thus, our study highlights the ability of viruses, such as HEV, to maneuver host systems to create favorable cellular environments for virus propagation. Studying the host-virus interactions can facilitate the identification of antiviral therapeutic strategies and novel targets.
Collapse
Affiliation(s)
- Gayatri D Kanade
- Nanobioscience Group, Agharkar Research Institute, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Kunal D Pingale
- Nanobioscience Group, Agharkar Research Institute, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Yogesh A Karpe
- Nanobioscience Group, Agharkar Research Institute, Pune, India.,Savitribai Phule Pune University, Pune, India
| |
Collapse
|
18
|
Abstract
Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. It is transmitted enterically but replicates in the liver. Recent studies indicate that HEV exists in two forms: naked, nonenveloped virions that are shed into feces to mediate inter-host transmission, and membrane-cloaked, quasienveloped virions that circulate in the bloodstream to mediate virus spread within a host. Both virion types are infectious, but differ in the way they infect cells. Elucidating the entry mechanism for both virion types is essential to understand HEV biology and pathogenesis, and is relevant to the development of treatments and preventions for HEV. This review summarizes the current understanding of the cell entry mechanism for these two HEV virion types.
Collapse
Affiliation(s)
- Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Lee EB, Kim JH, Hur W, Choi JE, Kim SM, Park DJ, Kang BY, Lee GW, Yoon SK. Liver-specific Gene Delivery Using Engineered Virus-Like Particles of Hepatitis E Virus. Sci Rep 2019; 9:1616. [PMID: 30733562 PMCID: PMC6367430 DOI: 10.1038/s41598-019-38533-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023] Open
Abstract
Virus-like particles (VLPs) possess great potential for organ-specific transport of therapeutic agents due to their central cavity surrounded by viral capsid proteins and similar tropism to their original viruses. The N-terminal truncated second open reading frame (Nt-ORF2) of the hepatotropic hepatitis E virus (HEV) forms VLPs via self-assembly. In the present study, we investigated whether HEV-LPs could deliver foreign genes specifically to the liver. HEV-LPs were obtained from Nt-ORF2 expression in Huh7 cells that were transduced with recombinant baculoviruses and purified by continuous density gradient centrifugation. The purified HEV-LPs efficiently penetrated liver-derived cell lines and the liver tissues. To evaluate HEV-LPs as gene delivery tools, we encapsulated foreign plasmids in HEV-LPs with disassembly/reassembly systems. Green fluorescence was detected at higher frequency in liver-derived Huh7 cells treated with HEV-LPs bearing GFP-encoding plasmids than in control cells. Additionally, HEV-LPs bearing Bax-encoding plasmids induced apoptotic signatures in Huh7 cells. In conclusion, HEV-LPs produced in mammalian cells can encapsulate foreign genes in their central cavity and specifically transport these genes to liver-derived cells, where they are expressed. The present study could contribute to advances in liver-targeted gene therapy.
Collapse
Affiliation(s)
- Eun Byul Lee
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- am SCIENCES, C-912, SK V1 GL Metrocity, 128, Beobwonro, Songpa-gu, Seoul, 05854, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung Eun Choi
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- 1014, A Building Gangseo-Hangang-Xi Tower 401 Yangcheon-ro, Gangseo-gu, Seoul, 157-801, Republic of Korea
| | - Sung Min Kim
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong Jun Park
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Byung-Yoon Kang
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gil Won Lee
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
20
|
Ankavay M, Dubuisson J, Cocquerel L. [The hepatitis E virus, an unknown virus that reveals itself]. Med Sci (Paris) 2019; 34:1071-1078. [PMID: 30623765 DOI: 10.1051/medsci/2018299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The first cause of acute hepatitis in the world is due to the hepatitis E virus (HEV). This infection has long been considered as a problem only affecting developing countries. However, since the identification of zoonotic forms at the end of the last century, it has become clear that this infection also affects industrialized countries. The recent renewed interest in HEV has revealed some particularities in this virus. Indeed, although considered as a non-enveloped virus, the HEV viral particle is surrounded by a lipid membrane in the bloodstream. In addition, HEV secretes abundantly into the bloodstream non-infectious forms of its capsid protein that could serve as an immunological bait. This review summarizes recent advances on this virus for which the number of diagnosed cases increases every year.
