1
|
Kiebacher T, Szövényi P. Morphological, genetic and ecological divergence in near-cryptic bryophyte species widespread in the Holarctic: the Dicranum acutifolium complex (Dicranales) revisited in the Alps. JOURNAL OF PLANT RESEARCH 2024; 137:561-574. [PMID: 38520483 PMCID: PMC11230997 DOI: 10.1007/s10265-024-01534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
There is mounting evidence that reproductively isolated, but morphologically weakly differentiated species (so-called cryptic species) represent a substantial part of biological diversity, especially in bryophytes. We assessed the evolutionary history and ecological differentiation of a species pair, Dicranum brevifolium and D. septentrionale, which have overlapping ranges in the Holarctic. Despite their morphological similarity, we found similar genetic differentiation as between morphologically well-differentiated Dicranum species. Moreover, we detected gene tree discordance between plastid and nuclear markers, but neither of the two datasets resolved the two as sister species. The signal in trnL-trnF better reflects the morphological and ecological affinities and indicates a close relationship while ITS sequence data resolved the two taxa as phylogenetically distantly related. The discordance is probably unrelated to the ecological differentiation of D. septentrionale to colonise subneutral to alkaline substrates (vs. acidic in D. brevifolium), because this ability is rare in the genus and shared with D. acutifolium. This taxon is the closest relative of D. septentrionale according to the trnL-trnF data and does not share the discordance in ITS. We furthermore demonstrate that beside D. acutifolium, both D. septentrionale and D. brevifolium occur in the Alps but D. brevifolium is most likely rarer. Based on morphological analyses including factor analysis for mixed data of 45 traits we suggest treating the latter two as near-cryptic species and we recommend verifying morphological determinations molecularly.
Collapse
Affiliation(s)
- Thomas Kiebacher
- Department of Botany, Stuttgart State Museum of Natural History, Rosenstein 1, 70191, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany, University of Zurich UZH, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich UZH, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Zurich-Basel Plant Science Center (PSC), ETH Zürich, Tannenstrasse 1, 8092, Zurich, Switzerland
| |
Collapse
|
2
|
Leiva C, Pérez-Sorribes L, González-Delgado S, Ortiz S, Wangensteen OS, Pérez-Portela R. Exceptional population genomic homogeneity in the black brittle star Ophiocomina nigra (Ophiuroidea, Echinodermata) along the Atlantic-Mediterranean coast. Sci Rep 2023; 13:12349. [PMID: 37524805 PMCID: PMC10390532 DOI: 10.1038/s41598-023-39584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
The Atlantic-Mediterranean marine transition is characterised by strong oceanographic barriers and steep environmental gradients that generally result in connectivity breaks between populations from both basins and may lead to local adaptation. Here, we performed a population genomic study of the black brittle star, Ophiocomina nigra, covering most of its distribution range along the Atlantic-Mediterranean region. Interestingly, O. nigra is extremely variable in its coloration, with individuals ranging from black to yellow-orange, and different colour morphs inhabiting different depths and habitats. In this work, we used a fragment of the mitochondrial COI gene and 2,374 genome-wide ddRADseq-derived SNPs to explore: (a) whether the different colour morphs of O. nigra represent different evolutionary units; (b) the disruptive effects of major oceanographic fronts on its population structure; and (c) genomic signals of local adaptation to divergent environments. Our results revealed exceptional population homogeneity, barely affected by oceanographic fronts, with no signals of local adaptation nor genetic differentiation between colour morphs. This remarkable panmixia likely results from a long pelagic larval duration, a large effective population size and recent demographic expansions. Our study unveils an extraordinary phenotypic plasticity in O. nigra, opening further research questions on the ecological and molecular mechanisms underpinning coloration in Ophiuroidea.
Collapse
Affiliation(s)
- Carlos Leiva
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
- University of Guam Marine Laboratory, 303 University Drive, Mangilao, GU, 96923, USA.
| | - Laia Pérez-Sorribes
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sara González-Delgado
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de la Laguna, Canary Islands, Spain
| | - Sandra Ortiz
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
| | - Owen S Wangensteen
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
3
|
Hernández-Díaz YQ, Solis F, Beltrán-López RG, Benítez HA, Díaz-Jaimes P, Paulay G. Integrative species delimitation in the common ophiuroid Ophiothrix angulata (Echinodermata: Ophiuroidea): insights from COI, ITS2, arm coloration, and geometric morphometrics. PeerJ 2023; 11:e15655. [PMID: 37483979 PMCID: PMC10358340 DOI: 10.7717/peerj.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Ophiothrix angulata (Say, 1825) is one of the most common and well-known ophiuroids in the Western Atlantic, with a wide geographic and bathymetric range. The taxonomy of this species has been controversial for a century because of its high morphological variability. Here we integrate information from DNA sequence data, color patterns, and geometric morphometrics to assess species delimitation and geographic differentiation in O. angulata. We found three deeply divergent mtDNA-COI clades (K2P 17.0-27.9%). ITS2 nuclear gene and geometric morphometrics of dorsal and ventral arm plates differentiate one of these lineages, as do integrative species delineation analyses, making this a confirmed candidate species.
Collapse
Affiliation(s)
- Yoalli Quetzalli Hernández-Díaz
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Unidad Multidisciplinaria de Docencia e Investigación - Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, México
| | - Francisco Solis
- Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rosa G. Beltrán-López
- Laboratorio de Ictiología, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hugo A. Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Píndaro Díaz-Jaimes
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gustav Paulay
- Florida Natural History Museum, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
4
|
Humara-Gil KJ, Granja-Fernández R, Bautista-Guerrero E, Rodríguez-Troncoso AP. Overlooked for over a century: Ophioderma occultum sp. nov. (Echinodermata), a new species of brittle star from the Eastern Pacific. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2071179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Karla J. Humara-Gil
- Laboratorio de Ecología Marina. Centro Universitario de la Costa, Universidad de Guadalajara, Puerto Vallarta, Mexico
| | - Rebeca Granja-Fernández
- Programa de Maestría en Biosistemática y Manejo de Recursos Naturales y Agrícolas (BIIMARENA) /Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Eric Bautista-Guerrero
- Laboratorio de Ecología Marina. Centro Universitario de la Costa, Universidad de Guadalajara, Puerto Vallarta, Mexico
| | - Alma P. Rodríguez-Troncoso
- Laboratorio de Ecología Marina. Centro Universitario de la Costa, Universidad de Guadalajara, Puerto Vallarta, Mexico
| |
Collapse
|
5
|
Lessios HA, Hendler G. Mitochondrial phylogeny of the brittle star genus Ophioderma. Sci Rep 2022; 12:5304. [PMID: 35351912 PMCID: PMC8964800 DOI: 10.1038/s41598-022-08944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
We reconstructed the mitochondrial phylogeny of the species of the brittle star genus Ophioderma, using sequences of the Cytochrome Oxidase I gene (COI) to address four questions: (i) Are the species of Ophioderma described on morphological evidence reflected in mitochondrial genealogy? (ii) Which species separated from which? (iii) When did speciation events occur? (iv) What is the rate of COI evolution in ophiuroids? We found that most of the 22 described species we sampled coincide with monophyletic clusters of COI sequences, but there are exceptions, most notably in the eastern Pacific, in which three undescribed species were indicated. The COI phylogeny lacks resolution in the deeper nodes, but it does show that there are four species pairs, the members of which are found on either side of the central American Isthmus. Two pairs with a genetic distance of ~ 4% between Atlantic and Pacific members were probably split during the final stages of Isthmus completion roughly 3 million years ago. The rate of divergence provided by these pairs allowed the calibration of a relaxed molecular clock. Estimated dates of divergence indicate that the lineages leading to extant species coalesce at times much older than congeneric species in other classes of echinoderms, suggesting that low extinction rates may be one of the reasons that ophiuroids are species-rich. The mean rate of COI substitution in Ophioderma is three times slower than that of echinoids. Conclusions of previous mitochondrial DNA studies of ophiuroids that relied on echinoid calibrations to determine divergence times need to be revised.
