1
|
Fang B, Edwards SV. Fitness consequences of structural variation inferred from a House Finch pangenome. Proc Natl Acad Sci U S A 2024; 121:e2409943121. [PMID: 39531493 PMCID: PMC11588099 DOI: 10.1073/pnas.2409943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic structural variants (SVs) play a crucial role in adaptive evolution, yet their average fitness effects and characterization with pangenome tools are understudied in wild animal populations. We constructed a pangenome for House Finches (Haemorhous mexicanus), a model for studies of host-pathogen coevolution, using long-read sequence data on 16 individuals (32 de novo-assembled haplotypes) and one outgroup. We identified 887,118 SVs larger than 50 base pairs, mostly (60%) involving repetitive elements, with reduced SV diversity in the eastern US as a result of its introduction by humans. The distribution of fitness effects of genome-wide SVs was estimated using maximum likelihood approaches and revealed that SVs in both coding and noncoding regions were on average more deleterious than smaller indels or single nucleotide polymorphisms. The reference-free pangenome facilitated identification of a > 10-My-old, 11-megabase-long pericentric inversion on chromosome 1. We found that the genotype frequencies of the inversion, estimated from 135 birds widely sampled temporally and geographically, increased steadily over the 25 y since House Finches were first exposed to the bacterial pathogen Mycoplasma gallisepticum and showed signatures of balancing selection, capturing genes related to immunity and telomerase activity. We also observed shorter telomeres in populations with a greater number of years exposure to Mycoplasma. Our study illustrates the utility of long-read sequencing and pangenome methods for understanding wild animal populations, estimating fitness effects of genome-wide SVs, and advancing our understanding of adaptive evolution through structural variation.
Collapse
Affiliation(s)
- Bohao Fang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Yeo H, Tan HZ, Tang Q, Tan TRH, Puniamoorthy N, Rheindt FE. Dense residential areas promote gene flow in dengue vector mosquito Aedes albopictus. iScience 2023; 26:107577. [PMID: 37680477 PMCID: PMC10481301 DOI: 10.1016/j.isci.2023.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/13/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Aedes albopictus is a successful disease vector due to its ability to survive in a wide range of habitats. Despite its ubiquity and impact on public health, little is known about its differential gene flow capabilities across different city habitats. We obtained a comprehensive dataset of >27,000 genome-wide DNA markers across 105 wild-caught Ae. albopictus individuals from Singapore, a dengue-endemic tropical city with heterogeneous landscapes from densely populated urban areas to forests. Despite Singapore's challenging small-scale heterogeneity, our landscape-genomic approach indicated that dense urban areas are characterized by higher Aedes gene flow rates than managed parks and forests. We documented the incidence of Wolbachia infections of Ae. albopictus involving two strains (wAlbA and wAlbB). Our results dispel the misconception that substantial dispersal of Ae. albopictus is limited to urban greenery, with wide implications for vector management and critical insights into urban planning strategies to combat dengue transmission.
Collapse
Affiliation(s)
- Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Hui Zhen Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Qian Tang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Tyrone Ren Hao Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Frank E. Rheindt
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
3
|
Has insecticidal pressure influenced Spodoptera litura (Fabricius, 1775) population genetic structure and genetic diversity in India? Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
|
5
|
Gilbey J, Soshnina VA, Volkov AA, Zelenina DA. Comparative genetic variability of pink salmon from different parts of their range: native Pacific, artificially introduced White Sea and naturally invasive Atlantic Scottish rivers. JOURNAL OF FISH BIOLOGY 2022; 100:549-560. [PMID: 34837402 DOI: 10.1111/jfb.14966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Trans-oceanic movement, stocking and subsequent establishment of Pacific pink salmon (Oncorhynchus gorbuscha) into the Atlantic White Sea area have resulted in their spreading further across the northern Atlantic, with spawning being reported in a number of regions within this area. Such expansions of non-native species bring potential risks to the ecosystems in question. It has not yet been established if the spawning events of pink salmon observed are the result of self-sustaining populations in these areas, or are because of repeated invasions of strayers from the White Sea stocks. In 2017 pink salmon were observed in a number of Scottish rivers in historically large numbers. This study set out to examine genetic variation in these fish and compare this to fish in Pacific founder regions and the White Sea translocated populations. A total of 286 samples from Scotland, the Atlantic White Sea, the Pacific Okhotsk region and Northern Pacific Bering Sea were screened using a 1018 bp sequenced region of the Cytochrome b mtDNA gene and 205 of these samples for 13 microsatellites. Significant bottleneck and founder effects were observed in the White Sea stocks in both mitochondrial and nuclear DNA, including loss of diversity and changes in haplotype and allele proportions. Scottish fish were indistinguishable from White Sea populations and as such it was not possible to determine if the fish were strayers from this region or returning fish from previous spawning events in Scotland. Therefore, although the fish caught in Scotland have their origins in the White Sea population, it may not be easy to determine whether self-sustaining populations have, or are becoming, established in the UK using genetic analysis and other techniques may need to be used.
Collapse
Affiliation(s)
- John Gilbey
- Marine Scotland Science, Freshwater Fisheries Laboratory, Pitlochry, UK
| | - Valeriia A Soshnina
- Russian Federal Institute for Fisheries and Oceanography, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A Volkov
- Russian Federal Institute for Fisheries and Oceanography, Moscow, Russia
| | - Daria A Zelenina
- Russian Federal Institute for Fisheries and Oceanography, Moscow, Russia
| |
Collapse
|
6
|
Sendell-Price AT, Ruegg KC, Robertson BC, Clegg SM. An island-hopping bird reveals how founder events shape genome-wide divergence. Mol Ecol 2021; 30:2495-2510. [PMID: 33826187 DOI: 10.1111/mec.15898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
When populations colonize new areas, both strong selection and strong drift can be experienced due to novel environments and small founding populations, respectively. Empirical studies have predominantly focused on the phenotype when assessing the role of selection, and limited neutral-loci when assessing founder-induced loss of diversity. Consequently, the extent to which processes interact to influence evolutionary trajectories is difficult to assess. Genomic-level approaches provide the opportunity to simultaneously consider these processes. Here, we examine the roles of selection and drift in shaping genomic diversity and divergence in historically documented sequential island colonizations by the silvereye (Zosterops lateralis). We provide the first empirical demonstration of the rapid appearance of highly diverged genomic regions following population founding, the position of which are highly idiosyncratic. As these regions rarely contained loci putatively under selection, it is most likely that these differences arise via the stochastic nature of the founding process. However, selection is required to explain rapid evolution of larger body size in insular silvereyes. Reconciling our genomic data with these phenotypic patterns suggests there may be many genomic routes to the island phenotype, which vary across populations. Finally, we show that accelerated divergence associated with multiple founding steps is the product of genome-wide rather than localized differences, and that diversity erodes due to loss of rare alleles. However, even multiple founder events do not result in divergence and diversity levels seen in evolutionary older subspecies, and therefore do not provide a shortcut to speciation as proposed by founder-effect speciation models.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK
| | - Kristen C Ruegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Oxford, UK.,Environmental Futures Research Institute, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
7
|
Mortier F, Masier S, Bonte D. Genetically diverse populations spread faster in benign but not in challenging environments. Ecology 2021; 102:e03345. [PMID: 33742440 DOI: 10.1002/ecy.3345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Population spread from a limited pool of founding propagules is at the basis of biological invasions. The size and genetic variation of these propagules eventually affect whether the invasion is successful or not. The inevitable bottleneck at introduction decreases genetic diversity, and therefore should affect population growth and spread. However, many heavily bottlenecked invasive populations have been successful in nature. Negative effects of a genetic bottleneck are typically considered to be relaxed in benign environments because of a release from stress. Despite its relevance to understand and predict invasions, empirical evidence on the role of genetic diversity in relation to habitat quality is largely lacking. We use the mite Tetranychus urticae Koch as a model to experimentally assess spread rate and size of genetically depleted inbred populations vs. enriched mixed populations. This was assessed in replicated linear patch systems consisting of benign (bean), challenging (tomato), or a gradient (bean to tomato) habitat. As expected, we found no effect of genetic diversity on population size in benign habitat but found that it increased population size in challenging habitat. However, we found that population spread rates were increased due to genetic diversity in the benign but not in the challenging habitat. Additionally, variance in spread was consistently higher in genetically poor populations and highest in the challenging habitat. Our experiment challenges the general view that a bottleneck in genetic variation decreases invasion success in challenging but not benign environments.