Collapse
Affiliation(s)
- Maliki Ankavay
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL- Center for Infection and Immunity of Lille 1, rue du Professeur Calmette, F-59000 Lille, France
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL- Center for Infection and Immunity of Lille 1, rue du Professeur Calmette, F-59000 Lille, France
| | - Laurence Cocquerel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL- Center for Infection and Immunity of Lille 1, rue du Professeur Calmette, F-59000 Lille, France
| |
Collapse
|
21
|
Abstract
Hepatitis E virus (HEV) possesses many of the features of other positive-stranded RNA viruses but also adds HEV-specific nuances, making its virus-host interactions unique. Slow virus replication kinetics and fastidious growth conditions, coupled with the historical lack of an efficient cell culture system to propagate the virus, have left many gaps in our understanding of its structure and replication cycle. Recent advances in culturing selected strains of HEV and resolving the 3D structure of the viral capsid are filling in knowledge gaps, but HEV remains an extremely understudied pathogen. Many steps in the HEV life cycle and many aspects of HEV pathogenesis remain unknown, such as the host and viral factors that determine cross-species infection, the HEV-specific receptor(s) on host cells, what determines HEV chronicity and the ability to replicate in extrahepatic sites, and what regulates processing of the open reading frame 1 (ORF1) nonstructural polyprotein.
Collapse
Affiliation(s)
- Scott P Kenney
- Food Animal Health Research Program, The Ohio State University, Wooster, Ohio 44691
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
22
|
Hepatitis E in High-Income Countries: What Do We Know? And What Are the Knowledge Gaps? Viruses 2018; 10:v10060285. [PMID: 29799485 PMCID: PMC6024799 DOI: 10.3390/v10060285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal–oral route. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom, and are mainly transmitted as a zoonosis. For the past 20 years, HEV infection has been considered an imported disease in developed countries, but now there is evidence that HEV is an underrecognized pathogen in high-income countries, and that the incidence of confirmed cases has been steadily increasing over the last decade. In this review, we describe current knowledge about the molecular biology of HEV, its clinical features, its main routes of transmission, and possible therapeutic strategies in developed countries.
Collapse
|
23
|
Abstract
At least 20 million hepatitis E virus (HEV) infections occur annually, with >3 million symptomatic cases and ∼60,000 fatalities. Hepatitis E is generally self-limiting, with a case fatality rate of 0.5-3% in young adults. However, it can cause up to 30% mortality in pregnant women in the third trimester and can become chronic in immunocompromised individuals, such as those receiving organ transplants or chemotherapy and individuals with HIV infection. HEV is transmitted primarily via the faecal-oral route and was previously thought to be a public health concern only in developing countries. It is now also being frequently reported in industrialized countries, where it is transmitted zoonotically or through organ transplantation or blood transfusions. Although a vaccine for HEV has been developed, it is only licensed in China. Additionally, no effective, non-teratogenic and specific treatments against HEV infections are currently available. Although progress has been made in characterizing HEV biology, the scarcity of adequate experimental platforms has hampered further research. In this Review, we focus on providing an update on the HEV life cycle. We will further discuss existing cell culture and animal models and highlight platforms that have proven to be useful and/or are emerging for studying other hepatotropic (viral) pathogens.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
24
|
Paliwal D, Joshi P, Panda SK. Hepatitis E Virus (HEV) egress: Role of BST2 (Tetherin) and interferon induced long non- coding RNA (lncRNA) BISPR. PLoS One 2017; 12:e0187334. [PMID: 29091957 PMCID: PMC5665557 DOI: 10.1371/journal.pone.0187334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022] Open
Abstract
Background The biology of Hepatitis E Virus (HEV), a common cause of epidemic and sporadic hepatitis, is still being explored. HEV exits liver through bile, a process which is essential for its natural transmission by feco-oral route. Though the process of this polarised HEV egress is not known in detail, HEV pORF3 and hepatocyte actin cytoskeleton have been shown to play a role. Methods Our transcriptome analysis in Hepatitis E virus (HEV) replicon transfected Huh7 cells at 24 and 72 hrs indicated that at 24hrs, both LncBISPR and BST2, expressed by a bidirectional promoter were highly upregulated whereas at 72 hrs, BST2 expression was comparatively reduced accompanied by normal levels of BISPR. These findings were confirmed by qPCR analysis. Co-localisation of BST2 and HEV pORF2 was confirmed in HEV transfected Huh7 by confocal microscopy. To investigate the role of BISPR/BST2 in HEV life cycle, particularly virus egress, we generated Huh7 cells with ~8kb deletion in BISPR gene using Crispr-Cas9 system. The deletion was confirmed by PCR screening, Sanger sequencing and Real time PCR. Virus egress in ΔBISPR Huh7 and Huh7 cells was compared by measuring HEV positive strand RNA copy numbers in cell lysates and culture supernatants at 24 and 72 hrs post HEV replicon transfection and further validated by western blot for HEV pORF2 capsid protein. Results ΔBISPR Huh7 cells showed ~8 fold increase in virus egress at 24 hrs compared to Huh7 cells. No significant difference in virus egress was observed at 72hrs. Immunohistochemistry in histologically normal liver and HEV associated acute liver failure revealed BST2 overexpression in HEV infected hepatocytes and a dominant canalicular BST2 distribution in normal liver in addition to the cytoplasmic localisation reported in literature. Conclusions These findings lead us to believe that BISPR and BST2 may regulate egress of HEV virions into bile in vivo. This system may also be used to scale up virus production in vitro.
