1
|
Kim JY, Lee SH, Kim DW, Lee DW, Song CS, Lee DH, Kwon JH. Detection of intercontinental reassortant H6 avian influenza viruses from wild birds in South Korea, 2015 and 2017. Front Vet Sci 2023; 10:1157984. [PMID: 37377949 PMCID: PMC10291271 DOI: 10.3389/fvets.2023.1157984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
Avian influenza viruses (AIVs) in wild birds are phylogenetically separated in Eurasian and North American lineages due to the separated distribution and migration of wild birds. However, AIVs are occasionally dispersed between two continents by migratory wild birds flying across the Bering Strait. In this study, we isolated three AIVs from wild bird feces collected in South Korea that contain gene segments derived from American lineage AIVs, including an H6N2 isolated in 2015 and two H6N1 in 2017. Phylogenetic analysis suggests that the H6N2 virus had American lineage matrix gene and the H6N1 viruses had American lineage nucleoprotein and non-structural genes. These results highlight that novel AIVs have continuously emerged by reassortment between viruses from the two continents. Therefore, continuous monitoring for the emergence and intercontinental spread of novel reassortant AIV is required to prepare for a possible future outbreak.
Collapse
Affiliation(s)
- Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dong-Hun Lee
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Yao Z, Zheng H, Xiong J, Ma L, Gui R, Zhu G, Li Y, Yang G, Chen G, Zhang J, Chen Q. Genetic and Pathogenic Characterization of Avian Influenza Virus in Migratory Birds between 2015 and 2019 in Central China. Microbiol Spectr 2022; 10:e0165222. [PMID: 35862978 PMCID: PMC9431584 DOI: 10.1128/spectrum.01652-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Active surveillance of avian influenza virus (AIV) in wetlands and lakes is important for exploring the gene pool in wild birds. Through active surveillance from 2015 through 2019, 10,900 samples from wild birds in central China were collected, and 89 AIVs were isolated, including 2 subtypes of highly pathogenic AIV and 12 of low-pathogenic AIV; H9N2 and H6Ny were the dominant subtypes. Phylogenetic analysis of the isolates demonstrated that extensive intersubtype reassortments and frequent intercontinental gene exchange occurred in AIVs. AIV gene segments persistently circulated in several migration seasons, but interseasonal persistence of the whole genome was rare. The whole genomes of one H6N6 and polymerase basic 2 (PB2), polymerase acidic (PA), hemagglutinin (HA), neuraminidase (NA), M, and nonstructural (NS) genes of one H9N2 virus were found to be of poultry origin, suggesting a spillover of AIVs from poultry to wild birds. Importantly, one H9N2 virus only bound to human-type receptor, and one H1N1, four H6, and seven H9N2 viruses possessed dual receptor-binding capacity. Nineteen of 20 representative viruses tested could replicate in the lungs of mice without preadaptation, which poses a clear threat of infection in humans. Together, our study highlights the need for intensive AIV surveillance. IMPORTANCE Influenza virus surveillance in wild birds plays an important role in the early recognition and control of the virus. However, the AIV gene pool in wild birds in central China along the East Asian-Australasian flyway has not been well studied. Here, we conducted a 5-year AIV active surveillance in this region. Our data revealed the long-term circulation and prevalence of AIVs in wild birds in central China, and we observed that intercontinental gene exchange of AIVs is more frequent and continuous than previously thought. Spillover events from poultry to wild bird were observed in H6 and H9 viruses. In addition, in 20 representative viruses, 12 viruses could bind human-type receptors, and 19 viruses could replicate in mice without preadaption. Our work highlights the potential threat of wild bird AIVs to public health.
Collapse
Affiliation(s)
- Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huabin Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiasong Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gongliang Zhu
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Yong Li
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Guoxiang Yang
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Guang Chen
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Jun Zhang
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Gass JD, Kellogg HK, Hill NJ, Puryear WB, Nutter FB, Runstadler JA. Epidemiology and Ecology of Influenza A Viruses among Wildlife in the Arctic. Viruses 2022; 14:1531. [PMID: 35891510 PMCID: PMC9315492 DOI: 10.3390/v14071531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among wildlife in the arctic are less frequently published compared to southern temperate regions, where prevalence and subtype diversity are more routinely documented. Following PRISMA guidelines, this systematic review addresses this gap by describing the prevalence, spatiotemporal distribution, and ecological characteristics of IAVs detected among wildlife and the environment in this understudied region of the globe. The literature search was performed in PubMed and Google Scholar using a set of pre-defined search terms to identify publications reporting on IAVs in Arctic regions between 1978 and February 2022. A total of 2125 articles were initially screened, 267 were assessed for eligibility, and 71 articles met inclusion criteria. IAVs have been detected in multiple wildlife species in all Arctic regions, including seabirds, shorebirds, waterfowl, seals, sea lions, whales, and terrestrial mammals, and in the environment. Isolates from wild birds comprise the majority of documented viruses derived from wildlife; however, among all animals and environmental matrices, 26 unique low and highly pathogenic subtypes have been characterized in the scientific literature from Arctic regions. Pooled prevalence across studies indicates 4.23% for wild birds, 3.42% among tested environmental matrices, and seroprevalences of 9.29% and 1.69% among marine and terrestrial mammals, respectively. Surveillance data are geographically biased, with most data from the Alaskan Arctic and many fewer reports from the Russian, Canadian, North Atlantic, and Western European Arctic. We highlight multiple important aspects of wildlife host, pathogen, and environmental ecology of IAVs in Arctic regions, including the role of avian migration and breeding cycles for the global spread of IAVs, evidence of inter-species and inter-continental reassortment at high latitudes, and how climate change-driven ecosystem shifts, including changes in the seasonal availability and distribution of dietary resources, have the potential to alter host-pathogen-environment dynamics in Arctic regions. We conclude by identifying gaps in knowledge and propose priorities for future research.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Hunter K. Kellogg
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.K.K.); (W.B.P.); (F.B.N.); (J.A.R.)
| |
Collapse
|
4
|
Spaulding F, McLaughlin JF, Glenn TC, Winker K. Estimating Movement Rates Between Eurasian and North American Birds That Are Vectors of Avian Influenza. Avian Dis 2022; 66:155-164. [PMID: 35510470 DOI: 10.1637/aviandiseases-d-21-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022]
Abstract
Avian influenza (AI) is a zoonotic disease that will likely be involved in future pandemics. Because waterbird movements are difficult to quantify, determining the host-specific risk of Eurasian-origin AI movements into North America is challenging. We estimated relative rates of movements, based on long-term evolutionary averages of gene flow, between Eurasian and North American waterbird populations to obtain bidirectional baseline rates of the intercontinental movements of these AI hosts. We used population genomics and coalescent-based demographic models to obtain these gene-flow-based movement estimates. Inferred rates of movement between these continental populations varies greatly among species. Within dabbling ducks, gene flow, relative to effective population size, varies from ∼3 to 24 individuals/generation between Eurasian and American wigeons (Mareca penelope and Mareca americana) to ∼100-300 individuals/generation between continental populations of northern pintails (Anas acuta). These are evolutionary long-term averages and provide a solid foundation for understanding the relative risks of each of these host species in potential intercontinental AI movements. We scale these values to census size for evaluation in that context. In addition to being AI hosts, many of these bird species are also important in the subsistence diets of Alaskans, increasing the risk of direct bird-to-human exposure to Eurasian-origin AI virus. We contrast species-specific rates of intercontinental movements with the importance of each species in Alaskan diets to understand the relative risk of these taxa to humans. Assuming roughly equivalent AI infection rates among ducks, greater scaup (Aythya marila), mallard (Anas platyrhynchos), and northern pintail (Anas acuta) were the top three species presenting the highest risks for intercontinental AI movement both within the natural system and through exposure to subsistence hunters. Improved data on AI infection rates in this region could further refine these relative risk assessments. These directly comparable, species-based intercontinental movement rates and relative risk rankings should help in modeling, monitoring, and mitigating the impacts of intercontinental host and AI movements.
