1
|
Wishingrad V, Thomson RC. Testing concordance and conflict in spatial replication of landscape genetics inferences. Mol Ecol 2024; 33:e17104. [PMID: 37602959 DOI: 10.1111/mec.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
The degree to which landscape genetics findings can be extrapolated to different areas of a species range is poorly understood. Here, we used a broadly distributed ectothermic lizard (Sceloporus occidentalis, Western Fence lizard) as a model species to evaluate the full role of topography, climate, vegetation, and roads on dispersal and genetic differentiation. We conducted landscape genetics analyses with a total of 119 individuals in five areas within the Sierra Nevada mountain range. Genetic distances calculated from thousands of ddRAD markers were used to optimize landscape resistance surfaces and infer the effects of landscape and topographic features on genetic connectivity. Across study areas, we found a great deal of consistency in the primary environmental gradients impacting genetic connectivity, along with some site-specific differences, and a range in the proportion of genetic variance explained by environmental factors across study sites. High-elevation colder areas were consistently found to be barriers to gene flow, as were areas of high ruggedness and slope. High temperature seasonality and high precipitation during the winter wet season also presented a substantial barrier to gene flow in a majority of study areas. The effect of other landscape variables on genetic differentiation was more idiosyncratic and depended on specific attributes at each site. Across study areas, canyon valleys were always implicated as facilitators to dispersal and key features linking populations and maintaining genetic connectivity, though the relative importance varied in different areas. We emphasize that spatial data layers are complex and multidimensional, and careful consideration of spatial data correlation structure and robust analytic frameworks will be critical to our continued understanding of spatial genetics processes.
Collapse
Affiliation(s)
- Van Wishingrad
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Robert C Thomson
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
2
|
Innes PA, Goebl AM, Smith CCR, Rosenberger K, Kane NC. Gene expression and alternative splicing contribute to adaptive divergence of ecotypes. Heredity (Edinb) 2024; 132:120-132. [PMID: 38071268 PMCID: PMC10924094 DOI: 10.1038/s41437-023-00665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 03/10/2024] Open
Abstract
Regulation of gene expression is a critical link between genotype and phenotype explaining substantial heritable variation within species. However, we are only beginning to understand the ways that specific gene regulatory mechanisms contribute to adaptive divergence of populations. In plants, the post-transcriptional regulatory mechanism of alternative splicing (AS) plays an important role in both development and abiotic stress response, making it a compelling potential target of natural selection. AS allows organisms to generate multiple different transcripts/proteins from a single gene and thus may provide a source of evolutionary novelty. Here, we examine whether variation in alternative splicing and gene expression levels might contribute to adaptation and incipient speciation of dune-adapted prairie sunflowers in Great Sand Dunes National Park, Colorado, USA. We conducted a common garden experiment to assess transcriptomic variation among ecotypes and analyzed differential expression, differential splicing, and gene coexpression. We show that individual genes are strongly differentiated for both transcript level and alternative isoform proportions, even when grown in a common environment, and that gene coexpression networks are disrupted between ecotypes. Furthermore, we examined how genome-wide patterns of sequence divergence correspond to divergence in transcript levels and isoform proportions and find evidence for both cis and trans-regulation. Together, our results emphasize that alternative splicing has been an underappreciated mechanism providing source material for natural selection at short evolutionary time scales.
Collapse
Affiliation(s)
- Peter A Innes
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA.
| | - April M Goebl
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
- Research and Conservation Department, Denver Botanic Gardens, Denver, CO, USA
| | - Chris C R Smith
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Kaylee Rosenberger
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| | - Nolan C Kane
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|
3
|
James ME, Ortiz-Barrientos D. The genomic consequences of selection across development. Mol Ecol 2024; 33:e17280. [PMID: 38247305 DOI: 10.1111/mec.17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.