Collapse
Affiliation(s)
- Daizy Paliwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Joshi
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
25
|
ISG15 Modulates Type I Interferon Signaling and the Antiviral Response during Hepatitis E Virus Replication. J Virol 2017; 91:JVI.00621-17. [PMID: 28724761 DOI: 10.1128/jvi.00621-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV), a single-stranded positive-sense RNA virus, generally causes self-limiting acute viral hepatitis, although chronic HEV infection has recently become a significant clinical problem in immunocompromised individuals, especially in solid-organ transplant recipients. Innate immunity, via the type I interferon (IFN) response, plays an important role during the initial stages of a viral infection. IFN-stimulated gene 15 (ISG15), an IFN-induced ubiquitin-like protein, is known to have an immunomodulatory role and can have a direct antiviral effect on a wide spectrum of virus families. In the present study, we investigated the antiviral effect as well as the potential immunomodulatory role of ISG15 during HEV replication. The results revealed that HEV induced high levels of ISG15 production both in vitro (Huh7-S10-3 liver cells) and in vivo (liver tissues from HEV-infected pigs); however, ISG15 is not required for virus replication. We also demonstrated that ISG15 silencing potentiates enhanced type I IFN-mediated signaling, resulting in an increase in the type I IFN-mediated antiviral effect during HEV replication. This observed enhanced type I IFN signaling correlated with an increase in IFN-stimulated gene expression levels during HEV replication. Furthermore, we showed that PKR and OAS1 played important roles in the ISG15-mediated type I IFN sensitivity of HEV. Taken together, the results from this study suggest that ISG15 plays an important immunomodulatory role and regulates HEV sensitivity to exogenous type I IFN.IMPORTANCE Hepatitis E virus (HEV) infection typically causes self-limiting acute viral hepatitis. However, chronic HEV infection has recently become a significant clinical problem in immunocompromised patients. Pegylated interferon (IFN) has been used to treat chronic HEV infection in solid-organ transplant patients with some success. However, the mechanism behind the type I IFN-mediated antiviral effect against HEV remains unclear. This report demonstrates that ISG15 induced by HEV replication in Huh7-S10-3 human liver cells plays an immunomodulatory role by negatively regulating type I IFN signaling and, thus, HEV sensitivity to type I IFN. Our results also show that PKR and OAS1 play important roles in the ISG15-mediated type I IFN sensitivity of HEV.
Collapse
|
26
|
Toward Mucosal DNA Delivery: Structural Modularity in Vaccine Platform Design. MICRO AND NANOTECHNOLOGY IN VACCINE DEVELOPMENT 2017. [PMCID: PMC7152392 DOI: 10.1016/b978-0-323-39981-4.00016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatitis E virus is a small, nonenveloped RNA virus that is feco-orally transmitted and causes viral hepatitis in humans. A virus-like particle (VLP) expressed and purified from insect cells shares several properties with the virion but can be manipulated quite extensively through genetic engineering or chemical modification. This has exciting implications for exploiting the VLP as a nanocarrier for foreign epitopes or encapsulated deliverables. By exhaustively studying the structure of the virus, we have been successful in designing and synthesizing chimerized VLPs that either carry foreign epitopes, are capable of encapsulating foreign DNA, or both. Preliminary studies show that these particles provide specific and strong immune responses in mice when orally delivered. To appreciate the full potential of HEV VLPs, we have highlighted various properties of the virus with a strong focus on the VLP structure and the key features that make it suitable for oral delivery.