Collapse
Affiliation(s)
- Fern Spaulding
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, .,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775
| | - Jessica F McLaughlin
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720
| | - Travis C Glenn
- Department of Environmental Health Science and Institute of Bioinformatics, University of Georgia, Athens, GA 30602
| | - Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775.,Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775
| |
Collapse
|
5
|
Bianchini EA, Bogiatto RJ, Donatello RA, Casazza ML, Ackerman JT, De La Cruz SEW, Cline TD. Host Correlates of Avian Influenza Virus Infection in Wild Waterfowl of the Sacramento Valley, California. Avian Dis 2021; 66:20-28. [DOI: 10.1637/aviandiseases-d-21-00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
| | - Raymond J. Bogiatto
- Department of Biological Sciences, California State University, Chico, Chico, CA 95929
| | - Robin A. Donatello
- Department of Mathematics and Statistics, California State University, Chico, Chico, CA 95929
| | - Michael L. Casazza
- United States Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA 95620
| | - Joshua T. Ackerman
- United States Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA 95620
| | - Susan E. W. De La Cruz
- United States Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, Vallejo, CA 94592
| | - Troy D. Cline
- Department of Biological Sciences, California State University, Chico, Chico, CA 95929
| |
Collapse
|
6
|
McBride DS, Lauterbach SE, Li YT, Smith GJD, Killian ML, Nolting JM, Su YCF, Bowman AS. Genomic Evidence for Sequestration of Influenza A Virus Lineages in Sea Duck Host Species. Viruses 2021; 13:v13020172. [PMID: 33498851 PMCID: PMC7911388 DOI: 10.3390/v13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
Wild birds are considered the natural reservoir of influenza A viruses (IAVs) making them critical for IAV surveillance efforts. While sea ducks have played a role in novel IAV emergence events that threatened food security and public health, very few surveillance samples have been collected from sea duck hosts. From 2014–2018, we conducted surveillance focused in the Mississippi flyway, USA at locations where sea duck harvest has been relatively successful compared to our other sampling locations. Our surveillance yielded 1662 samples from sea ducks, from which we recovered 77 IAV isolates. Our analyses identified persistence of sea duck specific IAV lineages across multiple years. We also recovered sea duck origin IAVs containing an H4 gene highly divergent from the majority of North American H4-HA with clade node age of over 65 years. Identification of IAVs with long branch lengths is indicative of substantial genomic change consistent with persistence without detection by surveillance efforts. Sea ducks play a role in the movement and long-term persistence of IAVs and are likely harboring more undetected IAV diversity. Sea ducks should be a point of emphasis for future North American wild bird IAV surveillance efforts.
Collapse
Affiliation(s)
- Dillon S. McBride
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
| | - Sarah E. Lauterbach
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
| | - Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (Y.-T.L.); (G.J.D.S.); (Y.C.F.S.)
| | - Gavin J. D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (Y.-T.L.); (G.J.D.S.); (Y.C.F.S.)
| | - Mary Lea Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, APHIS, USDA, 1920 Dayton Avenue, Ames, IA 50010, USA;
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
| | - Yvonne C. F. Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (Y.-T.L.); (G.J.D.S.); (Y.C.F.S.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (D.S.M.); (S.E.L.); (J.M.N.)
- Correspondence: ; Tel.: +1-(614)-292-6923; Fax: +1-(614)-292-4142
| |
Collapse
|
7
|
Ramey AM, Reeves AB. Ecology of Influenza A Viruses in Wild Birds and Wetlands of Alaska. Avian Dis 2020; 64:109-122. [PMID: 32550610 DOI: 10.1637/0005-2086-64.2.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/05/2020] [Indexed: 11/05/2022]
Abstract
Alaska represents a globally important region for the ecology of avian-origin influenza A viruses (IAVs) given the expansive wetlands in this region, which serve as habitat for numerous hosts of IAVs that disperse among four continents during the annual cycle. Extensive sampling of wild birds for IAVs in Alaska since 1991 has greatly extended inference regarding intercontinental viral exchange between North America and East Asia and the importance of Beringian endemic species to IAV ecology within this region. Data on IAVs in aquatic birds inhabiting Alaska have also been useful for helping to establish global patterns of prevalence in wild birds and viral dispersal across the landscape. In this review, we summarize the main findings from investigations of IAVs in wild birds and wetlands of Alaska with the aim of providing readers with an understanding of viral ecology within this region. More specifically, we review viral detections, evidence of IAV exposure, and genetic characterization of isolates derived from wild bird samples collected in Alaska by host taxonomy. Additionally, we provide a short overview of wetland complexes within Alaska that may be important to IAV ecology at the continental scale.
Collapse
Affiliation(s)
- Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508,
| | - Andrew B Reeves
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508
| |
Collapse
|
8
|
Influenza A Viruses in Ruddy Turnstones ( Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses 2020; 12:v12111205. [PMID: 33105913 PMCID: PMC7690596 DOI: 10.3390/v12111205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Each May for over three decades, avian influenza A viruses (IAVs) have been isolated from shorebirds and gulls (order Charadriiformes) at Delaware Bay (DE Bay), USA, which is a critical stopover site for shorebirds on their spring migration to arctic breeding grounds. At DE Bay, most isolates have been recovered from ruddy turnstones (Arenaria interpres), but it is unknown if this species is involved in either the maintenance or movement of these viruses outside of this site. We collected and tested fecal samples from 2823 ruddy turnstones in Florida and Georgia in the southeastern United States during four winter/spring sample periods—2010, 2011, 2012, and 2013—and during the winters of 2014/2015 and 2015/2016. Twenty-five low pathogenicity IAVs were recovered representing five subtypes (H3N4, H3N8, H5N9, H6N1, and H12N2). Many of these subtypes matched those recovered at DE Bay during the previous year or that year’s migratory cycle, suggesting that IAVs present on these southern wintering areas represent a source of virus introduction to DE Bay via migrating ruddy turnstones. Analyses of all IAV gene segments of H5N9 and H6N1 viruses recovered from ruddy turnstones at DE Bay during May 2012 and from the southeast during the spring of 2012 revealed a high level of genetic relatedness at the nucleotide level, suggesting that migrating ruddy turnstones move IAVs from wintering grounds to the DE Bay ecosystem.
Collapse
|
9
|
Lavretsky P, McInerney NR, Mohl JE, Brown JI, James HF, McCracken KG, Fleischer RC. Assessing changes in genomic divergence following a century of human-mediated secondary contact among wild and captive-bred ducks. Mol Ecol 2020; 29:578-595. [PMID: 31872482 DOI: 10.1111/mec.15343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human-mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD-seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game-farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game-farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait-capture array targeting thousands of loci in century-old (1842-1915) and contemporary (2009-2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game-farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game-farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.
Collapse
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Nancy Rotzel McInerney
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| | - Jonathon E Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Joshua I Brown
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Kevin G McCracken
- Department of Biology, University of Miami, Coral Gables, FL, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA.,Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Institute of Arctic Biology, University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
10
|
Hicks JT, Dimitrov KM, Afonso CL, Ramey AM, Bahl J. Global phylodynamic analysis of avian paramyxovirus-1 provides evidence of inter-host transmission and intercontinental spatial diffusion. BMC Evol Biol 2019; 19:108. [PMID: 31126244 PMCID: PMC6534909 DOI: 10.1186/s12862-019-1431-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian avulavirus (commonly known as avian paramyxovirus-1 or APMV-1) can cause disease of varying severity in both domestic and wild birds. Understanding how viruses move among hosts and geography would be useful for informing prevention and control efforts. A Bayesian statistical framework was employed to estimate the evolutionary history of 1602 complete fusion gene APMV-1 sequences collected from 1970 to 2016 in order to infer viral transmission between avian host orders and diffusion among geographic regions. Ancestral states were estimated with a non-reversible continuous-time Markov chain model, allowing transition rates between discrete states to be calculated. The evolutionary analyses were stratified by APMV-1 classes I (n = 198) and II (n = 1404), and only those sequences collected between 2006 and 2016 were allowed to contribute host and location information to the viral migration networks. RESULTS While the current data was unable to assess impact of host domestication status on APMV-1 diffusion, these analyses supported the sharing of APMV-1 among divergent host taxa. The highest supported transition rate for both classes existed from domestic chickens to Anseriformes (class I:6.18 transitions/year, 95% highest posterior density (HPD) 0.31-20.02, Bayes factor (BF) = 367.2; class II:2.88 transitions/year, 95%HPD 1.9-4.06, BF = 34,582.9). Further, among class II viruses, domestic chickens also acted as a source for Columbiformes (BF = 34,582.9), other Galliformes (BF = 34,582.9), and Psittaciformes (BF = 34,582.9). Columbiformes was also a highly supported source to Anseriformes (BF = 322.0) and domestic chickens (BF = 402.6). Additionally, our results provide support for the diffusion of viruses among continents and regions, but no interhemispheric viral exchange between 2006 and 2016. Among class II viruses, the highest transition rates were estimated from South Asia to the Middle East (1.21 transitions/year; 95%HPD 0.36-2.45; BF = 67,107.8), from Europe to East Asia (1.17 transitions/year; 95%HPD 0.12-2.61; BF = 436.2) and from Europe to Africa (1.06 transitions/year, 95%HPD 0.07-2.51; BF = 169.3). CONCLUSIONS While migration appears to occur infrequently, geographic movement may be important in determining viral diversification and population structure. In contrast, inter-order transmission of APMV-1 may occur readily, but most events are transient with few lineages persisting in novel hosts.
