1
|
Thieme P, Reisser C, Bouvier C, Rieuvillneuve F, Béarez P, Coleman RR, Anissa Volanandiana JJ, Pereira E, Nirchio-Tursellino M, Roldán MI, Heras S, Tirado-Sánchez N, Pulis E, Leprieur F, Durand JD. Historical biogeography of the Mugil cephalus species complex and its rapid global colonization. Mol Phylogenet Evol 2025:108296. [PMID: 39884517 DOI: 10.1016/j.ympev.2025.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/12/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Our understanding of speciation processes in marine environments remains very limited and the role of different reproductive barriers are still debated. While physical barriers were considered important drivers causing reproductive isolation, recent studies highlight the importance of climatic and hydrological changes creating unsuitable habitat conditions as factors promoting population isolation. Although speciation in marine fish has been investigated from different perspectives, these studies often have a limited geographical extant. Therefore, data on speciation within widely distributed species are largely lacking. Species complexes offer valuable opportunities to study the initial stages of speciation. Herein we study speciation within the Mugil cephalus species complex (MCSC) which presents a unique opportunity due to its circumglobal distribution. We used a whole-genome shotgun analysis approach to identify SNPs among the 16 species within the MCSC. We inferred the phylogenetic relationships within the species complex followed by a time-calibration analysis. Subsequently, we estimated the ancestral ranges within the species complex to explore their biogeographical history. Herein, we present a fully resolved and well-supported phylogeny of the MCSC. Its origin is dated at around 3.79 Ma after which two main clades emerged: one comprising all West Atlantic and East Pacific species and the other all East Atlantic and Indo-Pacific species. Rapid dispersal following an initial founder colonization from the West to the East Atlantic led to the population of all major realms worldwide in less than 2 Myr. Physical and climatic barriers heavily impacted the ancestral distribution ranges within the MCSC and triggered the onset of speciation.
Collapse
Affiliation(s)
- Philipp Thieme
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France; Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany.
| | - Celine Reisser
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Corinne Bouvier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Fabien Rieuvillneuve
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Philippe Béarez
- UMR 7209 AASPE, CNRS-MNHN, 43 rue Buffon, 75005 Paris, France
| | - Richard R Coleman
- Department of Marine Biology & Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Jean Jubrice Anissa Volanandiana
- Institut Halieutique et des Sciences Marines (IH SM), University of Toliara, BP 141 - Route du Port, Av. De France, Tulear 601, Madagascar
| | - Esmeralda Pereira
- MARE-Centro de Ciências do Mar e do Ambiente/ARNET-Rede de Investigação Aquática, Universidade de Évora, Largo Dos Colegiais N.2, 7004-516 Évora, Portugal
| | - Mauro Nirchio-Tursellino
- Universidad Técnica de Machala, Facultad de Ciencias Agropecuarias, Escuela de Medicina Veterinaria. Machala, El Oro, Ecuador
| | - María Inés Roldán
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain
| | - Sandra Heras
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain
| | | | - Eric Pulis
- Northern State University, 1200 S Jay Street, Aberdeen, SD 57401, USA
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Jean-Dominique Durand
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, cc093, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
2
|
Mogano RR, Mpofu TJ, Mtileni B, Hadebe K. South African indigenous chickens' genetic diversity, and the adoption of ecological niche modelling and landscape genomics as strategic conservation techniques. Poult Sci 2025; 104:104508. [PMID: 39657468 PMCID: PMC11681890 DOI: 10.1016/j.psj.2024.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Selection pressures found in the prevailing production environments have shaped the genetic structure of indigenous chickens we see today. Indigenous chickens, raised in villages, provide essential genetic resources and income for poverty alleviation by providing affordable protein. However, they are threatened by predators, emerging diseases, and market demand for ideal breeds and fast production which causes loss of their valuable traits. The lack of knowledge about genetic diversity and genetic mechanisms underlying adaptive variants may compromise the goal of conserving indigenous chicken breeds. The main insights of the study are that indigenous chickens are highly diversified, and environmental factors play a key role in enabling chicken adaptation and distribution. Genomic and spatial technologies have made it possible to explore the genetic structure and fully comprehend the mechanism underlying the local adaptation of indigenous chickens. These technologies can aid in creating programs that enhance productivity and promote climate-resilient breeds. This review explores the impact of natural selection on indigenous chicken, genetic diversity, population size, and the advancement of technologies in understanding local adaptation drivers. In conclusion, this review highlights the importance of studying the habitats and how this will guide in conserving local breeds in their intended production environment.
Collapse
Affiliation(s)
- Reneilwe Rose Mogano
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa
| | - Takalani Judas Mpofu
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa.
| |
Collapse
|
3
|
Gaspa G, Cesarani A, Pauciullo A, Peana I, Macciotta NPP. Genomic Analysis of Sarda Sheep Raised at Diverse Temperatures Highlights Several Genes Involved in Adaptations to the Environment and Heat Stress Response. Animals (Basel) 2024; 14:3585. [PMID: 39765489 PMCID: PMC11672698 DOI: 10.3390/ani14243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Livestock expresses complex traits influenced by several factors. The response of animals to variations in climatic factors, such as increases in temperature, may induce heat stress conditions. In this study, animals living at different temperatures were compared using the genome-wide Wright fixation index (FST). A total of 825 genotypes of Sarda breed ewes were divided into two groups based on the flocks' average temperature over a 20-year period to compute the FST: 395 and 430 sheep were represented in colder and hotter groups, respectively. After LOWESS regression and CONTROL CHART application, 623 significant markers and 97 selection signatures were found. A total of 280 positional candidate genes were retrieved from a public database. Among these genomic regions, we found 51 annotated genes previously associated with heat stress/tolerance in ruminants (FCGR1A, MDH1, UGP2, MYO1G, and HSPB3), as well as immune response and cellular mechanisms related to how animals cope with thermal stress (RIPK1, SERPINB1, SERPINB9, and PELI1). Moreover, other genes were associated with milk fat (SCD, HERC3, SCFD2, and CHUK), body weight, body fat, and intramuscular fat composition (AGPAT2, ABCD2, MFAP32, YTHDC1, SIRT3, SCD, and RNF121), which might suggest the influence of environmental conditions on the genome of Sarda sheep.
Collapse
Affiliation(s)
- Giustino Gaspa
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Ilaria Peana
- Servizio Agrometeorologico Regionale per la Sardegna (ARPAS), 07100 Sassari, Italy;
| | - Nicolò P. P. Macciotta
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
| |
Collapse
|
4
|
Zhang KL, Leng YN, Hao RR, Zhang WY, Li HF, Chen MX, Zhu FY. Adaptation of High-Altitude Plants to Harsh Environments: Application of Phenotypic-Variation-Related Methods and Multi-Omics Techniques. Int J Mol Sci 2024; 25:12666. [PMID: 39684378 DOI: 10.3390/ijms252312666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
High-altitude plants face extreme environments such as low temperature, low oxygen, low nutrient levels, and strong ultraviolet radiation, causing them to adopt complex adaptation mechanisms. Phenotypic variation is the core manifestation of ecological adaptation and evolution. Many plants have developed a series of adaptive strategies through long-term natural selection and evolution, enabling them to survive and reproduce under such harsh conditions. This article reviews the techniques and methods used in recent years to study the adaptive evolution of high-altitude plants, including transplantation techniques, genomics, transcriptomics, proteomics, and metabolomics techniques, and their applications in high-altitude plant adaptive evolution. Transplantation technology focuses on phenotypic variation, which refers to natural variations in morphological, physiological, and biochemical characteristics, exploring their key roles in nutrient utilization, photosynthesis optimization, and stress-resistance protection. Multiple omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have revealed genes, regulatory pathways, and metabolic networks associated with phenotypic variations at the genetic and molecular levels. At the same time, the limitations and deficiencies of current technologies used to study plant adaptation to high-altitude environments were discussed. In addition, we propose future improvements to existing technologies and advocate for the integration of different technologies at multiple levels to study the molecular mechanisms of plant adaptation to high-altitude environments, thus providing insights for future research in this field.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ya-Nan Leng
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Rui-Rui Hao
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Yao Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Fei Li
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Mo-Xian Chen
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Fu-Yuan Zhu
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
5
|
Song R, Zhang X, Zhang Z, Zhou C. Climatic factors, but not geographic distance, promote genetic structure and differentiation of Cleistogenes squarrosa (Trin.) Keng populations. FRONTIERS IN BIOINFORMATICS 2024; 4:1454689. [PMID: 39606024 PMCID: PMC11599168 DOI: 10.3389/fbinf.2024.1454689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Climate can shape plant genetic diversity and genetic structure, and genetic diversity and genetic structure can reflect the adaptation of plants to climate change. We used rbcl and trnL-trnF sequences to analyze the genetic diversity and genetic structure of C. squarrosa under the influence of different environmental factors in Inner Mongolia grassland. The results showed that the genetic diversity of this species was low. (The trnL-trnF sequences have higher genetic diversity than rbcl sequences.) C. squarrosa had low genetic diversity compared to other prairie plants, but had a more pronounced genetic structure. The haplotype network diagram of the combined sequences could be divided into two categories, and the results of the NJ, MP, and ML trees also showed that the haplotypes were divided into two branches. The results of genetic structure analysis showed that that the populations located in the desert steppe fall into exactly one cluster, and the populations located in the typical steppe fall into exactly another cluster. The neutrality tests were all negative and the mismatch distribution also showed a single peak across the population, suggesting that C. squarrosa had undergone population expansion and was well adapted to the local environment. The results of the mantel test showed that climate had a greater influence on the genetic distance of C. squarrosa, with annual precipitation having a higher influence than mean annual temperature. This study provided basic genetic information on the genetic structure of C. squarrosa and contributes to the study of genetic adaptation mechanisms in grassland plants.