Collapse
|
27
|
Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol 2016; 7:1419. [PMID: 27656178 PMCID: PMC5013053 DOI: 10.3389/fmicb.2016.01419] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotypes 3 and 4 are zoonotic, whereas those from genotypes 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy, and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College ParkMD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park MD, USA
| |
Collapse
|
28
|
Abstract
INTRODUCTION Infection with hepatitis E virus (HEV) is the commonest cause of acute hepatitis worldwide. HEV was discovered in 1980s and is known to have small non-enveloped virions with single-stranded RNA genome of positive polarity. In recent years. In recent years, availability of new information has changed our understanding of this virus and the pathogenesis of the related disease. AREAS COVERED This article reviews the current knowledge about structure, genomic organization, taxonomy, genetic epidemiology, host specificity and replication of the human HEV and of various closely-related viruses that infect other animals. In addition, the models available for the study of HEV infection, the available information on the pathogenesis of this infection and the techniques available for its diagnosis are also reviewed. Expert commentary: A circulating, enveloped form of the human HEV has been recently recognized. Originally believed to naturally infect only humans and possibly primates, HEV-like viruses are now known to infect several vertebrate animals. Based on this, phylogenetic classification of these viruses has recently been revised. In vitro replicons and infection systems have been developed, which have improved our understanding about the virus and the pathogenesis of infection with it. Recent development of mouse models with chimeric livers that contain human hepatocytes provides another avenue for further advancement of this knowledge.
Collapse
Affiliation(s)
- Rakesh Aggarwal
- a Department of Gastroenterology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Amit Goel
- a Department of Gastroenterology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| |
Collapse
|
29
|
Yin X, Li X, Feng Z. Role of Envelopment in the HEV Life Cycle. Viruses 2016; 8:v8080229. [PMID: 27548201 PMCID: PMC4997591 DOI: 10.3390/v8080229] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV), an enterically transmitted hepatotropic virus, was thought to be non-enveloped for decades. However, recent studies have revealed that the virus circulating in the patient’s blood is completely cloaked in host membranes and resistant to neutralizing antibodies. The discovery of this novel enveloped form of HEV has raised a series of questions about the fundamental biology of HEV and the way this virus, which has been understudied in the past, interacts with its host. Here, we review recent advances towards understanding this phenomenon and discuss its potential impact on various aspects of the HEV life cycle and immunity.
Collapse
Affiliation(s)
- Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Xinlei Li
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
| |
Collapse
|
30
|
Zhang X, Bilic I, Marek A, Glösmann M, Hess M. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells. PLoS One 2016; 11:e0153723. [PMID: 27073893 PMCID: PMC4830555 DOI: 10.1371/journal.pone.0153723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023] Open
Abstract
The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 – ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.
Collapse
Affiliation(s)
- Xinquan Zhang
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Ana Marek
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Glösmann
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| |
Collapse
|
31
|
Abstract
Why some viruses are enveloped while others lack an outer lipid bilayer is a major question in viral evolution but one that has received relatively little attention. The viral envelope serves several functions, including protecting the RNA or DNA molecule(s), evading recognition by the immune system, and facilitating virus entry. Despite these commonalities, viral envelopes come in a wide variety of shapes and configurations. The evolution of the viral envelope is made more puzzling by the fact that nonenveloped viruses are able to infect a diverse range of hosts across the tree of life. We reviewed the entry, transmission, and exit pathways of all (101) viral families on the 2013 International Committee on Taxonomy of Viruses (ICTV) list. By doing this, we revealed a strong association between the lack of a viral envelope and the presence of a cell wall in the hosts these viruses infect. We were able to propose a new hypothesis for the existence of enveloped and nonenveloped viruses, in which the latter represent an adaptation to cells surrounded by a cell wall, while the former are an adaptation to animal cells where cell walls are absent. In particular, cell walls inhibit viral entry and exit, as well as viral transport within an organism, all of which are critical waypoints for successful infection and spread. Finally, we discuss how this new model for the origin of the viral envelope impacts our overall understanding of virus evolution.