Collapse
Affiliation(s)
- Joseph T Hicks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, 30602, USA.
| | - Kiril M Dimitrov
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, Athens, GA, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, Athens, GA, USA
| | - Andrew M Ramey
- US Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Justin Bahl
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, 30602, USA. .,Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
11
|
La Sala LF, Burgos JM, Blanco DE, Stevens KB, Fernández AR, Capobianco G, Tohmé F, Pérez AM. Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transbound Emerg Dis 2019; 66:1493-1505. [PMID: 30698918 DOI: 10.1111/tbed.13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/28/2022]
Abstract
Low pathogenicity avian influenza virus (LPAIV) is endemic in wild birds and poultry in Argentina, and active surveillance has been in place to prevent any eventual virus mutation into a highly pathogenic avian influenza virus (HPAIV), which is exotic in this country. Risk mapping can contribute effectively to disease surveillance and control systems, but it has proven a very challenging task in the absence of disease data. We used a combination of expert opinion elicitation, multicriteria decision analysis (MCDA) and ecological niche modelling (ENM) to identify the most suitable areas for the occurrence of LPAIV at the interface between backyard domestic poultry and wild birds in Argentina. This was achieved by calculating a spatially explicit risk index. As evidenced by the validation and sensitivity analyses, our model was successful in identifying high-risk areas for LPAIV occurrence. Also, we show that the risk for virus occurrence is significantly higher in areas closer to commercial poultry farms. Although the active surveillance systems have been successful in detecting LPAIV-positive backyard farms and wild birds in Argentina, our predictions suggest that surveillance efforts in those compartments could be improved by including high-risk areas identified by our model. Our research provides a tool to guide surveillance activities in the future, and presents a mixed methodological approach which could be implemented in areas where the disease is exotic or rare and a knowledge-driven modelling method is necessary.
Collapse
Affiliation(s)
- Luciano F La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Julián M Burgos
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Daniel E Blanco
- Wetlands International/Fundación Humedales, Buenos Aires, Argentina
| | - Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK
| | - Andrea R Fernández
- Departamento de Ciencias de la Administración, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Guillermo Capobianco
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina.,Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Fernando Tohmé
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Andrés M Pérez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
12
|
Sullivan JD, Takekawa JY, Spragens KA, Newman SH, Xiao X, Leader PJ, Smith B, Prosser DJ. Waterfowl Spring Migratory Behavior and Avian Influenza Transmission Risk in the Changing Landscape of the East Asian-Australasian Flyway. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Hird SM, Ganz H, Eisen JA, Boyce WM. The Cloacal Microbiome of Five Wild Duck Species Varies by Species and Influenza A Virus Infection Status. mSphere 2018; 3:e00382-18. [PMID: 30355662 PMCID: PMC6200988 DOI: 10.1128/msphere.00382-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Waterfowl, especially ducks of the genus Anas, are natural reservoir species for influenza A virus (IAV). Duck populations contain nearly all the known diversity of IAVs, and the birds are asymptomatic to infection. Previous work established that IAV infection status is correlated with changes in the cloacal microbiome in juvenile mallards. Here, we analyze five Anas species to determine whether these duck species have similar IAV+ and IAV- cloacal microbiomes, or if the relationships among a host, influenza virus, and the microbiome are species specific. We assessed taxonomic composition of the microbiome, alpha diversity, and beta diversity and found very few patterns related to microbiome and infection status across species, while detecting strong differences within species. A host species-specific signal was stronger in IAV- ducks than IAV+ ducks, and the effect size of host species on the microbiome was three times higher in IAV- birds than IAV+ birds. The mallards and the northern shovelers, the species with highest sample sizes but also with differing feeding ecology, showed especially contrasting patterns in microbiome composition, alpha diversity, and beta diversity. Our results indicate that the microbiome may have a unique relationship with influenza virus infection at the species level.IMPORTANCE Waterfowl are natural reservoir species for influenza A virus (IAV). Thus, they maintain high levels of pathogen diversity, are asymptomatic to the infection, and also contribute to the risk of a global influenza pandemic. An individual's microbiome is a critical part in how a vertebrate manages pathogens and illness. Here, we describe the cloacal microbiome of 300 wild ducks, from five species (four with previously undescribed microbiomes), including both IAV-negative and IAV-positive individuals. We demonstrate that there is not one consistent "flu-like" microbiome or response to flu across species. Individual duck species appear to have unique relationships between their microbiomes and IAV, and IAV-negative birds have a stronger tie to host species than the IAV-positive birds. In a broad context, understanding the role of the microbiome in IAV reservoir species may have future implications for avian disease management.
Collapse
Affiliation(s)
- Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Holly Ganz
- AnimalBiome, Oakland, California, USA
- Genome Center, University of California, Davis, Davis, California, USA
| | - Jonathan A Eisen
- Genome Center, University of California, Davis, Davis, California, USA
| | - Walter M Boyce
- Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
14
|
Morin CW, Stoner-Duncan B, Winker K, Scotch M, Hess JJ, Meschke JS, Ebi KL, Rabinowitz PM. Avian influenza virus ecology and evolution through a climatic lens. ENVIRONMENT INTERNATIONAL 2018; 119:241-249. [PMID: 29980049 DOI: 10.1016/j.envint.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 05/05/2023]
Abstract
Avian influenza virus (AIV) is a major health threat to both avian and human populations. The ecology of the virus is driven by numerous factors, including climate and avian migration patterns, yet relatively little is known about these drivers. Long-distance transport of the virus is tied to inter- and intra-continental bird migration, while enhanced viral reassortment is linked to breeding habitats in Beringia shared by migrant species from North America and Asia. Furthermore, water temperature, pH, salinity, and co-existing biota all impact the viability and persistence of the virus in the environment. Changes in climate can potentially alter the ecology of AIV through multiple pathways. Warming temperatures can change the timing and patterns of bird migration, creating novel assemblages of species and new opportunities for viral transport and reassortment. Water temperature and chemistry may also be altered, resulting in changes in virus survival. In this review, we explain how these shifts have the potential to increase viral persistence, pathogenicity, and transmissibility and amplify the threat of pandemic disease in animal and human hosts. Better understanding of climatic influences on viral ecology is essential to developing strategies to limit adverse health effects in humans and animals.
