1
|
Szynwelski BE, Kretschmer R, Matzenbacher CA, Ferrari F, Alievi MM, de Freitas TRO. Hybridization in Canids-A Case Study of Pampas Fox ( Lycalopex gymnocercus) and Domestic Dog ( Canis lupus familiaris) Hybrid. Animals (Basel) 2023; 13:2505. [PMID: 37570312 PMCID: PMC10417603 DOI: 10.3390/ani13152505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Hybridization between species with different evolutionary trajectories can be a powerful threat to wildlife conservation. Anthropogenic activities, such as agriculture and livestock, have led to the degradation and loss of natural habitats for wildlife. Consequently, the incidence of interspecific hybridization between wild and domestic species has increased, although cases involving species of different genera are rare. In Vacaria, a Southern city in Brazil, a female canid with a strange phenotype, which had characteristics between the phenotype of the domestic dog (Canis familiaris) and that of the pampas fox (Lycalopex gymnocercus), was found. Our analysis suggests that the animal is a hybrid between a domestic dog and a pampas fox, but future studies are necessary to investigate additional cases of this hybridization in nature. This finding worries for the conservation of wild canids in South America, especially concerning Lycalopex species. Hybridization with the domestic dog may have harmful effects on pampas fox populations due to the potential for introgression and disease transmission by the domestic dog. Therefore, future studies to explore the consequences of hybridization on genetics, ecology, and behavior of wild populations will be essential to improve the conservation of this species.
Collapse
Affiliation(s)
- Bruna Elenara Szynwelski
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Rio Grande do Sul, Brazil; (B.E.S.); (C.A.M.); (T.R.O.d.F.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas 96010-900, Rio Grande do Sul, Brazil
| | - Cristina Araujo Matzenbacher
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Rio Grande do Sul, Brazil; (B.E.S.); (C.A.M.); (T.R.O.d.F.)
| | - Flávia Ferrari
- Núcleo de Conservação e Reabilitação de Animais Silvestres, Universidade Federal do Rio Grande do Sul, Porto Alegre 90540-000, Rio Grande do Sul, Brazil; (F.F.); (M.M.A.)
| | - Marcelo Meller Alievi
- Núcleo de Conservação e Reabilitação de Animais Silvestres, Universidade Federal do Rio Grande do Sul, Porto Alegre 90540-000, Rio Grande do Sul, Brazil; (F.F.); (M.M.A.)
| | - Thales Renato Ochotorena de Freitas
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Rio Grande do Sul, Brazil; (B.E.S.); (C.A.M.); (T.R.O.d.F.)
| |
Collapse
|
2
|
Barnes TM, Karlin M, vonHoldt BM, Adams JR, Waits LP, Hinton JW, Henderson J, Brzeski KE. Genetic diversity and family groups detected in a coyote population with red wolf ancestry on Galveston Island, Texas. BMC Ecol Evol 2022; 22:134. [PMID: 36376792 PMCID: PMC9664737 DOI: 10.1186/s12862-022-02084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hybridization can be a conservation concern if genomic introgression leads to the loss of an endangered species' unique genome, or when hybrid offspring are sterile or less fit than their parental species. Yet hybridization can also be an adaptive management tool if rare populations are inbred and have reduced genetic variation, and there is the opportunity to enhance genetic variation through hybridization. The red wolf (Canis rufus) is a critically endangered wolf endemic to the eastern United States, where all extant red wolves are descended from 14 founders which has led to elevated levels of inbreeding over time. Red wolves were considered extirpated from the wild by 1980, but before they disappeared, they interbred with encroaching coyotes creating a genetically admixed population of canids along coastal Texas and Louisiana. In 2018, a genetic study identified individuals on Galveston Island, Texas with significant amounts of red wolf ancestry. We collected 203 fecal samples from Galveston for a more in-depth analysis of this population to identify the amount of red wolf ancestry present and potential mechanisms that support retention of red wolf ancestry on the landscape. RESULTS We identified 24 individual coyotes from Galveston Island and 8 from mainland Texas with greater than 10% red wolf ancestry. Two of those individuals from mainland Texas had greater than 50% red wolf ancestry estimates. Additionally, this population had 5 private alleles that were absent in the North American reference canid populations used in this study, which included 107 southeastern coyotes, 19 captive red wolves, and 38 gray wolves, possibly representing lost red wolf genetic variation. We also identified several individuals on Galveston Island and the mainland of Texas that retained a unique red wolf mitochondrial haplotype present in the red wolf founding population. On Galveston Island, we identified a minimum of four family groups and found coyotes on the island to be highly related, but not genetically depauperate. We did not find clear associations between red wolf ancestry estimates and landscape features, such as open green space or developed areas. CONCLUSION Our results confirm the presence of substantial red wolf ancestry persisting on Galveston Island and adjacent mainland Texas. This population has the potential to benefit future red wolf conservation efforts through novel reproductive techniques and possibly through de-introgression strategies, with the goals of recovering extinct red wolf genetic variation and reducing inbreeding within the species.
Collapse
Affiliation(s)
- Tanner M Barnes
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Melissa Karlin
- Department of Physics and Environmental Science, St. Mary's University, San Antonio, TX, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jennifer R Adams
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | | | | | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
3
|
Hinton JW, West KM, Sullivan DJ, Frair JL, Chamberlain MJ. The natural history and ecology of melanism in red wolf and coyote populations of the southeastern United States – evidence for Gloger’s rule. BMC ZOOL 2022; 7:33. [PMID: 37170305 PMCID: PMC10127370 DOI: 10.1186/s40850-022-00138-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Gloger’s rule postulates that animals should be darker colored in warm and humid regions where dense vegetation and dark environments are common. Although rare in Canis populations, melanism in wolves is more common in North America than other regions globally and is believed to follow Gloger’s rule. In the temperate forests of the southeastern United States, historical records of red wolf (Canis rufus) and coyote (Canis latrans) populations document a consistent presence of melanism. Today, the melanistic phenotype is extinct in red wolves while occurring in coyotes and red wolf-coyote hybrids who occupy the red wolf's historical range. To assess if Gloger’s rule could explain the occurrence and maintenance of melanistic phenotypes in Canis taxa, we investigated differences in morphology, habitat selection, and survival associated with pelage color using body measurements, GPS tracking data, and long-term capture-mark-recapture and radio-telemetry data collected on coyotes and hybrids across the southeastern United States.
Results
We found no correlation between morphometrics and pelage color for Canis taxa. However, we observed that melanistic coyotes and hybrids experienced greater annual survival than did their gray conspecifics. Furthermore, we observed that melanistic coyotes maintained larger home ranges and exhibited greater selection for areas with dense canopy cover and wetlands than did gray coyotes.