Collapse
|
32
|
|
33
|
Holla P, Ahmad I, Ahmed Z, Jameel S. Hepatitis E virus enters liver cells through a dynamin-2, clathrin and membrane cholesterol-dependent pathway. Traffic 2015; 16:398-416. [PMID: 25615268 DOI: 10.1111/tra.12260] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
The hepatitis E virus (HEV) causes large outbreaks and sporadic cases of acute viral hepatitis in developing countries. In the developed world, HEV occurrence has increased as a result of zoonotic transmission from swine. The cellular aspects of HEV infection, especially the determinants of entry, are poorly understood. In the absence of a robust in vitro culture system for HEV, it is not possible to produce high titre infectious virus that can be labeled for tracking its internalization. We have therefore used an Escherichia coli expressed HEV-like particle (HEV-LP) to study HEV entry. Following internalization, the HEV-LP initially trafficks to Rab5-positive compartments en route to acidic lysosomal compartments where it is degraded. Using pharmacological inhibitors, dominant negative and constitutively active mutants, and siRNA-mediated perturbations, we show that HEV entry requires dynamin-2, clathrin, membrane cholesterol and actin, but is independent of factors associated with macropinocytosis. The HEV-LP results were further validated through infection of liver cells with virus from the stool of an infected patient. The comparative analysis also showed involvement of the phosphatidylinositol-3-kinase/Akt pathway in an early post-entry step of viral replication. This report provides a detailed description of endocytic processes associated with HEV infection.
Collapse
Affiliation(s)
- Prasida Holla
- Virology Group, International Centre for Genetic Engineering Biotechnology, New Delhi, India
| | | | | | | |
Collapse
|
34
|
Nikitin N, Trifonova E, Evtushenko E, Kirpichnikov M, Atabekov J, Karpova O. Comparative Study of Non-Enveloped Icosahedral Viruses Size. PLoS One 2015; 10:e0142415. [PMID: 26545232 PMCID: PMC4636260 DOI: 10.1371/journal.pone.0142415] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
Now, as before, transmission electron microscopy (TEM) is a widely used technique for the determination of virions size. In some studies, dynamic light scattering (DLS) has also been applied for this purpose. Data obtained by different authors and using different methods could vary significantly. The process of TEM sample preparation involves drying on the substrate, which can cause virions to undergo morphology changes. Therefore, other techniques should be used for measurements of virions size in liquid, (i.e. under conditions closer to native). DLS and nanoparticle tracking analysis (NTA) provide supplementary data about the virions hydrodynamic diameter and aggregation state in liquid. In contrast to DLS, NTA data have a higher resolution and also are less sensitive to minor admixtures. In the present work, the size of non-enveloped icosahedral viruses of different nature was analyzed by TEM, DLS and NTA: the viruses used were the encephalomyocarditis virus (animal virus), and cauliflower mosaic virus, brome mosaic virus and bean mild mosaic virus (plant viruses). The same, freshly purified, samples of each virus were used for analysis using the different techniques. The results were compared with earlier published data and description databases. DLS data about the hydrodynamic diameter of bean mild mosaic virus, and NTA data for all examined viruses, were obtained for the first time. For all virus samples, the values of size obtained by TEM were less than virions sizes determined by DLS and NTA. The contribution of the electrical double layer (EDL) in virions hydrodynamic diameter was evaluated. DLS and NTA data adjusted for EDL thickness were in better agreement with TEM results.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Karpova
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Young KR, Arthus-Cartier G, Yam KK, Lavoie PO, Landry N, D'Aoust MA, Vézina LP, Couture MMJ, Ward BJ. Generation and characterization of a trackable plant-made influenza H5 virus-like particle (VLP) containing enhanced green fluorescent protein (eGFP). FASEB J 2015; 29:3817-27. [PMID: 26038124 DOI: 10.1096/fj.15-270421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Medicago, Inc. has developed an efficient virus-like particle (VLP) vaccine production platform using the Nicotiana benthamiana expression system, and currently has influenza-based products targeting seasonal/pandemic hemagglutinin (HA) proteins in advanced clinical trials. We wished to generate a trackable HA-based VLP that would allow us to study both particle assembly in plants and VLP interactions within the mammalian immune system. To this end, a fusion protein was designed, composed of H5 (from influenza A/Indonesia/05/2005 [H5N1]) with enhanced green fluorescent protein (eGFP). Expression of H5-eGFP in N. benthamiana produced brightly fluorescent ∼160 nm particles resembling H5-VLPs. H5-eGFP-VLPs elicited anti-H5 serologic responses in mice comparable to those elicited by H5-VLPs in almost all assays tested (hemagglutination inhibition/IgG(total)/IgG1/IgG2b/IgG2a:IgG1 ratio), as well as a superior anti-GFP IgG response (mean optical density = 2.52 ± 0.16 sem) to that elicited by soluble GFP (mean optical density = 0.12 ± 0.06 sem). Confocal imaging of N. benthamiana cells expressing H5-eGFP displayed large fluorescent accumulations at the cell periphery, and draining lymph nodes from mice given H5-eGFP-VLPs via footpad injection demonstrated bright fluorescence shortly after administration (10 min), providing proof of concept that the H5-eGFP-protein/VLPs could be used to monitor both VLP assembly and immune trafficking. Given these findings, this novel fluorescent reagent will be a powerful tool to gain further fundamental insight into the biology of influenza VLP vaccines.