Collapse
Affiliation(s)
- Frederik Mortier
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Stefano Masier
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
| |
Collapse
|
8
|
Chatterjee M, Yadav J, Vennila S, Shashank PR, Jaiswal N, Sreevathsa R, Rao U. Diversity analysis reveals genetic homogeneity among Indian populations of legume pod borer, Maruca vitrata (F.). 3 Biotech 2019; 9:319. [PMID: 31406641 DOI: 10.1007/s13205-019-1850-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022] Open
Abstract
Legume pod borer, Maruca vitrata, has lately emerged as one of the major insect pests of pigeonpea causing considerable crop losses. Thus, efficient management of M. vitrata is an important component for sustained pigeonpea productivity for which information on insect diversity could be useful. Present study was undertaken to evaluate the diversity in M. vitrata populations collected from major pigeonpea growing areas of India using molecular markers, Cytochrome C Oxidase subunit 1 (cox1) and Translational Elongation Factor-1α (tef-1α). Genomic DNA from larvae of different populations was extracted; 709 bp and 550 bp fragments of cox1 and tef-1α were PCR-amplified, cloned and sequenced. Comparison of sequences of different populations using multiple sequence alignment did not show any differences in cox1 and tef-1α sequences within the Indian populations. However, further analysis based upon cox1 sequences has revealed moderate nucleotide diversity (π = 0.26174) among Indian and global M. vitrata populations, whereas nucleotide diversity within Indian populations is nonsignificant (π = 0.00226). Additionally, phylogenetic analysis of cox1 sequences grouped all the Indian populations into one cluster while that of global were completely separate indicating a different ancestral background. This is a maiden attempt for diversity assessment of Indian M. vitrata populations that established them to be genetic homologs with different ancestral background.
Collapse
|
9
|
Engler JO, Sacher T, Coppack T, Bairlein F. Assortative mating frames establishment in a young island bird population. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190050. [PMID: 31598228 PMCID: PMC6731715 DOI: 10.1098/rsos.190050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Successful island colonizations are key events to understand range dynamic processes, but studying a young population right after it reaches establishment is a rare opportunity in natural systems. The genetic structure of a recently established population may offer unique insights into its colonization history and demographic processes that are important for a successful colonization. Here, we studied the population genetics of a recently established island population of Eurasian blackbirds (Aves: Turdus merula) located on the island of Heligoland in the German North Sea. Using microsatellites, we genotyped the majority of the island population, including the nestlings, over a 4-year period between 2004 and 2007. We also genotyped high numbers of migrants on stopover and mainland individuals, as they are potential founders of the island population. We identified two genetic clusters that comply with the migrating and mainland birds. While most of the island birds belong to the mainland cluster, some breeding individuals and a low fraction of the offspring belong to the genetic cluster found in migrating individuals with almost no admixture between the two, pointing to assortative mating acting on the island population. We did not find any evidence for founder events and detected deviations from the Hardy-Weinberg equilibrium that disappeared in cohorts of older age that coincide with a lower number of siblings in older cohorts. The observed genetic patterns unravel a complex colonization history to which migratory and mainland birds have contributed and which is characterized by assortative mating. Further research will be directed towards habitat selection and phenotypic differences as potential drivers of assortative mating in this island population.
Collapse
Affiliation(s)
- Jan O. Engler
- Department of Biology, Terrestrial Ecology Unit, Ghent University, 9000 Ghent, Belgium
| | - Thomas Sacher
- Institute of Avian Research, Vogelwarte Helgoland, 26386 Wilhelmshaven, Germany
| | - Timothy Coppack
- Institute of Avian Research, Vogelwarte Helgoland, 26386 Wilhelmshaven, Germany
| | - Franz Bairlein
- Institute of Avian Research, Vogelwarte Helgoland, 26386 Wilhelmshaven, Germany
| |
Collapse
|
10
|
Strategies of the invasive tropical fire ant (Solenopsis geminata) to minimize inbreeding costs. Sci Rep 2019; 9:4566. [PMID: 30872734 PMCID: PMC6418234 DOI: 10.1038/s41598-019-41031-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/25/2019] [Indexed: 11/08/2022] Open
Abstract
How invasive species overcome challenges associated with low genetic diversity is unclear. Invasive ant populations with low genetic diversity sometimes produce sterile diploid males, which do not contribute to colony labour or reproductive output. We investigated how inbreeding affects colony founding and potential strategies to overcome its effects in the invasive tropical fire ant, Solenopsis geminata. Our genetic analyses of field samples revealed that 13-100% of males per colony (n = 8 males per 10 colonies) were diploid, and that all newly mated queens (n = 40) were single-mated. Our laboratory experiment in which we assigned newly mated queens to nests consisting of 1, 2, 3, or 5 queens (n = 95 ± 9 replicates) revealed that pleometrosis (queens founding their nest together) and diploid male larvae execution can compensate for diploid male load. The proportion of diploid male producing (DMP) colonies was 22.4%, and DMP colonies produced fewer pupae and adult workers than non-DMP colonies. Pleometrosis significantly increased colony size. Queens executed their diploid male larvae in 43.5% of the DMP colonies, and we hypothesize that cannibalism benefits incipient colonies because queens can redirect nutrients to worker brood. Pleometrosis and cannibalism of diploid male larvae represent strategies through which invasive ants can successfully establish despite high inbreeding.