Collapse
Affiliation(s)
- Maddie E James
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Lam DK, Frantz AC, Burke T, Geffen E, Sin SYW. Both selection and drift drive the spatial pattern of adaptive genetic variation in a wild mammal. Evolution 2023; 77:221-238. [PMID: 36626810 DOI: 10.1093/evolut/qpac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
The major histocompatibility complex (MHC) has been intensively studied for the relative effects of different evolutionary forces in recent decades. Pathogen-mediated balancing selection is generally thought to explain the high polymorphism observed in MHC genes, but it is still unclear to what extent MHC diversity is shaped by selection relative to neutral drift. In this study, we genotyped MHC class II DRB genes and 15 neutral microsatellite loci across 26 geographic populations of European badgers (Meles meles) covering most of their geographic range. By comparing variation of microsatellite and diversity of MHC at different levels, we demonstrate that both balancing selection and drift have shaped the evolution of MHC genes. When only MHC allelic identity was investigated, the spatial pattern of MHC variation was similar to that of microsatellites. By contrast, when functional aspects of the MHC diversity (e.g., immunological supertypes) were considered, balancing selection appears to decrease genetic structuring across populations. Our comprehensive sampling and analytical approach enable us to conclude that the likely mechanisms of selection are heterozygote advantage and/or rare-allele advantage. This study is a clear demonstration of how both balancing selection and genetic drift simultaneously affect the evolution of MHC genes in a widely distributed wild mammal.
Collapse
Affiliation(s)
- Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Kolis KM, Berg CS, Nelson TC, Fishman L. Population genomic consequences of life-history and mating system adaptation to a geothermal soil mosaic in yellow monkeyflowers. Evolution 2022; 76:765-781. [PMID: 35266558 DOI: 10.1111/evo.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
Local selection can promote phenotypic divergence despite gene flow across habitat mosaics, but adaptation itself may generate substantial barriers to genetic exchange. In plants, life-history, phenology, and mating system divergence have been proposed to promote genetic differentiation in sympatry. In this study, we investigate phenotypic and genetic variation in Mimulus guttatus (yellow monkeyflowers) across a geothermal soil mosaic in Yellowstone National Park (YNP). Plants from thermal annual and nonthermal perennial habitats were heritably differentiated for life-history and mating system traits, consistent with local adaptation to the ephemeral thermal-soil growing season. However, genome-wide genetic variation primarily clustered plants by geographic region, with little variation sorting by habitat. The one exception was an extreme thermal population also isolated by a 200 m geographical gap of no intermediate habitat. Individual inbreeding coefficients (FIS ) were higher (and predicted by trait variation) in annual plants and annual pairs showed greater isolation by distance at local (<1 km) scales. Finally, YNP adaptation does not reuse a widespread inversion that underlies M. guttatus life-history ecotypes range-wide, suggesting a novel genetic mechanism. Overall, this work suggests that life-history and mating system adaptation strong enough to shape individual mating patterns does not necessarily generate incipient speciation without geographical barriers.
Collapse
Affiliation(s)
- Kory M Kolis
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: O'Connor Center for the Rocky Mountain West, University of Montana, Missoula, MT, 59812
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: Embark Veterinary, Inc., Boston, Massachusetts, 02210
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
6
|
Liang S, Zhang X, Wei R. Ecological adaptation shaped the genetic structure of homoploid ferns against strong dispersal capacity. Mol Ecol 2022; 31:2679-2697. [DOI: 10.1111/mec.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Si‐Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences College of Life Sciences Beijing 100049 China
| | - Xian‐Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany The Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
7
|
Muniz AC, Pimenta RJG, Cruz MV, Rodrigues JG, Buzatti RSDO, Heuertz M, Lemos‐Filho JP, Lovato MB. Hybrid zone of a tree in a Cerrado/Atlantic Forest ecotone as a hotspot of genetic diversity and conservation. Ecol Evol 2022; 12:e8540. [PMID: 35127043 PMCID: PMC8803295 DOI: 10.1002/ece3.8540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The Cerrado, the largest Neotropical savanna, and the Brazilian Atlantic Forest form large ecotonal areas where savanna and forest habitats occupy adjacent patches with closely related species occurring side by side, providing opportunities for hybridization. Here, we investigated the evolutionary divergence between the savanna and forest ecotypes of the widely distributed tree Plathymenia reticulata (n = 233 individuals). Genetic structure analysis of P. reticulata was congruent with the recognition of two ecotypes, whose divergence captured the largest proportion of genetic variance in the data (F CT = 0.222 and F ST = 0.307). The ecotonal areas between the Cerrado and the Atlantic Forest constitute a hybrid zone in which a diversity of hybrid classes was observed, most of them corresponding to second-generation hybrids (F2) or backcrosses. Gene flow occurred mainly toward the forest ecotype. The genetic structure was congruent with isolation by environment, and environmental correlates of divergence were identified. The observed pattern of high genetic divergence between ecotypes may reflect an incipient speciation process in P. reticulata. The low genetic diversity of the P. reticulata forest ecotype indicate that it is threatened in areas with high habitat loss on Atlantic Forest. In addition, the high divergence from the savanna ecotype suggests it should be treated as a different unit of management. The high genetic diversity found in the ecotonal hybrid zone supports the view of ecotones as important areas for the origin and conservation of biodiversity in the Neotropics.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Mariana Vargas Cruz
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | | | - José P. Lemos‐Filho
- Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
8
|
Gamboa MP, Ghalambor CK, Scott Sillett T, Morrison SA, Chris Funk W. Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands. Mol Ecol 2021; 31:603-619. [PMID: 34704295 DOI: 10.1111/mec.16253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east-west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation-based and environmental association analyses coupled with genome-wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g., BMP, CaM, Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.