Collapse
Affiliation(s)
- Katie R Young
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Guillaume Arthus-Cartier
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Karen K Yam
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Pierre-Olivier Lavoie
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Nathalie Landry
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Marc-André D'Aoust
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Louis-Philippe Vézina
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Manon M-J Couture
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| | - Brian J Ward
- *Research Institute of McGill University Health Centre and Department of Experimental Medicine, McGill University, Montréal, Québec, Canada; and Medicago, Incorporated, Québec, Québec, Canada
| |
Collapse
|
36
|
Dalton HR, Kamar N, Izopet J. Hepatitis E in developed countries: current status and future perspectives. Future Microbiol 2015; 9:1361-72. [PMID: 25517900 DOI: 10.2217/fmb.14.89] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV) was for many years thought to be found almost exclusively in developing countries, where it is a major health issue. Recent studies have shown that HEV causes acute and chronic infection in developed countries. In these geographical settings, HEV is primarily a porcine zoonosis caused by genotypes 3 (HEV3) and 4 (HEV4). The clinical phenotype of hepatitis E continues to emerge, and recent data show that HEV is associated with a range of neurological syndromes including Guillain-Barré syndrome and neuralgic amytrophy.
Collapse
Affiliation(s)
- Harry R Dalton
- Cornwall Gastrointestinal Unit, Royal Cornwall Hospital & European Centre for the Environment & Human Health, University of Exeter Medical School, Truro TR1 3LJ, UK
| | | | | |
Collapse
|
37
|
Panda SK, Kapur N, Paliwal D, Durgapal H. Recombinant Hepatitis E virus like particles can function as RNA nanocarriers. J Nanobiotechnology 2015; 13:44. [PMID: 26104584 PMCID: PMC4479061 DOI: 10.1186/s12951-015-0101-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/21/2015] [Indexed: 12/04/2022] Open
Abstract
Background Assembled virus-like particles (VLPs) without genetic material, with structure similar to infectious virions, have been successfully used as vaccines. We earlier described in vitro assembly, characterisation and tissue specific receptor dependent Clathrin mediated entry of empty HEV VLPs, produced from Escherichia coli expressed HEV capsid protein (pORF2). Similar VLP’s have been described as a potential candidate vaccine (Hecolin) against HEV. Findings We have attempted to use such recombinant assembled Hepatitis E virus (HEV) VLPs as a carrier for heterologous RNA with protein coding sequence fused in-frame with HEV 5′ region (containing cap and encapsidation signal) and investigated, if the relevant protein could be expressed and elicit an immune response in vivo. In vitro transcribed red fluorescent protein (RFP)/Hepatitis B virus surface antigen (HBsAg) RNA, fused to 5′-HEV sequence with cap and encapsidation signal (1–249 nt), was packaged into the recombinant HEV-VLPs and incubated with five different cell lines (Huh7, A549, Vero, HeLa and SiHa). The pORF2-VLPs could specifically transfer exogenous coding RNA into Huh7 and A549 cells. In vivo, Balb/c mice were immunized (intramuscular injections) with 100 µg pORF2-VLP encapsidated with 5′-methyl-G-HEV (1–249 nt)-HBsAg RNA, blood samples were collected and screened by ELISA for anti-pORF2 and anti-HBsAg antibodies. Humoral immune response could be elicited in Balb/c mice against both HEV capsid protein and cargo RNA encoded HBsAg protein. Conclusions These findings suggest that other than being a possible vaccine, HEV pORF2-VLPs can be used as a promising non-replicative tissue specific gene delivery system.