Collapse
Affiliation(s)
- Ruyan Song
- School of Life Science, Liaoning University, Shenyang, China
| | - Xueli Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Zhuo Zhang
- School of Life Science and Bioengineering, Shenyang University, Shenyang, China
| | - Chan Zhou
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
6
|
Trumbo DR, Hardy BM, Crockett HJ, Muths E, Forester BR, Cheek RG, Zimmerman SJ, Corey-Rivas S, Bailey LL, Funk WC. Conservation genomics of an endangered montane amphibian reveals low population structure, low genomic diversity and selection pressure from disease. Mol Ecol 2023; 32:6777-6795. [PMID: 37864490 DOI: 10.1111/mec.17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Wildlife diseases are a major global threat to biodiversity. Boreal toads (Anaxyrus [Bufo] boreas) are a state-endangered species in the southern Rocky Mountains of Colorado and New Mexico, and a species of concern in Wyoming, largely due to lethal skin infections caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We performed conservation and landscape genomic analyses using single nucleotide polymorphisms from double-digest, restriction site-associated DNA sequencing in combination with the development of the first boreal toad (and first North American toad) reference genome to investigate population structure, genomic diversity, landscape connectivity and adaptive divergence. Genomic diversity (π = 0.00034-0.00040) and effective population sizes (Ne = 8.9-38.4) were low, likely due to post-Pleistocene founder effects and Bd-related population crashes over the last three decades. Population structure was also low, likely due to formerly high connectivity among a higher density of geographically proximate populations. Boreal toad gene flow was facilitated by low precipitation, cold minimum temperatures, less tree canopy, low heat load and less urbanization. We found >8X more putatively adaptive loci related to Bd intensity than to all other environmental factors combined, and evidence for genes under selection related to immune response, heart development and regulation and skin function. These data suggest boreal toads in habitats with Bd have experienced stronger selection pressure from disease than from other, broad-scale environmental variations. These findings can be used by managers to conserve and recover the species through actions including reintroduction and supplementation of populations that have declined due to Bd.
Collapse
Affiliation(s)
- D R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - B M Hardy
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - H J Crockett
- Colorado Parks and Wildlife, Fort Collins, Colorado, USA
| | - E Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - B R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - R G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - S J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - S Corey-Rivas
- Department of Biology, New Mexico Highlands University, Las Vegas, New Mexico, USA
| | - L L Bailey
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - W C Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Ghildiyal K, Nayak SS, Rajawat D, Sharma A, Chhotaray S, Bhushan B, Dutt T, Panigrahi M. Genomic insights into the conservation of wild and domestic animal diversity: A review. Gene 2023; 886:147719. [PMID: 37597708 DOI: 10.1016/j.gene.2023.147719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Due to environmental change and anthropogenic activities, global biodiversity has suffered an unprecedented loss, and the world is now heading toward the sixth mass extinction event. This urges the need to step up our efforts to promote the sustainable use of animal genetic resources and plan effective strategies for their conservation. Although habitat preservation and restoration are the primary means of conserving biodiversity, genomic technologies offer a variety of novel tools for identifying biodiversity hotspots and thus, support conservation efforts. Conservation genomics is a broad area of science that encompasses the application of genomic data from thousands or tens of thousands of genome-wide markers to address important conservation biology concerns. Genomic approaches have revolutionized the way we understand and manage animal populations, providing tools to identify and preserve unique genetic variants and alleles responsible for adaptive genetic variation, reducing the deleterious consequences of inbreeding, and increasing the adaptive potential of threatened species. The advancement of genomic technologies, particularly comparative genomic approaches, and the increased accessibility of genomic resources in the form of genome-enabled taxa for non-model organisms, provides a distinct advantage in defining conservation units over traditional genetics approaches. The objective of this review is to provide an exhaustive overview of the concept of conservation genomics, discuss the rationale behind the transition from conservation genetics to genomic approaches, and emphasize the potential applications of genomic techniques for conservation purposes. We also highlight interesting case studies in both livestock and wildlife species where genomic techniques have been used to accomplish conservation goals. Finally, we address some challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Supriya Chhotaray
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
8
|
Chambers EA, Bishop AP, Wang IJ. Individual-based landscape genomics for conservation: An analysis pipeline. Mol Ecol Resour 2023. [PMID: 37883295 DOI: 10.1111/1755-0998.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Landscape genomics can harness environmental and genetic data to inform conservation decisions by providing essential insights into how landscapes shape biodiversity. The massive increase in genetic data afforded by the genomic era provides exceptional resolution for answering critical conservation genetics questions. The accessibility of genomic data for non-model systems has also enabled a shift away from population-based sampling to individual-based sampling, which now provides accurate and robust estimates of genetic variation that can be used to examine the spatial structure of genomic diversity, population connectivity and the nature of environmental adaptation. Nevertheless, the adoption of individual-based sampling in conservation genetics has been slowed due, in large part, to concerns over how to apply methods developed for population-based sampling to individual-based sampling schemes. Here, we discuss the benefits of individual-based sampling for conservation and describe how landscape genomic methods, paired with individual-based sampling, can answer fundamental conservation questions. We have curated key landscape genomic methods into a user-friendly, open-source workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R (algatr). The algatr package includes novel added functionality for all of the included methods and extensive vignettes designed with the primary goal of making landscape genomic approaches more accessible and explicitly applicable to conservation biology.
Collapse
Affiliation(s)
- E Anne Chambers
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Anusha P Bishop
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Mascarenhas R, Meirelles PM, Batalha-Filho H. Urbanization drives adaptive evolution in a Neotropical bird. Curr Zool 2023; 69:607-619. [PMID: 37637315 PMCID: PMC10449428 DOI: 10.1093/cz/zoac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 08/29/2023] Open
Abstract
Urbanization has dramatic impacts on natural habitats and such changes may potentially drive local adaptation of urban populations. Behavioral change has been specifically shown to facilitate the fast adaptation of birds to changing environments, but few studies have investigated the genetic mechanisms of this process. Such investigations could provide insights into questions about both evolutionary theory and management of urban populations. In this study, we investigated whether local adaptation has occurred in urban populations of a Neotropical bird species, Coereba flaveola, specifically addressing whether observed behavioral adaptations are correlated to genetic signatures of natural selection. To answer this question, we sampled 24 individuals in urban and rural environments, and searched for selected loci through a genome-scan approach based on RADseq genomic data, generated and assembled using a reference genome for the species. We recovered 46 loci as putative selection outliers, and 30 of them were identified as associated with biological processes possibly related to urban adaptation, such as the regulation of energetic metabolism, regulation of genetic expression, and changes in the immunological system. Moreover, genes involved in the development of the nervous system showed signatures of selection, suggesting a link between behavioral and genetic adaptations. Our findings, in conjunction with similar results in previous studies, support the idea that cities provide a similar selective pressure on urban populations and that behavioral plasticity may be enhanced through genetic changes in urban populations.