Collapse
Affiliation(s)
- Maybellene P Gamboa
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | | | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Ortego J, Céspedes V, Millán A, Green AJ. Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Mol Ecol 2021; 30:4189-4203. [PMID: 34192379 DOI: 10.1111/mec.16050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023]
Abstract
The study of the genetic makeup and demographic fate of alien species is essential to understand their capacity to recover from founder effects, adapt to new environmental conditions and, ultimately, become invasive and potentially damaging. Here, we employ genomic data to gain insights into key demographic processes that might help to explain the extraordinarily successful invasion of the Western Mediterranean region by the North American boatman Trichocorixa verticalis (Hemiptera: Corixidae). Our analyses revealed the genetic distinctiveness of populations from the main areas comprising the invasive range and coalescent-based simulations supported that they originated from independent introductions events probably involving different source populations. Testing of alternative demographic models indicated that all populations experienced a strong bottleneck followed by a recent and instantaneous demographic expansion that restored a large portion (>30%) of their ancestral effective population sizes shortly after introductions took place (<60 years ago). Considerable genetic admixture of some populations suggest that hypothetical barriers to dispersal (i.e., land and sea water) are permeable to gene flow and/or that they originated from introductions involving multiple lineages. This study demonstrates the repeated arrival of propagules with different origins and short time lags between arrival and establishment, emphasizing the extraordinary capacity of the species to recover from founder effects and genetically admix in invaded areas. This can explain the demonstrated capacity of this aquatic insect to spread and outcompete native species once it colonizes new suitable regions. Future genomic analyses of native range populations could help to infer the genetic makeup of introduced populations and track invasion routes.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Vanessa Céspedes
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
10
|
Briñoccoli YF, Jardim de Queiroz L, Bogan S, Paracampo A, Posadas PE, Somoza GM, Montoya‐Burgos JI, Cardoso YP. Processes that drive the population structuring of Jenynsia lineata (Cyprinidontiformes, Anablepidae) in the La Plata Basin. Ecol Evol 2021; 11:6119-6132. [PMID: 34141207 PMCID: PMC8207347 DOI: 10.1002/ece3.7427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/09/2022] Open
Abstract
The distribution of genetic diversity across a species distribution range is rarely homogeneous, as the genetic structure among populations is related to the degree of isolation among them, such as isolation by distance, isolation by barrier, and isolation by environment. Jenynsia lineata is a small viviparous fish that inhabits a wide range of habitats in South America. To decipher the isolation processes that drive population structuring in J. lineata, we analyzed 221 sequences of the mitochondrial cytochrome c oxidase I gene (COI), from 19 localities. Then, we examined the influence of the three most common types of isolation in order to explain the genetic variation found in this species.Our results revealed a marked structuration, with three groups: (a) La Plata/Desaguadero Rivers (sampling sites across Argentina, Uruguay, and Southern Brazil), (b) Central Argentina, and (c) Northern Argentina. A distance-based redundancy analysis, including the explanatory variables geographical distances, altitude, latitude, and basin, was able to explain up to 65% of the genetic structure. A variance partitioning analysis showed that the two most important variables underlying the structuration in J. lineata were altitude (isolation by environment) and type of basin (isolation by barrier).Our results show that in this species, the processes of population diversification are complex and are not limited to a single mechanism. The processes that play a prominent role in this study could explain the high rate of diversity that characterizes freshwater fish species. And these processes in turn are the basis for possible speciation events.