Collapse
Affiliation(s)
- Cory W Morin
- Department of Global Health, University of Washington, Seattle, WA, United States.
| | | | - Kevin Winker
- Department of Biology & Wildlife and University of Alaska Museum, Fairbanks, AK, United States
| | - Matthew Scotch
- Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ, United States; Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jeremy J Hess
- Department of Global Health, University of Washington, Seattle, WA, United States; Department of Emergency Medicine, University of Washington, Seattle, WA, United States; Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - John S Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Kristie L Ebi
- Department of Global Health, University of Washington, Seattle, WA, United States; Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Peter M Rabinowitz
- Department of Global Health, University of Washington, Seattle, WA, United States; Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
15
|
Okuya K, Kanazawa N, Kanda T, Kuwahara M, Matsuu A, Horie M, Masatani T, Toda S, Ozawa M. Genetic characterization of an avian H4N6 influenza virus isolated from the Izumi plain, Japan. Microbiol Immunol 2018; 61:513-518. [PMID: 29023947 DOI: 10.1111/1348-0421.12545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
An influenza A virus of H4N6 subtype was isolated from the Izumi plain, Japan, in 2013. Genetic analyses revealed that two viral genes (M and NS gene segments) of this isolate were genetically distinct from those of the H4N6 virus isolated from the same place in 2012. Furthermore, three viral genes (PB2, PB1 and M gene segments) of this isolate share high similarity with those of the North American isolates of 2014. These results suggest a high frequency of genetic reassortment of avian influenza viruses in Asian waterfowl and intercontinental movements of avian influenza viruses via migratory waterfowl.
Collapse
Affiliation(s)
- Kosuke Okuya
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Norihiro Kanazawa
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Takehiro Kanda
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | | | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| | - Shigehisa Toda
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima 899-0208, Japan
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Laboratory of Animal Hygiene, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan
| |
Collapse
|
16
|
H13 influenza viruses in wild birds have undergone genetic and antigenic diversification in nature. Virus Genes 2018; 54:543-549. [PMID: 29796944 DOI: 10.1007/s11262-018-1573-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Among 16 haemagglutinin (HA) subtypes of avian influenza viruses (AIVs), H13 AIVs have rarely been isolated in wild waterfowl. H13 AIVs cause asymptomatic infection and are maintained mainly in gull and tern populations; however, the recorded antigenic information relating to the viruses has been limited. In this study, 2 H13 AIVs, A/duck/Hokkaido/W345/2012 (H13N2) and A/duck/Hokkaido/WZ68/2012 (H13N2), isolated from the same area in the same year in our surveillance, were genetically and antigenically analyzed with 10 representative H13 strains including a prototype strain, A/gull/Maryland/704/1977 (H13N6). The HA genes of H13 AIVs were phylogenetically divided into 3 groups (I, II, and III). A/duck/Hokkaido/W345/2012 (H13N2) was genetically classified into Group III. This virus was distinct from a prototype strain, A/gull/Maryland/704/1977 (H13N6), and the virus, A/duck/Hokkaido/WZ68/2012 (H13N2), both belonging to Group I. Antigenic analysis indicated that the viruses of Group I were antigenically closely related to those of Group II, but distinct from those of Group III, including A/duck/Hokkaido/W345/2012 (H13N2). In summary, our study indicates that H13 AIVs have undergone antigenic diversification in nature.
Collapse
|
17
|
Reeves AB, Hall JS, Poulson RL, Donnelly T, Stallknecht DE, Ramey AM. Influenza A virus recovery, diversity, and intercontinental exchange: A multi-year assessment of wild bird sampling at Izembek National Wildlife Refuge, Alaska. PLoS One 2018; 13:e0195327. [PMID: 29621333 PMCID: PMC5950690 DOI: 10.1371/journal.pone.0195327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Western Alaska is a potential point-of-entry for foreign-origin influenza A viruses (IAVs) into North America via migratory birds. We sampled waterfowl and gulls for IAVs at Izembek National Wildlife Refuge (NWR) in western Alaska, USA, during late summer and autumn months of 2011-2015, to evaluate the abundance and diversity of viruses at this site. We collected 4842 samples across five years from 25 species of wild birds resulting in the recovery, isolation, and sequencing of 172 IAVs. With the intent of optimizing sampling efficiencies, we used information derived from this multi-year effort to: 1) evaluate from which species we consistently recover viruses, 2) describe viral subtypes of isolates by host species and year, 3) characterize viral gene segment sequence diversity with respect to host species, and assess potential differences in the viral lineages among the host groups, and 4) examine how evidence of intercontinental exchange of IAVs relates to host species. We consistently recovered viruses from dabbling ducks (Anas spp.), emperor geese (Chen canagica) and glaucous-winged gulls (Larus glaucescens). There was little evidence for differences in viral subtypes and diversity from different waterfowl hosts, however subtypes and viral diversity varied between waterfowl host groups and glaucous-winged gulls. Furthermore, higher proportions of viral sequences from northern pintails (Anas acuta), emperor geese and glaucous-winged gulls were grouped in phylogenetic clades that included IAV sequences originating from wild birds sampled in Asia as compared to non-pintail dabbling ducks, a difference that may be related to intercontinental migratory tendencies of host species. Our summary of research and surveillance efforts at Izembek NWR will assist in future prioritization of which hosts to sample and swab types to collect in Alaska and elsewhere in order to maximize isolate recovery, subtype and sequence diversity for resultant viruses, and detection of evidence for intercontinental viral exchange.
Collapse
Affiliation(s)
- Andrew B. Reeves
- United States Geological Survey Alaska Science Center, Anchorage, Alaska, United States of America
- * E-mail: (ABR); (AMR)
| | - Jeffrey S. Hall
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tyrone Donnelly
- United States Geological Survey Alaska Science Center, Anchorage, Alaska, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Andrew M. Ramey
- United States Geological Survey Alaska Science Center, Anchorage, Alaska, United States of America
- * E-mail: (ABR); (AMR)
| |
Collapse
|
18
|
Hill NJ, Hussein ITM, Davis KR, Ma EJ, Spivey TJ, Ramey AM, Puryear WB, Das SR, Halpin RA, Lin X, Fedorova NB, Suarez DL, Boyce WM, Runstadler JA. Reassortment of Influenza A Viruses in Wild Birds in Alaska before H5 Clade 2.3.4.4 Outbreaks. Emerg Infect Dis 2018; 23:654-657. [PMID: 28322698 PMCID: PMC5367406 DOI: 10.3201/eid2304.161668] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.
Collapse
|
19
|
Belkhiria J, Hijmans RJ, Boyce W, Crossley BM, Martínez-López B. Identification of high risk areas for avian influenza outbreaks in California using disease distribution models. PLoS One 2018; 13:e0190824. [PMID: 29385158 PMCID: PMC5791985 DOI: 10.1371/journal.pone.0190824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
The coexistence of different types of poultry operations such as free range and backyard flocks, large commercial indoor farms and live bird markets, as well as the presence of many areas where wild and domestic birds co-exist, make California susceptible to avian influenza outbreaks. The 2014-2015 highly pathogenic Avian Influenza (HPAI) outbreaks affecting California and other states in the United States have underscored the need for solutions to protect the US poultry industry against this devastating disease. We applied disease distribution models to predict where Avian influenza is likely to occur and the risk for HPAI outbreaks is highest. We used observations on the presence of Low Pathogenic Avian influenza virus (LPAI) in waterfowl or water samples at 355 locations throughout the state and environmental variables relevant to the disease epidemiology. We used two algorithms, Random Forest and MaxEnt, and two data-sets Presence-Background and Presence-Absence data. The models performed well (AUCc > 0.7 for testing data), particularly those using Presence-Background data (AUCc > 0.85). Spatial predictions were similar between algorithms, but there were large differences between the predictions with Presence-Absence and Presence-Background data. Overall, predictors that contributed most to the models included land cover, distance to coast, and broiler farm density. Models successfully identified several counties as high-to-intermediate risk out of the 8 counties with observed outbreaks during the 2014-2015 HPAI epizootics. This study provides further insights into the spatial epidemiology of AI in California, and the high spatial resolution maps may be useful to guide risk-based surveillance and outreach efforts.
Collapse
Affiliation(s)
- Jaber Belkhiria
- Center for Animal Disease Modeling and Surveillance, Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Robert J Hijmans
- Department of Environmental Science & Policy, University of California, Davis, California, United States of America
| | - Walter Boyce
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Beate M Crossley
- California Animal Health and Food Safety Lab, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance, Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
20
|
Grear DA, Hall JS, Dusek RJ, Ip HS. Inferring epidemiologic dynamics from viral evolution: 2014-2015 Eurasian/North American highly pathogenic avian influenza viruses exceed transmission threshold, R0 = 1, in wild birds and poultry in North America. Evol Appl 2017; 11:547-557. [PMID: 29636805 PMCID: PMC5891053 DOI: 10.1111/eva.12576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low‐pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self‐sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time‐rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.