Collapse
Affiliation(s)
- Rilquer Mascarenhas
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| | - Pedro Milet Meirelles
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| | - Henrique Batalha-Filho
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, Bahia, Brazil
| |
Collapse
|
10
|
Santos AS, Cazetta E, Faria D, Lima TM, Lopes MTG, Carvalho CDS, Alves‐Pereira A, Morante‐Filho JC, Gaiotto FA. Tropical forest loss and geographic location drive the functional genomic diversity of an endangered palm tree. Evol Appl 2023; 16:1257-1273. [PMID: 37492151 PMCID: PMC10363835 DOI: 10.1111/eva.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 07/27/2023] Open
Abstract
Human activity has diminished forests in different terrestrial ecosystems. This is well illustrated in the Brazilian Atlantic Forest, which still hosts high levels of species richness and endemism, even with only 28% of its original extent remaining. The consequences of such forest loss in remaining populations can be investigated with several approaches, including the genomic perspective, which allows a broader understanding of how human disturbance influences the genetic variability in natural populations. In this context, our study investigated the genomic responses of Euterpe edulis Martius, an endangered palm tree, in forest remnants located in landscapes presenting different forest cover amount and composed by distinct bird assemblage that disperse its seeds. We sampled 22 areas of the Brazilian Atlantic Forest in four regions using SNP markers inserted into transcribed regions of the genome of E. edulis, distinguishing neutral loci from those putatively under natural selection (outlier). We demonstrate that populations show patterns of structure and genetic variability that differ between regions, as a possible reflection of deforestation and biogeographic histories. Deforested landscapes still maintain high neutral genetic diversity due to gene flow over short distances. Overall, we not only support previous evidence with microsatellite markers, but also show that deforestation can influence the genetic variability outlier, in the scenario of selective pressures imposed by these stressful environments. Based on our findings, we suggest that, to protect genetic diversity in the long term, it is necessary to reforest and enrich deforested areas, using seeds from populations in the same management target region.
Collapse
Affiliation(s)
- Alesandro Souza Santos
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Eliana Cazetta
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Deborah Faria
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Thâmara Moura Lima
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia – Campus SeabraSeabraBrazil
| | | | | | | | - José Carlos Morante‐Filho
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
| | - Fernanda Amato Gaiotto
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós‐Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e GenéticaUniversidade Estadual de Santa CruzIlhéusBrazil
| |
Collapse
|
11
|
Pimentel F, McManus C, Soares K, Caetano AR, de Faria DA, Paiva SR, Ianella P. Landscape Genetics for Brazilian Equines. J Equine Vet Sci 2023; 126:104251. [PMID: 36796740 DOI: 10.1016/j.jevs.2023.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Optimization of DNA collection for National gene bank and conservation programs requires information on spatial and genetic distribution of animals countrywide. The relationship between genetic and geographic distances were examined in 8 Brazilian horse breeds (Baixadeiro, Crioulo, Campeiro, Lavradeiro, Marajoara, Mangalarga Marchador, Pantaneiro and Puruca) using Single Nucleotide Polymorphism markers and collection point locations. Mantel correlations, Genetic Landscape Shape Interpolation, Allelic Aggregation Index Analyses and Spatial autocorrelation tests indicated a nonrandom distribution of horses throughout the country. Minimum collection distances for the national Gene Bank should be 530km, with clear divisions seen in genetic structure of horse populations in both North/South and East/West directions. Comparing Pantaneiro and North/Northeastern breeds, physical distance is not necessarily the defining factor for genetic differentiation. This should be considered when sampling these local breeds. These data can help optimise GenBank collection routines and conservation strategies for these breeds.
Collapse
Affiliation(s)
| | - Concepta McManus
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasilia, Asa Norte, Brasilia, DF, Brasil.
| | - Kaifer Soares
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia, DF, Brasil
| | | | - Danielle Assis de Faria
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia, DF, Brasil
| | | | - Patrícia Ianella
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
| |
Collapse
|
12
|
Bhardwaj S, Singh S, Ganguly I, Bhatia AK, Dixit SP. Deciphering local adaptation of native Indian cattle ( Bos indicus) breeds using landscape genomics and in-silico prediction of deleterious SNP effects on protein structure and function. 3 Biotech 2023; 13:86. [PMID: 36816754 PMCID: PMC9931982 DOI: 10.1007/s13205-023-03493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
India has 50 registered breeds of native cattle (Bos indicus) which are locally adapted to diverse environmental conditions. This study aimed to investigate the genomic basis of adaptation of native Indian cattle and to predict the impact of key SNPs on the amino acid changes that affect protein function. The Illumina 777 K BovineHD BeadChip was used to genotype 178 native cattle belonging to contrasting landscapes and agro-climatic conditions. The genotype-environment association was investigated with R. SamBada, using 5,74,382 QC passed SNPs and 11 predictor variables (10 multi-collinearity controlled environmental variables and 1 variable as "score of PCA" on ancestry coefficients of individuals). In total, 1,12,780 models were selected as significant (q < 0.05) based on G score. The pathway ontology of the annotated genes revealed many important pathways and genes having a direct and indirect role in cold and hot adaptation. Only ten SNP variants had a SIFT score of < 0.05 (deleterious), and only two of them, each lying in the genes CRYBA1 and USP18, were predicted to be deleterious with high confidence. RaptorX predicted the tertiary structures of proteins encoded by wild and mutant variants of these genes. The quality of the models was determined using Ramachandran plots and RaptorX parameters, indicating that they are accurate. RaptorX and I-Mutant 2.0 softwares revealed significant differences among wild and mutant proteins. Adaptive alleles identified in the present investigation might be responsible for the local adaptation of these cattle breeds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03493-3.
Collapse
Affiliation(s)
- Shivam Bhardwaj
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, 132001 India
| | - Sanjeev Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Indrajit Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Avnish Kumar Bhatia
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - S. P. Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| |
Collapse
|
13
|
Dauphin B, Rellstab C, Wüest RO, Karger DN, Holderegger R, Gugerli F, Manel S. Re-thinking the environment in landscape genomics. Trends Ecol Evol 2023; 38:261-274. [PMID: 36402651 DOI: 10.1016/j.tree.2022.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Detecting the extrinsic selective pressures shaping genomic variation is critical for a better understanding of adaptation and for forecasting evolutionary responses of natural populations to changing environmental conditions. With increasing availability of geo-referenced environmental data, landscape genomics provides unprecedented insights into how genomic variation and underlying gene functions affect traits potentially under selection. Yet, the robustness of genotype-environment associations used in landscape genomics remains tempered due to various limitations, including the characteristics of environmental data used, sampling designs employed, and statistical frameworks applied. Here, we argue that using complementary or new environmental data sources and well-informed sampling designs may help improve the detection of selective pressures underlying patterns of local adaptation in various organisms and environments.
Collapse
Affiliation(s)
- Benjamin Dauphin
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.
| | | | - Rafael O Wüest
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Dirk N Karger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Rolf Holderegger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; Institute of Integrative Biology (IBZ), ETH, Zurich, 8092 Zurich, Switzerland
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Stéphanie Manel
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, 34000 Montpellier, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
14
|
Seascape genomics of common dolphins (Delphinus delphis) reveals adaptive diversity linked to regional and local oceanography. BMC Ecol Evol 2022; 22:88. [PMID: 35818031 PMCID: PMC9275043 DOI: 10.1186/s12862-022-02038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
High levels of standing genomic variation in wide-ranging marine species may enhance prospects for their long-term persistence. Patterns of connectivity and adaptation in such species are often thought to be influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. Population-level studies that analytically integrate genome-wide data with environmental information (i.e., seascape genomics) have the potential to inform the spatial distribution of adaptive diversity in wide-ranging marine species, such as many marine mammals. We assessed genotype-environment associations (GEAs) in 214 common dolphins (Delphinus delphis) along > 3000 km of the southern coast of Australia.
Results
We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally-adapted populations with high levels of standing genomic variation were disclosed along environmentally heterogeneous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental variables associated with genomic variation. These environmental variables are in turn related to three main oceanographic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circulation, (2) localised and seasonal upwellings, and (3) seasonal on-shelf circulation in protected coastal habitats. Signals of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits.
Conclusion
To the best of our knowledge, this represents the first seascape genomics study for common dolphins (genus Delphinus). Information from the associations between populations and their environment can assist population management in forecasting the adaptive capacity of common dolphins to climate change and other anthropogenic impacts.
Collapse
|
15
|
Egan LM, Stiller WN. The Past, Present, and Future of Host Plant Resistance in Cotton: An Australian Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:895877. [PMID: 35873986 PMCID: PMC9297922 DOI: 10.3389/fpls.2022.895877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 05/24/2023]
Abstract
Cotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program. The program has seen success in releasing cultivars resistant to Bacterial blight, Verticillium wilt, Fusarium wilt, and Cotton bunchy top. However, emerging biotic threats such as Black root rot and secondary pests, are becoming more frequent in Australian cotton production systems. The uptake of tools and breeding methods, such as genomic selection, high throughput phenomics, gene editing, and landscape genomics, paired with the continued utilization of sources of resistance from Gossypium germplasm, will be critical for the future of cotton breeding. This review celebrates the success of HPR breeding activities in the CSIRO cotton breeding program and maps a pathway for the future in developing resistant cultivars.