Collapse
|
11
|
Genetic homogeneity in South American tomato pinworm, Tuta absoluta: a new invasive pest to oriental region. 3 Biotech 2018; 8:350. [PMID: 30073135 DOI: 10.1007/s13205-018-1374-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022] Open
Abstract
South American tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), is an important invasive pest of Tomato which invaded India and Nepal in 2014 and 2016, respectively. In the present study, samples from five localities of India and one from Nepal were used for the investigation of genetic diversity of T. absoluta by employing a fragment in the mtDNA gene-encoding cytochrome oxidase I (COI). Based on the partial COI gene, high genetic homogeneity was detected in T. absoluta populations of India and Nepal with rest of the world. Less nucleotide diversity (π 0.00137) was also detected in the populations of T. absoluta from different countries. This is first attempt to analyze molecular data for this new invasive species from India and Nepal.
Collapse
|
12
|
Krzemińska U, Morales HE, Greening C, Nyári ÁS, Wilson R, Song BK, Austin CM, Sunnucks P, Pavlova A, Rahman S. Population mitogenomics provides insights into evolutionary history, source of invasions and diversifying selection in the House Crow (Corvus splendens). Heredity (Edinb) 2017; 120:296-309. [PMID: 29180719 DOI: 10.1038/s41437-017-0020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
The House Crow (Corvus splendens) is a useful study system for investigating the genetic basis of adaptations underpinning successful range expansion. The species originates from the Indian subcontinent, but has successfully spread through a variety of thermal environments across Asia, Africa and Europe. Here, population mitogenomics was used to investigate the colonisation history and to test for signals of molecular selection on the mitochondrial genome. We sequenced the mitogenomes of 89 House Crows spanning four native and five invasive populations. A Bayesian dated phylogeny, based on the 13 mitochondrial protein-coding genes, supports a mid-Pleistocene (~630,000 years ago) divergence between the most distant genetic lineages. Phylogeographic patterns suggest that northern South Asia is the likely centre of origin for the species. Codon-based analyses of selection and assessments of changes in amino acid properties provide evidence of positive selection on the ND2 and ND5 genes against a background of purifying selection across the mitogenome. Protein homology modelling suggests that four amino acid substitutions inferred to be under positive selection may modulate coupling efficiency and proton translocation mediated by OXPHOS complex I. The identified substitutions are found within native House Crow lineages and ecological niche modelling predicts suitable climatic areas for the establishment of crow populations within the invasive range. Mitogenomic patterns in the invasive range of the species are more strongly associated with introduction history than climate. We speculate that invasions of the House Crow have been facilitated by standing genetic variation that accumulated due to diversifying selection within the native range.
Collapse
Affiliation(s)
- Urszula Krzemińska
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia. .,Monash University Malaysia Genomics Facility, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia. .,Department of Genetics and Animal Breeding, Faculty of Animal Sciences, Warsaw University of Life Sciences SGGW, Warsaw, Poland.
| | - Hernán E Morales
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia.,Department of Marine Sciences, University of Gothenburg, Box 461, Göteborg, SE 405 30, Sweden
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Árpád S Nyári
- Department of Ecology and Evolutionary Biology, The University of Tennessee, 569 Dabney Hall, Knoxville, TN, 37996-1610, USA
| | - Robyn Wilson
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.,Monash University Malaysia Genomics Facility, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Beng Kah Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.,Monash University Malaysia Genomics Facility, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Christopher M Austin
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.,Monash University Malaysia Genomics Facility, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.,School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3220, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.,Monash University Malaysia Genomics Facility, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
13
|
Phylogeography and population genetics of introduced Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (H. nobilis) in North America. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1484-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Shultz AJ, Baker AJ, Hill GE, Nolan PM, Edwards SV. SNPs across time and space: population genomic signatures of founder events and epizootics in the House Finch ( Haemorhous mexicanus). Ecol Evol 2016; 6:7475-7489. [PMID: 28725414 PMCID: PMC5513257 DOI: 10.1002/ece3.2444] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.
Collapse
Affiliation(s)
- Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Geoffrey E Hill
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Paul M Nolan
- Department of Biology The Citadel Charleston SC USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| |
Collapse
|
15
|
Genetic variation and phylogenetic relationship analysis of Jatropha curcas L. inferred from nrDNA ITS sequences. C R Biol 2016; 339:337-46. [PMID: 27461559 DOI: 10.1016/j.crvi.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 11/21/2022]
Abstract
Genetic variation and phylogenetic relationships among 102 Jatropha curcas accessions from Asia, Africa, and the Americas were assessed using the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS). The average G+C content (65.04%) was considerably higher than the A+T (34.96%) content. The estimated genetic diversity revealed moderate genetic variation. The pairwise genetic divergences (GD) between haplotypes were evaluated and ranged from 0.000 to 0.017, suggesting a higher level of genetic differentiation in Mexican accessions than those of other regions. Phylogenetic relationships and intraspecific divergence were inferred by Bayesian inference (BI), maximum parsimony (MP), and median joining (MJ) network analysis and were generally resolved. The J. curcas accessions were consistently divided into three lineages, groups A, B, and C, which demonstrated distant geographical isolation and genetic divergence between American accessions and those from other regions. The MJ network analysis confirmed that Central America was the possible center of origin. The putative migration route suggested that J. curcas was distributed from Mexico or Brazil, via Cape Verde and then split into two routes. One route was dispersed to Spain, then migrated to China, eventually spreading to southeastern Asia, while the other route was dispersed to Africa, via Madagascar and migrated to China, later spreading to southeastern Asia.
Collapse
|
16
|
Krzemińska U, Wilson R, Song BK, Seneviratne S, Akhteruzzaman S, Gruszczyńska J, Świderek W, Huy TS, Austin CM, Rahman S. Genetic diversity of native and introduced populations of the invasive house crow (Corvus splendens) in Asia and Africa. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1130-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Schrieber K, Lachmuth S. The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success. Biol Rev Camb Philos Soc 2016; 92:939-952. [DOI: 10.1111/brv.12263] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Karin Schrieber
- Geobotany and Botanical Garden, Institute of Biology; Martin Luther University of Halle; 06108 Halle (Saale) Germany
| | - Susanne Lachmuth
- Geobotany and Botanical Garden, Institute of Biology; Martin Luther University of Halle; 06108 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; 04103 Leipzig Germany
| |
Collapse
|
18
|
Exploring the legacy of goat grazing: signatures of habitat fragmentation on genetic patterns of endemic weevil populations in Northern Isabela Island, Galápagos (Ecuador). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0831-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Andueza-Noh RH, Martínez-Castillo J, Chacón-Sánchez MI. Domestication of small-seeded lima bean (Phaseolus lunatus L.) landraces in Mesoamerica: evidence from microsatellite markers. Genetica 2015; 143:657-69. [PMID: 26391600 DOI: 10.1007/s10709-015-9863-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 11/29/2022]
Abstract
Previous studies have suggested that the Mesoamerican small-seeded landraces of Lima bean may have been domesticated more than once in Mesoamerica, once in central-western Mexico and another one in an area between Guatemala and Costa Rica. However, these findings were based on sequencing of only one locus from nuclear DNA, and additional confirmation was needed. Here we contribute with additional data on the origin of the Mesoamerican landraces and document the founder effect due to domestication. We characterized 62 domesticated, 87 wild and six weedy Lima bean accessions with ten microsatellite loci. Genetic relationships were analyzed using genetic distances and Bayesian clustering approaches. Domestication bottlenecks were documented using inter-population comparisons and M ratios. The results support at least one domestication event in the area of distribution of gene pool MI in central-western Mexico and also show that some landraces are genetically related to wild accessions of gene pool MII. Also, our data support founder effects due to domestication in Mesoamerican Lima bean landraces. Although we could not establish more specifically the place of origin of the Mesoamerican Lima bean landraces, our results show that these are not a genetically homogeneous group, a finding that may be compatible with a scenario of more than one domestication event accompanied by gene flow. The complex genetic makeup of landraces that we found indicates that a more comprehensive geographic and genomic sampling is needed in order to establish how domestication processes and gene flow have shaped the current genetic structure of landraces.