Collapse
Affiliation(s)
- Daniel A Grear
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Jeffrey S Hall
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Robert J Dusek
- United States Geological Survey National Wildlife Health Center Madison WI USA
| | - Hon S Ip
- United States Geological Survey National Wildlife Health Center Madison WI USA
| |
Collapse
|
21
|
Gonzalez-Reiche AS, Nelson MI, Angel M, Müller ML, Ortiz L, Dutta J, van Bakel H, Cordon-Rosales C, Perez DR. Evidence of Intercontinental Spread and Uncommon Variants of Low-Pathogenicity Avian Influenza Viruses in Ducks Overwintering in Guatemala. mSphere 2017; 2:e00362-16. [PMID: 28405632 PMCID: PMC5381266 DOI: 10.1128/msphere.00362-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 01/02/2023] Open
Abstract
Over a hundred species of aquatic birds overwinter in Central America's wetlands, providing opportunities for the transmission of influenza A viruses (IAVs). To date, limited IAV surveillance in Central America hinders our understanding of the evolution and ecology of IAVs in migratory hosts within the Western Hemisphere. To address this gap, we sequenced the genomes of 68 virus isolates obtained from ducks overwintering along Guatemala's Pacific Coast during 2010 to 2013. High genetic diversity was observed, including 9 hemagglutinin (HA) subtypes, 7 neuraminidase (NA) subtypes, and multiple avian IAV lineages that have been detected at low levels (<1%) in North America. An unusually large number of viruses with the rare H14 subtype were identified (n = 14) over two consecutive seasons, the highest number of H14 viruses ever reported in a single location, providing evidence for a possible H14 source population located outside routinely sampled regions of North America. Viruses from Guatemala were positioned within minor clades divergent from the main North American lineage on phylogenies inferred for the H3, H4, N2, N8, PA, NP, and NS segments. A time-scaled phylogeny indicates that a Eurasian virus PA segment introduced into the Americas in the early 2000s disseminated to Guatemala during ~2007.1 to 2010.4 (95% highest posterior density [HPD]). Overall, the diversity detected in Guatemala in overwintering ducks highlights the potential role of Central America in the evolution of diverse IAV lineages in the Americas, including divergent variants rarely detected in the United States, and the importance of increasing IAV surveillance throughout Central America. IMPORTANCE Recent outbreaks of highly pathogenic H7N3, H5Nx, and H7N8 avian influenza viruses in North America were introduced by migratory birds, underscoring the importance of understanding how wild birds contribute to the dissemination and evolution of IAVs in nature. At least four of the main IAV duck host species in North America migrate through or overwinter within a narrow strip of Central America, providing opportunities for diverse IAV lineages to mix and exchange gene segments. By obtaining whole-genome sequences of 68 IAV isolates collected from migratory waterfowl in Guatemala (2010 to 2013), the largest data set available from Central America to date, we detected extensive viral diversity, including gene variants rarely found in North America and gene segments of Eurasian origin. Our findings highlight the need for increased IAV surveillance across the geographical span of bird migration flyways, including Neotropical regions that have been vastly undersampled to date.
Collapse
Affiliation(s)
- Ana S. Gonzalez-Reiche
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mathew Angel
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| | - Maria L. Müller
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucia Ortiz
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Celia Cordon-Rosales
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| |
Collapse
|
22
|
Li M, Zhao N, Luo J, Li Y, Chen L, Ma J, Zhao L, Yuan G, Wang C, Wang Y, Liu Y, He H. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012-2016. Front Microbiol 2017; 8:260. [PMID: 28293218 PMCID: PMC5329059 DOI: 10.3389/fmicb.2017.00260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 11/26/2022] Open
Abstract
H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic.
Collapse
Affiliation(s)
- Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Na Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Yuan Li
- Department of Animal Science, Hebei Normal University of Science and Technology Qinghuangdao, China
| | - Lin Chen
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Jiajun Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Science, University of Chinese Academy of SciencesBeijing, China
| | - Lin Zhao
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Chengmin Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Yutian Wang
- Department of Microbiology, Beijing General Station of Animal Husbandry Beijing, China
| | - Yanhua Liu
- Department of Microbiology, Beijing General Station of Animal Husbandry Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
23
|
Segovia KM, Stallknecht DE, Kapczynski DR, Stabler L, Berghaus RD, Fotjik A, Latorre-Margalef N, França MS. Adaptive Heterosubtypic Immunity to Low Pathogenic Avian Influenza Viruses in Experimentally Infected Mallards. PLoS One 2017; 12:e0170335. [PMID: 28107403 PMCID: PMC5249058 DOI: 10.1371/journal.pone.0170335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022] Open
Abstract
Mallards are widely recognized as reservoirs for Influenza A viruses (IAV); however, host factors that might prompt seasonality and trends in subtype diversity of IAV such as adaptive heterosubtypic immunity (HSI) are not well understood. To investigate this, we inoculated mallards with a prevailing H3N8 low pathogenic avian influenza virus (LPAIV) subtype in waterfowl to determine if prior infection with this virus would be protective against heterosubtypic infections with the H4N6, H10N7 and H14N5 LPAIV subtypes after one, two and three months, respectively. Also, we investigated the effect of cumulative immunity after sequential inoculation of mallards with these viruses in one-month intervals. Humoral immunity was assessed by microneutralization assays using a subset of representative LPAIV subtypes as antigens. Our results indicate that prior inoculation with the H3N8 virus confers partial protective immunity against subsequent heterosubtypic infections with the robustness of HSI related to the phylogenetic similarity of the HA protein of the strains used. Furthermore, induced HSI was boosted and followed by repeated exposure to more than one LPAIV subtype. Our findings provide further information on the contributions of HSI and its role in the dynamics of IAV subtype diversity in mallards.
Collapse
Affiliation(s)
- Karen M. Segovia
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, Georgia, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Darrell R. Kapczynski
- Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
| | - Lisa Stabler
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, Georgia, United States of America
| | - Roy D. Berghaus
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Alinde Fotjik
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Neus Latorre-Margalef
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Monique S. França
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hurst CJ. Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [PMCID: PMC7123570 DOI: 10.1007/978-3-319-60616-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hallmark of disease is that most pathogens are able to infect more than one host species. However, for most pathogens, we still have a limited understanding of how this affects epidemiology, persistence and virulence of infections—including several zoonotic pathogens that reside in wild animal reservoirs and spillover into humans. In this chapter, we review the current knowledge of mallard (Anas platyrhynchos) as host for pathogens. This species is widely distributed, often occupying habitats close to humans and livestock, and is an important game bird species and the ancestor to domestic ducks—thereby being an excellent model species to highlight aspects of the wildlife, domestic animal interface and the relevance for human health. We discuss mallard as host for a range of pathogens but focus more in depth of it as a reservoir host for influenza A virus (IAV). Over the last decades, IAV research has surged, prompted in part to the genesis and spread of highly pathogenic virus variants that have been devastating to domestic poultry and caused a number of human spillover infections. The aim of this chapter is to synthesise and review the intricate interactions of virus, host and environmental factors governing IAV epidemiology and evolution.
Collapse
|
25
|
Hill NJ, Runstadler JA. A Bird's Eye View of Influenza A Virus Transmission: Challenges with Characterizing Both Sides of a Co-Evolutionary Dynamic. Integr Comp Biol 2016; 56:304-16. [PMID: 27252222 PMCID: PMC5964799 DOI: 10.1093/icb/icw055] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In nature, wild birds and influenza A viruses (IAV) are continually co-evolving, locked into a back-and-forth of resistance and conquest that has approached a stable equilibrium over time. This co-evolutionary relationship between bird host and IAV may appear stable at the organismal level, but is highly dynamic at the molecular level manifesting in a constant trade-off between transmissibility and virulence of the virus. Characterizing both sides of the host-virus dynamic has presented a challenge for ecologists and virologists alike, despite the potential for this approach to provide insights into which conditions destabilize the equilibrium state resulting in outbreaks or mortality of hosts in extreme cases. The use of different methods that are either host-centric or virus-centric has made it difficult to reconcile the disparate fields of host ecology and virology for investigating and ultimately predicting wild bird-mediated transmission of IAV. This review distills some of the key lessons learned from virological and ecological studies and explores the promises and pitfalls of both approaches. Ultimately, reconciling ecological and virological approaches hinges on integrating scales for measuring host-virus interactions. We argue that prospects for finding common scales for measuring wild bird-influenza dynamics are improving due to advances in genomic sequencing, host-tracking technology and remote sensing data, with the unit of time (months, year, or seasons) providing a starting point for crossover.