Conclusions
In the southeastern United States, pelage color influenced habitat selection by coyotes and annual survival of coyotes and hybrids providing evidence that Gloger’s rule is applicable to canids inhabiting regions with dense canopy cover and wetlands. Greater annual survival rates observed in melanistic Canis may be attributed to better concealment in areas with dense canopy cover such as coastal bottomland forests. We suggest that the larger home range sizes of melanistic coyotes may reflect the trade-off of reduced foraging efficiency in lower quality wetland habitat for improved survival. Larger home ranges and differential use of land cover by melanistic coyotes may facilitate weak assortative mating in eastern coyote populations, in which melanistic animals may have lower success of finding compatible mates in comparison to gray conspecifics. We offer that our observations provide a partial explanation for why melanism is relatively low (< 10%) but consistent within coyote populations throughout southeastern parts of their range.
Collapse
|
4
|
vonHoldt BM, Aardema ML. Updating the Bibliography of Interbreeding among Canis in North America. J Hered 2021; 111:249-262. [PMID: 32034410 DOI: 10.1093/jhered/esaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/05/2020] [Indexed: 01/29/2023] Open
Abstract
This bibliography provides a collection of references that documents the evolution of studies evidencing interbreeding among Canis species in North America. Over the past several decades, advances in biology and genomic technology greatly improved our ability to detect and characterize species interbreeding, which has significance for understanding species in a changing landscape as well as for endangered species management. This bibliography includes a discussion within each category of interbreeding, the timeline of developing evidence, and includes a review of past research conducted on experimental crosses. Research conducted in the early 20th century is rich with detailed records and photographs of hybrid offspring development and behavior. With the progression of molecular methods, studies can estimate historical demographic parameters and detect chromosomal patterns of ancestry. As these methods continue to increase in accessibility, the field will gain a deeper and richer understanding of the evolutionary history of North American Canis.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ
| | - Matthew L Aardema
- Department of Biology, Montclair State University, Montclair, NJ.,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, NY
| |
Collapse
|
5
|
Agan SW, Treves A, Willey LL. Estimating poaching risk for the critically endangered wild red wolf (Canis rufus). PLoS One 2021; 16:e0244261. [PMID: 33951037 PMCID: PMC8099127 DOI: 10.1371/journal.pone.0244261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/23/2021] [Indexed: 12/03/2022] Open
Abstract
The reintroduced red wolf (Canis rufus) population in northeastern North Carolina declined to 7 known wolves by October 2020, the majority of which is due to poaching (illegal killing), the major component of verified anthropogenic mortality in this and many other carnivore populations. Poaching is still not well understood and is often underestimated, partly as a result of cryptic poaching, when poachers conceal evidence. Cryptic poaching inhibits our understanding of the causes and consequences of anthropogenic mortality, which is important to conservation as it can inform us about future population patterns within changing political and human landscapes. We estimate risk for marked adult red wolves of 5 causes of death (COD: legal, nonhuman, unknown, vehicle and poached) and disappearance, describe variation in COD in relation to hunting season, and compare time to disappearance or death. We include unknown fates in our risk estimates. We found that anthropogenic COD accounted for 0.78-0.85 of 508 marked animals, including poaching and cryptic poaching, which we estimated at 0.51-0.64. Risk of poaching and disappearance was significantly higher during hunting season. Mean time from collaring until nonhuman COD averaged 376 days longer than time until poached and 642 days longer than time until disappearance. Our estimates of risk differed from prior published estimates, as expected by accounting for unknown fates explicitly. We quantify the effects on risk for three scenarios for unknown fates, which span conservative to most likely COD. Implementing proven practices that prevent poaching or hasten successful reintroduction may reverse the decline to extinction in the wild of this critically endangered population. Our findings add to a growing literature on endangered species protections and enhancing the science used to measure poaching worldwide.
Collapse
Affiliation(s)
- Suzanne W. Agan
- Environmental Studies Department, Antioch University New England, Keene, New Hampshire, United States of America
| | - Adrian Treves
- Carnivore Coexistence Lab, Nelson Institute for Environmental Studies, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lisabeth L. Willey
- Environmental Studies Department, Antioch University New England, Keene, New Hampshire, United States of America
| |
Collapse
|
6
|
Population genetics of the African wolf (Canis lupaster) across its range: first evidence of hybridization with domestic dogs in Africa. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Caniglia R, Galaverni M, Velli E, Mattucci F, Canu A, Apollonio M, Mucci N, Scandura M, Fabbri E. A standardized approach to empirically define reliable assignment thresholds and appropriate management categories in deeply introgressed populations. Sci Rep 2020; 10:2862. [PMID: 32071323 PMCID: PMC7028925 DOI: 10.1038/s41598-020-59521-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Anthropogenic hybridization is recognized as a major threat to the long-term survival of natural populations. While identifying F1 hybrids might be simple, the detection of older admixed individuals is far from trivial and it is still debated whether they should be targets of management. Examples of anthropogenic hybridization have been described between wolves and domestic dogs, with numerous cases detected in the Italian wolf population. After selecting appropriate wild and domestic reference populations, we used empirical and simulated 39-autosomal microsatellite genotypes, Bayesian assignment and performance analyses to develop a workflow to detect different levels of wolf x dog admixture. Membership proportions to the wild cluster (qiw) and performance indexes identified two q-thresholds which allowed to efficiently classify the analysed genotypes into three assignment classes: pure (with no or negligible domestic ancestry), older admixed (with a marginal domestic ancestry) and recent admixed (with a clearly detectable domestic ancestry) animals. Based on their potential to spread domestic variants, such classes were used to define three corresponding management categories: operational pure, introgressed and operational hybrid individuals. Our multiple-criteria approach can help wildlife managers and decision makers in more efficiently targeting the available resources for the long-term conservation of species threatened by anthropogenic hybridization.