Collapse
Affiliation(s)
- Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Neeraj Kapur
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Daizy Paliwal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Hemlata Durgapal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
38
|
Abstract
INTRODUCTION Hepatitis E virus (HEV) is one of the most common causes of acute viral hepatitis in the world with an estimated 20 million infections per year. Although the mortality rate is < 1% among the general population, pregnant women can have a fatality rate of up to 30%. Additionally, chronic hepatitis E has increasingly become a significant clinical problem in immunocompromised individuals. Effective antivirals against HEV are needed. AREAS COVERED This review article addresses the current state of knowledge of HEV infections with regard to animal and cell culture model systems that are important for antiviral discovery and testing, our current understanding of the molecular mechanisms of virus replication, our understanding of how each viral protein functions, and areas that can potentially be exploited as therapeutic targets. EXPERT OPINION Lack of an efficient cell culture system for HEV propagation, the limited knowledge of HEV lifecycle, and the inherent self-limiting infection within the normal populace make the development of new therapeutic agents against HEV challenging. There are many promising therapeutic targets, and the tools for identifying and testing potential antivirals are rapidly evolving. The development of effective therapeutics against HEV in immunocompromised and pregnant patient populations is warranted.
Collapse
Affiliation(s)
- Scott P Kenney
- Virginia Polytechnic Institute and State University (Virginia Tech), College of Veterinary Medicine, Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology , CRC-Integrated Life Sciences Building (0913), 1981 Kraft Drive, Blacksburg, VA 24061-0913 , USA +1 540 231 6912 ; +1 540 231 3414 ;
| | | |
Collapse
|
39
|
Jirintai S, Tanggis, Mulyanto, Suparyatmo JB, Takahashi M, Kobayashi T, Nagashima S, Nishizawa T, Okamoto H. Rat hepatitis E virus derived from wild rats (Rattus rattus) propagates efficiently in human hepatoma cell lines. Virus Res 2014; 185:92-102. [DOI: 10.1016/j.virusres.2014.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/14/2022]
|
40
|
Paliwal D, Panda SK, Kapur N, Varma SPK, Durgapal H. Hepatitis E virus (HEV) protease: a chymotrypsin-like enzyme that processes both non-structural (pORF1) and capsid (pORF2) protein. J Gen Virol 2014; 95:1689-1700. [PMID: 24795447 DOI: 10.1099/vir.0.066142-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute viral hepatitis across the world, is a non-enveloped, plus-strand RNA virus. Its genome codes three proteins, pORF1 (multifunctional polyprotein), pORF2 (capsid protein) and pORF3 (multi-regulatory protein). pORF1 encodes methyltransferase, putative papain-like cysteine protease, helicase and replicase enzymes. Of these, the protease domain has not been characterized. On the basis of sequence analysis, we cloned and expressed a protein covering aa 440-610 of pORF1, expression of which led to cell death in Escherichia coli BL-21 and Huh7 hepatoma cells. Finally, we expressed and purified this protein from E. coli C43 cells (resistant to toxic proteins). The refolded form of this protein showed protease activity in gelatin zymography. Digestion assays showed cleavage of both pORF1 and pORF2 as observed previously. MS revealed digestion of capsid protein at both the N and C termini. N-terminal sequencing of the ~35 kDa methyltransferase, ~35 kDa replicase and ~56 kDa pORF2 proteins released by protease digestion revealed that the cleavage sites were alanine15/isoleucine16, alanine1364/valine1365 in pORF1 and leucine197/valine198 in pORF2. Specificity of these cleavage sites was validated by site-directed mutagenesis. Further characterization of the HEV protease, carried out using twelve inhibitors, showed chymostatin and PMSF to be the most efficient inhibitors, indicating this protein as a chymotrypsin-like protease. The specificity was further confirmed by cleavage of the chymotrypsin-specific fluorogenic peptide N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Mutational analysis of the conserved serine/cysteine/histidine residues suggested that H443 and C472/C481/C483 are possibly the active site residues. To our knowledge, this is the first direct demonstration of HEV protease and its function.