Collapse
Affiliation(s)
- Nichola J Hill
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| | - Jonathan A Runstadler
- Massachusetts Institute of Technology, Division of Comparative Medicine & Department of Biological Engineering, 77 Massachusetts Ave, Cambridge 02139
| |
Collapse
|
26
|
Hill NJ, Ma EJ, Meixell BW, Lindberg MS, Boyce WM, Runstadler JA. Transmission of influenza reflects seasonality of wild birds across the annual cycle. Ecol Lett 2016; 19:915-25. [PMID: 27324078 DOI: 10.1111/ele.12629] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/04/2016] [Indexed: 11/30/2022]
Abstract
Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences from North American wild birds (2008-2011) we demonstrate a shift from intraspecific to interspecific transmission that along with reassortment, allows IAV to achieve viral flow across successive seasons from summer to winter. Our study supports amplification of IAV during summer breeding seeded by overwintering virus persisting locally and virus introduced from a wide range of latitudes. As birds migrate from breeding sites to lower latitudes, they become involved in transmission networks with greater connectivity to other bird species, with interspecies transmission of reassortant viruses peaking during the winter. We propose that switching transmission dynamics may be a critical strategy for pathogens that infect mobile hosts inhabiting regions with strong seasonality.
Collapse
Affiliation(s)
- Nichola J Hill
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eric J Ma
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Brandt W Meixell
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, 55108, USA.,U.S. Geological Survey, Alaska Science Center, Anchorage, AK, 99508, USA
| | - Mark S Lindberg
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Walter M Boyce
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jonathan A Runstadler
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
Hussein ITM, Ma EJ, Hill NJ, Meixell BW, Lindberg M, Albrecht RA, Bahl J, Runstadler JA. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells. INFECTION GENETICS AND EVOLUTION 2016; 41:279-288. [PMID: 27101787 DOI: 10.1016/j.meegid.2016.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 12/09/2022]
Abstract
H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context.
Collapse
Affiliation(s)
- Islam T M Hussein
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric J Ma
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nichola J Hill
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brandt W Meixell
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | - Mark Lindberg
- Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Justin Bahl
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, TX, USA
| | - Jonathan A Runstadler
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Ramey AM, Walther P, Link P, Poulson RL, Wilcox BR, Newsome G, Spackman E, Brown JD, Stallknecht DE. Optimizing Surveillance for South American Origin Influenza A Viruses Along the United States Gulf Coast Through Genomic Characterization of Isolates from Blue-winged Teal (Anas discors). Transbound Emerg Dis 2016; 63:194-202. [PMID: 25056712 PMCID: PMC4305350 DOI: 10.1111/tbed.12244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 11/27/2022]
Abstract
Relative to research focused on inter-continental viral exchange between Eurasia and North America, less attention has been directed towards understanding the redistribution of influenza A viruses (IAVs) by wild birds between North America and South America. In this study, we genomically characterized 45 viruses isolated from blue-winged teal (Anas discors) along the Texas and Louisiana Gulf Coast during March of 2012 and 2013, coincident with northward migration of this species from Neotropical wintering areas to breeding grounds in the United States and Canada. No evidence of South American lineage genes was detected in IAVs isolated from blue-winged teal supporting restricted viral gene flow between the United States and southern South America. However, it is plausible that blue-winged teal redistribute IAVs between North American breeding grounds and wintering areas throughout the Neotropics, including northern South America, and that viral gene flow is limited by geographical barriers further south (e.g., the Amazon Basin). Surveillance for the introduction of IAVs from Central America and northern South America into the United States may be further optimized through genomic characterization of viruses resulting from coordinated, concurrent sampling efforts targeting blue-winged teal and sympatric species throughout the Neotropics and along the United States Gulf Coast.
Collapse
Affiliation(s)
- Andrew M. Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Patrick Walther
- US Fish and Wildlife Service, Texas Chenier Plain Refuge Complex, P.O. Box 278 4017 FM 563, Anahuac, Texas 77514, USA
| | - Paul Link
- Louisiana Department of Wildlife and Fisheries, 2000 Quail Drive, Room 436, Baton Rouge, Louisiana 70808, USA
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - Benjamin R. Wilcox
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - George Newsome
- City of Beaumont Wastewater Treatment Plant, 4900 Lafin Road, Beaumont, Texas 77705, USA
| | - Erica Spackman
- US Department of Agriculture, Agriculture Research Service, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, 589 D. W. Brooks Drive, Athens, Georgia 30602, USA
| |
Collapse
|
29
|
Arnal A, Vittecoq M, Pearce-Duvet J, Gauthier-Clerc M, Boulinier T, Jourdain E. Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics. Crit Rev Microbiol 2015; 41:508-19. [DOI: 10.3109/1040841x.2013.870967] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Fries AC, Nolting JM, Bowman AS, Lin X, Halpin RA, Wester E, Fedorova N, Stockwell TB, Das SR, Dugan VG, Wentworth DE, Gibbs HL, Slemons RD. Spread and persistence of influenza A viruses in waterfowl hosts in the North American Mississippi migratory flyway. J Virol 2015; 89:5371-81. [PMID: 25741003 PMCID: PMC4442537 DOI: 10.1128/jvi.03249-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While geographic distance often restricts the spread of pathogens via hosts, this barrier may be compromised when host species are mobile. Migratory waterfowl in the order Anseriformes are important reservoir hosts for diverse populations of avian-origin influenza A viruses (AIVs) and are assumed to spread AIVs during their annual continental-scale migrations. However, support for this hypothesis is limited, and it is rarely tested using data from comprehensive surveillance efforts incorporating both the temporal and spatial aspects of host migratory patterns. We conducted intensive AIV surveillance of waterfowl using the North American Mississippi Migratory Flyway (MMF) over three autumn migratory seasons. Viral isolates (n = 297) from multiple host species were sequenced and analyzed for patterns of gene dispersal between northern staging and southern wintering locations. Using a phylogenetic and nucleotide identity framework, we observed a larger amount of gene dispersal within this flyway rather than between the other three longitudinally identified North American flyways. Across seasons, we observed patterns of regional persistence of diversity for each genomic segment, along with limited survival of dispersed AIV gene lineages. Reassortment increased with both time and distance, resulting in transient AIV constellations. This study shows that within the MMF, AIV gene flow favors spread along the migratory corridor within a season, and also that intensive surveillance during bird migration is important for identifying virus dispersal on time scales relevant to pandemic responsiveness. In addition, this study indicates that comprehensive monitoring programs to capture AIV diversity are critical for providing insight into AIV evolution and ecology in a major natural reservoir. IMPORTANCE Migratory birds are a reservoir for antigenic and genetic diversity of influenza A viruses (AIVs) and are implicated in the spread of virus diversity that has contributed to previous pandemic events. Evidence for dispersal of avian-origin AIVs by migratory birds is rarely examined on temporal scales relevant to pandemic or panzootic threats. Therefore, characterizing AIV movement by hosts within a migratory season is important for implementing effective surveillance strategies. We conducted surveillance following birds along a major North American migratory route and observed that within a migratory season, AIVs rapidly reassorted and gene lineages were dispersed primarily within the migratory corridor. Patterns of regional persistence were observed across seasons for each gene segment. We show that dispersal of AIV gene lineages by migratory birds occurs quickly along migratory routes and that surveillance for AIVs threatening human and animal health should focus attention on these routes.