Collapse
Affiliation(s)
- Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy.
| | | | - Edoardo Velli
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Federica Mattucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Antonio Canu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| | - Massimo Scandura
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Elena Fabbri
- Unit for Conservation Genetics (BIO-CGE), Italian Institute for Environmental Protection and Research (ISPRA), Ozzano dell' Emilia, Bologna, Italy
| |
Collapse
|
8
|
Cairns KM, Nesbitt BJ, Laffan SW, Letnic M, Crowther MS. Geographic hot spots of dingo genetic ancestry in southeastern Australia despite hybridisation with domestic dogs. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01230-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Salvatori V, Godinho R, Braschi C, Boitani L, Ciucci P. High levels of recent wolf × dog introgressive hybridization in agricultural landscapes of central Italy. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1313-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Detailed characterization of repeat motifs of nine canid microsatellite loci in African painted dogs (Lycaon pictus). MAMMAL RES 2019. [DOI: 10.1007/s13364-019-00442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
McFarlane SE, Pemberton JM. Detecting the True Extent of Introgression during Anthropogenic Hybridization. Trends Ecol Evol 2019; 34:315-326. [DOI: 10.1016/j.tree.2018.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
12
|
Murphy SM, Adams JR, Cox JJ, Waits LP. Substantial red wolf genetic ancestry persists in wild canids of southwestern Louisiana. Conserv Lett 2018. [DOI: 10.1111/conl.12621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sean M. Murphy
- Large Carnivore Program Louisiana Department of Wildlife and Fisheries Lafayette Louisiana
- Department of Forestry and Natural Resources University of Kentucky Lexington Kentucky
| | - Jennifer R. Adams
- Laboratory for Ecological, Evolutionary and Conservation Genetics, Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho
| | - John J. Cox
- Department of Forestry and Natural Resources University of Kentucky Lexington Kentucky
| | - Lisette P. Waits
- Laboratory for Ecological, Evolutionary and Conservation Genetics, Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho
| |
Collapse
|
13
|
Murphy SM, Augustine BC, Adams JR, Waits LP, Cox JJ. Integrating multiple genetic detection methods to estimate population density of social and territorial carnivores. Ecosphere 2018. [DOI: 10.1002/ecs2.2479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sean M. Murphy
- Louisiana Department of Wildlife and Fisheries; Large Carnivore Program; Lafayette Louisiana 70506 USA
| | - Ben C. Augustine
- Department of Fish and Wildlife Conservation; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061 USA
| | - Jennifer R. Adams
- Laboratory for Ecological, Evolutionary and Conservation Genetics; Department of Fish and Wildlife Sciences; University of Idaho; Moscow Idaho 83844 USA
| | - Lisette P. Waits
- Laboratory for Ecological, Evolutionary and Conservation Genetics; Department of Fish and Wildlife Sciences; University of Idaho; Moscow Idaho 83844 USA
| | - John J. Cox
- Department of Forestry and Natural Resources; University of Kentucky; Lexington Kentucky 40546 USA
| |
Collapse
|
14
|
Bohling JH, Mastro LL, Adams JR, Gese EM, Owen SF, Waits LP. Panmixia and Limited Interspecific Introgression in Coyotes (Canis latrans) from West Virginia and Virginia, USA. J Hered 2017; 108:608-617. [PMID: 28821188 DOI: 10.1093/jhered/esx068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023] Open
Abstract
The expansion of coyotes (Canis latrans) into the eastern United States has had major consequences for ecological communities and wildlife managers. Despite this, there has been little investigation of the genetics of coyotes across much of this region, especially outside of the northeast. Understanding patterns of genetic structure and interspecific introgression would provide insights into the colonization history of the species, its response to the modern environment, and interactions with other canids. We examined the genetic characteristics of 121 coyotes from the mid-Atlantic states of West Virginia and Virginia by genotyping 17 polymorphic nuclear DNA microsatellite loci. These genotypes were compared with those from other canid populations to evaluate the extent of genetic introgression. We conducted spatial clustering analyses and spatial autocorrelation to assess genetic structure among sampled coyotes. Coyotes across the 2 states had high genetic diversity, and we found no evidence of genetic structure. Six to sixteen percent of individuals displayed some evidence of genetic introgression from other species depending on the method and criteria used, but the population possessed predominantly coyote ancestry. Our findings suggested introgression from other canid populations has played less of a role in shaping the genetic character of coyotes in these states compared with populations closer to the Canadian border. Coyotes appear to display a panmictic population structure despite high habitat heterogeneity and heavy human influence in the spatial environment, underscoring the adaptability of the species.
Collapse
Affiliation(s)
- Justin H Bohling
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, Longview, WA 98632; U.S. Department of Agriculture-APHIS-Wildlife Services, Christiansburg, VA; Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; U.S. Department of Agriculture-APHIS-Wildlife Services, National Wildlife Research Center, Utah State University, Logan, UT; West Virginia University Extension Service, Morgantown, WV
| | - Lauren L Mastro
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, Longview, WA 98632; U.S. Department of Agriculture-APHIS-Wildlife Services, Christiansburg, VA; Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; U.S. Department of Agriculture-APHIS-Wildlife Services, National Wildlife Research Center, Utah State University, Logan, UT; West Virginia University Extension Service, Morgantown, WV
| | - Jennifer R Adams
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, Longview, WA 98632; U.S. Department of Agriculture-APHIS-Wildlife Services, Christiansburg, VA; Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; U.S. Department of Agriculture-APHIS-Wildlife Services, National Wildlife Research Center, Utah State University, Logan, UT; West Virginia University Extension Service, Morgantown, WV
| | - Eric M Gese
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, Longview, WA 98632; U.S. Department of Agriculture-APHIS-Wildlife Services, Christiansburg, VA; Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; U.S. Department of Agriculture-APHIS-Wildlife Services, National Wildlife Research Center, Utah State University, Logan, UT; West Virginia University Extension Service, Morgantown, WV
| | - Sheldon F Owen
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, Longview, WA 98632; U.S. Department of Agriculture-APHIS-Wildlife Services, Christiansburg, VA; Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; U.S. Department of Agriculture-APHIS-Wildlife Services, National Wildlife Research Center, Utah State University, Logan, UT; West Virginia University Extension Service, Morgantown, WV
| | - Lisette P Waits
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, Longview, WA 98632; U.S. Department of Agriculture-APHIS-Wildlife Services, Christiansburg, VA; Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID; U.S. Department of Agriculture-APHIS-Wildlife Services, National Wildlife Research Center, Utah State University, Logan, UT; West Virginia University Extension Service, Morgantown, WV
| |
Collapse
|
15
|
Nakamura M, Godinho R, Rio-Maior H, Roque S, Kaliontzopoulou A, Bernardo J, Castro D, Lopes S, Petrucci-Fonseca F, Álvares F. Evaluating the predictive power of field variables for species and individual molecular identification on wolf noninvasive samples. EUR J WILDLIFE RES 2017. [DOI: 10.1007/s10344-017-1112-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Spatial assessment of wolf-dog hybridization in a single breeding period. Sci Rep 2017; 7:42475. [PMID: 28195213 PMCID: PMC5307949 DOI: 10.1038/srep42475] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
Abstract
Understanding the dynamics of wolf-dog hybridization and delineating evidence-based conservation strategies requires information on the spatial extent of wolf-dog hybridization in real-time, which remains largely unknown. We collected 332 wolf-like scats over ca. 5,000km2 in the NW Iberian Peninsula to evaluate wolf-dog hybridization at population level in a single breeding/pup-rearing season. Mitochondrial DNA (MtDNA) and 18 ancestry informative markers were used for species and individual identification, and to detect wolf-dog hybrids. Genetic relatedness was assessed between hybrids and wolves. We identified 130 genotypes, including 67 wolves and 7 hybrids. Three of the hybrids were backcrosses to dog whereas the others were backcrosses to wolf, the latter accounting for a 5.6% rate of introgression into the wolf population. Our results show a previously undocumented scenario of multiple and widespread wolf-dog hybridization events at the population level. However, there is a clear maintenance of wolf genetic identity, as evidenced by the sharp genetic identification of pure individuals, suggesting the resilience of wolf populations to a small amount of hybridization. We consider that real-time population level assessments of hybridization provide a new perspective into the debate on wolf conservation, with particular focus on current management guidelines applied in wolf-dog hybridization events.