Collapse
Affiliation(s)
- Rubén H Andueza-Noh
- Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán, Mexico
| | - Jaime Martínez-Castillo
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná de Hidalgo, 97200, Mérida, Yucatán, Mexico
| | - María I Chacón-Sánchez
- Universidad Nacional de Colombia - Bogotá, Facultad de Ciencias Agrarias - Departamento de Agronomía, Carrera 30 No. 45-03 - Edificio 500, Bogotá, D.C., 111321, Colombia.
| |
Collapse
|
20
|
Shu C, Jiang X, Cheng X, Wang N, Chen S, Xiang M, Liu X. Genetic structure and parasitization-related ability divergence of a nematode fungal pathogen Hirsutella minnesotensis following founder effect in China. Fungal Genet Biol 2015; 81:212-20. [PMID: 25687934 DOI: 10.1016/j.fgb.2015.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 11/28/2022]
Abstract
The fungal parasitoid, Hirsutella minnesotensis, is a dominant parasitoid of the soybean cyst nematode, which is a destruction pest of soybean crops. We investigated population structure and parasitism pattern in samples of H. minnesotensis in China to reveal the spreading pattern of this fungal species and the underlying mechanism generating the parasitization-related ability variability in Chinese population. In cross-inoculation experiments using different combinations of H. minnesotensis and soybean cyst nematode samples from China, most H. minnesotensis isolates fitted the criterion for "local versus foreign" parasitism profile, exhibiting local adaptation pattern to the SCN host. However, the genetic analysis of the single nucleotide polymorphisms with clone-corrected samples based on ten DNA fragments in 56 isolates of H. minnesotensis from China revealed that the Chinese H. minnesotensis population was a clonal lineage that underwent a founder event. The results demonstrated that the Chinese H. minnesotensis population had generated parasitization-related ability diversity after a founder event through individual variation or phenotypic plasticity other than local adaptation. The rapid divergence of parasitization-related abilities with simple genetic structure in Chinese H. minnesotensis population indicates a fundamental potential for the establishment of invasive fungal species, which is a prerequisite for biological control agents.
Collapse
Affiliation(s)
- Chi Shu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xianzhi Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China
| | - Xiaoli Cheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Niuniu Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China
| | - Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, 35838 120th Street, Waseca, MN 56093, USA
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China.
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing 100101, China.
| |
Collapse
|
21
|
Mok HF, Stepien CC, Kaczmarek M, Albelo LR, Sequeira AS. Genetic status and timing of a weevil introduction to Santa Cruz Island, Galapagos. J Hered 2014; 105:365-80. [PMID: 24399746 PMCID: PMC3984438 DOI: 10.1093/jhered/est096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/16/2013] [Accepted: 12/03/2013] [Indexed: 11/14/2022] Open
Abstract
Successful invasive species can overcome or circumvent the potential genetic loss caused by an introduction bottleneck through a rapid population expansion and admixture from multiple introductions. We explore the genetic makeup and the timing of a species introduction to Santa Cruz Island in the Galápagos archipelago. We investigate the presence of processes that can maintain genetic diversity in populations of the broad-nosed weevil Galapaganus howdenae howdenae. Analyses of combined genotypes for 8 microsatellite loci showed evidence of past population size reductions through moment and likelihood-based estimators. No evidence of admixture through multiple introductions was found, but substantial current population sizes (N0 298, 95% credible limits 50-2300), genetic diversity comparable with long-established endemics (Mean number of alleles = 3.875), and lack of genetic structure across the introduced range (F ST = 0.01359) could suggest that foundations are in place for populations to rapidly recover any loss of genetic variability. The time estimates for the introduction into Santa Cruz support an accidental transfer during the colonization period (1832-1959) predating the spurt in human population growth. Our evaluation of the genetic status of G. h. howdenae suggests potential for population growth in addition to our field observations of a concurrent expansion in range and feeding preferences towards protected areas and endemic host plants.
Collapse
Affiliation(s)
- Hoi-Fei Mok
- the Department of Biological Sciences, Wellesley College, Wellesley
| | | | | | | | | |
Collapse
|
22
|
Zhang Q, Hill GE, Edwards SV, Backström N. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines. BMC Genomics 2014; 15:305. [PMID: 24758272 PMCID: PMC4235107 DOI: 10.1186/1471-2164-15-305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/15/2014] [Indexed: 12/18/2022] Open
Abstract
Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.
Collapse
Affiliation(s)
| | | | | | - Niclas Backström
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Nassif Del Lama S, Moralez-Silva E. Colonization of Brazil by the cattle egret (Bubulcus ibis) revealed by mitochondrial DNA. NEOBIOTA 2014. [DOI: 10.3897/neobiota.21.4966] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Rollins LA, Moles AT, Lam S, Buitenwerf R, Buswell JM, Brandenburger CR, Flores-Moreno H, Nielsen KB, Couchman E, Brown GS, Thomson FJ, Hemmings F, Frankham R, Sherwin WB. High genetic diversity is not essential for successful introduction. Ecol Evol 2013; 3:4501-17. [PMID: 24340190 PMCID: PMC3856749 DOI: 10.1002/ece3.824] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/16/2013] [Accepted: 08/28/2013] [Indexed: 01/08/2023] Open
Abstract
Some introduced populations thrive and evolve despite the presumed loss of diversity at introduction. We aimed to quantify the amount of genetic diversity retained at introduction in species that have shown evidence of adaptation to their introduced environments. Samples were taken from native and introduced ranges of Arctotheca populifolia and Petrorhagia nanteuilii. Using microsatellite data, we identified the source for each introduction, estimated genetic diversity in native and introduced populations, and calculated the amount of diversity retained in introduced populations. These values were compared to those from a literature review of diversity in native, confamilial populations and to estimates of genetic diversity retained at introduction. Gene diversity in the native range of both species was significantly lower than for confamilials. We found that, on average, introduced populations showing evidence of adaptation to their new environments retained 81% of the genetic diversity from the native range. Introduced populations of P. nanteuilii had higher genetic diversity than found in the native source populations, whereas introduced populations of A. populifolia retained only 14% of its native diversity in one introduction and 1% in another. Our literature review has shown that most introductions demonstrating adaptive ability have lost diversity upon introduction. The two species studied here had exceptionally low native range genetic diversity. Further, the two introductions of A. populifolia represent the largest percentage loss of genetic diversity in a species showing evidence of substantial morphological change in the introduced range. While high genetic diversity may increase the likelihood of invasion success, the species examined here adapted to their new environments with very little neutral genetic diversity. This finding suggests that even introductions founded by small numbers of individuals have the potential to become invasive.