Collapse
Affiliation(s)
- Anthony C Fries
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Xudong Lin
- J. Craig Venter Institute, Virology, Rockville, Maryland, USA
| | | | - Eric Wester
- J. Craig Venter Institute, Virology, Rockville, Maryland, USA
| | - Nadia Fedorova
- J. Craig Venter Institute, Virology, Rockville, Maryland, USA
| | | | - Suman R Das
- J. Craig Venter Institute, Virology, Rockville, Maryland, USA
| | - Vivien G Dugan
- J. Craig Venter Institute, Virology, Rockville, Maryland, USA
| | | | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, USA
| | - Richard D Slemons
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
31
|
Shoham D. The Eurasian genes of the 2009 pandemic influenza virus: an integrative perspective on their conveyance to and assimilation in America. Crit Rev Microbiol 2014; 42:222-32. [PMID: 25058514 DOI: 10.3109/1040841x.2014.920291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The formation of pandemic influenza genotypes varied phylogeographically and ecophylogenetically throughout their fully recognized recent 100-years natural history, involving consistently avian plus human genes, and at times swine genes. The last four traceable pandemic strains (PSs) included two American H1N1 viruses with genomes predominantly containing swine genes, of which at least one genome originated from both America and Eurasia; and two non-H1N1 Asian viruses with genomes entirely originating from Asia, and having no swine genes. This study explores whether there is a particular interhemispheric system underlying such divergence, and its properties. Unlike the assumption that transport of live pigs from Eurasia to America facilitated the formation of the 2009 H1N1 PS in America, it is suggested that conveyance of Eurasian swine genes to America, and their assimilation therein, took place through a distinct, perfectly natural ecophylogenetic machinery. The latter conjunctively involves, foremost, a native Asian duck-swine-man interface, a Holarctic chain of certain migratory Anas ducks, a native American turkey-swine-man interface, and two specific clades of American influenza A viruses. Likewise, the described machinery could have readily given rise to the 1918 H1N1, and, presumably, earlier American PSs, altogether constituting private cases of a much broader, self-sustained, permanent phylogeographic system.
Collapse
Affiliation(s)
- Dany Shoham
- a Begin-Sadat Center for Strategic Studies, Bar-Ilan University , Ramat-Gan , Israel
| |
Collapse
|
32
|
Lee DH, Park JK, Yuk SS, Erdene-Ochir TO, Kwon JH, Lee JB, Park SY, Choi IS, Lee SW, Song CS. Complete genome sequence of a natural reassortant H9N2 avian influenza virus found in bean goose (Anser fabalis): direct evidence for virus exchange between Korea and China via wild birds. INFECTION GENETICS AND EVOLUTION 2014; 26:250-4. [PMID: 24953505 DOI: 10.1016/j.meegid.2014.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
In 2011, we isolated a natural recombinant H9N2 avian influenza virus from fecal droppings of bean goose (Anser fabalis) in Korea. Phylogenetic analyses showed that the A/bean goose/Korea/220/2011(H9N2) isolate is a reassortant of Eurasian and North American lineages of avian influenza virus. In addition, the complete genome sequence, including all 8 gene segments, was associated with Chinese H9N2 viruses isolated from wild birds in the Hunan East Dongting Lake National Nature Reserve. These data provide direct evidence for the exchange of avian influenza viruses between Korea and China via wild birds.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jae-Keun Park
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seong-Su Yuk
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Tseren-Ochir Erdene-Ochir
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jung-Hoon Kwon
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Joong-Bok Lee
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung-Yong Park
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - In-Soo Choi
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Sang-Won Lee
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Chang-Seon Song
- Department of Veterinary Microbiology and Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
33
|
Avian influenza virus antibodies in Pacific Coast Red Knots (Calidris canutus roselaari). J Wildl Dis 2014; 50:671-5. [PMID: 24807362 DOI: 10.7589/2013-04-016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prevalence of avian influenza virus (AIV) antibodies in the western Atlantic subspecies of Red Knot (Calidris canutus rufa) is among the highest for any shorebird. To assess whether the frequency of detection of AIV antibodies is high for the species in general or restricted only to C. c. rufa, we sampled the northeastern Pacific Coast subspecies of Red Knot (Calidris canutus roselaari) breeding in northwestern Alaska. Antibodies were detected in 90% of adults and none of the chicks sampled. Viral shedding was not detected in adults or chicks. These results suggest a predisposition of Red Knots to AIV infection. High antibody titers to subtypes H3 and H4 were detected, whereas low to intermediate antibody levels were found for subtypes H10 and H11. These four subtypes have previously been detected in shorebirds at Delaware Bay (at the border of New Jersey and Delaware) and in waterfowl along the Pacific Coast of North America.
Collapse
|
34
|
Ramey AM, Poulson RL, González-Reiche AS, Perez DR, Stallknecht DE, Brown JD. Genomic characterization of H14 subtype Influenza A viruses in new world waterfowl and experimental infectivity in mallards (Anas platyrhynchos). PLoS One 2014; 9:e95620. [PMID: 24788792 PMCID: PMC4006863 DOI: 10.1371/journal.pone.0095620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in mallards provides support for similarities in viral replication and shedding as compared to previously described waterfowl-adapted, low pathogenic IAV strains in ducks.
Collapse
Affiliation(s)
- Andrew M. Ramey
- US Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Rebecca L. Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Ana S. González-Reiche
- Department of Veterinary Medicine, University of Maryland College Park, Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Veterinary Medicine, University of Maryland College Park, Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, United States of America
| | - David E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| | - Justin D. Brown
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
35
|
Miller RS, Sweeney SJ, Akkina JE, Saito EK. Potential Intercontinental Movement of Influenza A(H7N9) Virus into North America by Wild Birds: Application of a Rapid Assessment Framework. Transbound Emerg Dis 2014; 62:650-68. [PMID: 24589158 DOI: 10.1111/tbed.12213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Indexed: 11/28/2022]
Abstract
A critical question surrounding emergence of novel strains of avian influenza viruses (AIV) is the ability for wild migratory birds to translocate a complete (unreassorted whole genome) AIV intercontinentally. Virus translocation via migratory birds is suspected in outbreaks of highly pathogenic strain A(H5N1) in Asia, Africa and Europe. As a result, the potential intercontinental translocation of newly emerging AIV such as A(H7N9) from Eurasia to North America via migratory movements of birds remains a concern. An estimated 2.91 million aquatic birds move annually between Eurasia and North America with an estimated AIV prevalence as high as 32.2%. Here, we present a rapid assessment to address the likelihood of whole (unreassorted)-genome translocation of Eurasian strain AIV into North America. The scope of this assessment was limited specifically to assess the weight of evidence to support the movement of an unreassorted AIV intercontinentally by migratory aquatic birds. We developed a rapid assessment framework to assess the potential for intercontinental movement of avian influenzas by aquatic birds. This framework was iteratively reviewed by a multidisciplinary panel of scientific experts until a consensus was established. Our assessment framework identified four factors that may contribute to the potential for introduction of any AIV intercontinentally into North America by wild aquatic birds. These factors, in aggregate, provide a framework for evaluating the likelihood of new forms of AIV from Eurasia to be introduced by aquatic birds into North America. Based on our assessment, we determined that the potential for introduction of A(H7N9) into North America through aquatic migratory birds is possible, but the likelihood ranges from extremely low to low.
Collapse
Affiliation(s)
- R S Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - S J Sweeney
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - J E Akkina
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - E K Saito
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| |
Collapse
|
36
|
Huang Y, Wille M, Dobbin A, Walzthöni NM, Robertson GJ, Ojkic D, Whitney H, Lang AS. Genetic structure of avian influenza viruses from ducks of the Atlantic flyway of North America. PLoS One 2014; 9:e86999. [PMID: 24498009 PMCID: PMC3907406 DOI: 10.1371/journal.pone.0086999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV) genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008–2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006–2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Michelle Wille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ashley Dobbin
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Natasha M. Walzthöni
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Environment Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Hugh Whitney
- Newfoundland and Labrador Department of Natural Resources, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
37
|
Bahl J, Krauss S, Kühnert D, Fourment M, Raven G, Pryor SP, Niles LJ, Danner A, Walker D, Mendenhall IH, Su YCF, Dugan VG, Halpin RA, Stockwell TB, Webby RJ, Wentworth DE, Drummond AJ, Smith GJD, Webster RG. Influenza a virus migration and persistence in North American wild birds. PLoS Pathog 2013; 9:e1003570. [PMID: 24009503 PMCID: PMC3757048 DOI: 10.1371/journal.ppat.1003570] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 06/18/2013] [Indexed: 12/15/2022] Open
Abstract
Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.