Collapse
|
17
|
Temporal shifts in the saltmarsh–Nelson’s sparrow hybrid zone revealed by replicated demographic and genetic surveys. CONSERV GENET 2017. [DOI: 10.1007/s10592-016-0920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Costa MC, Oliveira PRR, Davanço PV, de Camargo C, Laganaro NM, Azeredo RA, Simpson J, Silveira LF, Francisco MR. Recovering the Genetic Identity of an Extinct-in-the-Wild Species: The Puzzling Case of the Alagoas Curassow. PLoS One 2017; 12:e0169636. [PMID: 28056082 PMCID: PMC5215914 DOI: 10.1371/journal.pone.0169636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
The conservation of many endangered taxa relies on hybrid identification, and when hybrids become morphologically indistinguishable from the parental species, the use of molecular markers can assign individual admixture levels. Here, we present the puzzling case of the extinct in the wild Alagoas Curassow (Pauxi mitu), whose captive population descends from only three individuals. Hybridization with the Razor-billed Curassow (P. tuberosa) began more than eight generations ago, and admixture uncertainty affects the whole population. We applied an analysis framework that combined morphological diagnostic traits, Bayesian clustering analyses using 14 microsatellite loci, and mtDNA haplotypes to assess the ancestry of all individuals that were alive from 2008 to 2012. Simulated data revealed that our microsatellites could accurately assign an individual a hybrid origin until the second backcross generation, which permitted us to identify a pure group among the older, but still reproductive animals. No wild species has ever survived such a severe bottleneck, followed by hybridization, and studying the recovery capability of the selected pure Alagoas Curassow group might provide valuable insights into biological conservation theory.
Collapse
Affiliation(s)
- Mariellen C. Costa
- Programa de Pós Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rod. Washington Luís, CEP, São Carlos, SP, Brazil
| | - Paulo R. R. Oliveira
- Programa de Pós Graduação em Diversidade Biológica e Conservação, Universidade Federal de São Carlos, campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Paulo V. Davanço
- Programa de Pós Graduação em Diversidade Biológica e Conservação, Universidade Federal de São Carlos, campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Crisley de Camargo
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Natasha M. Laganaro
- Programa de Pós Graduação em Diversidade Biológica e Conservação, Universidade Federal de São Carlos, campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
| | - Roberto A. Azeredo
- CRAX—Sociedade de Pesquisa do Manejo e da Reprodução da Fauna Silvestre, rua Jarbas Camargo, Chácara Campestre, Contagem, MG, Brazil
| | - James Simpson
- CRAX—Sociedade de Pesquisa do Manejo e da Reprodução da Fauna Silvestre, rua Jarbas Camargo, Chácara Campestre, Contagem, MG, Brazil
| | - Luis F. Silveira
- Seção de Aves, Museu de Zoologia da Universidade de São Paulo, CEP, São Paulo, SP, Brazil
| | - Mercival R. Francisco
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Campus de Sorocaba, Rod. João Leme dos Santos, CEP, Sorocaba, SP, Brazil
- * E-mail:
| |
Collapse
|
19
|
Canu A, Mattioli L, Santini A, Apollonio M, Scandura M. ‘Video-scats’: combining camera trapping and non-invasive genotyping to assess individual identity and hybrid status in gray wolf. WILDLIFE BIOLOGY 2017. [DOI: 10.2981/wlb.00355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Antonio Canu
- A. Canu, M. Apollonio and M. Scandura , Dept. of Science for Nature and Environmental Resources, Univ. of Sassari, Via Muroni 25, IT-07100 Sassari, Italy. AC also at: C.I.R.Se.M.A.F. Firenze, Italy
| | - Luca Mattioli
- L. Mattioli, Regione Toscana, Settore Attività Faunistico Venatoria, Pesca Dilettantistica, Pesca in Mare, Arezzo, Italy
| | | | - Marco Apollonio
- A. Canu, M. Apollonio and M. Scandura , Dept. of Science for Nature and Environmental Resources, Univ. of Sassari, Via Muroni 25, IT-07100 Sassari, Italy. AC also at: C.I.R.Se.M.A.F. Firenze, Italy
| | - Massimo Scandura
- A. Canu, M. Apollonio and M. Scandura , Dept. of Science for Nature and Environmental Resources, Univ. of Sassari, Via Muroni 25, IT-07100 Sassari, Italy. AC also at: C.I.R.Se.M.A.F. Firenze, Italy
| |
Collapse
|
20
|
Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaité L, Czarnomska SD, Leonard JA, Randi E, Nowak C, Åkesson M, López-Bao JV, Álvares F, Llaneza L, Echegaray J, Vilà C, Ozolins J, Rungis D, Aspi J, Paule L, Skrbinšek T, Saarma U. Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev Camb Philos Soc 2016; 92:1601-1629. [PMID: 27682639 DOI: 10.1111/brv.12298] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023]
Abstract
The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human-carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the 'pre-genomic era' and the first insights of the 'genomics era'. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science-based wolf conservation and management at regional and Europe-wide scales.