Collapse
Affiliation(s)
- Daizy Paliwal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Neeraj Kapur
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Satya Pavan Kumar Varma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Hemlata Durgapal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
41
|
Favretto ME, Wallbrecher R, Schmidt S, van de Putte R, Brock R. Glycosaminoglycans in the cellular uptake of drug delivery vectors – Bystanders or active players? J Control Release 2014; 180:81-90. [DOI: 10.1016/j.jconrel.2014.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 12/30/2022]
|
42
|
Debing Y, Neyts J. Antiviral strategies for hepatitis E virus. Antiviral Res 2013; 102:106-18. [PMID: 24374149 PMCID: PMC7113752 DOI: 10.1016/j.antiviral.2013.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 02/08/2023]
Abstract
The hepatitis E virus is a common cause of acute hepatitis. Contrary to hepatitis B and C, hepatitis E is mostly a mild infection, although it has a high mortality in pregnant women and can evolve to chronicity in immunocompromised patients. Ribavirin and pegylated interferon-α are the only available therapies, but both have side effects that are not acceptable for prophylaxis or treatment of mild infections. In addition, these drugs cannot be used for all patient types (e.g. in case of pregnancy, specific organ transplants or co-morbidities) and in resource-poor settings. Hence there is an urgent need for better antiviral treatments that are efficacious and safe, also during pregnancy. In this review, a concise introduction to the virus and disease is provided, followed by a discussion of the available assay systems and potential molecular targets (viral proteins and host factors) for the development of inhibitors of HEV replication. Finally, directions for future research are presented.
Collapse
Affiliation(s)
- Yannick Debing
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
43
|
Panda SK, Varma SP. Hepatitis e: molecular virology and pathogenesis. J Clin Exp Hepatol 2013; 3:114-24. [PMID: 25755485 PMCID: PMC3940135 DOI: 10.1016/j.jceh.2013.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5' distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3' distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV.
Collapse
Affiliation(s)
- Subrat K. Panda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India,Address for correspondence. Subrat K. Panda, JC Bose Fellow, Professor & Head, Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India. Tel.: +91 11 26594924 (off.); fax: +91 11 26588663, +91 11 26588641.
| | - Satya P.K. Varma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
44
|
Abstract
The lack of an efficient cell culture system for hepatitis E virus (HEV) has greatly hampered detailed analyses of this virus. The first efficient cell culture systems for HEV that were developed were capable of secreting infectious HEV progenies in high titers into culture media, using PLC/PRF/5 cells derived from human hepatocellular carcinoma and A549 cells derived from human lung cancer as host cells. The success achieved with the original genotype 3 JE03-1760F strain has now been extended to various HEV strains in fecal and serum samples obtained from hepatitis E patients and to HEV strains in fecal and serum samples and liver tissues obtained from pigs and wild boar across species barriers. In addition, infectious HEV cDNA clones of the wild-type JE03-1760F strain and its variants have been engineered. Cell culture-generated HEV particles and those in circulating blood were found to be associated with lipids and open reading frame 3 (ORF3) protein, thereby likely contributing to the assembly and release of HEV from infected cells both in vivo and in vitro. The ORF3 protein interacts with the tumor susceptibility gene 101, a critical cellular protein required for the budding of enveloped viruses, through the Pro, Ser, Ala, and Pro (PSAP) motif in infected cells; ORF3 is co-localized with multivesicular bodies (MVBs) in the cytoplasm of infected cells, thus suggesting that HEV requires the MVB pathway for the egress of virus particles. This article reviews the development of efficient cell culture systems for a wide variety of infectious HEV strains obtained from humans, pigs, and wild boar, and also provides details of a new model for virion egress.
Collapse
Affiliation(s)
- Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke Tochigi, 329-0498 Japan
| |
Collapse
|
45
|
Ferreira SA, Correia A, Madureira P, Vilanova M, Gama FM. Unraveling the Uptake Mechanisms of Mannan Nanogel in Bone-Marrow-Derived Macrophages. Macromol Biosci 2012; 12:1172-80. [DOI: 10.1002/mabi.201200075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/02/2012] [Indexed: 12/17/2022]
|