Collapse
Affiliation(s)
- Lee A Rollins
- School of Life & Environmental Sciences, Centre for Integrative Ecology, Deakin University Geelong, Vic., 3216, Australia ; School of Biological, Earth and Environmental Sciences, Evolution & Ecology Research Centre, University of New South Wales Sydney, NSW, 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tucker JM, Schwartz MK, Truex RL, Wisely SM, Allendorf FW. Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0525-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Davis AK, Hood WR, Hill GE. Prevalence of blood parasites in eastern versus Western house finches: are eastern birds resistant to infection? ECOHEALTH 2013; 10:290-297. [PMID: 23807632 DOI: 10.1007/s10393-013-0852-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
The rapid spread of the bacterial disease, Mycoplasma gallisepticum (MG), throughout the introduced range of house finches (Carpodacus mexicanus) in eastern North America, compared to its slower spread through the native western range, has puzzled researchers and highlights the need to understand the relative differences in health state of finches from both populations. We conducted a light-microscope survey of hemoparasites in populations of finches from Arizona (within the western range) and from Alabama (within the eastern range), and compared our estimates of prevalence to published reports from house finches sampled in both ranges. Of the 33 Arizona birds examined, we recorded hematozoan infections in 16 (48.5%) individuals, compared to 1 infected Alabama bird out of 30 birds examined (3.3%). Based on independent surveys of seven western North American and five eastern North American populations of house finches the average prevalence of blood parasites in western populations is 38.8% (±17.9 SD), while the average prevalence within the eastern range is only 5.9% (±6.1 SD). The average rate of infection among all songbirds sampled in the east is 34.2% (±4.8 SD). Thus, our surveys of wild birds as well as previously published observations point to eastern house finches having a much lower prevalence of blood parasite infections than their western counterparts. Combined with the fact that eastern finches also tend to have lower rates of avian pox infections than do western birds (based on a literature review), these observations suggest that eastern birds have either strong resistance to these infections or high susceptibility and associated mortality.
Collapse
Affiliation(s)
- Andrew K Davis
- Odum School of Ecology, The University of Georgia, Athens, GA, 30602, USA,
| | | | | |
Collapse
|
27
|
Hawley DM, Osnas EE, Dobson AP, Hochachka WM, Ley DH, Dhondt AA. Parallel patterns of increased virulence in a recently emerged wildlife pathogen. PLoS Biol 2013; 11:e1001570. [PMID: 23723736 PMCID: PMC3665845 DOI: 10.1371/journal.pbio.1001570] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
A bacterial pathogen of wild songbirds evolved higher virulence following its emergence in two separate regions of the host range. The evolution of higher virulence during disease emergence has been predicted by theoretical models, but empirical studies of short-term virulence evolution following pathogen emergence remain rare. Here we examine patterns of short-term virulence evolution using archived isolates of the bacterium Mycoplasma gallisepticum collected during sequential emergence events in two geographically distinct populations of the host, the North American house finch (Haemorhous [formerly Carpodacus] mexicanus). We present results from two complementary experiments, one that examines the trend in pathogen virulence in eastern North American isolates over the course of the eastern epidemic (1994–2008), and the other a parallel experiment on Pacific coast isolates of the pathogen collected after M. gallisepticum established itself in western North American house finch populations (2006–2010). Consistent with theoretical expectations regarding short-term or dynamic evolution of virulence, we show rapid increases in pathogen virulence on both coasts following the pathogen's establishment in each host population. We also find evidence for positive genetic covariation between virulence and pathogen load, a proxy for transmission potential, among isolates of M. gallisepticum. As predicted by theory, indirect selection for increased transmission likely drove the evolutionary increase in virulence in both geographic locations. Our results provide one of the first empirical examples of rapid changes in virulence following pathogen emergence, and both the detected pattern and mechanism of positive genetic covariation between virulence and pathogen load are consistent with theoretical expectations. Our study provides unique empirical insight into the dynamics of short-term virulence evolution that are likely to operate in other emerging pathogens of wildlife and humans. A long-standing paradox in the study of infectious diseases is why pathogens evolve to cause harm to the very hosts they depend on to survive and reproduce. Research over several decades suggests that this harm, or virulence, is an inevitable by-product of the pathogen replication needed to maximize the chance that a given pathogen will be transmitted to another host. Here we demonstrate that a recently emerged bacterial pathogen of a North American songbird species has gradually become more virulent during each of two emergence events in different regions of the host range. This evolution of higher virulence appears to have been driven by selection for high rates of pathogen replication, because bacterial isolates that are more virulent in finches also attain the highest loads in infected host tissues. Overall, our results indicate that emerging pathogens can evolve to become more virulent in their hosts, at least in the short term, when an increase in the pathogen's ability to replicate is linked with higher virulence. Our findings have important implications for understanding and predicting the severity of disease caused by emerging pathogens in wildlife, domestic animals, and humans.