Collapse
Affiliation(s)
- H A Lessios
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama.
| | - Gordon Hendler
- Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA, 90007, USA
| |
Collapse
|
6
|
Lau SCY, Strugnell JM, Sands CJ, Silva CNS, Wilson NG. Evolutionary innovations in Antarctic brittle stars linked to glacial refugia. Ecol Evol 2021; 11:17428-17446. [PMID: 34938519 PMCID: PMC8668817 DOI: 10.1002/ece3.8376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
The drivers behind evolutionary innovations such as contrasting life histories and morphological change are central questions of evolutionary biology. However, the environmental and ecological contexts linked to evolutionary innovations are generally unclear. During the Pleistocene glacial cycles, grounded ice sheets expanded across the Southern Ocean continental shelf. Limited ice-free areas remained, and fauna were isolated from other refugial populations. Survival in Southern Ocean refugia could present opportunities for ecological adaptation and evolutionary innovation. Here, we reconstructed the phylogeographic patterns of circum-Antarctic brittle stars Ophionotus victoriae and O. hexactis with contrasting life histories (broadcasting vs brooding) and morphology (5 vs 6 arms). We examined the evolutionary relationship between the two species using cytochrome c oxidase subunit I (COI) data. COI data suggested that O. victoriae is a single species (rather than a species complex) and is closely related to O. hexactis (a separate species). Since their recent divergence in the mid-Pleistocene, O. victoriae and O. hexactis likely persisted differently throughout glacial maxima, in deep-sea and Antarctic island refugia, respectively. Genetic connectivity, within and between the Antarctic continental shelf and islands, was also observed and could be linked to the Antarctic Circumpolar Current and local oceanographic regimes. Signatures of a probable seascape corridor linking connectivity between the Scotia Sea and Prydz Bay are also highlighted. We suggest that survival in Antarctic island refugia was associated with increase in arm number and a switch from broadcast spawning to brooding in O. hexactis, and propose that it could be linked to environmental changes (such as salinity) associated with intensified interglacial-glacial cycles.
Collapse
Affiliation(s)
- Sally C. Y. Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Department of Ecology, Environment and EvolutionSchool of Life SciencesLa Trobe UniversityMelbourneVicAustralia
- Securing Antarctica's Environmental FutureJames Cook UniversityTownsvilleQldAustralia
| | - Chester J. Sands
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Catarina N. S. Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Nerida G. Wilson
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
- Securing Antarctica's Environmental FutureWestern Australian MuseumWelshpoolWAAustralia
| |
Collapse
|
7
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
8
|
Boissin E, Neglia V, Baksay S, Micu D, Bat L, Topaloglu B, Todorova V, Panayotova M, Kruschel C, Milchakova N, Voutsinas E, Beqiraj S, Nasto I, Aglieri G, Taviani M, Zane L, Planes S. Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea. Sci Rep 2020; 10:21624. [PMID: 33303767 PMCID: PMC7730386 DOI: 10.1038/s41598-020-77742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/16/2020] [Indexed: 11/21/2022] Open
Abstract
To better predict population evolution of invasive species in introduced areas it is critical to identify and understand the mechanisms driving genetic diversity and structure in their native range. Here, we combined analyses of the mitochondrial COI gene and 11 microsatellite markers to investigate both past demographic history and contemporaneous genetic structure in the native area of the gastropod Tritia neritea, using Bayesian skyline plots (BSP), multivariate analyses and Bayesian clustering. The BSP framework revealed population expansions, dated after the last glacial maximum. The haplotype network revealed a strong geographic clustering. Multivariate analyses and Bayesian clustering highlighted the strong genetic structure at all scales, between the Black Sea and the Adriatic Sea, but also within basins. Within basins, a random pattern of genetic patchiness was observed, suggesting a superimposition of processes involving natural biological effects (no larval phase and thus limited larval dispersal) and putative anthropogenic transport of specimens. Contrary to the introduced area, no isolation-by-distance patterns were recovered in the Mediterranean or the Black Seas, highlighting different mechanisms at play on both native and introduced areas, triggering unknown consequences for species’ evolutionary trajectories. These results of Tritia neritea populations on its native range highlight a mixture of ancient and recent processes, with the effects of paleoclimates and life history traits likely tangled with the effects of human-mediated dispersal.
Collapse
Affiliation(s)
- Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
| | - Valentina Neglia
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Sandra Baksay
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire Evolution & Diversite Biologique, University TOULOUSE III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Dragos Micu
- Romanian Waters National Authority, 127 Mircea cel Batran Blvd., 900592, Constanţa, Romania
| | - Levent Bat
- Department of Hydrobiology, Sinop University Faculty of Fisheries, 57000, Sinop, Turkey
| | - Bulent Topaloglu
- Faculty of Aquatic Sciences, Istanbul University, Ordu St No: 8, 34134, Istanbul, Turkey
| | - Valentina Todorova
- Institute of Oceanology-BAS (IO-BAS), P.O. Box 152, 9000, Varna, Bulgaria
| | - Marina Panayotova
- Institute of Oceanology-BAS (IO-BAS), P.O. Box 152, 9000, Varna, Bulgaria
| | - Claudia Kruschel
- University of Zadar, Ul. Mihovila Pavlinovića, 23000, Zadar, Croatia
| | - Nataliya Milchakova
- Institute of Biology of the Southern Seas, 2 Nakhimov Ave., Sevastopol, Russia, 299011
| | - Emanuela Voutsinas
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavyssos, Greece
| | - Sajmir Beqiraj
- Faculty of Natural Sciences, Department of Biology, University of Tirana, Bulevardi "Zogu I Parë", 25/1, 1001, Tiranë, Albania
| | - Ina Nasto
- Department of Biology, Faculty of Technical Sciences, Vlora University, 9401, Vlora, Albania
| | - Giorgio Aglieri
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, via Archirafi 28, 90123, Palermo, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Rome, Italy
| | - Marco Taviani
- Institute of Marine Sciences (ISMAR), CNR, via Gobetti 101, 40129, Bologna, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.,Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Lorenzo Zane
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Rome, Italy.,Dipartimento di Biologia, Università di Padova, via U. Bassi/58B, 35121, Padua, Italy
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| |
Collapse
|
9
|
Rindi F, Pasella MM, Lee MFE, Verbruggen H. Phylogeography of the mediterranean green seaweed Halimeda tuna (Ulvophyceae, Chlorophyta). JOURNAL OF PHYCOLOGY 2020; 56:1109-1113. [PMID: 32315445 DOI: 10.1111/jpy.13006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Populations of many Mediterranean marine species show a strong phylogeographic structure, but the knowledge available for native seaweeds is limited. We investigated the genetic diversity of the green alga Halimeda tuna based on two plastid markers (tufA gene and a newly developed amplicon spanning five ribosomal protein genes and intergenic spacers, the rpl2-rpl14 region). The tufA sequences showed that Mediterranean H. tuna represents a single, well-defined species. The rpl2-rpl14 results highlighted a genetic separation between western and eastern Mediterranean populations; specimens collected from widely scattered locations in the Adriatic/Ionian region shared a haplotype unique to this region, and formed a group separated from all western Mediterranean regions. Specimens from Sardinia also formed a unique haplotype. Within the western Mediterranean basin, a gradual shift in the frequency of haplotypes was apparent along a West-East gradient. Our results represent the first clear evidence of an East-West genetic cleavage in a native Mediterranean macroalga and offer an interesting perspective for further research into fine-scale seaweed population structure in the NW Mediterranean Sea.