Collapse
Affiliation(s)
- Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Jaanus Remm
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Malgorzata Pilot
- School of Life Sciences, University of Lincoln, Green Lane, LN6 7DL, Lincoln, UK
| | - Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Astrid Vik Stronen
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
| | - Laima Baltrūnaité
- Laboratory of Mammalian Biology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Sylwia D Czarnomska
- Mammal Research Institute Polish Academy of Sciences, Waszkiewicza 1, 17-230, Białowieża, Poland
| | - Jennifer A Leonard
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Ettore Randi
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571, Gelnhausen, Germany
| | - Mikael Åkesson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden
| | | | - Francisco Álvares
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Luis Llaneza
- ARENA Asesores en Recursos Naturales S.L. c/Perpetuo Socorro, n° 12 Entlo 2B, 27003, Lugo, Spain
| | - Jorge Echegaray
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Carles Vilà
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Janis Ozolins
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Dainis Rungis
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Jouni Aspi
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Ladislav Paule
- Department of Phytology, Faculty of Forestry, Technical University, T.G. Masaryk str. 24, SK-96053, Zvolen, Slovakia
| | - Tomaž Skrbinšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
21
|
Kokita T, Takahashi S, Kinoshita M. Evolution of gigantism and size-based female mate choice in ice goby ( Leucopsarion petersii) populations in a semi-enclosed sea basin. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomoyuki Kokita
- Department of Marine Bioscience; Fukui Prefectural University; Obama Fukui 917-0003 Japan
| | - Sayaka Takahashi
- Department of Marine Bioscience; Fukui Prefectural University; Obama Fukui 917-0003 Japan
| | - Masaki Kinoshita
- Department of Marine Bioscience; Fukui Prefectural University; Obama Fukui 917-0003 Japan
| |
Collapse
|
22
|
Piaggio AJ, Cariappa CA, Straughan DJ, Neubaum MA, Dwire M, Krausman PR, Ballard WB, Bergman DL, Breck SW. A noninvasive method to detect Mexican wolves and estimate abundance. WILDLIFE SOC B 2016. [DOI: 10.1002/wsb.659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Antoinette J. Piaggio
- United States Department of Agriculture; Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center; Fort Collins CO 80521 USA
| | - Chip A. Cariappa
- Department of Natural Resources Management; Texas Tech University; Lubbock TX 79409-2125 USA
| | - Dyan J. Straughan
- United States Fish and Wildlife Service; National Forensics Laboratory; Ashland OR 97520 USA
| | - Melissa A. Neubaum
- United States Department of Agriculture; Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center; Fort Collins CO 80521 USA
| | - Margaret Dwire
- United States Fish and Wildlife Service; Albuquerque NM 87113 USA
| | - Paul R. Krausman
- Boone and Crockett Program in Wildlife Conservation; University of Montana; Missoula MT 59812 USA
| | - Warren B. Ballard
- Department of Natural Resources Management; Texas Tech University; Lubbock TX 79409-2125 USA
| | - David L. Bergman
- United States Department of Agriculture; Animal and Plant Health Inspection Service, Wildlife Services; Phoenix AZ 85021 USA
| | - Stewart W. Breck
- United States Department of Agriculture; Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center; Fort Collins CO 80521 USA
| |
Collapse
|
23
|
Bohling JH, Dellinger J, McVey JM, Cobb DT, Moorman CE, Waits LP. Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, USA. Evol Appl 2016; 9:791-804. [PMID: 27330555 PMCID: PMC4908465 DOI: 10.1111/eva.12388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/26/2016] [Indexed: 12/02/2022] Open
Abstract
When hybridizing species come into contact, understanding the processes that regulate their interactions can help predict the future outcome of the system. This is especially relevant in conservation situations where human activities can influence hybridization dynamics. We investigated a developing hybrid zone between red wolves and coyotes in North Carolina, USA to elucidate patterns of hybridization in a system heavily managed for preservation of the red wolf genome. Using noninvasive genetic sampling of scat, we surveyed a 2880 km2 region adjacent to the Red Wolf Experimental Population Area (RWEPA). We combined microsatellite genotypes collected from this survey with those from companion studies conducted both within and outside the RWEPA to describe the gradient of red wolf ancestry. A total of 311 individuals were genotyped at 17 loci and red wolf ancestry decreased along an east–west gradient across the RWEPA. No red wolves were found outside the RWEPA, yet half of individuals found within this area were coyotes. Hybrids composed only 4% of individuals within this landscape despite co‐occurrence of the two species throughout the RWEPA. The low proportion of hybrids suggests that a combination of active management and natural isolating mechanisms may be limiting intermixing within this hybrid system.
Collapse
Affiliation(s)
- Justin H Bohling
- Department of Fish and Wildlife Resources University of Idaho Moscow ID USA
| | - Justin Dellinger
- School of Environmental and Forest Sciences University of Washington Seattle WA USA
| | - Justin M McVey
- Department of Forestry and Environmental Resources North Carolina State University Raleigh NC USA
| | - David T Cobb
- North Carolina Wildlife Resources Commission Raleigh NC USA
| | - Christopher E Moorman
- Department of Forestry and Environmental Resources North Carolina State University Raleigh NC USA
| | - Lisette P Waits
- Department of Fish and Wildlife Resources University of Idaho Moscow ID USA
| |
Collapse
|
24
|
Klütsch CFC, Manseau M, Trim V, Polfus J, Wilson PJ. The eastern migratory caribou: the role of genetic introgression in ecotype evolution. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150469. [PMID: 26998320 PMCID: PMC4785971 DOI: 10.1098/rsos.150469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Understanding the evolutionary history of contemporary animal groups is essential for conservation and management of endangered species like caribou (Rangifer tarandus). In central Canada, the ranges of two caribou subspecies (barren-ground/woodland caribou) and two woodland caribou ecotypes (boreal/eastern migratory) overlap. Our objectives were to reconstruct the evolutionary history of the eastern migratory ecotype and to assess the potential role of introgression in ecotype evolution. STRUCTURE analyses identified five higher order groups (i.e. three boreal caribou populations, eastern migratory ecotype and barren-ground). The evolutionary history of the eastern migratory ecotype was best explained by an early genetic introgression from barren-ground into a woodland caribou lineage during the Late Pleistocene and subsequent divergence of the eastern migratory ecotype during the Holocene. These results are consistent with the retreat of the Laurentide ice sheet and the colonization of the Hudson Bay coastal areas subsequent to the establishment of forest tundra vegetation approximately 7000 years ago. This historical reconstruction of the eastern migratory ecotype further supports its current classification as a conservation unit, specifically a Designatable Unit, under Canada's Species at Risk Act. These findings have implications for other sub-specific contact zones for caribou and other North American species in conservation unit delineation.