Collapse
Affiliation(s)
- Yanina F. Briñoccoli
- Laboratorio de Ictiofisiología y AcuiculturaInstituto Tecnológico Chascomús (CONICET‐UNSAM)ChascomúsArgentina
| | | | - Sergio Bogan
- Fundación de Historia Natural “Félix de Azara”Departamento de Ciencias Naturales y AntropologíaUniversidad MaimónidesCiudad Autónoma de Buenos AiresArgentina
| | - Ariel Paracampo
- Instituto de Limnología Dr. Raúl A. RingueletCONICET‐CCT La Plata‐UNLPBuenos AiresArgentina
| | - Paula E. Posadas
- CONICETLaboratorio de Sistemática y Biología Evolutiva (LASBE)Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataBuenos AiresArgentina
| | - Gustavo M. Somoza
- Laboratorio de Ictiofisiología y AcuiculturaInstituto Tecnológico Chascomús (CONICET‐UNSAM)ChascomúsArgentina
| | | | - Yamila P. Cardoso
- CONICETLaboratorio de Sistemática y Biología Evolutiva (LASBE)Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataBuenos AiresArgentina
| |
Collapse
|
11
|
Abstract
The conservation field is experiencing a rapid increase in the amount, variety, and quality of spatial data that can help us understand species movement and landscape connectivity patterns. As interest grows in more dynamic representations of movement potential, modelers are often limited by the capacity of their analytic tools to handle these datasets. Technology developments in software and high-performance computing are rapidly emerging in many fields, but uptake within conservation may lag, as our tools or our choice of computing language can constrain our ability to keep pace. We recently updated Circuitscape, a widely used connectivity analysis tool developed by Brad McRae and Viral Shah, by implementing it in Julia, a high-performance computing language. In this initial re-code (Circuitscape 5.0) and later updates, we improved computational efficiency and parallelism, achieving major speed improvements, and enabling assessments across larger extents or with higher resolution data. Here, we reflect on the benefits to conservation of strengthening collaborations with computer scientists, and extract examples from a collection of 572 Circuitscape applications to illustrate how through a decade of repeated investment in the software, applications have been many, varied, and increasingly dynamic. Beyond empowering continued innovations in dynamic connectivity, we expect that faster run times will play an important role in facilitating co-production of connectivity assessments with stakeholders, increasing the likelihood that connectivity science will be incorporated in land use decisions.
Collapse
|
12
|
DiVittorio CT, Singhal S, Roddy AB, Zapata F, Ackerly DD, Baldwin BG, Brodersen CR, Búrquez A, Fine PVA, Padilla Flores M, Solis E, Morales-Villavicencio J, Morales-Arce D, Kyhos DW. Natural selection maintains species despite frequent hybridization in the desert shrub Encelia. Proc Natl Acad Sci U S A 2020; 117:33373-33383. [PMID: 33318178 PMCID: PMC7776959 DOI: 10.1073/pnas.2001337117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
Natural selection is an important driver of genetic and phenotypic differentiation between species. For species in which potential gene flow is high but realized gene flow is low, adaptation via natural selection may be a particularly important force maintaining species. For a recent radiation of New World desert shrubs (Encelia: Asteraceae), we use fine-scale geographic sampling and population genomics to determine patterns of gene flow across two hybrid zones formed between two independent pairs of species with parapatric distributions. After finding evidence for extremely strong selection at both hybrid zones, we use a combination of field experiments, high-resolution imaging, and physiological measurements to determine the ecological basis for selection at one of the hybrid zones. Our results identify multiple ecological mechanisms of selection (drought, salinity, herbivory, and burial) that together are sufficient to maintain species boundaries despite high rates of hybridization. Given that multiple pairs of Encelia species hybridize at ecologically divergent parapatric boundaries, such mechanisms may maintain species boundaries throughout Encelia.