Collapse
Affiliation(s)
- Fabio Rindi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Marisa M Pasella
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Ming-Fen E Lee
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
10
|
Local adaptation fuels cryptic speciation in terrestrial annelids. Mol Phylogenet Evol 2020; 146:106767. [PMID: 32081763 DOI: 10.1016/j.ympev.2020.106767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 11/23/2022]
Abstract
Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as it is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between 17 populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. Genomic analyses revealed the existence of three cryptic species, with half of the previously-identified potential cryptic lineages clustering within them. Local adaptation was detected in more than 800 genes putatively involved in a plethora of biological functions (most notably reproduction, metabolism, immunological response and morphogenesis). Several genes with selection signatures showed shared mutations for each of the cryptic species, and genes under selection were enriched in functions related to regulation of transcription, including SNPs located in UTR regions. Finally, geometric morphometrics approaches partially confirmed the phylogenetic signal of relevant morphological characters such as genital chaetae. Our study therefore unveils that local adaptation and regulatory divergence are key evolutionary forces orchestrating genome evolution in soil fauna.
Collapse
|
11
|
Jossart Q, Sands CJ, Sewell MA. Dwarf brooder versus giant broadcaster: combining genetic and reproductive data to unravel cryptic diversity in an Antarctic brittle star. Heredity (Edinb) 2019; 123:622-633. [PMID: 31073238 PMCID: PMC6972741 DOI: 10.1038/s41437-019-0228-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Poecilogony, or multiple developmental modes in a single species, is exceedingly rare. Several species described as poecilogenous were later demonstrated to be multiple (cryptic) species with a different developmental mode. The Southern Ocean is known to harbor a high proportion of brooders (Thorson's Rule) but with an increasing number of counter examples over recent years. Here we evaluated poecilogony vs. crypticism in the brittle star Astrotoma agassizii across the Southern Ocean. This species was initially described from South America as a brooder before some pelagic stages were identified in Antarctica. Reproductive and mitochondrial data were combined to unravel geographic and genetic variation of developmental modes. Our results indicate that A. agassizii is composed of seven well-supported and deeply divergent clades (I: Antarctica and South Georgia; II: South Georgia and Sub-Antarctic locations including Kerguelen, Patagonian shelf, and New Zealand; III-VI-VII: Patagonian shelf, IV-V: South Georgia). Two of these clades demonstrated strong size dimorphism when in sympatry and can be linked to differing developmental modes (Clade V: dwarf brooder vs. Clade I: giant broadcaster). Based on their restricted geographic distributions and on previous studies, it is likely that Clades III-VI-VII are brooders. Clade II is composed of different morphological species, A. agassizii and A. drachi, the latter originally used as the outgroup. By integrating morphology, reproductive, and molecular data we conclude that the variation identified in A. agassizii is best described as crypticism rather than poecilogony.
Collapse
Affiliation(s)
- Quentin Jossart
- University of Auckland, Auckland, New Zealand.
- British Antarctic Survey, Cambridge, UK.
- Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
12
|
Sweet HC, Doolin MC, Yanowiak CN, Coots AD, Freyn AW, Armstrong JM, Spiecker BJ. Abbreviated Development of the Brooding Brittle Star Ophioplocus esmarki. THE BIOLOGICAL BULLETIN 2019; 236:75-87. [PMID: 30933639 DOI: 10.1086/701916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The bilaterally symmetrical, feeding larval stage is an ancestral condition in echinoderms. However, many echinoderms have evolved abbreviated development and form a pentamerous juvenile without a feeding larva. Abbreviated development with a non-feeding vitellaria larva is found in five families of brittle stars, but very little is known about this type of development. In this study, the external anatomy, ciliary bands, neurons, and muscles were examined in the development of the brooded vitellaria larva of Ophioplocus esmarki. The external morphology throughout development shows typical vitellaria features, including morphogenetic movements to set up the vitellaria body plan, an anterior preoral lobe, a posterior lobe, transverse ciliary bands, and development of juvenile structures on the mid-ventral side. An early population of neurons forms at the base of the preoral lobe at the pre-vitellaria stage after the initial formation of the coelomic cavities. These early neurons may be homologous to the apical neurons that develop in echinoderms with feeding larval forms. Neurons form close to the ciliary bands, but the vitellaria larva lacks the tracts of neurons associated with the ciliary bands found in echinoderms with feeding larvae. Additional neurons form in association with the axial complex and persist into the juvenile stage. Juvenile nerves and muscles form with pentamerous symmetry in the late vitellaria stage in a manner similar to their development within the late ophiopluteus larva. Even though O. esmarki is a brooding brittle star, its developmental sequence retains the general vitellaria shape and structure; however, the vitellaria larvae are unable to swim in the water column.
Collapse
|
13
|
Loeza-Quintana T, Carr CM, Khan T, Bhatt YA, Lyon SP, Hebert PD, Adamowicz SJ. Recalibrating the molecular clock for Arctic marine invertebrates based on DNA barcodes. Genome 2019; 62:200-216. [DOI: 10.1139/gen-2018-0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Divergence times for species assemblages of Arctic marine invertebrates have often been estimated using a standard rate (1.4%/MY) of molecular evolution calibrated using a single sister pair of tropical crustaceans. Because rates of molecular evolution vary among taxa and environments, it is essential to obtain clock calibrations from northern lineages. The recurrent opening and closure of the Bering Strait provide an exceptional opportunity for clock calibration. Here, we apply the iterative calibration approach to investigate patterns of molecular divergence among lineages of northern marine molluscs and arthropods using publicly available sequences of the cytochrome c oxidase subunit I (COI) gene and compare these results with previous estimates of trans-Bering divergences for echinoderms and polychaetes. The wide range of Kimura two-parameter (K2P) divergences among 73 trans-Bering sister pairs (0.12%–16.89%) supports multiple pulses of migration through the Strait. Overall, the results indicate a rate of K2P divergence of 3.2%/MY in molluscs, 5%–5.2%/MY in arthropods, and 3.5%–4.7%/MY in polychaetes. While these rates are considerably higher than the often-adopted 1.4%/MY rate, they are similar to calibrations (3%–5%/MY) in several other studies of marine invertebrates. This upward revision in rates means there is a need both to reevaluate the evolutionary history of marine lineages and to reexamine the impact of prior climatic changes upon the diversification of marine life.