Collapse
Affiliation(s)
- Justin Bahl
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, United States of America
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Denise Kühnert
- Department of Computer Science, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| | - Mathieu Fourment
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Garnet Raven
- Environment Canada, Canadian Wildlife Service, Edmonton, Alberta, Canada
| | - S. Paul Pryor
- Environment Canada, Canadian Wildlife Service, Edmonton, Alberta, Canada
| | - Lawrence J. Niles
- Conserve Wildlife Foundation of New Jersey, Bordentown, New Jersey, United States of America
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David Walker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Ian H. Mendenhall
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Yvonne C. F. Su
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Vivien G. Dugan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Division of Microbiology and Infectious Diseases/National Institute of Allergy and Infectious Diseases/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Alexei J. Drummond
- Department of Computer Science, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| | - Gavin J. D. Smith
- Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail: (GJDS); (RGW)
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (GJDS); (RGW)
| |
Collapse
|
38
|
Wiwanitkit V, Shi B, Xia S, Yang GJ, Zhou XN, Liu J. Research priorities in modeling the transmission risks of H7N9 bird flu. Infect Dis Poverty 2013; 2:17. [PMID: 23927386 PMCID: PMC3751567 DOI: 10.1186/2049-9957-2-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022] Open
Abstract
The epidemic of H7N9 bird flu in eastern China in early 2013 has caused much attention from researchers as well as public health workers. The issue on modeling the transmission risks is very interesting topic. In this article, this issue is debated and discussed in order to promote further researches on prediction and prevention of avian influenza viruses supported by better interdisciplinary datasets from the surveillance and response system.
Collapse
|
39
|
Evidence that life history characteristics of wild birds influence infection and exposure to influenza A viruses. PLoS One 2013; 8:e57614. [PMID: 23469210 PMCID: PMC3587647 DOI: 10.1371/journal.pone.0057614] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
We report on life history characteristics, temporal, and age-related effects influencing the frequency of occurrence of avian influenza (AI) viruses in four species of migratory geese breeding on the Yukon-Kuskokwim Delta, Alaska. Emperor geese (Chen canagica), cackling geese (Branta hutchinsii), greater white-fronted geese (Anser albifrons), and black brant (Branta bernicla), were all tested for active infection of AI viruses upon arrival in early May, during nesting in June, and while molting in July and August, 2006–2010 (n = 14,323). Additionally, prior exposure to AI viruses was assessed via prevalence of antibodies from sera samples collected during late summer in 2009 and 2010. Results suggest that geese are uncommonly infected by low pathogenic AI viruses while in Alaska. The percent of birds actively shedding AI viruses varied annually, and was highest in 2006 and 2010 (1–3%) and lowest in 2007, 2008, and 2009 (<0.70%). Contrary to findings in ducks, the highest incidence of infected birds was in late spring when birds first arrived from staging and wintering areas. Despite low prevalence, most geese were previously exposed to AI viruses, as indicated by high levels of seroprevalence during late summer (47%–96% across species; n = 541). Seroprevalence was >95% for emperor geese, a species that spends part of its life cycle in Asia and is endemic to Alaska and the Bering Sea region, compared to 40–60% for the other three species, whose entire life cycles are within the western hemisphere. Birds <45 days of age showed little past exposure to AI viruses, although antibodies were detected in samples from 5-week old birds in 2009. Seroprevalence of known age black brant revealed that no birds <4 years old had seroconverted, compared to 49% of birds ≥4 years of age.
Collapse
|
40
|
Dugan VG, Saira K, Ghedin E. Large-scale sequencing and the natural history of model human RNA viruses. Future Virol 2012; 7:563-573. [PMID: 23682295 DOI: 10.2217/fvl.12.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA virus exploration within the field of medical virology has greatly benefited from technological developments in genomics, deepening our understanding of viral dynamics and emergence. Large-scale first-generation technology sequencing projects have expedited molecular epidemiology studies at an unprecedented scale for two pathogenic RNA viruses chosen as models: influenza A virus and dengue. Next-generation sequencing approaches are now leading to a more in-depth analysis of virus genetic diversity, which is greater for RNA than DNA viruses because of high replication rates and the absence of proofreading activity of the RNA-dependent RNA polymerase. In the field of virus discovery, technological advancements and metagenomic approaches are expanding the catalogs of novel viruses by facilitating our probing into the RNA virus world.
Collapse
Affiliation(s)
- Vivien G Dugan
- Viral Genomics, J Craig Venter Institute, Rockville, MD, USA
| | | | | |
Collapse
|
41
|
SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests. J Clin Microbiol 2011; 50:37-45. [PMID: 22031706 DOI: 10.1128/jcm.01195-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Continuing outbreaks of H5N1 highly pathogenic (HP) avian influenza virus (AIV) infections of wild birds and poultry worldwide emphasize the need for global surveillance of wild birds. To support the future surveillance activities, we developed a SYBR green-based, real-time reverse transcriptase PCR (rRT-PCR) for detecting nucleoprotein (NP) genes and subtyping 16 hemagglutinin (HA) and 9 neuraminidase (NA) genes simultaneously. Primers were improved by focusing on Eurasian or North American lineage genes; the number of mixed-base positions per primer was set to five or fewer, and the concentration of each primer set was optimized empirically. Also, 30 cycles of amplification of 1:10 dilutions of cDNAs from cultured viruses effectively reduced minor cross- or nonspecific reactions. Under these conditions, 346 HA and 345 NA genes of 349 AIVs were detected, with average sensitivities of NP, HA, and NA genes of 10(1.5), 10(2.3), and 10(3.1) 50% egg infective doses, respectively. Utility of rRT-PCR for subtyping AIVs was compared with that of current standard serological tests by using 104 recent migratory duck virus isolates. As a result, all HA genes and 99% of the NA genes were genetically subtyped, while only 45% of HA genes and 74% of NA genes were serologically subtyped. Additionally, direct subtyping of AIVs in fecal samples was possible by 40 cycles of amplification: approximately 70% of HA and NA genes of NP gene-positive samples were successfully subtyped. This validation study indicates that rRT-PCR with optimized primers and reaction conditions is a powerful tool for subtyping varied AIVs in clinical and cultured samples.
Collapse
|
42
|
Reeves AB, Pearce JM, Ramey AM, Meixell BW, Runstadler JA. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks. INFECTION GENETICS AND EVOLUTION 2011; 11:2004-10. [PMID: 21964597 DOI: 10.1016/j.meegid.2011.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/24/2011] [Accepted: 09/06/2011] [Indexed: 12/09/2022]
Abstract
The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99% identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.
Collapse
Affiliation(s)
- Andrew B Reeves
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | | | | | | | | |
Collapse
|
43
|
Evidence for limited exchange of avian influenza viruses between seaducks and dabbling ducks at Alaska Peninsula coastal lagoons. Arch Virol 2011; 156:1813-21. [PMID: 21766196 DOI: 10.1007/s00705-011-1059-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Avian influenza virus (AIV) prevalence and sequence data were analyzed for Steller's eiders (Polysticta stelleri) to assess the role of this species in transporting virus genes between continents and maintaining a regional viral reservoir with sympatric northern pintails (Anas acuta). AIV prevalence was 0.2% at Izembek Lagoon and 3.9% at Nelson Lagoon for Steller's eiders and 11.2% for northern pintails at Izembek Lagoon. Phylogenetic analysis of 13 AIVs from Steller's eiders revealed that 4.9% of genes were of Eurasian origin. Seven subtypes were detected, including two also observed in northern pintails. No AIV strains were highly similar (> 99%) at all gene segments between species; however, highly similar individual genes were detected. The proportion of highly similar genes was greater within rather than between species. Steller's eiders likely transport AIV genes between continents through long-distance migratory movements. Differences in AIV prevalence, subtype distribution, and the proportion of highly similar genes suggest limited AIV exchange between Steller's eiders and northern pintails at Alaska Peninsula coastal lagoons during autumn.
Collapse
|
44
|
Affiliation(s)
- Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | | |
Collapse
|