Collapse
|
16
|
Liu K, Qi M, Du FK. Population and Landscape Genetics Provide Insights Into Species Conservation of Two Evergreen Oaks in Qinghai-Tibet Plateau and Adjacent Regions. FRONTIERS IN PLANT SCIENCE 2022; 13:858526. [PMID: 35665182 PMCID: PMC9161217 DOI: 10.3389/fpls.2022.858526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The combination of population and landscape genetics can facilitate the understanding of conservation strategy under the changing climate. Here, we focused on the two most diverse and ecologically important evergreen oaks: Quercus aquifolioides and Quercus spinosa in Qinghai-Tibetan Plateau (QTP), which is considered as world's biodiversity hotspot. We genotyped 1,657 individuals of 106 populations at 15 nuclear microsatellite loci throughout the species distribution range. Spatial patterns of genetic diversity were identified by mapping the allelic richness (AR) and locally common alleles (LCA) according to the circular neighborhood methodology. Migration routes from QTP were detected by historical gene flow estimation. The response pattern of genetic variation to environmental gradient was assessed by the genotype-environment association (GEA) analysis. The overall genetic structure showed a high level of intra-species genetic divergence of a strong west-east pattern. The West-to-East migration route indicated the complex demographic history of two oak species. We found evidence of isolation by the environment in Q. aqu-East and Q. spi-West lineage but not in Q. aqu-West and Q. spi-East lineage. Furthermore, priority for conservation should be given to populations that retain higher spatial genetic diversity or isolated at the edge of the distribution range. Our findings indicate that knowledge of spatial diversity and migration route can provide valuable information for the conservation of existing populations. This study provides an important guide for species conservation for two oak species by the integration of population and landscape genetic methods.
Collapse
Affiliation(s)
| | | | - Fang K. Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
17
|
Eckert S, Herden J, Stift M, Durka W, van Kleunen M, Joshi J. Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.856453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological invasions may result from multiple introductions, which might compensate for reduced gene pools caused by bottleneck events, but could also dilute adaptive processes. A previous common-garden experiment showed heritable latitudinal clines in fitness-related traits in the invasive goldenrod Solidago canadensis in Central Europe. These latitudinal clines remained stable even in plants chemically treated with zebularine to reduce epigenetic variation. However, despite the heritability of traits investigated, genetic isolation-by-distance was non-significant. Utilizing the same specimens, we applied a molecular analysis of (epi)genetic differentiation with standard and methylation-sensitive (MSAP) AFLPs. We tested whether this variation was spatially structured among populations and whether zebularine had altered epigenetic variation. Additionally, we used genome scans to mine for putative outlier loci susceptible to selection processes in the invaded range. Despite the absence of isolation-by-distance, we found spatial genetic neighborhoods among populations and two AFLP clusters differentiating northern and southern Solidago populations. Genetic and epigenetic diversity were significantly correlated, but not linked to phenotypic variation. Hence, no spatial epigenetic patterns were detected along the latitudinal gradient sampled. Applying genome-scan approaches (BAYESCAN, BAYESCENV, RDA, and LFMM), we found 51 genetic and epigenetic loci putatively responding to selection. One of these genetic loci was significantly more frequent in populations at the northern range. Also, one epigenetic locus was more frequent in populations in the southern range, but this pattern was lost under zebularine treatment. Our results point to some genetic, but not epigenetic adaptation processes along a large-scale latitudinal gradient of S. canadensis in its invasive range.
Collapse
|
18
|
Cheek RG, Forester BR, Salerno PE, Trumbo DR, Chen N, Sillett TS, Morrison SA, Ghalambor CK, Funk WC. Habitat-linked genetic variation supports microgeographic adaptive divergence in an island-endemic bird species. Mol Ecol 2022; 31:2830-2846. [PMID: 35315161 PMCID: PMC9325526 DOI: 10.1111/mec.16438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
We investigated the potential mechanisms driving habitat-linked genetic divergence within a bird species endemic to a single 250 km2 island. The island scrub-jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine-oak ecotones on Santa Cruz Island, California (USA) similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3,000 single nucleotide polymorphisms (SNPs) in 123 adult island scrub-jay males from across Santa Cruz Island using restriction site-associated DNA sequencing (RADseq). Neutral landscape genomic analyses revealed that genome-wide genetic differentiation was primarily related to geographic distance and differences in habitat composition. We also found 168 putatively adaptive loci associated with habitat type using multivariate redundancy analysis (RDA) while controlling for spatial effects. Finally, two genome-wide association analyses revealed a polygenic basis to variation in bill length with multiple loci detected in or near genes known to affect bill morphology in other birds. Our findings support the hypothesis that divergent selection at microgeographic scales can cause adaptive divergence in the presence of ongoing gene flow.
Collapse
Affiliation(s)
- Rebecca G Cheek
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Brenna R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Patricia E Salerno
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Daryl R Trumbo
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20013, USA
| | | | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
19
|
|
20
|
de Aquino SO, Kiwuka C, Tournebize R, Gain C, Marraccini P, Mariac C, Bethune K, Couderc M, Cubry P, Andrade AC, Lepelley M, Darracq O, Crouzillat D, Anten N, Musoli P, Vigouroux Y, de Kochko A, Manel S, François O, Poncet V. Adaptive potential of
Coffea canephora
from Uganda in response to climate change. Mol Ecol 2022; 31:1800-1819. [DOI: 10.1111/mec.16360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Catherine Kiwuka
- NARO Kampala Uganda
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | - Clément Gain
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | | - Cédric Mariac
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Kévin Bethune
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Marie Couderc
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | | | | | | | | | | | - Niels Anten
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | | | | | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE‐PSL University, IRD Montpellier France
| | - Olivier François
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | |
Collapse
|
21
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
22
|
Byer NW, Fountain ED, Reid BN, Miller K, Kulzer PJ, Peery MZ. Land use and life history constrain adaptive genetic variation and reduce the capacity for climate change adaptation in turtles. BMC Genomics 2021; 22:837. [PMID: 34794393 PMCID: PMC8603537 DOI: 10.1186/s12864-021-08151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid anthropogenic climate change will require species to adapt to shifting environmental conditions, with successful adaptation dependent upon current patterns of genetic variation. While landscape genomic approaches allow for exploration of local adaptation in non-model systems, most landscape genomics studies of adaptive capacity are limited to exploratory identification of potentially important functional genes, often without a priori expectations as to the gene functions that may be most important for climate change responses. In this study, we integrated targeted sequencing of genes of known function and genotyping of single-nucleotide polymorphisms to examine spatial, environmental, and species-specific patterns of potential local adaptation in two co-occuring turtle species: the Blanding's turtle (Emydoidea blandingii) and the snapping turtle (Chelydra serpentina). RESULTS We documented divergent patterns of spatial clustering between neutral and putatively adaptive genetic variation in both species. Environmental associations varied among gene regions and between species, with stronger environmental associations detected for genes involved in stress response and for the more specialized Blanding's turtle. Land cover appeared to be more important than climate in shaping spatial variation in functional genes, indicating that human landscape alterations may affect adaptive capacity important for climate change responses. CONCLUSIONS Our study provides evidence that responses to climate change will be contingent on species-specific adaptive capacity and past history of exposure to human land cover change.