Collapse
Affiliation(s)
- Tzitziki Loeza-Quintana
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Christina M. Carr
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- University of Northern Iowa, 187 McCollum Science Hall, Cedar Falls, IA 50614, USA
| | - Tooba Khan
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Yash A. Bhatt
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Faculty of Science, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Samantha P. Lyon
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Paul D.N. Hebert
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Sarah J. Adamowicz
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Species delimitation in the presence of strong incomplete lineage sorting and hybridization: Lessons from Ophioderma (Ophiuroidea: Echinodermata). Mol Phylogenet Evol 2019; 131:138-148. [DOI: 10.1016/j.ympev.2018.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023]
|
15
|
A new cryptic species of Asteronyx Müller and Troschel, 1842 (Echinodermata: Ophiuroidea), based on molecular phylogeny and morphology, from off Pacific Coast of Japan. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Costantini F, Ferrario F, Abbiati M. Chasing genetic structure in coralligenous reef invertebrates: patterns, criticalities and conservation issues. Sci Rep 2018; 8:5844. [PMID: 29643422 PMCID: PMC5895814 DOI: 10.1038/s41598-018-24247-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 03/27/2018] [Indexed: 12/02/2022] Open
Abstract
Conservation of coastal habitats is a global issue, yet biogenic reefs in temperate regions have received very little attention. They have a broad geographic distribution and are a key habitat in marine ecosystems impacted by human activities. In the Mediterranean Sea coralligenous reefs are biodiversity hot spots and are classified as sensitive habitats deserving conservation. Genetic diversity and structure influence demographic, ecological and evolutionary processes in populations and play a crucial role in conservation strategies. Nevertheless, a comprehensive view of population genetic structure of coralligenous species is lacking. Here, we reviewed the literature on the genetic structure of sessile and sedentary invertebrates of the Mediterranean coralligenous reefs. Linear regression models and meta-analytic approaches are used to assess the contributions of genetic markers, phylum, pelagic larval duration (PLD) and geographical distance to the population genetic structure. Our quantitative approach highlight that 1) most species show a significant genetic structure, 2) structuring differs between phyla, and 3) PLD does not appear to be a major driver of the structuring. We discuss the implication of these finding for the management and conservation, suggesting research areas that deserve attention, and providing recommendations for broad assessment and monitoring of genetic diversity in biogenic reefs species.
Collapse
Affiliation(s)
- Federica Costantini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, UOS Ravenna, Ravenna, Italy.
- Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Università di Bologna, Via S. Alberto 163, I - 48123, Ravenna, Italy.
- CoNISMa, Piazzale Flaminio 9, 00197, Roma, Italy.
| | | | - Marco Abbiati
- Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Università di Bologna, Via S. Alberto 163, I - 48123, Ravenna, Italy
- CoNISMa, Piazzale Flaminio 9, 00197, Roma, Italy
- Dipartimento di Beni Culturali, Via degli Ariani, 1, 48121, Ravenna, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, ISMAR, Via P. Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
17
|
Loeza-Quintana T, Adamowicz SJ. Iterative Calibration: A Novel Approach for Calibrating the Molecular Clock Using Complex Geological Events. J Mol Evol 2018; 86:118-137. [DOI: 10.1007/s00239-018-9831-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
|
18
|
Garcia-Cisneros A, Palacín C, Ventura CRR, Feital B, Paiva PC, Pérez-Portela R. Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. Mol Ecol 2018; 27:752-772. [PMID: 29218784 DOI: 10.1111/mec.14454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/28/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Intraspecific genetic diversity and divergence have a large influence on the adaption and evolutionary potential of species. The widely distributed starfish, Coscinasterias tenuispina, combines sexual reproduction with asexual reproduction via fission. Here we analyse the phylogeography of this starfish to reveal historical and contemporary processes driving its intraspecific genetic divergence. We further consider whether asexual reproduction is the most important method of propagation throughout the distribution range of this species. Our study included 326 individuals from 16 populations, covering most of the species' distribution range. A total of 12 nuclear microsatellite loci and sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analysed. COI and microsatellites were clustered in two isolated lineages: one found along the southwestern Atlantic and the other along the northeastern Atlantic and Mediterranean Sea. This suggests the existence of two different evolutionary units. Marine barriers along the European coast would be responsible for population clustering: the Almeria-Oran Front that limits the entrance of migrants from the Atlantic to the Mediterranean, and the Siculo-Tunisian strait that divides the two Mediterranean basins. The presence of identical genotypes was detected in all populations, although two monoclonal populations were found in two sites where annual mean temperatures and minimum values were the lowest. Our results based on microsatellite loci showed that intrapopulation genetic diversity was significantly affected by clonality whereas it had lower effect for the global phylogeography of the species, although still some impact on populations' genetic divergence could be observed between some populations.
Collapse
Affiliation(s)
- Alex Garcia-Cisneros
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Research Institute of Biodiversity (IRBIO), Barcelona, Spain.,Center for Advanced Studies of Blanes (CEAB-CSIC), Accès a la Cala Sant Francesc, Girona, Spain
| | - Creu Palacín
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Research Institute of Biodiversity (IRBIO), Barcelona, Spain
| | - Carlos Renato Rezende Ventura
- Invertebrate Department, National Museum, Federal University of Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro, Brazil
| | - Barbara Feital
- Invertebrate Department, National Museum, Federal University of Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro, Brazil.,Department of Zoology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Cesar Paiva
- Department of Zoology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rocío Pérez-Portela
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accès a la Cala Sant Francesc, Girona, Spain
| |
Collapse
|
19
|
Cahill AE, De Jode A, Dubois S, Bouzaza Z, Aurelle D, Boissin E, Chabrol O, David R, Egea E, Ledoux JB, Mérigot B, Weber AAT, Chenuil A. A multispecies approach reveals hot spots and cold spots of diversity and connectivity in invertebrate species with contrasting dispersal modes. Mol Ecol 2017; 26:6563-6577. [PMID: 29087018 DOI: 10.1111/mec.14389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50-km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free-living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.