Collapse
Affiliation(s)
- Christopher T DiVittorio
- Department of Integrative Biology, University of California, Berkeley, CA 94720;
- TruBreed Technologies, Oakland, CA 94609
| | - Sonal Singhal
- Department of Biology, California State University - Dominguez Hills, Carson, CA 90747;
| | - Adam B Roddy
- School of the Environment, Yale University, New Haven, CT 06511
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - David D Ackerly
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Jepson Herbarium, University of California, Berkeley, CA 94720
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Bruce G Baldwin
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Jepson Herbarium, University of California, Berkeley, CA 94720
| | | | - Alberto Búrquez
- Instituto de Ecología, Universidad Autónoma de México, Sonora, 83000 Hermosillo, México
| | - Paul V A Fine
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Mayra Padilla Flores
- Department of Biology, California State University - Dominguez Hills, Carson, CA 90747
| | - Elizabeth Solis
- Department of Biology, California State University - Dominguez Hills, Carson, CA 90747
| | | | - David Morales-Arce
- Benito Juárez s/n, Colonia Barrio La Punta, Bahia Asunción, 23960 Baja California Sur, México
| | - Donald W Kyhos
- Department of Plant Biology, University of California, Davis, CA 95616
| |
Collapse
|
13
|
Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol Ecol 2020; 29:2535-2549. [PMID: 32246540 DOI: 10.1111/mec.15428] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time-consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome-environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described "islands of differentiation," and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Rose L Andrew
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, Duke University, Durham, NC, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
DeSilva R, Dodd RS. Fragmented and isolated: limited gene flow coupled with weak isolation by environment in the paleoendemic giant sequoia (Sequoiadendron giganteum). AMERICAN JOURNAL OF BOTANY 2020; 107:45-55. [PMID: 31883111 DOI: 10.1002/ajb2.1406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Patterns of genetic structure across a species' range reflect the long-term interplay between genetic drift, gene flow, and selection. Given the importance of gene flow in preventing the loss of diversity through genetic drift among spatially isolated populations, understanding the dynamics of gene flow and the factors that influence connectivity across a species' range is a major goal for conservation of genetic diversity. Here we present a detailed look at gene flow dynamics of Sequoiadendron giganteum, a paleoendemic tree species that will likely face numerous threats due to climate change. METHODS We used microsatellite markers to examine nineteen populations of S. giganteum for patterns of genetic structure and to estimate admixture and rates of gene flow between eight population pairs. Also, we used Generalized Dissimilarity Models to elucidate landscape factors that shape genetic differentiation among populations. RESULTS We found minimal gene flow between adjacent groves in the northern disjunct range. In most of the southern portion of the range, groves showed a signal of connectivity which degrades to isolation in the extreme south. Geographic distance was the most important predictor of genetic dissimilarity across the range, with environmental conditions related to precipitation and temperature explaining a small, but significant, portion of the genetic variance. CONCLUSIONS Due to their isolation and unique genetic composition, northern populations of S. giganteum should be considered a high conservation priority. In this region, we suggest germplasm conservation as well as restoration planting to enhance genetic diversity.
Collapse
Affiliation(s)
- Rainbow DeSilva
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| | - Richard S Dodd
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
15
|
Moreira-Hernández JI, Muchhala N. Importance of Pollinator-Mediated Interspecific Pollen Transfer for Angiosperm Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024804] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding how pollen moves between species is critical to understanding speciation, diversification, and evolution of flowering plants. For co-flowering species that share pollinators, competition through interspecific pollen transfer (IPT) can profoundly impact floral evolution, decreasing female fitness via heterospecific pollen deposition on stigmas and male fitness via pollen misplacement during visits to heterospecific flowers. The pollination literature demonstrates that such reproductive interference frequently selects for reproductive character displacement in floral traits linked to pollinator attraction, pollen placement, and mating systems and has also revealed that IPT between given pairs of species is typically asymmetric. More recent work is starting to elucidate its importance to the speciation process, clarifying the link between IPT and current and historical patterns of hybridization, the evolution of phenotypic novelty through adaptive introgression, and the rise of reproductive isolation. Our review aims to stimulate further research on IPT as a ubiquitous mechanism that plays a central role in angiosperm diversification.