Collapse
Affiliation(s)
- Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Aboim MA, Mesquita N, Drago M, Coelho MM, Alves MJ. Assessing inter-drainage connections: patterns of genetic diversity in an Iberian cyprinid fish. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Maria Ana Aboim
- Centro de Biologia Ambiental, Faculdade de Ciências; Universidade de Lisboa; 1749-016; Lisboa; Portugal
| | | | | | - Maria Manuela Coelho
- Centro de Biologia Ambiental, Faculdade de Ciências; Universidade de Lisboa; 1749-016; Lisboa; Portugal
| | | |
Collapse
|
29
|
Adelman JS, Kirkpatrick L, Grodio JL, Hawley DM. House finch populations differ in early inflammatory signaling and pathogen tolerance at the peak of Mycoplasma gallisepticum infection. Am Nat 2013; 181:674-89. [PMID: 23594550 DOI: 10.1086/670024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Host individuals and populations often vary in their responses to infection, with direct consequences for pathogen spread and evolution. While considerable work has focused on the mechanisms underlying differences in resistance-the ability to kill pathogens-we know little about the mechanisms underlying tolerance-the ability to minimize fitness losses per unit pathogen. Here, we examine patterns and mechanisms of tolerance between two populations of house finches (Haemorhous [formerly Carpodacus] mexicanus) with different histories with the bacterial pathogen Mycoplasma gallisepticum (MG). After infection in a common environment, we assessed two metrics of pathology, mass loss and eye lesion severity, as proxies for fitness. We calculated tolerance using two methods, one based on pathology and pathogen load at the peak of infection (point tolerance) and the other based on the integrals of these metrics over time (range tolerance). Alabama birds, which have a significantly longer history of exposure to MG, showed more pronounced point tolerance than Arizona birds, while range tolerance did not differ between populations. Alabama birds also displayed lower inflammatory cytokine signaling and lower fever early in infection. These results suggest that differences in inflammatory processes, which can significantly damage host tissues, may contribute to variation in tolerance among house finch individuals and populations. Such variation can affect pathogen spread and evolution in ways not predictable by resistance alone and sheds light on the costs and benefits of inflammation in wild animals.
Collapse
Affiliation(s)
- James S Adelman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
30
|
Backström N, Shipilina D, Blom MPK, Edwards SV. Cis-regulatory sequence variation and association with Mycoplasma load in natural populations of the house finch (Carpodacus mexicanus). Ecol Evol 2013; 3:655-66. [PMID: 23532859 PMCID: PMC3605853 DOI: 10.1002/ece3.484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 01/19/2023] Open
Abstract
Characterization of the genetic basis of fitness traits in natural populations is important for understanding how organisms adapt to the changing environment and to novel events, such as epizootics. However, candidate fitness-influencing loci, such as regulatory regions, are usually unavailable in nonmodel species. Here, we analyze sequence data from targeted resequencing of the cis-regulatory regions of three candidate genes for disease resistance (CD74, HSP90α, and LCP1) in populations of the house finch (Carpodacus mexicanus) historically exposed (Alabama) and naïve (Arizona) to Mycoplasma gallisepticum. Our study, the first to quantify variation in regulatory regions in wild birds, reveals that the upstream regions of CD74 and HSP90α are GC-rich, with the former exhibiting unusually low sequence variation for this species. We identified two SNPs, located in a GC-rich region immediately upstream of an inferred promoter site in the gene HSP90α, that were significantly associated with Mycoplasma pathogen load in the two populations. The SNPs are closely linked and situated in potential regulatory sequences: one in a binding site for the transcription factor nuclear NFYα and the other in a dinucleotide microsatellite ((GC)6). The genotype associated with pathogen load in the putative NFYα binding site was significantly overrepresented in the Alabama birds. However, we did not see strong effects of selection at this SNP, perhaps because selection has acted on standing genetic variation over an extremely short time in a highly recombining region. Our study is a useful starting point to explore functional relationships between sequence polymorphisms, gene expression, and phenotypic traits, such as pathogen resistance that affect fitness in the wild.
Collapse
Affiliation(s)
- Niclas Backström
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Daria Shipilina
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Mozes P K Blom
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| |
Collapse
|
31
|
Lima MR, Macedo RHF, Martins TLF, Schrey AW, Martin LB, Bensch S. Genetic and morphometric divergence of an invasive bird: the introduced house sparrow (Passer domesticus) in Brazil. PLoS One 2012; 7:e53332. [PMID: 23285283 PMCID: PMC3532305 DOI: 10.1371/journal.pone.0053332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/30/2012] [Indexed: 11/24/2022] Open
Abstract
Introduced species are interesting systems for the study of contemporary evolution in new environments because of their spatial and temporal scales. For this study we had three aims: (i) to determine how genetic diversity and genetic differentiation of introduced populations of the house sparrow (Passer domesticus) in Brazil varies with range expansion, (ii) to determine how genetic diversity and differentiation in Brazil compares to ancestral European populations; and (iii) to determine whether selection or genetic drift has been more influential on phenotypic divergence. We used six microsatellite markers to genotype six populations from Brazil and four populations from Europe. We found slightly reduced levels of genetic diversity in Brazilian compared to native European populations. However, among introduced populations of Brazil, we found no association between genetic diversity and time since introduction. Moreover, overall genetic differentiation among introduced populations was low indicating that the expansion took place from large populations in which genetic drift effects would likely have been weak. We found significant phenotypic divergence among sites in Brazil. Given the absence of a spatial genetic pattern, divergent selection and not genetic drift seems to be the main force behind most of the phenotypic divergence encountered. Unravelling whether microevolution (e.g., allele frequency change), phenotypic plasticity, or both mediated phenotypic divergence is challenging and will require experimental work (e.g., common garden experiments or breeding programs).
Collapse
Affiliation(s)
- Marcos R. Lima
- Departamento de Ecologia – IB, Pós-Graduação em Ecologia, Universidade de Brasília, Brasília, Brazil
| | | | - Thaís L. F. Martins
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Tremough, Penryn, Cornwall, United Kingdom
| | - Aaron W. Schrey
- Department of Integrative Biology, University of South Florida, Tampa, Florida, United States of America
| | - Lynn B. Martin
- Department of Integrative Biology, University of South Florida, Tampa, Florida, United States of America
| | - Staffan Bensch
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
32
|
Short KH, Petren K. Multimodal dispersal during the range expansion of the tropical house gecko Hemidactylus mabouia. Ecol Evol 2012; 1:181-90. [PMID: 22393494 PMCID: PMC3287299 DOI: 10.1002/ece3.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022] Open
Abstract
Dispersal influences both the ecological and evolutionary dynamics of range expansion. While some studies have demonstrated a role for human-mediated dispersal during invasion, the genetic effects of such dispersal remain to be understood, particularly in terrestrial range expansions. In this study, we investigated multimodal dispersal during the range expansion of the invasive gecko Hemidactylus mabouia in Florida using 12 microsatellite loci. We investigated dispersal patterns at the regional scale (metropolitan areas), statewide scale (state of Florida), and global scale (including samples from the native range). Dispersal was limited at the smallest, regional scale, within metropolitan areas, as reflected by the presence of genetic structure at this scale, which is in agreement with a previous study in this same invasion at even smaller spatial scales. Surprisingly, there was no detectable genetic structure at the intermediate statewide scale, which suggests dispersal is not limited across the state of Florida. There was evidence of genetic differentiation between Florida and other areas where H. mabouia occurs, so we concluded that at the largest scale, dispersal was limited. Humans likely contributed to patterns of dispersal at all three scales but in different ways. Infrequent low-volume dispersal has occurred within regions, frequent high-volume dispersal has occurred across the state, and infrequent long-distance dispersal has occurred among continents at the global scale. This study highlights the importance of considering different modes of dispersal at multiple spatial scales to understand the dynamics of invasion and range expansion.