Collapse
Affiliation(s)
- Abigail E Cahill
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France.,Biology Department, Albion College, Albion, MI, USA
| | - Aurélien De Jode
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Sophie Dubois
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Zoheir Bouzaza
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie, Université Abdelhamid Ibn Badis, Mostaganem, Algérie
| | - Didier Aurelle
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Olivier Chabrol
- CNRS, Centrale Marseille, I2M, UMR7373, Aix-Marseille Université, Marseille, France
| | - Romain David
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Emilie Egea
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Jean-Baptiste Ledoux
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.,Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Bastien Mérigot
- UMR MARBEC (CNRS, Ifremer, IRD, UM), Université de Montpellier, Sète, France
| | - Alexandra Anh-Thu Weber
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Anne Chenuil
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
20
|
Boissin E, Hoareau TB, Paulay G, Bruggemann JH. DNA barcoding of reef brittle stars (Ophiuroidea, Echinodermata) from the southwestern Indian Ocean evolutionary hot spot of biodiversity. Ecol Evol 2017; 7:11197-11203. [PMID: 29299292 PMCID: PMC5743570 DOI: 10.1002/ece3.3554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
In anticipation of the current biodiversity crisis, it has become critical to rapidly and accurately assess biodiversity. DNA barcoding has proved efficient in facilitating the discovery and description of thousands of species and also provides insight into the dynamics of biodiversity. Here, we sequenced a portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene from all morphospecies of reef brittle stars collected during a large‐scale biodiversity survey in the southwestern Indian Ocean (SWIO). Three methods of species delineation (Automatic Barcode Gap Discovery, Generalized Mixed Yule Coalescent model, and Bayesian Poisson Tree Processes) showed concordant results and revealed 51 shallow reef species in the region. Mean intraspecific genetic distances (0.005–0.064) and mean interspecific genetic distances within genera (0.056–0.316) were concordant with previous echinoderm studies. This study revealed that brittle‐star biodiversity is underestimated by 20% within SWIO and by >40% when including specimens from the Pacific Ocean. Results are discussed in terms of endemism, diversification processes, and conservation implications for the Indo‐West Pacific marine biodiversity. We emphasize the need to further our knowledge on biodiversity of invertebrate groups in peripheral areas.
Collapse
Affiliation(s)
- Emilie Boissin
- PSL Research University: EPHE‐UPVD‐CNRSUSR 3278 CRIOBEUniversité de PerpignanPerpignan CedexFrance
- Laboratoire d'Excellence “CORAIL”PapetoaiMooreaFrench Polynesia
| | - Thierry Bernard Hoareau
- Molecular Ecology and Evolution ProgrammeDepartment of GeneticsUniversity of PretoriaPretoriaSouth Africa
| | | | - J. Henrich Bruggemann
- Laboratoire d'Excellence “CORAIL”PapetoaiMooreaFrench Polynesia
- UMR ENTROPIE UR‐IRD‐CNRSUniversité de La RéunionSainte‐ClotildeLa RéunionFrance
| |
Collapse
|
21
|
Furfaro G, Salvi D, Mancini E, Mariottini P. A multilocus view on Mediterranean aeolid nudibranchs (Mollusca): Systematics and cryptic diversity of Flabellinidae and Piseinotecidae. Mol Phylogenet Evol 2017; 118:13-22. [PMID: 28888791 DOI: 10.1016/j.ympev.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 01/10/2023]
Abstract
Recent molecular studies revealed high level of endemism and numerous cryptic species within opisthobranchs, with Mediterranean taxa clearly understudied. Here we used genetic data from both mitochondrial and nuclear gene fragments as well as morphological data from taxonomically relevant characters to investigate the phylogenetic relationships and systematics of Mediterranean taxa of the Flabellinidae and Piseinotecidae families. Phylogenetic analyses based on Bayesian and Maximum-Likelihood methods indicate that Flabellinidae and Pisenotecidae taxa and species within the genera Flabellina, Calmella and Piseinotecus do not form monophyletic clades. These results are supported by our morphological analyses which allowed the re-evaluation of the triseriate radula condition in Pisenotecidae and Calmella taxa and their inclusion in the genus Flabellina as Flabellina gaditanacomb. nov. (synonym of F. confusa), Flabellina gabiniereicomb. nov. and Flabellina cavolinicomb. nov. Species delimitation and barcoding gap analyses allowed uncovering cryptic species within Flabellina gracilis (Alder and Hancock, 1844), F. trophina (Bergh, 1890), F. verrucosa (M. Sars, 1829) and F. ischitana Hirano and Thompson, 1990, the latter with an Atlantic form which is under description. This study corroborates the relevance of combining molecular and morphological data from multiple populations and species in the assessment of nudibranch diversity and classification.
Collapse
Affiliation(s)
- Giulia Furfaro
- Department of Sciences, University "Roma Tre", Viale G. Marconi 446, I-00146 Rome, Italy.
| | - Daniele Salvi
- Department of Health, Life and Environmental Sciences, University of L'Aquila, 67100 Coppito, L'Aquila, Italy; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Emiliano Mancini
- Department of Sciences, University "Roma Tre", Viale G. Marconi 446, I-00146 Rome, Italy
| | - Paolo Mariottini
- Department of Sciences, University "Roma Tre", Viale G. Marconi 446, I-00146 Rome, Italy
| |
Collapse
|
22
|
Marzouk Z, Aurelle D, Said K, Chenuil A. Cryptic lineages and high population genetic structure in the exploited marine snail Hexaplex trunculus (Gastropoda: Muricidae). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Bribiesca-Contreras G, Verbruggen H, Hugall AF, O'Hara TD. The importance of offshore origination revealed through ophiuroid phylogenomics. Proc Biol Sci 2017; 284:20170160. [PMID: 28679721 PMCID: PMC5524485 DOI: 10.1098/rspb.2017.0160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 11/12/2022] Open
Abstract
Our knowledge of macro-evolutionary processes in the deep sea is poor, leading to much speculation about whether the deep sea is a source or sink of evolutionary adaptation. Here, we use a phylogenetic approach, on large molecular (688 species, 275 kbp) and distributional datasets (104 513 records) across an entire class of marine invertebrates (Ophiuroidea), to infer rates of bathymetric range shift over time between shallow and deep water biomes. Biome conservation is evident through the phylogeny, with the majority of species in most clades distributed within the same bathome. Despite this, bathymetric shifts have occurred. We inferred from ancestral reconstructions that eurybathic or intermediate distributions across both biomes were a transitional state and direct changes between shallow and deep sea did not occur. The macro-evolutionary pattern of bathome shift appeared to reflect micro-evolutionary processes of bathymetric speciation. Results suggest that most of the oldest clades have a deep-sea origin, but multiple colonization events indicate that the evolution of this group conforms neither to a simple onshore-offshore hypothesis, nor the opposite pattern. Both shallow and deep bathomes have played an important role in generating the current diversity of this major benthic class.
Collapse
Affiliation(s)
- Guadalupe Bribiesca-Contreras
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
- School of Biosciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Heroen Verbruggen
- School of Biosciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew F Hugall
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Timothy D O'Hara
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| |
Collapse
|
24
|
Weber AAT, Abi-Rached L, Galtier N, Bernard A, Montoya-Burgos JI, Chenuil A. Positive selection on sperm ion channels in a brooding brittle star: consequence of life-history traits evolution. Mol Ecol 2017; 26:3744-3759. [PMID: 28099777 DOI: 10.1111/mec.14024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/12/2023]
Abstract
Closely related species are key models to investigate mechanisms leading to reproductive isolation and early stages of diversification, also at the genomic level. The brittle star cryptic species complex Ophioderma longicauda encompasses the sympatric broadcast-spawning species C3 and the internal brooding species C5. Here, we used de novo transcriptome sequencing and assembly in two closely related species displaying contrasting reproductive modes to compare their genetic diversity and to investigate the role of natural selection in reproductive isolation. We reconstructed 20 146 and 22 123 genes for C3 and C5, respectively, and characterized a set of 12 229 orthologs. Genetic diversity was 1.5-2 times higher in C3 compared to C5, confirming that species with low parental investment display higher levels of genetic diversity. Forty-eight genes were the targets of positive diversifying selection during the evolution of the two species. Notably, two genes (NHE and TetraKCNG) are sperm-specific ion channels involved in sperm motility. Ancestral sequence reconstructions show that natural selection targeted the two genes in the brooding species. This may result from an adaptation to the novel environmental conditions surrounding sperm in the brooding species, either directly affecting sperm or via an increase in male/female conflict. This phenomenon could have promoted prezygotic reproductive isolation between C3 and C5. Finally, the sperm receptors to egg chemoattractants differed between C3 and C5 in the ligand-binding region. We propose that mechanisms of species-specific gamete recognition in brittle stars occur during sperm chemotaxis (sperm attraction towards the eggs), contrary to other marine invertebrates where prezygotic barriers to interspecific hybridization typically occur before sperm-egg fusion.