Collapse
Affiliation(s)
- Juan Isaac Moreira-Hernández
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| | - Nathan Muchhala
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| |
Collapse
|
16
|
Zhang JQ, Imerovski I, Borkowski K, Huang K, Burge D, Rieseberg LH. Intraspecific genetic divergence within Helianthus niveus and the status of two new morphotypes from Mexico. AMERICAN JOURNAL OF BOTANY 2019; 106:1229-1239. [PMID: 31461165 DOI: 10.1002/ajb2.1349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/17/2019] [Indexed: 05/12/2023]
Abstract
PREMISE Collecting and characterizing the genetic diversity of wild relatives of crops can contribute importantly to sustainable crop production and food security. Wild sunflower, Helianthus niveus, occurs in arid regions in western North America and is partially cross-compatible with the cultivated sunflower (H. annuus). We assessed phylogenetic relationships and patterns of genetic divergence among three previously described subspecies (subsp. niveus, subsp. canescens, and subsp. tephrodes) as well as two new morphotypes of H. niveus recently discovered in extreme drought and dune habitats in Baja California, Mexico. METHODS We measured 50 plants growing in a common garden for 27 morphological traits and conducted principal component analysis to assess patterns of phenotypic variation. Genome size of each accession was determined using flow cytometry. Pollen viability of first generation hybrids between taxa was tested to infer the strength of intrinsic postzygotic reproductive barriers. Finally, genotyping-by-sequencing data were used to investigate the genetic structure and phylogenetic relationships among the previously described subspecies and new morphotypes. RESULTS The intraspecific genetic and phenotypic divergence of H. niveus populations closely tracks their geographical distribution. Subspecies niveus is phenotypically, genetically, and reproductively distinct from the other two subspecies and has a larger genome. Therefore, H. niveus as currently circumscribed should be considered to contain two distinct species, H. niveus and H. tephrodes. ABBA-BABA tests revealed substantial introgression between subsp. canescens and its sympatric congener H. petiolaris, which might contribute to their morphological similarities. The two new morphotypes collected in Mexico represent local ecotypes of subsp. niveus that occur in extreme drought and dune environments. Mantel tests showed a strong positive correlation between genetic and geographic distances. CONCLUSIONS We conclude that geographic isolation is primarily responsible for intraspecific genomic divergence within H. niveus, while patterns of phenotypic variation appear to have been shaped by ecological selection and interspecific introgression.
Collapse
Affiliation(s)
- Jian-Qiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Ivana Imerovski
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Kelly Borkowski
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Kaichi Huang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Dylan Burge
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| |
Collapse
|
17
|
Hirao AS, Shimono Y, Narita K, Wada N, Kudo G. Ecotypic divergences of the alpine herb Potentilla matsumurae adapted to fellfield-snowbed habitats across a series of mountain sky islands. AMERICAN JOURNAL OF BOTANY 2019; 106:772-787. [PMID: 31124143 DOI: 10.1002/ajb2.1290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Divergent selection due to environmental heterogeneity can lead to local adaptation. However, the ecological and evolutionary processes of local adaptation that occurs across multiple regions are often unknown. Our previous studies reported on the ecotypic divergence within a local area of variation of Potentilla matsumurae, an alpine herb adapted to the fellfield-snowbed environment. Here we investigated large-scale geographic patterns of ecotypic differentiation in this species to infer local adaptation and selective forces across multiple regions. METHODS We compiled information on the overall distributions of fellfield and snowbed habitats on the mountains in Japan across the distribution of the species. Next, we conducted common garden experiments to test the adaptive divergence of the fellfield-snowbed plants derived from multiple regions. Finally, we evaluated phylogeographic structures based on cpDNA and allozyme variations and inferred the evolutionary history of ecotype differentiation. RESULTS The mosaic distribution of the fellfield-snowbed ecotypes across isolated mountaintops constitutes indirect evidence for habitat-specific natural selection. The significant difference in survivorship between the ecotypes observed in a controlled snow environment provides more substantial evidence of local selection. Phylogeographic structures support the hypothesis that ecotypic divergence events from fellfield to snowbed populations occurred independently in at least two distinct regions. CONCLUSIONS Ecotypic divergence of P. matsumurae has occurred across a series of mountain sky islands. Local selection in snowy environments is a driving force that maintains the divergent ecotypes across multiple mountain regions and can contribute to the diversification of plants in heavy-snow regions.