Collapse
Affiliation(s)
- Kristen H Short
- Department of Biological Sciences, University of Cincinnati Cincinnati, Ohio 45221-0006
| | | |
Collapse
|
33
|
Within-host dynamics of mycoplasma infections: Conjunctivitis in wild passerine birds. J Theor Biol 2012; 306:73-92. [DOI: 10.1016/j.jtbi.2012.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 11/22/2022]
|
34
|
Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient. Heredity (Edinb) 2012; 109:163-72. [PMID: 22588131 DOI: 10.1038/hdy.2012.26] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.
Collapse
|
35
|
Mura L, Cossu P, Cannas A, Scarpa F, Sanna D, Dedola G, Floris R, Lai T, Cristo B, Curini-Galletti M, Fois N, Casu M. Genetic variability in the Sardinian population of the manila clam, Ruditapes philippinarum. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2011.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Hawley DM, Fleischer RC. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird. PLoS One 2012; 7:e30222. [PMID: 22291920 PMCID: PMC3264569 DOI: 10.1371/journal.pone.0030222] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/14/2011] [Indexed: 11/20/2022] Open
Abstract
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.
Collapse
Affiliation(s)
- Dana M Hawley
- Center for Conservation and Evolutionary Genetics, Smithsonian Institution, Washington DC, United States of America.
| | | |
Collapse
|
37
|
Schrey AW, Grispo M, Awad M, Cook MB, McCoy ED, Mushinsky HR, Albayrak T, Bensch S, Burke T, Butler LK, Dor R, Fokidis HB, Jensen H, Imboma T, Kessler-Rios MM, Marzal A, Stewart IRK, Westerdahl H, Westneat DF, Zehtindjiev P, Martin LB. Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Mol Ecol 2011; 20:1133-43. [PMID: 21251113 DOI: 10.1111/j.1365-294x.2011.05001.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduced species offer unique opportunities to study evolution in new environments, and some provide opportunities for understanding the mechanisms underlying macroecological patterns. We sought to determine how introduction history impacted genetic diversity and differentiation of the house sparrow (Passer domesticus), one of the most broadly distributed bird species. We screened eight microsatellite loci in 316 individuals from 16 locations in the native and introduced ranges. Significant population structure occurred between native than introduced house sparrows. Introduced house sparrows were distinguished into one North American group and a highly differentiated Kenyan group. Genetic differentiation estimates identified a high magnitude of differentiation between Kenya and all other populations, but demonstrated that European and North American samples were differentiated too. Our results support previous claims that introduced North American populations likely had few source populations, and indicate house sparrows established populations after introduction. Genetic diversity also differed among native, introduced North American, and Kenyan populations with Kenyan birds being least diverse. In some cases, house sparrow populations appeared to maintain or recover genetic diversity relatively rapidly after range expansion (<50 years; Mexico and Panama), but in others (Kenya) the effect of introduction persisted over the same period. In both native and introduced populations, genetic diversity exhibited large-scale geographic patterns, increasing towards the equator. Such patterns of genetic diversity are concordant with two previously described models of genetic diversity, the latitudinal model and the species diversity model.
Collapse
Affiliation(s)
- A W Schrey
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Oh KP, Badyaev AV. Structure of social networks in a passerine bird: consequences for sexual selection and the evolution of mating strategies. Am Nat 2010; 176:E80-9. [PMID: 20608873 DOI: 10.1086/655216] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The social environment is a critical determinant of fitness and, in many taxa, is shaped by an individual's behavioral discrimination among social contexts, suggesting that animals can actively influence the selection they experience. In competition to attract females, males may modify sexual selection by choosing social environments in which they are more attractive relative to rivals. Across the population, such behaviors should influence sexual selection patterns by altering the relationship between male mating success and sexual ornament elaboration. Here we use network analysis to examine patterns of male social behavior in relation to plumage ornamentation and mating success in a free-living population of house finches. During the nonbreeding season, less elaborate males changed associations with distinct social groups more frequently, compared to more elaborate males that showed greater fidelity to a single social group. By the onset of pair formation, socially labile males effectively increased their attractiveness relative to other males in the same flocks. Consequently, males that frequently moved between social groups had greater pairing success than less social individuals with equivalent sexual ornamentation. We discuss these results in relation to conditional mating tactics and the role of social behavior in evolutionary change by sexual selection.
Collapse
Affiliation(s)
- Kevin P Oh
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721, USA.
| | | |
Collapse
|
39
|
Hadziabdic D, Fitzpatrick BM, Wang X, Wadl PA, Rinehart TA, Ownley BH, Windham MT, Trigiano RN. Analysis of genetic diversity in flowering dogwood natural stands using microsatellites: the effects of dogwood anthracnose. Genetica 2010; 138:1047-57. [PMID: 20820882 DOI: 10.1007/s10709-010-9490-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 08/21/2010] [Indexed: 11/25/2022]
Abstract
Flowering dogwood (Cornus florida L.) populations recently have experienced severe declines caused by dogwood anthracnose. Mortality has ranged from 48 to 98%, raising the concern that genetic diversity has been reduced significantly. Microsatellite data were used to evaluate the level and distribution of genetic variation throughout much of the native range of the tree. Genetic variation in areas affected by anthracnose was as high as or higher than areas without die-offs. We found evidence of four widespread, spatially contiguous genetic clusters. However, there was little relationship between geographic distance and genetic difference. These observations suggest that high dispersal rates and large effective population sizes have so far prevented rapid loss of genetic diversity. The effects of anthracnose on demography and community structure are likely to be far more consequential than short-term genetic effects.
Collapse
Affiliation(s)
- D Hadziabdic
- Department of Entomology and Plant Pathology, The University of Tennessee, 2431 Joe Johnson Dr, Knoxville, TN, 37996-4560, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hawley DM, Dhondt KV, Dobson AP, Grodio JL, Hochachka WM, Ley DH, Osnas EE, Schat KA, Dhondt AA. Common garden experiment reveals pathogen isolate but no host genetic diversity effect on the dynamics of an emerging wildlife disease. J Evol Biol 2010; 23:1680-8. [PMID: 20561136 DOI: 10.1111/j.1420-9101.2010.02035.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Host genetic diversity can mediate pathogen resistance within and among populations. Here we test whether the lower prevalence of Mycoplasmal conjunctivitis in native North American house finch populations results from greater resistance to the causative agent, Mycoplasma gallisepticum (MG), than introduced, recently-bottlenecked populations that lack genetic diversity. In a common garden experiment, we challenged wild-caught western (native) and eastern (introduced) North American finches with a representative eastern or western MG isolate. Although introduced finches in our study had lower neutral genetic diversity than native finches, we found no support for a population-level genetic diversity effect on host resistance. Instead we detected strong support for isolate differences: the MG isolate circulating in western house finch populations produced lower virulence, but higher pathogen loads, in both native and introduced hosts. Our results indicate that contemporary differences in host genetic diversity likely do not explain the lower conjunctivitis prevalence in native house finches, but isolate-level differences in virulence may play an important role.