Collapse
Affiliation(s)
- A A-T Weber
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Aix-Marseille Université, Station Marine d'Endoume, Chemin de la Batterie des Lions, 13007, Marseille, France.,Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - L Abi-Rached
- Equipe ATIP, URMITE UM 63 CNRS 7278 IRD 198 Inserm U1095, IHU Méditerranée Infection, Aix-Marseille Université, Marseille, France
| | - N Galtier
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Place E. Bataillon, 34095, Montpellier, France
| | - A Bernard
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Place E. Bataillon, 34095, Montpellier, France
| | - J I Montoya-Burgos
- Department of Genetics and Evolution, University of Geneva, 4, Bvd d'Yvoy, 1205, Geneva, Switzerland
| | - A Chenuil
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Aix-Marseille Université, Station Marine d'Endoume, Chemin de la Batterie des Lions, 13007, Marseille, France
| |
Collapse
|
25
|
Taboada S, Pérez-Portela R. Contrasted phylogeographic patterns on mitochondrial DNA of shallow and deep brittle stars across the Atlantic-Mediterranean area. Sci Rep 2016; 6:32425. [PMID: 27585743 PMCID: PMC5009426 DOI: 10.1038/srep32425] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies on Ophiothrix in European waters demonstrated the existence of two distinct species, Ophiothrix fragilis and Ophiothrix sp. II. Using phylogenetic and species delimitation techniques based on two mitochondrial genes (cytochrome c oxidase I and 16S rRNA) we prove the existence of a new congeneric species (Ophiothrix sp. III), occurring in the deep Atlantic coast of the Iberian Peninsula and the Alboran Sea. We compared phylogeographic patterns of these three Ophiothrix species to test whether closely related species are differentially affected by past demographic events and current oceanographic barriers. We used 432 sequences (137 of O. fragilis, 215 of Ophiothrix sp. II, and 80 of Ophiothrix sp. III) of the 16S rRNA from 23 Atlantic-Mediterranean locations for the analyses. We observed different geographic and bathymetric distributions, and contrasted phylogeography among species. Ophiothrix fragilis appeared genetically isolated between the Atlantic and Mediterranean basins, attributed to past vicariance during Pleistocene glaciations and a secondary contact associated to demographic expansion. This contrasts with the panmixia observed in Ophiothrix sp. II across the Atlantic-Mediterranean area. Results were not conclusive for Ophiothrix sp. III due to the lack of a more complete sampling within the Mediterranean Sea.
Collapse
Affiliation(s)
- Sergi Taboada
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, SW7 5BD, UK
| | - Rocío Pérez-Portela
- Centro de Estudios Avanzados de Blanes, CSIC, Accés a la cala St. Francesc, 14, 17300, Blanes, Spain
| |
Collapse
|
26
|
Lattig P, Muñoz I, Martin D, Abelló P, Machordom A. Comparative phylogeography of two symbiotic dorvilleid polychaetes ( Iphitime cuenotiand Ophryotrocha mediterranea) with contrasting host and bathymetric patterns. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patricia Lattig
- Museo Nacional de Ciencias Naturales (MNCN-CSIC); C. José Gutiérrez Abascal 2 Madrid 28006 Spain
| | - Isabel Muñoz
- Instituto Español de Oceanografía; Centro Oceanográfico de Santander (IEO); Promontorio San Martín s/n Santander Cantabria 39004 Spain
| | - Daniel Martin
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Carrer d'accès a la Cala Sant Francesc 14 Blanes (Girona) Catalunya 17300 Spain
| | - Pere Abelló
- Institut de Ciències del Mar (ICM-CSIC); Passeig Marítim de la Barceloneta 37-49 Barcelona Catalunya E-08003 Spain
| | - Annie Machordom
- Museo Nacional de Ciencias Naturales (MNCN-CSIC); C. José Gutiérrez Abascal 2 Madrid 28006 Spain
| |
Collapse
|
27
|
Boissin E, Micu D, Janczyszyn-Le Goff M, Neglia V, Bat L, Todorova V, Panayotova M, Kruschel C, Macic V, Milchakova N, Keskin Ç, Anastasopoulou A, Nasto I, Zane L, Planes S. Contemporary genetic structure and postglacial demographic history of the black scorpionfish, Scorpaena porcus, in the Mediterranean and the Black Seas. Mol Ecol 2016; 25:2195-209. [PMID: 26989881 DOI: 10.1111/mec.13616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 12/24/2022]
Abstract
Understanding the distribution of genetic diversity in the light of past demographic events linked with climatic shifts will help to forecast evolutionary trajectories of ecosystems within the current context of climate change. In this study, mitochondrial sequences and microsatellite loci were analysed using traditional population genetic approaches together with Bayesian dating and the more recent approximate Bayesian computation scenario testing. The genetic structure and demographic history of a commercial fish, the black scorpionfish, Scorpaena porcus, was investigated throughout the Mediterranean and Black Seas. The results suggest that the species recently underwent population expansions, in both seas, likely concomitant with the warming period following the Last Glacial Maximum, 20 000 years ago. A weak contemporaneous genetic differentiation was identified between the Black Sea and the Mediterranean Sea. However, the genetic diversity was similar for populations of the two seas, suggesting a high number of colonizers entered the Black Sea during the interglacial period and/or the presence of a refugial population in the Black Sea during the glacial period. Finally, within seas, an east/west genetic differentiation in the Adriatic seems to prevail, whereas the Black Sea does not show any structured spatial genetic pattern of its population. Overall, these results suggest that the Black Sea is not that isolated from the Mediterranean, and both seas revealed similar evolutionary patterns related to climate change and changes in sea level.