Collapse
Affiliation(s)
| | | | - Brendan N Reid
- W.K. Kellogg Biological Station, Michigan State University, MI, 49060, Hickory Corners, USA
| | - Kristen Miller
- University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Paige J Kulzer
- University of Wisconsin-Madison, 53706, Madison, WI, USA
| | | |
Collapse
|
23
|
Boulanger E, Benestan L, Guerin PE, Dalongeville A, Mouillot D, Manel S. Climate differently influences the genomic patterns of two sympatric marine fish species. J Anim Ecol 2021; 91:1180-1195. [PMID: 34716929 DOI: 10.1111/1365-2656.13623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Climate influences population genetic variation in marine species. Capturing these impacts remains challenging for marine fishes which disperse over large geographical scales spanning steep environmental gradients. It requires the extensive spatial sampling of individuals or populations, representative of seascape heterogeneity, combined with a set of highly informative molecular markers capable of revealing climatic-associated genetic variations. We explored how space, dispersal and environment shape the genomic patterns of two sympatric fish species in the Mediterranean Sea, which ranks among the oceanic basins most affected by climate change and human pressure. We hypothesized that the population structure and climate-associated genomic signatures of selection would be stronger in the less mobile species, as restricted gene flow tends to facilitate the fixation of locally adapted alleles. To test our hypothesis, we genotyped two species with contrasting dispersal abilities: the white seabream Diplodus sargus and the striped red mullet Mullus surmuletus. We collected 823 individuals and used genotyping by sequencing (GBS) to detect 8,206 single nucleotide polymorphisms (SNPs) for the seabream and 2,794 for the mullet. For each species, we identified highly differentiated genomic regions (i.e. outliers) and disentangled the relative contribution of space, dispersal and environmental variables (climate, marine primary productivity) on the outliers' genetic structure to test the prevalence of gene flow and local adaptation. We observed contrasting patterns of gene flow and adaptive genetic variation between the two species. The seabream showed a distinct Alboran sea population and panmixia across the Mediterranean Sea. The mullet revealed additional differentiation within the Mediterranean Sea that was significantly correlated to summer and winter temperatures, as well as marine primary productivity. Functional annotation of the climate-associated outlier SNPs then identified candidate genes involved in heat tolerance that could be examined to further predict species' responses to climate change. Our results illustrate the key steps of a comparative seascape genomics study aiming to unravel the evolutionary processes at play in marine species, to better anticipate their response to climate change. Defining population adaptation capacities and environmental niches can then serve to incorporate evolutionary processes into species conservation planning.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Benestan
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre-Edouard Guerin
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
24
|
Capblancq T, Forester BR. Redundancy analysis: A Swiss Army Knife for landscape genomics. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Fuentes G, González F, Saavedra J, López-Sepúlveda P, Victoriano PF, Stuessy TF, Ruiz-Ponce E. Assessing signals of selection and historical demography to develop conservation strategies in the Chilean emblematic Araucaria araucana. Sci Rep 2021; 11:20504. [PMID: 34654850 PMCID: PMC8521589 DOI: 10.1038/s41598-021-98662-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of genetic diversity reduces the ability of species to evolve and respond to environmental change. Araucaria araucana is an emblematic conifer species from southern South America, with important ethnic value for the Mapuche people (Pehuenche); the Chilean Government has catalogued its conservation status as vulnerable. Climatic fluctuations were potentially a major impact in the genetic variation within many tree species. In this context, the restricted geographic distribution of A. araucana in Chile appears to be a consequence of the Last Glacial Maximum (LGM). During the past two centuries, strong human intervention has also affected the geographical distribution and population sizes of A. araucana. Reduction of population size may cause loss of genetic diversity, which could affect frequency of adaptive loci. The aims of this study were to know the existence of potential loci under selection and populations with genetic, demographic disequilibrium in the Chilean distribution of A. araucana. Based on 268 polymorphic AFLP loci, we have investigated potential loci under selection and genetic, demographic disequilibrium within seven Chilean populations of Araucaria araucana. Correlation of 41 outlier loci with the environmental variables of precipitation and temperature reveals signatures of selection, whereas 227 neutral loci provide estimates of demographic equilibrium and genetic population structure. Three populations are recommended as priorities for conservation.
Collapse
Affiliation(s)
- Glenda Fuentes
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Fidelina González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Javier Saavedra
- Departamento de Agronomia, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, Brasil
| | - Patricio López-Sepúlveda
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Pedro F Victoriano
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Tod F Stuessy
- Herbarium and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA.,Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - Eduardo Ruiz-Ponce
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
26
|
Hellwig T, Abbo S, Sherman A, Ophir R. Prospects for the natural distribution of crop wild-relatives with limited adaptability: The case of the wild pea Pisum fulvum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110957. [PMID: 34315583 DOI: 10.1016/j.plantsci.2021.110957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Plant breeders and conservationist depend on knowledge about the genetic variation of their species of interest. Pisum fulvum, a wild relative of domesticated pea, has attracted attention as a genetic resource for crop improvement, yet little information about its diversity in the wild has been published hitherto. We sampled 15 populations of P. fulvum from Israeli natural habitats and conducted genotyping by sequencing to analyse their genetic diversity and adaptive state. We also attempted to evaluate the species past demography and the prospects of its future reaction to environmental changes. The results suggest that genetic diversity of P. fulvum is low to medium and is distributed between well diverged populations. Surprisingly, with 56 % in the total population the selfing rate was found to be significantly lower than expected from a species that is commonly assumed to be a predominant selfer. We found a strong genetic bottleneck during the last glacial period and only limited patterns of isolation by distance and environment, which explained 13 %-18 % of the genetic variation. Despite the weak signatures of genome-wide IBE, 1,354 markers were significantly correlated with environmental factors, 1,233 of which were located within known genes with a nonsynonymous to synonymous ratio of 0.382. Species distribution modelling depicted an ongoing fragmentation and decreased habitable area over the next 80 years under two different socio-economic pathways. Our results suggest that complex interactions of substantial drift and selection shaped the genome of P. fulvum. Climate changeis likely to cause further erosion of genetic diversity in P. fulvum. Systematic ex-situ conservation may be advisable to safeguard genetic variability for future utilization of this species.
Collapse
Affiliation(s)
- Timo Hellwig
- R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot, 761001, Israel; Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Shahal Abbo
- R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot, 761001, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Ron Ophir
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, P.O.B 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
27
|
Byer NW, Holding ML, Crowell MM, Pierson TW, Dilts TE, Larrucea ES, Shoemaker KT, Matocq MD. Adaptive divergence despite low effective population size in a peripherally isolated population of the pygmy rabbit, Brachylagus idahoensis. Mol Ecol 2021; 30:4173-4188. [PMID: 34166550 DOI: 10.1111/mec.16040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Local adaptation can occur when spatially separated populations are subjected to contrasting environmental conditions. Historically, understanding the genetic basis of adaptation has been difficult, but increased availability of genome-wide markers facilitates studies of local adaptation in non-model organisms of conservation concern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies on sagebrush for forage and cover. This reliance has led to widespread population declines following reductions in the distribution of sagebrush, leading to geographic separation between populations. In this study, we used >20,000 single nucleotide polymorphisms, genotype-environment association methods, and demographic modeling to examine neutral genetic variation and local adaptation in the pygmy rabbit in Nevada and California. We identified 308 loci as outliers, many of which had functional annotations related to metabolism of plant secondary compounds. Likewise, patterns of spatial variation in outlier loci were correlated with landscape and climatic variables including proximity to streams, sagebrush cover, and precipitation. We found that populations in the Mono Basin of California probably diverged from other Great Basin populations during late Pleistocene climate oscillations, and that this region is adaptively differentiated from other regions in the southern Great Basin despite limited gene flow and low effective population size. Our results demonstrate that peripherally isolated populations can maintain adaptive divergence.
Collapse
Affiliation(s)
- Nathan W Byer
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Matthew L Holding
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Miranda M Crowell
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Todd W Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Thomas E Dilts
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | | | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
28
|
Garot E, Dussert S, Domergue F, Jo�t T, Fock-Bastide I, Combes MC, Lashermes P. Multi-Approach Analysis Reveals Local Adaptation in a Widespread Forest Tree of Reunion Island. PLANT & CELL PHYSIOLOGY 2021; 62:280-292. [PMID: 33377945 PMCID: PMC8112841 DOI: 10.1093/pcp/pcaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/04/2020] [Indexed: 05/15/2023]
Abstract
Detecting processes of local adaptation in forest trees and identifying environmental selective drivers are of primary importance for forest management and conservation. Transplant experiments, functional genomics and population genomics are complementary tools to efficiently characterize heritable phenotypic traits and to decipher the genetic bases of adaptive traits. Using an integrative approach combining phenotypic assessment in common garden, transcriptomics and landscape genomics, we investigated leaf adaptive traits in Coffea mauritiana, a forest tree endemic to Reunion Island. Eight populations of C. mauritiana originating from sites with contrasted environmental conditions were sampled in common garden to assess several leaf morphological traits, to analyze the leaf transcriptome and leaf cuticular wax composition. The relative alkane content of cuticular waxes was significantly correlated with major climatic gradients, paving the way for further transcriptome-based analyses. The expression pattern of cuticle biosynthetic genes was consistent with a modulation of alkane accumulation across the population studied, supporting the hypothesis that the composition of cuticular wax is involved in the local adaptation of C. mauritiana. Association tests in landscape genomics performed using RNA-seq-derived single-nucleotide polymorphisms revealed that genes associated with cell wall remodeling also likely play an adaptive role. By combining these different approaches, this study efficiently identified local adaptation processes in a non-model species. Our results provide the first evidence for local adaptation in trees endemic to Reunion Island and highlight the importance of cuticle composition for the adaptation of trees to the high evaporative demand in warm climates.