Collapse
Affiliation(s)
| | - Micheline Manseau
- Protected Areas Establishment and Conservation Directorate, Parks Canada, Gatineau, Quebec, Canada J8X 0B3
- Natural Resources Institute, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Vicki Trim
- Manitoba Conservation and Water Stewardship, PO Box 28, 59 Elizabeth Drive, Thompson, Manitoba, Canada R8N 1X4
| | - Jean Polfus
- Natural Resources Institute, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Paul J. Wilson
- Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8
| |
Collapse
|
25
|
Stephens D, Wilton AN, Fleming PJS, Berry O. Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol Ecol 2015; 24:5643-56. [PMID: 26514639 DOI: 10.1111/mec.13416] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Hybridization between domesticated animals and their wild counterparts can disrupt adaptive gene combinations, reduce genetic diversity, extinguish wild populations and change ecosystem function. The dingo is a free-ranging dog that is an iconic apex predator and distributed throughout most of mainland Australia. Dingoes readily hybridize with domestic dogs, and in many Australian jurisdictions, distinct management strategies are dictated by hybrid status. Yet, the magnitude and spatial extent of domestic dog-dingo hybridization is poorly characterized. To address this, we performed a continent-wide analysis of hybridization throughout Australia based on 24 locus microsatellite DNA genotypes from 3637 free-ranging dogs. Although 46% of all free-ranging dogs were classified as pure dingoes, all regions exhibited some hybridization, and the magnitude varied substantially. The southeast of Australia was highly admixed, with 99% of animals being hybrids or feral domestic dogs, whereas only 13% of the animals from remote central Australia were hybrids. Almost all free-ranging dogs had some dingo ancestry, indicating that domestic dogs could have poor survivorship in nonurban Australian environments. Overall, wild pure dingoes remain the dominant predator over most of Australia, but the speed and extent to which hybridization has occurred in the approximately 220 years since the first introduction of domestic dogs indicate that the process may soon threaten the persistence of pure dingoes.
Collapse
Affiliation(s)
- Danielle Stephens
- School of Animal Biology and Invasive Animals Cooperative Research Centre, M092, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Alan N Wilton
- School of Biotechnology and Biomolecular Sciences, Clive and Vera Ramaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Peter J S Fleming
- Vertebrate Pest Research Unit, Biosecurity NSW, NSW Department of Primary Industries, Orange Agricultural Institute, Orange, New South Wales, 2800, Australia.,School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, 2351, Australia
| | - Oliver Berry
- School of Animal Biology and Invasive Animals Cooperative Research Centre, M092, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
26
|
Lobo D, Godinho R, Álvares F, López-Bao JV, Rodríguez A. A New Method for Noninvasive Genetic Sampling of Saliva in Ecological Research. PLoS One 2015; 10:e0139765. [PMID: 26496352 PMCID: PMC4619700 DOI: 10.1371/journal.pone.0139765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Noninvasive samples for genetic analyses have become essential to address ecological questions. Popular noninvasive samples such as faeces contain degraded DNA which may compromise genotyping success. Saliva is an excellent alternative DNA source but scarcity of suitable collection methods makes its use anecdotal in field ecological studies. We develop a noninvasive method of collection that combines baits and porous materials able to capture saliva. We report its potential in optimal conditions, using confined dogs and collecting saliva early after deposition. DNA concentration in saliva extracts was generally high (mean 14 ng μl-1). We correctly identified individuals in 78% of samples conservatively using ten microsatellite loci, and 90% of samples using only eight loci. Consensus genotypes closely matched reference genotypes obtained from hair DNA (99% of identification successes and 91% of failures). Mean genotyping effort needed for identification using ten loci was 2.2 replicates. Genotyping errors occurred at a very low frequency (allelic dropout: 2.3%; false alleles: 1.5%). Individual identification success increased with duration of substrate handling inside dog’s mouth and the volume of saliva collected. Low identification success was associated with baits rich in DNA-oxidant polyphenols and DNA concentrations <1 ng μl-1. The procedure performed at least as well as other noninvasive methods, and could advantageously allow detection of socially low-ranked individuals underrepresented in sources of DNA that are involved in marking behaviour (faeces or urine). Once adapted and refined, there is promise for this technique to allow potentially high rates of individual identification in ecological field studies requiring noninvasive sampling of wild vertebrates.
Collapse
Affiliation(s)
- Diana Lobo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- * E-mail: (AR); (RG)
| | - Francisco Álvares
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | - José V. López-Bao
- Research Unit of Biodiversity (UO/CSIC/PA), Oviedo University, Mieres, Spain
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences (SLU), Riddarhyttan, Sweden
| | - Alejandro Rodríguez
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
- * E-mail: (AR); (RG)
| |
Collapse
|
27
|
Leite JV, Álvares F, Velo-Antón G, Brito JC, Godinho R. Differentiation of North African foxes and population genetic dynamics in the desert—insights into the evolutionary history of two sister taxa, Vulpes rueppellii and Vulpes vulpes. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0232-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Ellington EH, Murray DL. Influence of hybridization on animal space use: a case study using coyote range expansion. OIKOS 2015. [DOI: 10.1111/oik.01824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E. Hance Ellington
- Environmental and Life Sciences, Trent Univ.; 2140 East Bank Drive Peterborough, ON K9J 7B8 Canada
| | - Dennis L. Murray
- Biology Dept; Trent Univ.; 2140 East Bank Drive Peterborough, ON K9J 7B8 Canada
| |
Collapse
|
29
|
Godinho R, López-Bao JV, Castro D, Llaneza L, Lopes S, Silva P, Ferrand N. Real-time assessment of hybridization between wolves and dogs: combining noninvasive samples with ancestry informative markers. Mol Ecol Resour 2014; 15:317-28. [PMID: 25132482 DOI: 10.1111/1755-0998.12313] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 01/17/2023]
Abstract
Wolves and dogs provide a paradigmatic example of the ecological and conservation implications of hybridization events between wild and domesticated forms. However, our understanding of such implications has been traditionally hampered by both high genetic similarity and the difficulties in obtaining tissue samples (TS), which limit our ability to assess ongoing hybridization events. To assess the occurrence and extension of hybridization in a pack of wolf-dog hybrids in northwestern Iberia, we compared the power of 52 nuclear markers implemented on TS with a subset of 13 ancestry informative markers (AIMs) typed in noninvasive samples (NIS). We demonstrate that the 13 AIMs are as accurate as the 52 markers that were chosen without regard to the power to differentiate between wolves and dogs, also having the advantage of being rapidly screened on NIS. The efficiency of AIMs significantly outperformed ten random sets of similar size and an additional commercial set of 18 markers. Bayesian clustering analysis implemented on AIMs and NIS identified nine hybrids, two wolves and two dogs. Four hybrids were unambiguously assigned to F1xWolf backcrosses. Our approach (AIMs + NIS) overcomes previous difficulties related to sample availability and informative power of markers, allowing a quick identification of wolf-dog hybrids in the first phases of hybridization episodes. This provides managers with a reliable tool to evaluate hybridization and estimate the success of their actions. This approach may be easily adapted for other pairs of wild/domesticated species, thus improving our understanding of the introgression of domestication genes into natural populations.