Collapse
Affiliation(s)
- E Boissin
- EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Perpignan, F-66360, France.,Laboratoire d'Excellence CRIOBE, BP 1013, 98729, Papetoai, Moorea, Polynésie Française
| | - D Micu
- National Institute of Marine Research and Development, Grigore Antipa, Constanta, 900581, Romania
| | - M Janczyszyn-Le Goff
- EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Perpignan, F-66360, France.,Laboratoire d'Excellence CRIOBE, BP 1013, 98729, Papetoai, Moorea, Polynésie Française
| | - V Neglia
- EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Perpignan, F-66360, France.,Laboratoire d'Excellence CRIOBE, BP 1013, 98729, Papetoai, Moorea, Polynésie Française
| | - L Bat
- Department of Marine Biology and Ecology, Faculty of Fisheries, Sinop University, Sinop, TR57000, Turkey
| | - V Todorova
- IO-BAS - Institute of Oceanology, PO Box 152, Varna, 9000, Bulgaria
| | - M Panayotova
- IO-BAS - Institute of Oceanology, PO Box 152, Varna, 9000, Bulgaria
| | - C Kruschel
- University of Zadar, Ul. Mihovila Pavlinovića, Zadar, 23000, Croatia
| | - V Macic
- Institute of Marine Biology Kotor (IBMK), Dobrota bb, PO Box 69, Kotor, 85330, Montenegro
| | - N Milchakova
- Institute of Marine Biological Research (IMBR), 2 Nakhimov ave., Sevastopol, 299011, Russia
| | - Ç Keskin
- Faculty of Fisheries, Istanbul University, Ordu St 200, Istanbul, TR-34470, Turkey
| | - A Anastasopoulou
- Hellenic Centre for Marine Research, 46.7 km Athinon-Souniou Av., Anavyssos, 19013, Greece
| | - I Nasto
- Department of Biology, Faculty of Technical Sciences, Vlora University, Vlora, 9401, Albania
| | - L Zane
- Department of Biology, University of Padova, via U. Bassi/58B, Padova, I-35121, Italy
| | - S Planes
- EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Perpignan, F-66360, France.,Laboratoire d'Excellence CRIOBE, BP 1013, 98729, Papetoai, Moorea, Polynésie Française
| |
Collapse
|
28
|
Morphological and genetic analyses reveal a cryptic species complex in the echinoid Echinocardium cordatum and rule out a stabilizing selection explanation. Mol Phylogenet Evol 2016; 94:207-20. [DOI: 10.1016/j.ympev.2015.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022]
|
29
|
Weber AAT, Mérigot B, Valière S, Chenuil A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex. Mol Ecol 2015; 24:6080-94. [PMID: 26547515 DOI: 10.1111/mec.13456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 02/03/2023]
Abstract
Closely related species with divergent life history traits are excellent models to infer the role of such traits in genetic diversity and connectivity. Ophioderma longicauda is a brittle star species complex composed of different genetic clusters, including brooders and broadcasters. These species diverged very recently and some of them are sympatric and ecologically syntopic, making them particularly suitable to study the consequences of their trait differences. At the scale of the geographic distribution of the broadcasters (Mediterranean Sea and northeastern Atlantic), we sequenced the mitochondrial marker COI and genotyped an intron (i51) for 788 individuals. In addition, we sequenced 10 nuclear loci newly developed from transcriptome sequences, for six sympatric populations of brooders and broadcasters from Greece. At the large scale, we found a high genetic structure within the brooders (COI: 0.07 < F(ST) < 0.65) and no polymorphism at the nuclear locus i51. In contrast, the broadcasters displayed lower genetic structure (0 < F(ST) < 0.14) and were polymorphic at locus i51. At the regional scale, the multilocus analysis confirmed the contrasting genetic structure between species, with no structure in the broadcasters (global F(ST) < 0.001) and strong structure in the brooders (global F(ST) = 0.49), and revealed a higher genetic diversity in broadcasters. Our study showed that the lecithotrophic larval stage allows on average a 50-fold increase in migration rates, a 280-fold increase in effective size and a threefold to fourfold increase in genetic diversity. Our work, investigating complementary genetic markers on sympatric and syntopic taxa, highlights the strong impact of the larval phase on connectivity and genetic diversity.
Collapse
Affiliation(s)
- A A-T Weber
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Station Marine d'Endoume, Chemin de la Batterie des Lions, F-13007, Marseille, France.,Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - B Mérigot
- Université de Montpellier, UMR MARine Biodiversity, Exploitation and Conservation MARBEC (IRD, IFREMER, UM, CNRS), Centre de Recherche Halieutique Méditerranéenne et Tropicale, Avenue Jean Monnet - BP 171, 34203, Sète Cedex, France
| | - S Valière
- INRA, UAR1209 (Département de Génétique Animale), Get-PlaGe, Genotoul, F-31326, Castanet-Tolosan, France
| | - A Chenuil
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE) - CNRS - IRD - UAPV, Station Marine d'Endoume, Chemin de la Batterie des Lions, F-13007, Marseille, France
| |
Collapse
|
30
|
David B, Saucède T, Chenuil A, Steimetz E, De Ridder C. The taxonomic challenge posed by the Antarctic echinoids Abatus bidens and Abatus cavernosus (Schizasteridae, Echinoidea). Polar Biol 2015. [DOI: 10.1007/s00300-015-1842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Weber AAT, Stöhr S, Chenuil A. Genetic data, reproduction season and reproductive strategy data support the existence of biological species in Ophioderma longicauda. C R Biol 2014; 337:553-60. [PMID: 25282170 DOI: 10.1016/j.crvi.2014.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Abstract
Cryptic species are numerous in the marine environment. The brittle star Ophioderma longicauda is composed of six mitochondrial lineages, encompassing brooders, which form a monophyletic group, and broadcasters, from which the brooders are derived. To clarify the species limits within O. longicauda, we compared the reproductive status of the sympatric lineages L1 and L3 (defined after sequencing a portion of the mitochondrial gene COI) during the month of May in Greece. In addition, we genotyped a nuclear marker, intron i51. Each L3 female was brooding, whereas all L1 specimens displayed full gonads, suggesting temporal pre-zygotic isolation between brooders and broadcasters. Statistical differences were found among lineages in morphology and bathymetric distribution. Finally, the intron i51 was polymorphic in L1 (60 individuals), but monomorphic in L3 (109 individuals), confirming the absence of gene flow between brooders and broadcasters. In conclusion, the broadcasting lineage L1 and the brooding lineage L3 are different biological species.
Collapse
Affiliation(s)
- Alexandra Anh-Thu Weber
- Aix-Marseille Université, Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), CNRS - IRD - UAPV, station marine d'Endoume, chemin de la Batterie-des-Lions, 13007 Marseille, France.