Collapse
Affiliation(s)
- Edith Garot
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
- Universit� de La R�union, UMR PVBMT, La R�union, Saint-Pierre 97410, France
| | - Stephane Dussert
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
| | | | - Thierry Jo�t
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
| | | | | | - Philippe Lashermes
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
- Corresponding author: E-mail, ; Fax, +33 4 67 41 61 81
| |
Collapse
|
29
|
Koshelev OI, Gensytskyi MV, Koshelev VO, Yorkina NV, Kunakh OM. Anthropogenic load іs a leading factor in the morphological variability of Chondrula tridens (Gastropoda, Enidae) in the northwestern Azov Sea region. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphometric data are widely used in biology to assess intraspecific and inter-population variability and for bioindication and environmental condition assessment. The following hypotheses have been experimentally tested in the paper: 1) the vegetation type affects the change in the shell shape of Chondrula tridens martynovi Gural-Sverlova & Gural, 2010; 2) the change in the shell shape of this species is influenced by the biotope moisture regime; 3) the shell shape changes depending on the anthropogenic load level. The material in the form of empty, fully formed Ch. tridens shells was collected in 2019 in the north-western Azov region within the basin of the Molochna River. The collection points were located in settlements and outside them and differed in vegetation, moisture regime and level of anthropogenic load. The vegetation has been expertly attributed to two alternative types: herbaceous vegetation and tree plantations. By moisture level, the locations have been assessed as xerophytic and mesoxerophytic. The anthropogenic load levels have been assessed as low, medium and high. The study revealed that the morphological characteristics of Ch. tridens demonstrate a significant component of variability, which is due to the shell size. The shell size depends on the anthropogenic impact level. Under conditions of high anthropogenic impact, the shell size increases. Mollusks from locations with low and medium anthropogenic impact levels did not differ in shell size. After extraction of the size component, morphological properties develop three main trends of variability. The mouth apparatus development of mollusks does not depend on the vegetation type, but depends on the biotope moisture level and the anthropogenic transformation level. The mollusk shell elongation was observed to have the opposite dynamics of the height parameters in relation to the width and depended on the level of anthropogenic load. Rearrangement in the mouth apparatus depended on the biotope moisture level and the anthropogenic load level. There were distinguished four clusters, the quantitative morphological features of which allowed us to identify them as morphotypes. Each location was characterized by a combination of different morphotypes, according to which the sampling points may be classified. Morphotype 1 corresponds to biotopes with low level of anthropogenic load, morphotype 4 corresponded to biotopes with high anthropogenic load. Morphotypes 2 and 3 corresponded to moderate level of anthropogenic load. Vegetation type is not an important factor in determining the morphotypic diversity of populations. Under xerophytic conditions, morphotypes 2 and 3 are more common, and under mesoxerophytic conditions, morphotypes 1 and 4 are more common. The range of molluscs in different habitats needs to be expanded in the future to clarify climatic and other patterns.
Collapse
|
30
|
Gousy-Leblanc M, Yannic G, Therrien JF, Lecomte N. Mapping our knowledge on birds of prey population genetics. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01368-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Ogbonna AC, Braatz de Andrade LR, Mueller LA, de Oliveira EJ, Bauchet GJ. Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1343-1362. [PMID: 33575821 PMCID: PMC8081687 DOI: 10.1007/s00122-021-03775-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Brazilian cassava diversity was characterized through population genetics and clustering approaches, highlighting contrasted genetic groups and spatial genetic differentiation. Cassava (Manihot esculenta Crantz) is a major staple root crop of the tropics, originating from the Amazonian region. In this study, 3354 cassava landraces and modern breeding lines from the Embrapa Cassava Germplasm Bank (CGB) were characterized. All individuals were subjected to genotyping-by-sequencing (GBS), identifying 27,045 single-nucleotide polymorphisms (SNPs). Identity-by-state and population structure analyses revealed a unique set of 1536 individuals and 10 distinct genetic groups with heterogeneous linkage disequilibrium (LD). On this basis, a density of 1300-4700 SNP markers were selected for large-effect quantitative trait loci (QTL) detection. Identified genetic groups were further characterized for population genetics parameters including minor allele frequency (MAF), observed heterozygosity [Formula: see text], effective population size estimate [Formula: see text]) and polymorphism information content (PIC). Selection footprints and introgressions of M. glaziovii were detected. Spatial population structure analysis revealed five ancestral populations related to distinct Brazilian ecoregions. Estimation of historical relationships among identified populations suggests an early population split from Amazonian to Atlantic forest and Caatinga ecoregions and active gene flows. This study provides a thorough genetic characterization of ex situ germplasm resources from cassava's center of origin, South America, with results shedding light on Brazilian cassava characteristics and its biogeographical landscape. These findings support and facilitate the use of genetic resources in modern breeding programs including implementation of association mapping and genomic selection strategies.
Collapse
Affiliation(s)
- Alex C Ogbonna
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | - Lukas A Mueller
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | | |
Collapse
|
32
|
Ogbonna AC, Braatz de Andrade LR, Mueller LA, de Oliveira EJ, Bauchet GJ. Comprehensive genotyping of a Brazilian cassava (Manihot esculenta Crantz) germplasm bank: insights into diversification and domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1343-1362. [PMID: 33575821 DOI: 10.1101/2020.07.13.200816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 05/25/2023]
Abstract
Brazilian cassava diversity was characterized through population genetics and clustering approaches, highlighting contrasted genetic groups and spatial genetic differentiation. Cassava (Manihot esculenta Crantz) is a major staple root crop of the tropics, originating from the Amazonian region. In this study, 3354 cassava landraces and modern breeding lines from the Embrapa Cassava Germplasm Bank (CGB) were characterized. All individuals were subjected to genotyping-by-sequencing (GBS), identifying 27,045 single-nucleotide polymorphisms (SNPs). Identity-by-state and population structure analyses revealed a unique set of 1536 individuals and 10 distinct genetic groups with heterogeneous linkage disequilibrium (LD). On this basis, a density of 1300-4700 SNP markers were selected for large-effect quantitative trait loci (QTL) detection. Identified genetic groups were further characterized for population genetics parameters including minor allele frequency (MAF), observed heterozygosity [Formula: see text], effective population size estimate [Formula: see text]) and polymorphism information content (PIC). Selection footprints and introgressions of M. glaziovii were detected. Spatial population structure analysis revealed five ancestral populations related to distinct Brazilian ecoregions. Estimation of historical relationships among identified populations suggests an early population split from Amazonian to Atlantic forest and Caatinga ecoregions and active gene flows. This study provides a thorough genetic characterization of ex situ germplasm resources from cassava's center of origin, South America, with results shedding light on Brazilian cassava characteristics and its biogeographical landscape. These findings support and facilitate the use of genetic resources in modern breeding programs including implementation of association mapping and genomic selection strategies.
Collapse
Affiliation(s)
- Alex C Ogbonna
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | - Lukas A Mueller
- Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | | | | |
Collapse
|
33
|
Hein C, Abdel Moniem HE, Wagner HH. Can We Compare Effect Size of Spatial Genetic Structure Between Studies and Species Using Moran Eigenvector Maps? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.612718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the field of landscape genetics is progressing toward comparative empirical studies and meta-analysis, it is important to know how best to compare the strength of spatial genetic structure between studies and species. Moran’s Eigenvector Maps are a promising method that does not make an assumption of isolation-by-distance in a homogeneous environment but can discern cryptic structure that may result from multiple processes operating in heterogeneous landscapes. MEMgene uses spatial filters from Moran’s Eigenvector Maps as predictor variables to explain variation in a genetic distance matrix, and it returns adjusted R2 as a measure of the amount of genetic variation that is spatially structured. However, it is unclear whether, and under which conditions, this value can be used to compare the degree of spatial genetic structure (effect size) between studies. This study addresses the fundamental question of comparability at two levels: between independent studies (meta-analysis mode) and between species sampled at the same locations (comparative mode). We used published datasets containing 9,900 haploid, biallelic, neutral loci simulated on a quasi-continuous, square landscape under four demographic scenarios (island model, isolation-by-distance, expansion from one or two refugia). We varied the genetic resolution (number of individuals and loci) and the number of random sampling locations. We considered two measures of effect size, the MEMgene adjusted R2 and multivariate Moran’s I, which is related to Moran’s Eigenvector Maps. Both metrics were highly sensitive to the number of locations, even when using standardized effect sizes, SES, and the number of individuals sampled per location, but not to the number of loci. In comparative mode, using the same Moran Eigenvector Maps for all species, even those with missing values at some sampling locations, reduced bias due to the number of locations under isolation-by-distance (stationary process) but increased it under expansion from one or two refugia (non-stationary process). More robust measures of effect size need to be developed before the strength of spatial genetic structure can be accurately compared, either in a meta-analysis of independent empirical studies or within a comparative, multispecies landscape genetic study.