Collapse
Affiliation(s)
- Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | | | | | | | | | | | | |
Collapse
|
30
|
Thornton DH, Murray DL. Influence of hybridization on niche shifts in expanding coyote populations. DIVERS DISTRIB 2014. [DOI: 10.1111/ddi.12253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Daniel H. Thornton
- School of Environment; Washington State University; PO Box 642812 Pullman WA 99164 USA
- Panthera; 8 West 40 Street New York NY USA
| | | |
Collapse
|
31
|
Jing M, Yu HT, Bi X, Lai YC, Jiang W, Huang L. Phylogeography of Chinese house mice (Mus musculus musculus/castaneus): distribution, routes of colonization and geographic regions of hybridization. Mol Ecol 2014; 23:4387-405. [PMID: 25065953 DOI: 10.1111/mec.12873] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
Abstract
House mice (Mus musculus) are human commensals and have served as a primary model in biomedical, ecological and evolutionary research. Although there is detailed knowledge of the biogeography of house mice in Europe, little is known of the history of house mice in China, despite the fact that China encompasses an enormous portion of their range. In the present study, 535 house mice caught from 29 localities in China were studied by sequencing the mitochondrial D-loop and genotyping 10 nuclear microsatellite markers distributed on 10 chromosomes. Phylogenetic analyses revealed two evolutionary lineages corresponding to Mus musculus castaneus and Mus musculus musculus in the south and north, respectively, with the Yangtze River approximately representing the boundary. More detailed analyses combining published sequence data from mice sampled in neighbouring countries revealed the migration routes of the two subspecies into China: M. m. castaneus appeared to have migrated through a southern route (Yunnan and Guangxi), whereas M. m. musculus entered China from Kazakhstan through the north-west border (Xinjiang). Bayesian analysis of mitochondrial sequences indicated rapid population expansions in both subspecies, approximately 4650-9300 and 7150-14 300 years ago for M. m. castaneus and M. m. musculus, respectively. Interestingly, the migration routes of Chinese house mice coincide with the colonization routes of modern humans into China, and the expansion times of house mice are consistent with the development of agriculture in southern and northern China, respectively. Finally, our study confirmed the existence of a hybrid zone between M. m. castaneus and M. m. musculus in China. Further study of this hybrid zone will provide a useful counterpart to the well-studied hybrid zone between M. m. musculus and Mus musculus domesticus in central Europe.
Collapse
Affiliation(s)
- Meidong Jing
- College of Life Sciences, Ludong University, Yantai, Shandong, 264025, China
| | | | | | | | | | | |
Collapse
|
32
|
Monzón J, Kays R, Dykhuizen DE. Assessment of coyote-wolf-dog admixture using ancestry-informative diagnostic SNPs. Mol Ecol 2013; 23:182-97. [PMID: 24148003 DOI: 10.1111/mec.12570] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 01/27/2023]
Abstract
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human-dominated environments. We genotyped 63 ancestry-informative single-nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf-like, suggesting that natural selection for wolf-like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex-biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry-informative markers.
Collapse
Affiliation(s)
- J Monzón
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | |
Collapse
|
33
|
De novo SNP discovery in the Scandinavian brown bear (Ursus arctos). PLoS One 2013; 8:e81012. [PMID: 24260529 PMCID: PMC3832409 DOI: 10.1371/journal.pone.0081012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/08/2013] [Indexed: 01/22/2023] Open
Abstract
Information about relatedness between individuals in wild populations is advantageous when studying evolutionary, behavioural and ecological processes. Genomic data can be used to determine relatedness between individuals either when no prior knowledge exists or to confirm suspected relatedness. Here we present a set of 96 SNPs suitable for inferring relatedness for brown bears (Ursus arctos) within Scandinavia. We sequenced reduced representation libraries from nine individuals throughout the geographic range. With consensus reads containing putative SNPs, we applied strict filtering criteria with the aim of finding only high-quality, highly-informative SNPs. We tested 150 putative SNPs of which 96% were validated on a panel of 68 individuals. Ninety-six of the validated SNPs with the highest minor allele frequency were selected. The final SNP panel includes four mitochondrial markers, two monomorphic Y-chromosome sex-determination markers, three X-chromosome SNPs and 87 autosomal SNPs. From our validation sample panel, we identified two previously known parent-offspring dyads with reasonable accuracy. This panel of SNPs is a promising tool for inferring relatedness in the brown bear population in Scandinavia.
Collapse
|
34
|
McVey JM, Cobb DT, Powell RA, Stoskopf MK, Bohling JH, Waits LP, Moorman CE. Diets of sympatric red wolves and coyotes in northeastern North Carolina. J Mammal 2013. [DOI: 10.1644/13-mamm-a-109.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Inter-specific territoriality in a Canis hybrid zone: spatial segregation between wolves, coyotes, and hybrids. Oecologia 2013; 173:1539-50. [DOI: 10.1007/s00442-013-2730-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
|
36
|
Newsome TM, Stephens D, Ballard GA, Dickman CR, Fleming PJS. Genetic profile of dingoes (Canis lupus dingo) and free-roaming domestic dogs (C. l. familiaris) in the Tanami Desert, Australia. WILDLIFE RESEARCH 2013. [DOI: 10.1071/wr12128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Many rare and endangered species are threatened by the effects of hybridisation with their domesticated and often numerically dominant relatives. However, factors that influence interactions between hybridising species are poorly understood, thus limiting our ability to develop ameliorative strategies. Aims Here, we identify family groups and investigate patterns of gene flow between dingoes (Canis lupus dingo) and domestic dogs (C. l. familiaris) in the Tanami Desert of central Australia. We aimed to determine whether human-provided resources facilitate hybridisation or alter typical patterns of dingo breeding and social behaviour. We also ask whether remote townships are arenas for dingo–dog hybridisation. Methods Tissue samples and morphological details were collected from dingo-like animals around two mine sites where humans provide abundant supplementary food and water. Using molecular DNA analyses, we assigned animals to population clusters, determined kinship and the numbers of family groups. Rates of hybridisation were assessed around the mines and in two nearby townships. Key results Of 142 samples from mine sites, ‘pure’ dingoes were identified genetically in 89% of cases. This predominance of dingoes was supported by our observations on coat colour and body morphology. Only 2 of 86 domestic dogs sampled at the two townships showed evidence of dingo ancestry. Around the mine sites, there were two distinct population clusters, including a large family group of 55 individuals around a refuse facility. Conclusions Where superabundant and consistent food, and reliable water, was available, dingo packs were much larger and co-existed with others, contrary to expectations derived from previous research. Dingo sociality and pack structures can therefore be altered where human-provided food and water are constantly available, and this could facilitate accelerated rates of hybridisation. Implications The development of appropriate domestic-waste management strategies should be a high priority in remote areas to ensure only normal rates of population increase by dingoes, and other canids more broadly. It will also potentially impede hybridisation rates if typical canid social and behavioural traits remain intact. Additionally, areas surrounding remote human settlements are likely arenas for accentuated dingo–domestic dog interactions and should be a target for future studies.