Collapse
Affiliation(s)
- D M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hoos PM, Whitman Miller A, Ruiz GM, Vrijenhoek RC, Geller JB. Genetic and historical evidence disagree on likely sources of the Atlantic amethyst gem clam Gemma gemma (Totten, 1834) in California. DIVERS DISTRIB 2010. [DOI: 10.1111/j.1472-4642.2010.00672.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Abstract
In this time of unprecedented global change, infectious diseases will impact humans and wildlife in novel and unknown ways. Climate change, the introduction of invasive species, urbanization, agricultural practices and the loss of biodiversity have all been implicated in increasing the spread of infectious pathogens. In many regards, deforestation supersedes these other global events in terms of its immediate potential global effects in both tropical and temperate regions. The effects of deforestation on the spread of pathogens in birds are largely unknown. Birds harbor many of the same types of pathogens as humans and in addition can spread infectious agents to humans and other wildlife. It is thought that avifauna have gone extinct due to infectious diseases and many are presently threatened, especially endemic island birds. It is clear that habitat degradation can pose a direct threat to many bird species but it is uncertain how these alterations will affect disease transmission and susceptibility to disease. The migration and dispersal of birds can also change with habitat degradation, and thus expose populations to novel pathogens. Some recent work has shown that the results of landscape transformation can have confounding effects on avian malaria, other haemosporidian parasites and viruses. Now with advances in many technologies, including mathematical and computer modeling, genomics and satellite tracking, scientists have tools to further research the disease ecology of deforestation. This research will be imperative to help predict and prevent outbreaks that could affect avifauna, humans and other wildlife worldwide.
Collapse
Affiliation(s)
- R N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
43
|
|
44
|
Le Gouar PJ, Vallet D, David L, Bermejo M, Gatti S, Levréro F, Petit EJ, Ménard N. How Ebola impacts genetics of Western lowland gorilla populations. PLoS One 2009; 4:e8375. [PMID: 20020045 PMCID: PMC2791222 DOI: 10.1371/journal.pone.0008375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. Methodology/Principal Findings We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. Conclusions/Significance Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.
Collapse
|
45
|
Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA. In situ population structure and ex situ representation of the endangered Amur tiger. Mol Ecol 2009; 18:3173-84. [PMID: 19555412 DOI: 10.1111/j.1365-294x.2009.04266.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Amur tiger (Panthera tigris altaica) is a critically endangered felid that suffered a severe demographic contraction in the 1940s. In this study, we sampled 95 individuals collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, we sampled targeted individuals from the North American ex situ population to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their well-documented 20th century decline, we failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. Despite conflicting signatures of a bottleneck, our estimates of effective population size (N(e) = 27-35) and N(e)/N ratio (0.07-0.054) were substantially lower than the only other values reported for a wild tiger population. Lastly, the extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ. Overall, our results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ.
Collapse
Affiliation(s)
- P Henry
- Department of Biology, Centre for Species at Risk and Habitat Studies, University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Oh KP, Badyaev AV. Isolation and characterization of 17 microsatellite loci for the house finch (Carpodacus mexicanus). Mol Ecol Resour 2009; 9:1029-31. [PMID: 21564828 DOI: 10.1111/j.1755-0998.2009.02555.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The house finch (Carpodacus mexicanus) has emerged recently as a model species in studies of sexual selection, reproductive physiology, population genetics, and epizootic disease ecology. Here we describe 17 highly polymorphic microsatellite loci for this species. In a sample of 36 individuals, we observed an average of 16 alleles per locus and heterozygosity ranged from 0.61 to 0.97. One locus showed significant deviation from Hardy-Weinberg proportions, but no significant gametic disequilibrium was observed among any of the loci. Amplification by polymerase chain reaction was optimized under similar parameters across loci, thereby facilitating multiplexing and rapid multilocus genotyping.
Collapse
Affiliation(s)
- Kevin P Oh
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson 85721, AZ, USA
| | | |
Collapse
|
47
|
Eales J, Thorpe RS. Revealing the geographic origin of an invasive lizard: the problem of native population genetic diversity. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9431-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Kolbe JJ, Larson A, Losos JB, de Queiroz K. Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 2008; 4:434-7. [PMID: 18492644 DOI: 10.1098/rsbl.2008.0205] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular genetic analyses show that introduced populations undergoing biological invasions often bring together individuals from genetically disparate native-range source populations, which can elevate genotypic variation if these individuals interbreed. Differential admixture among multiple native-range sources explains mitochondrial haplotypic diversity within and differentiation among invasive populations of the lizard Anolis sagrei. Our examination of microsatellite variation supports the hypothesis that lizards from disparate native-range sources, identified using mtDNA haplotypes, form genetically admixed introduced populations. Furthermore, within-population genotypic diversity increases with the number of sources and among-population genotypic differentiation reflects disparity in their native-range sources. If adaptive genetic variation is similarly restructured, then the ability of invasive species to adapt to new conditions may be enhanced.
Collapse
Affiliation(s)
- Jason J Kolbe
- Department of Biology, Washington University, St Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
49
|
Badyaev AV, Young RL, Oh KP, Addison C. Evolution on a local scale: developmental, functional, and genetic bases of divergence in bill form and associated changes in song structure between adjacent habitats. Evolution 2008; 62:1951-64. [PMID: 18507745 DOI: 10.1111/j.1558-5646.2008.00428.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Divergent selection on traits involved in both local adaptation and the production of mating signals can strongly facilitate population differentiation. Because of its links to foraging morphologies and cultural inheritance song of birds can contribute particularly strongly to maintenance of local adaptations. In two adjacent habitats--native Sonoran desert and urban areas--house finches (Carpodacus mexicanus) forage on seeds that are highly distinct in size and shell hardness and require different bite forces and bill morphologies. Here, we first document strong and habitat-specific natural selection on bill traits linked to bite force and find adaptive modifications of bite force and bill morphology and associated divergence in courtship song between the two habitats. Second, we investigate the developmental basis of this divergence and find that early ontogenetic tissue transformation in bill, but not skeletal traits, is accelerated in the urban population and that the mandibular primordia of the large-beaked urban finches express bone morphogenetic proteins (BMP) earlier and at higher level than those of the desert finches. Further, we show that despite being geographically adjacent, urban and desert populations are nevertheless genetically distinct corroborating findings of early developmental divergence between them. Taken together, these results suggest that divergent selection on function and development of traits involved in production of mating signals, in combination with localized learning of such signals, can be very effective at maintaining local adaptations, even at small spatial scales and in highly mobile animals.
Collapse
Affiliation(s)
- Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | |
Collapse
|
50
|
Evolution of Adaptation and Mate Choice: Parental Relatedness Affects Expression of Phenotypic Variance in a Natural Population. Evol Biol 2008. [DOI: 10.1007/s11692-008-9017-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|