Collapse
|
34
|
McManus C, Paiva SR, Caetano AR, Hermuche P, Guimarães RF, Carvalho Jr OA, Braga R, Souza Carneiro PL, Ferrugem-Moraes J, De Souza CJH, Faco O, Santos SA, Azevedo HC, De Araujo AM, Façanha DAE, Ianella P. Landscape genetics of sheep in Brazil using SNP markers. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Zheng C, Tan L, Sang M, Ye M, Wu R. Genetic adaptation of Tibetan poplar ( Populus szechuanica var. tibetica) to high altitudes on the Qinghai-Tibetan Plateau. Ecol Evol 2020; 10:10974-10985. [PMID: 33144942 PMCID: PMC7593140 DOI: 10.1002/ece3.6508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Plant adaptation to high altitudes has long been a substantial focus of ecological and evolutionary research. However, the genetic mechanisms underlying such adaptation remain poorly understood. Here, we address this issue by sampling, genotyping, and comparing populations of Tibetan poplar, Populus szechuanica var. tibetica, distributed from low (~2,000 m) to high altitudes (~3,000 m) of Sejila Mountain on the Qinghai-Tibet Plateau. Population structure analyses allow clear classification of two groups according to their altitudinal distributions. However, in contrast to the genetic variation within each population, differences between the two populations only explain a small portion of the total genetic variation (3.64%). We identified asymmetrical gene flow from high- to low-altitude populations. Integrating population genomic and landscape genomic analyses, we detected two hotspot regions, one containing four genes associated with altitudinal variation, and the other containing ten genes associated with response to solar radiation. These genes participate in abiotic stress resistance and regulation of reproductive processes. Our results provide insight into the genetic mechanisms underlying high-altitude adaptation in Tibetan poplar.
Collapse
Affiliation(s)
- Chenfei Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCenter for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Lizhi Tan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCenter for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mengmeng Sang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCenter for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Meixia Ye
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCenter for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Rongling Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCenter for Computational BiologyCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Center for Statistical GeneticsPennsylvania State UniversityHersheyPAUSA
| |
Collapse
|
36
|
Dalui S, Khatri H, Singh SK, Basu S, Ghosh A, Mukherjee T, Sharma LK, Singh R, Chandra K, Thakur M. Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (Ailurus fulgens) in Kangchenjunga landscape, India. Sci Rep 2020; 10:15446. [PMID: 32963325 PMCID: PMC7508845 DOI: 10.1038/s41598-020-72427-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Wildlife management in rapid changing landscapes requires critical planning through cross cutting networks, and understanding of landscape features, often affected by the anthropogenic activities. The present study demonstrates fine-scale spatial patterns of genetic variation and contemporary gene flow of red panda (Ailurus fulgens) populations with respect to landscape connectivity in Kangchenjunga Landscape (KL), India. The study found about 1,309.54 km2 area suitable for red panda in KL-India, of which 62.21% area fell under the Protected Area network. We identified 24 unique individuals from 234 feces collected at nine microsatellite loci. The spatially explicit and non-explicit Bayesian clustering algorithms evident to exhibit population structuring and supported red panda populations to exist in meta-population frame work. In concurrence to the habitat suitability and landscape connectivity models, gene flow results supported a contemporary asymmetric movement of red panda by connecting KL-India in a crescent arc. We demonstrate the structural-operational connectivity of corridors in KL-India that facilitated red panda movement in the past. We also seek for cooperation in Nepal, Bhutan and China to aid in preparing for a comprehensive monitoring plan for the long-term conservation and management of red panda in trans-boundary landscapes.
Collapse
Affiliation(s)
- Supriyo Dalui
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Hiren Khatri
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
- Amity Institute of Forestry and Wildlife, Amity University Campus, Sector-125, Noida, UP, 201303, India
| | - Sujeet Kumar Singh
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
| | - Shambadeb Basu
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
| | - Avijit Ghosh
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Tanoy Mukherjee
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Lalit Kumar Sharma
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
| | - Randeep Singh
- Amity Institute of Forestry and Wildlife, Amity University Campus, Sector-125, Noida, UP, 201303, India
| | - Kailash Chandra
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
37
|
Fraik AK, Margres MJ, Epstein B, Barbosa S, Jones M, Hendricks S, Schönfeld B, Stahlke AR, Veillet A, Hamede R, McCallum H, Lopez-Contreras E, Kallinen SJ, Hohenlohe PA, Kelley JL, Storfer A. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 2020; 74:1392-1408. [PMID: 32445281 DOI: 10.1111/evo.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.
Collapse
Affiliation(s)
- Alexandra K Fraik
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164.,Plant Biology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Soraia Barbosa
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Menna Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Sarah Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Barbara Schönfeld
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Anne Veillet
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Hamish McCallum
- School of Environment, Griffith University Nathan, Nathan, QLD, 4111, Australia
| | - Elisa Lopez-Contreras
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Samantha J Kallinen
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
38
|
Taranto F, D'Agostino N, Rodriguez M, Pavan S, Minervini AP, Pecchioni N, Papa R, De Vita P. Whole Genome Scan Reveals Molecular Signatures of Divergence and Selection Related to Important Traits in Durum Wheat Germplasm. Front Genet 2020; 11:217. [PMID: 32373150 PMCID: PMC7187681 DOI: 10.3389/fgene.2020.00217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/24/2020] [Indexed: 01/31/2023] Open
Abstract
The first breeding program in the world for durum wheat was conceived in Italy in the early 1900s. Over the decades, pressure exerted by natural and artificial selection could have progressively reduced the genetic diversity of the durum wheat germplasm. In the present study, a large panel of Italian durum wheat accessions that includes landraces, old and modern cultivars was subjected to genotyping using the Illumina iSelect 15K wheat SNP array. The aim was to assess the impact that selection has in shaping Italian durum wheat genetic diversity and to exploit the patterns of genetic diversity between populations to identify molecular signatures of divergence and selection. Relatively small differences in genetic diversity have been observed among accessions, which have been selected and cultivated in Italy over the past 150 years. Indeed, directional selection combined with that operated by farmers/breeders resulted in the increase of linkage disequilibrium (LD) and in changes of the allelic frequencies in DNA regions that control important agronomic traits. Results from this study also show that major well-known genes and/or QTLs affecting plant height (RHT), earliness (VRN, PPD) and grain quality (GLU, PSY, PSD, LYC, PPO, LOX3) co-localized with outlier SNP loci. Interestingly, many of these SNPs fall in genomic regions where genes involved in nitrogen metabolism are. This finding highlights the key role these genes have played in the transition from landraces to modern cultivars. Finally, our study remarks on the need to fully exploit the genetic diversity of Italian landraces by intense pre-breeding activities aimed at introducing a new source of adaptability and resistance in the genetic background of modern cultivars, to contrast the effect of climate change. The list of divergent loci and loci under selection associated with useful agronomic traits represents an invaluable resource to detect new allelic variants for target genes and for guiding new genomic selection programs in durum wheat.
Collapse
Affiliation(s)
- Francesca Taranto
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Sassari, Italy.,CBV - Interdepartmental Centre for Plant Biodiversity Conservation and Enhancement Sassari University, Alghero, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Anna P Minervini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| |
Collapse
|
39
|
Zhivotovsky LA, Osmanova GO. Ecogeographic Units and the Protection of Intraspecific Diversity. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020020144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Cortinovis G, Frascarelli G, Di Vittori V, Papa R. Current State and Perspectives in Population Genomics of the Common Bean. PLANTS (BASEL, SWITZERLAND) 2020; 9:E330. [PMID: 32150958 PMCID: PMC7154925 DOI: 10.3390/plants9030330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
* Correspondence: r [...].
Collapse
Affiliation(s)
| | | | | | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (G.C.); (G.F.); (V.D.V.)
| |
Collapse
|
41
|
Knowledge status and sampling strategies to maximize cost-benefit ratio of studies in landscape genomics of wild plants. Sci Rep 2020; 10:3706. [PMID: 32111897 PMCID: PMC7048820 DOI: 10.1038/s41598-020-60788-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/11/2020] [Indexed: 11/27/2022] Open
Abstract
To avoid local extinction due to the changes in their natural ecosystems, introduced by anthropogenic activities, species undergo local adaptation. Landscape genomics approach, through genome–environment association studies, has helped evaluate the local adaptation in natural populations. Landscape genomics, is still a developing discipline, requiring refinement of guidelines in sampling design, especially for studies conducted in the backdrop of stark socioeconomic realities of the rainforest ecologies, which are global biodiversity hotspots. In this study we aimed to devise strategies to improve the cost-benefit ratio of landscape genomics studies by surveying sampling designs and genome sequencing strategies used in existing studies. We conducted meta-analyses to evaluate the importance of sampling designs, in terms of (i) number of populations sampled, (ii) number of individuals sampled per population, (iii) total number of individuals sampled, and (iv) number of SNPs used in different studies, in discerning the molecular mechanisms underlying local adaptation of wild plant species. Using the linear mixed effects model, we demonstrated that the total number of individuals sampled and the number of SNPs used, significantly influenced the detection of loci underlying the local adaptation. Thus, based on our findings, in order to optimize the cost-benefit ratio of landscape genomics studies, we suggest focusing on increasing the total number of individuals sampled and using a targeted (e.g. sequencing capture) Pool-Seq approach and/or a random (e.g. RAD-Seq) Pool-Seq approach to detect SNPs and identify SNPs under selection for a given environmental cline. We also found that the existing molecular evidences are inadequate in predicting the local adaptations to climate change in tropical forest ecosystems.