Collapse
|
37
|
Benson JF, Patterson BR, Wheeldon TJ. Spatial genetic and morphologic structure of wolves and coyotes in relation to environmental heterogeneity in aCanishybrid zone. Mol Ecol 2012; 21:5934-54. [DOI: 10.1111/mec.12045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022]
Affiliation(s)
- John F. Benson
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada K9J 7B8
| | - Brent R. Patterson
- Wildlife Research and Development Section; Ontario Ministry of Natural Resources; Peterborough ON Canada K9J 7B8
| | - Tyler J. Wheeldon
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada K9J 7B8
| |
Collapse
|
38
|
Bohling JH, Adams JR, Waits LP. Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set. Mol Ecol 2012; 22:74-86. [DOI: 10.1111/mec.12109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Justin H. Bohling
- Department of Ecosystem Science and Management; Penn State University; University Park; PA; 16802; USA
| | - Jennifer R. Adams
- Department of Fish and Wildlife Sciences; University of Idaho; Moscow; ID; 83844-1136; USA
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences; University of Idaho; Moscow; ID; 83844-1136; USA
| |
Collapse
|
39
|
vonHoldt BM, Pollinger JP, Earl DA, Parker HG, Ostrander EA, Wayne RK. Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping. Mamm Genome 2012; 24:80-8. [PMID: 23064780 DOI: 10.1007/s00335-012-9432-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/10/2012] [Indexed: 02/03/2023]
Abstract
The ability to detect recent hybridization between dogs and wolves is important for conservation and legal actions, which often require accurate and rapid resolution of ancestry. The availability of a genetic test for dog-wolf hybrids would greatly support federal and legal enforcement efforts, particularly when the individual in question lacks prior ancestry information. We have developed a panel of 100 unlinked ancestry-informative SNP markers that can detect mixed ancestry within up to four generations of dog-wolf hybridization based on simulations of seven genealogical classes constructed following the rules of Mendelian inheritance. We establish 95 % confidence regions around the spatial clustering of each genealogical class using a tertiary plot of allele dosage and heterozygosity. The first- and second-backcrossed-generation hybrids were the most distinct from parental populations, with >90 % correctly assigned to genealogical class. In this article we provide a tool kit with population-level statistical quantification that can detect recent dog-wolf hybridization using a panel of dog-wolf ancestry-informative SNPs with divergent allele frequency distributions.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Stronen AV, Tessier N, Jolicoeur H, Paquet PC, Hénault M, Villemure M, Patterson BR, Sallows T, Goulet G, Lapointe FJ. Canid hybridization: contemporary evolution in human-modified landscapes. Ecol Evol 2012; 2:2128-40. [PMID: 23139873 PMCID: PMC3488665 DOI: 10.1002/ece3.335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 11/11/2022] Open
Abstract
Contemporary evolution through human-induced hybridization occurs throughout the taxonomic range. Formerly allopatric species appear especially susceptible to hybridization. Consequently, hybridization is expected to be more common in regions with recent sympatry owing to human activity than in areas of historical range overlap. Coyotes (Canis latrans) and gray wolves (C. lupus) are historically sympatric in western North America. Following European settlement gray wolf range contracted, whereas coyote range expanded to include eastern North America. Furthermore, wolves with New World (NW) mitochondrial DNA (mtDNA) haplotypes now extend from Manitoba to Québec in Canada and hybridize with gray wolves and coyotes. Using mtDNA and 12 microsatellite markers, we evaluated levels of wolf-coyote hybridization in regions where coyotes were present (the Canadian Prairies, n = 109 samples) and absent historically (Québec, n = 154). Wolves with NW mtDNA extended from central Saskatchewan (51°N, 69°W) to northeastern Québec (54°N, 108°W). On the Prairies, 6.3% of coyotes and 9.2% of wolves had genetic profiles suggesting wolf-coyote hybridization. In contrast, 12.6% of coyotes and 37.4% of wolves in Québec had profiles indicating hybrid origin. Wolves with NW and Old World (C. lupus) mtDNA appear to form integrated populations in both regions. Our results suggest that hybridization is more frequent in historically allopatric populations. Range shifts, now expected across taxa following climate change and other human influence on the environment, might therefore promote contemporary evolution by hybridization.
Collapse
Affiliation(s)
- Astrid V Stronen
- Département de sciences biologiques, Université de Montréal Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiang W, Liu N, Zhang G, Renqing P, Xie F, Li T, Wang Z, Wang X. Specific detection of Echinococcus spp. from the Tibetan fox (Vulpes ferrilata) and the red fox (V. vulpes) using copro-DNA PCR analysis. Parasitol Res 2012; 111:1531-9. [DOI: 10.1007/s00436-012-2993-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/31/2012] [Indexed: 11/24/2022]
|
42
|
Evolutionary genomics of dog domestication. Mamm Genome 2012; 23:3-18. [DOI: 10.1007/s00335-011-9386-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/29/2011] [Indexed: 01/07/2023]
|
43
|
|
44
|
Latch EK, Kierepka EM, Heffelfinger JR, Rhodes OE. Hybrid swarm between divergent lineages of mule deer (Odocoileus hemionus). Mol Ecol 2011; 20:5265-79. [PMID: 22066874 DOI: 10.1111/j.1365-294x.2011.05349.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Studies of hybrid zones have revealed an array of evolutionary outcomes, yet the underlying structure is typically characterized as one of three types: a hybrid zone, a hybrid swarm or a hybrid taxon. Our primary objective was to determine which of these three structures best characterizes a zone of hybridization between two divergent lineages of mule deer (Odocoileus hemionus), mule deer and black-tailed deer. These lineages are morphologically, ecologically and genetically distinct, yet hybridize readily along a zone of secondary contact between the east and west slopes of the Cascade Mountains (Washington and Oregon, USA). Using microsatellite and mitochondrial DNA, we found clear evidence for extensive hybridization and introgression between lineages, with varying degrees of admixture across the zone of contact. The pattern of hybridization in this region closely resembles a hybrid swarm; based on data from 10 microsatellite loci, we detected hybrids that extend well beyond the F1 generation, did not detect linkage disequilibrium at the centre of the zone and found that genotypes were associated randomly within the zone of contact. Introgression was characterized as bidirectional and symmetric, which is surprising given that the zone of contact occurs along a sharp ecotone and that lineages are characterized by large differences in body size (a key component of mating success). Regardless of the underlying mechanisms promoting hybrid swarm maintenance, it is clear that the persistence of a hybrid swarm presents unique challenges for management in this region.
Collapse
Affiliation(s)
- Emily K Latch
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N Maryland Ave, Milwaukee, WI 53211, USA.
| | | | | | | |
Collapse
|