| | - Sabine Stöhr
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| | - Anne Chenuil
- Aix-Marseille Université, Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), CNRS - IRD - UAPV, station marine d'Endoume, chemin de la Batterie-des-Lions, 13007 Marseille, France
| |
Collapse
|
32
|
Rastorgueff PA, Chevaldonné P, Arslan D, Verna C, Lejeusne C. Cryptic habitats and cryptic diversity: unexpected patterns of connectivity and phylogeographical breaks in a Mediterranean endemic marine cave mysid. Mol Ecol 2014; 23:2825-43. [DOI: 10.1111/mec.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Pierre-Alexandre Rastorgueff
- Institut Méditerranéen de Biodiversité et d'Écologie Marine et Continentale (IMBE); UMR 7263 CNRS, IRD; Aix Marseille Université; Avignon Université; Station Marine d'Endoume, Rue de la Batterie des Lions 13007 Marseille France
| | - Pierre Chevaldonné
- Institut Méditerranéen de Biodiversité et d'Écologie Marine et Continentale (IMBE); UMR 7263 CNRS, IRD; Aix Marseille Université; Avignon Université; Station Marine d'Endoume, Rue de la Batterie des Lions 13007 Marseille France
| | - Defne Arslan
- Institut Méditerranéen de Biodiversité et d'Écologie Marine et Continentale (IMBE); UMR 7263 CNRS, IRD; Aix Marseille Université; Avignon Université; Station Marine d'Endoume, Rue de la Batterie des Lions 13007 Marseille France
| | - Caroline Verna
- Institut Méditerranéen de Biodiversité et d'Écologie Marine et Continentale (IMBE); UMR 7263 CNRS, IRD; Aix Marseille Université; Avignon Université; Station Marine d'Endoume, Rue de la Batterie des Lions 13007 Marseille France
| | - Christophe Lejeusne
- Doñana Biological Station-CSIC (EBD-CSIC); Avenida A. Vespucio 41092 Sevilla Spain
- Stazione Zoologica Anton Dohrn, Villa Comunale; 80121, Napoli Italy
| |
Collapse
|
33
|
Pineda-Enríquez T, Solís-Marín FA, Hooker Y, Alfredo Laguarda-Figueras. Ophioderma peruana, a new species of brittlestar (Echinodermata, Ophiuroidea, Ophiodermatidae) from the Peruvian coast. Zookeys 2013:53-65. [PMID: 24363579 PMCID: PMC3867169 DOI: 10.3897/zookeys.357.6176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/11/2013] [Indexed: 11/20/2022] Open
Abstract
Ophioderma peruanasp. n. is a new species of Ophiodermatidae, extending the distribution of the genus Ophioderma to Lobos de Afuera Island, Peru, easily distinguishable from its congeners by its peculiarly fragmented dorsal arm plates. Dense granules, rounded or polygonal cover the disc, the radial shields may be naked or completely covered by granules. A good character for recognizing this species in the field is the dorsal side of the disc which is brown with disc granules lighter cream and brown, the arms are mottled with whitish spots and the ventral part of the disc on the interradial part is brown and the radial part bright yellow.
Collapse
Affiliation(s)
- Tania Pineda-Enríquez
- Colección Nacional de Equinodermos "M. Elena Caso M.", Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Deleg. Coyoacán CP 04510 México
| | - Francisco A Solís-Marín
- Colección Nacional de Equinodermos "M. Elena Caso M.", Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Deleg. Coyoacán CP 04510 México
| | - Yuri Hooker
- Laboratorio de Biología Marina, Facultad de Ciencias y Filosofía, Universidad Peruana Caytano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P. Lima, Perú
| | - Alfredo Laguarda-Figueras
- Colección Nacional de Equinodermos "M. Elena Caso M.", Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n Deleg. Coyoacán CP 04510 México
| |
Collapse
|
34
|
Thermotolerance and regeneration in the brittle star species complex Ophioderma longicauda: A preliminary study comparing lineages and Mediterranean basins. C R Biol 2013; 336:572-81. [DOI: 10.1016/j.crvi.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 11/22/2022]
|
35
|
Living on a volcano's edge: genetic isolation of an extremophile terrestrial metazoan. Heredity (Edinb) 2013; 112:132-42. [PMID: 24045291 DOI: 10.1038/hdy.2013.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023] Open
Abstract
Communities of organisms inhabiting extreme terrestrial environments provide a unique opportunity to study evolutionary forces that drive population structure and genetic diversity under the combined challenges posed by multiple geogenic stressors. High abundance of an invasive pantropical earthworm (and the absence of indigenous lumbricid species) in the Furnas geothermal field (Sao Miguel Island, Azores) indicates its remarkable tolerance to high soil temperature, exceptionally high carbon dioxide and low oxygen levels, and elevated metal bioavailability, conditions which are lethal for the majority of terrestrial metazoans. Mitochondrial and nuclear markers were used to analyze the relationship between populations living inside and outside the geothermal field. Results showed that Pontoscolex corethrurus (Annelida, Oligochaeta, Glossoscolecidae) to be a genetically heterogeneous complex within the Sao Miguel landscape and is probably differentiated into cryptic species. The population exposed to the hostile soil conditions within the volcanic caldera possesses the lowest within-population mitochondrial diversity but an unexpectedly high degree of nuclear variability with several loci evidencing positive selection, parameters indicative of a genetically unique population only distantly related to conspecifics living outside the caldera. In conclusion, P. corethrurus inhabiting active volcanic soil is a discrete extremophile population that has evolved by tolerating a mixture of non-anthropogenic chemical and physical stressors.
Collapse
|
36
|
Skoracka A, Kuczyński L, Szydło W, Rector B. The wheat curl miteAceria tosichella(Acari: Eriophyoidea) is a complex of cryptic lineages with divergent host ranges: evidence from molecular and plant bioassay data. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12024] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Skoracka
- Department of Animal Taxonomy and Ecology; Institute of Environmental Biology; Faculty of Biology; Adam Mickiewicz University; Umultowska 89; 61-614; Poznań; Poland
| | - Lechosław Kuczyński
- Department of Avian Biology and Ecology; Institute of Environmental Biology; Faculty of Biology; Adam Mickiewicz University; Umultowska 89; 61-614; Poznań; Poland
| | - Wiktoria Szydło
- Department of Animal Taxonomy and Ecology; Institute of Environmental Biology; Faculty of Biology; Adam Mickiewicz University; Umultowska 89; 61-614; Poznań; Poland
| | - Brian Rector
- USDA-ARS; Great Basin Rangelands Research Unit; Reno; NV; 89512; USA
| |
Collapse
|
37
|
Pérez-Portela R, Almada V, Turon X. Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2012.00573.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Stöhr S, O'Hara TD, Thuy B. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One 2012; 7:e31940. [PMID: 22396744 PMCID: PMC3292557 DOI: 10.1371/journal.pone.0031940] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022] Open
Abstract
This review presents a comprehensive overview of the current status regarding the global diversity of the echinoderm class Ophiuroidea, focussing on taxonomy and distribution patterns, with brief introduction to their anatomy, biology, phylogeny, and palaeontological history. A glossary of terms is provided. Species names and taxonomic decisions have been extracted from the literature and compiled in The World Ophiuroidea Database, part of the World Register of Marine Species (WoRMS). Ophiuroidea, with 2064 known species, are the largest class of Echinodermata. A table presents 16 families with numbers of genera and species. The largest are Amphiuridae (467), Ophiuridae (344 species) and Ophiacanthidae (319 species). A biogeographic analysis for all world oceans and all accepted species was performed, based on published distribution records. Approximately similar numbers of species were recorded from the shelf (n = 1313) and bathyal depth strata (1297). The Indo-Pacific region had the highest species richness overall (825 species) and at all depths. Adjacent regions were also relatively species rich, including the North Pacific (398), South Pacific (355) and Indian (316) due to the presence of many Indo-Pacific species that partially extended into these regions. A secondary region of enhanced species richness was found in the West Atlantic (335). Regions of relatively low species richness include the Arctic (73 species), East Atlantic (118), South America (124) and Antarctic (126).
Collapse
Affiliation(s)
- Sabine Stöhr
- Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | |
Collapse
|