Collapse
|
42
|
Fenderson LE, Kovach AI, Llamas B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol Ecol 2019; 29:218-246. [DOI: 10.1111/mec.15315] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/22/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lindsey E. Fenderson
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Adrienne I. Kovach
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Bastien Llamas
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
43
|
Selmoni O, Vajana E, Guillaume A, Rochat E, Joost S. Sampling strategy optimization to increase statistical power in landscape genomics: A simulation-based approach. Mol Ecol Resour 2019; 20:154-169. [PMID: 31550072 PMCID: PMC6972490 DOI: 10.1111/1755-0998.13095] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
An increasing number of studies are using landscape genomics to investigate local adaptation in wild and domestic populations. Implementation of this approach requires the sampling phase to consider the complexity of environmental settings and the burden of logistical constraints. These important aspects are often underestimated in the literature dedicated to sampling strategies. In this study, we computed simulated genomic data sets to run against actual environmental data in order to trial landscape genomics experiments under distinct sampling strategies. These strategies differed by design approach (to enhance environmental and/or geographical representativeness at study sites), number of sampling locations and sample sizes. We then evaluated how these elements affected statistical performances (power and false discoveries) under two antithetical demographic scenarios. Our results highlight the importance of selecting an appropriate sample size, which should be modified based on the demographic characteristics of the studied population. For species with limited dispersal, sample sizes above 200 units are generally sufficient to detect most adaptive signals, while in random mating populations this threshold should be increased to 400 units. Furthermore, we describe a design approach that maximizes both environmental and geographical representativeness of sampling sites and show how it systematically outperforms random or regular sampling schemes. Finally, we show that although having more sampling locations (between 40 and 50 sites) increase statistical power and reduce false discovery rate, similar results can be achieved with a moderate number of sites (20 sites). Overall, this study provides valuable guidelines for optimizing sampling strategies for landscape genomics experiments.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elia Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Annie Guillaume
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
44
|
Bourgeois Y, Boissinot S. Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer. Mol Ecol 2019; 28:3523-3543. [PMID: 31233650 DOI: 10.1111/mec.15162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
What makes a species able to colonize novel environments? This question is key to understand the dynamics of adaptive radiations and ecological niche shifts, but the mechanisms that underlie expansion into novel habitats remain poorly understood at a genomic scale. Lizards from the genus Anolis are typically tropical, and the green anole (Anolis carolinensis) constitutes an exception since it expanded into temperate North America from subtropical Florida. Thus, we used the green anole as a model to investigate signatures of selection associated with colonization of a new environment, namely temperate North America. To this end, we analysed 29 whole-genome sequences, covering the entire native range of the species. We used a combination of recent methods to quantify both positive and balancing selection in northern populations, including FST outlier methods, machine learning and ancestral recombination graphs. We naively scanned for genes of interest and assessed the overlap between multiple tests. Strikingly, we identified many genes involved in behaviour, suggesting that the recent successful colonization of northern environments may have been linked to behavioural shifts as well as physiological adaptation. Using a candidate genes strategy, we determined that genes involved in response to cold or behaviour displayed more frequently signals of selection, while controlling for local recombination rate, gene clustering and gene length. In addition, we found signatures of balancing selection at immune genes in all investigated genetic groups, but also at genes involved in neuronal and anatomical development.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
45
|
DeSaix MG, Bulluck LP, Eckert AJ, Viverette CB, Boves TJ, Reese JA, Tonra CM, Dyer RJ. Population assignment reveals low migratory connectivity in a weakly structured songbird. Mol Ecol 2019; 28:2122-2135. [DOI: 10.1111/mec.15083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Matthew G. DeSaix
- Center for Environmental Studies Virginia Commonwealth University Richmond Virginia
| | - Lesley P. Bulluck
- Center for Environmental Studies Virginia Commonwealth University Richmond Virginia
- Department of Biology Virginia Commonwealth University Richmond Virginia
| | - Andrew J. Eckert
- Department of Biology Virginia Commonwealth University Richmond Virginia
| | | | - Than J. Boves
- Arkansas Department of Biological Sciences Arkansas State University Jonesboro Arkansas
| | - Jessica A. Reese
- Department of Biology Virginia Commonwealth University Richmond Virginia
| | - Christopher M. Tonra
- School of Environmental and Natural Resources The Ohio State University Columbus Ohio
| | - Rodney J. Dyer
- Center for Environmental Studies Virginia Commonwealth University Richmond Virginia
| |
Collapse
|
46
|
Bradbury D, Binks RM, Coates DJ, Byrne M. Conservation genomics of range disjunction in a global biodiversity hotspot: a case study of Banksia biterax (Proteaceae) in southwestern Australia. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Donna Bradbury
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - Rachel M Binks
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - David J Coates
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science; Department of Biodiversity, Conservation & Attractions, Kensington, WA, Australia
| |
Collapse
|
47
|
Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser's spotted newt (Neurergus kaiseri). Sci Rep 2019; 9:6239. [PMID: 30996234 PMCID: PMC6470216 DOI: 10.1038/s41598-019-41886-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/19/2019] [Indexed: 12/27/2022] Open
Abstract
The combination of niche modelling and landscape genetics (genomics) helps to disentangle processes that have shaped population structure in the evolutionary past and presence of species. Herein, we integrate a comprehensive genomic dataset with ecological parameters and niche modelling for the threatened Kaiser's newt, a newt species adapted to mountain spring-ponds in Iran. Genomic analysis suggests the existence of two highly differentiated clades North and South of the Dez River. Genetic variation between the two clades (76.62%) was much greater than within clades (16.25%), suggesting that the Dez River prevented gene flow. River disconnectivity, followed by geographic distance, contributed mostly to genetic differentiation between populations. Environmental niche and landscape resistance had no significant influence. Though a significant difference between climatic niches occupied by each clade at the landscape-scale, habitat niches at the local-scale were equivalent. 'Niche similarity analysis' supported niche conservatism between the two clades despite the southward shift in the climatic niche of the Southern clade. Accordingly, populations of different clades may occupy different climatic niches within their ancestral niche. Our results indicate that the change of climatic conditions of geographically and genetically separated populations does not necessarily result in the shift of an ecological niche.
Collapse
|
48
|
Gamboa M, Watanabe K. Genome-wide signatures of local adaptation among seven stoneflies species along a nationwide latitudinal gradient in Japan. BMC Genomics 2019; 20:84. [PMID: 30678640 PMCID: PMC6346529 DOI: 10.1186/s12864-019-5453-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022] Open
Abstract
Background Environmental heterogeneity continuously produces a selective pressure that results in genomic variation among organisms; understanding this relationship remains a challenge in evolutionary biology. Here, we evaluated the degree of genome-environmental association of seven stonefly species across a wide geographic area in Japan and additionally identified putative environmental drivers and their effect on co-existing multiple stonefly species. Double-digest restriction-associated DNA (ddRAD) libraries were independently sequenced for 219 individuals from 23 sites across four geographical regions along a nationwide latitudinal gradient in Japan. Results A total of 4251 candidate single nucleotide polymorphisms (SNPs) strongly associated with local adaptation were discovered using Latent mixed models; of these, 294 SNPs showed strong correlation with environmental variables, specifically precipitation and altitude, using distance-based redundancy analysis. Genome–genome comparison among the seven species revealed a high sequence similarity of candidate SNPs within a geographical region, suggesting the occurrence of a parallel evolution process. Conclusions Our results revealed genomic signatures of local adaptation and their influence on multiple, co-occurring species. These results can be potentially applied for future studies on river management and climatic stressor impacts. Electronic supplementary material The online version of this article (10.1186/s12864-019-5453-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maribet Gamboa
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, 790-0871, Japan.
| | - Kozo Watanabe
- Department of Civil and Environmental Engineering, Ehime University, Matsuyama, 790-0871, Japan
| |
Collapse
|
49
|
Crabot J, Clappe S, Dray S, Datry T. Testing the Mantel statistic with a spatially‐constrained permutation procedure. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Julie Crabot
- IRSTEAUR‐MALYCentre de Lyon‐Villeurbanne Villeurbanne Cedex France
| | - Sylvie Clappe
- Université Lyon 1CNRSUMR5558Laboratoire de Biométrie et Biologie Evolutive Villeurbanne France
| | - Stéphane Dray
- Université Lyon 1CNRSUMR5558Laboratoire de Biométrie et Biologie Evolutive Villeurbanne France
| | - Thibault Datry
- IRSTEAUR‐MALYCentre de Lyon‐Villeurbanne Villeurbanne Cedex France
| |
Collapse
|
50
|
Xuereb A, D’Aloia CC, Daigle RM, Andrello M, Dalongeville A, Manel S, Mouillot D, Guichard F, Côté IM, Curtis JMR, Bernatchez L, Fortin MJ. Marine Conservation and Marine Protected Areas. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2018_63] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|