Collapse
Affiliation(s)
- Akira S Hirao
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, 386-2204, Japan
| | - Yoshiko Shimono
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Narita
- Faculty of Education and Human Studies, Akita University, Akita, 010-8502, Japan
| | - Naoya Wada
- Center for Far Eastern Studies, University of Toyama, Toyama, 930-8555, Japan
| | - Gaku Kudo
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
18
|
Krohn AR, Diepeveen ET, Bi K, Rosenblum EB. Local adaptation does not lead to genome-wide differentiation in lava flow lizards. Ecol Evol 2019; 9:6810-6820. [PMID: 31380017 PMCID: PMC6662252 DOI: 10.1002/ece3.5231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
Adaptation can occur with or without genome-wide differentiation. If adaptive loci are linked to traits involved in reproductive isolation, genome-wide divergence is likely, and speciation is possible. However, adaptation can also lead to phenotypic differentiation without genome-wide divergence if levels of ongoing gene flow are high. Here, we use the replicated occurrence of melanism in lava flow lizards to assess the relationship between local adaptation and genome-wide differentiation. We compare patterns of phenotypic and genomic divergence among lava flow and nonlava populations for three lizard species and three lava flows in the Chihuahuan Desert. We find that local phenotypic adaptation (melanism) is not typically accompanied by genome-wide differentiation. Specifically, lava populations do not generally exhibit greater divergence from nonlava populations than expected by geography alone, regardless of whether the lava formation is 5,000 or 760,000 years old. We also infer that gene flow between lava and nonlava populations is ongoing in all lava populations surveyed. Recent work in the isolation by environment and ecological speciation literature suggests that environmentally driven genome-wide differentiation is common in nature. However, local adaptation may often simply be local adaptation rather than an early stage of ecological speciation.
Collapse
Affiliation(s)
- Alexander R. Krohn
- Department of Environmental Science, Policy and ManagementUniversity of California, BerkeleyBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Eveline T. Diepeveen
- Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
| | - Ke Bi
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3)University of California, BerkeleyBerkeleyCalifornia
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy and ManagementUniversity of California, BerkeleyBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
19
|
Gao YD, Gao XF, Harris A. Species Boundaries and Parapatric Speciation in the Complex of Alpine Shrubs, Rosa sericea (Rosaceae), Based on Population Genetics and Ecological Tolerances. FRONTIERS IN PLANT SCIENCE 2019; 10:321. [PMID: 30936888 PMCID: PMC6432857 DOI: 10.3389/fpls.2019.00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/27/2019] [Indexed: 06/01/2023]
Abstract
Discerning species boundaries among closely related taxa is fundamental to studying evolution and biodiversity. However, species boundaries can be difficult to access in plants because ongoing divergence and speciation may leave an evolutionary footprint similar to introgression, which occurs frequently among species and genera. In this study, we sought to determine species boundaries between two closely related alpine shrubs, Rosa sericea and Rosa omeiensis, using population genetics, environmental data and ecological niche modeling, and morphological traits. We analyzed populations of R. sericea and R. omeiensis using genetic markers comprising a fragment of the single-copy nuclear gene, LEAFY, micro-satellites (EST-SSR), and plastid DNA sequences. The DNA sequence data suggested clusters of populations consistent with geography but not with previously proposed species boundaries based on morphology. Nevertheless, we found that the ecological niches of the previously proposed species only partially overlap. Thus, we suspect that these species are in the process of parapatric speciation; that is, differentiating along an ecological gradient, so that they exhibit differing morphology. Morphology has previously been the basis of recognizing the species R. sericea and R. omeiensis, which are the most widely distributed species within a broader R. sericea complex that includes several other narrow endemics. Here, we recognize R. sericea and R. omeiensis as independent species based on morphological and ecological data under the unified species concept, which emphasizes that these data types are of equal value to DNA for determining species boundaries and refining taxonomic treatments. While the DNA data did not delimit species within the R. sericea complex, we expect to develop and utilize new, robust DNA tools for understanding speciation within this group in future studies.
Collapse
Affiliation(s)
- Yun-Dong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Aj Harris
- Oberlin College and Conservatory, Department of Biology, Oberlin, OH, United States
| |
Collapse
|
20
|
Parallel colonization of subalpine habitats in the central European mountains by Primula elatior. Sci Rep 2019; 9:3294. [PMID: 30824749 PMCID: PMC6397301 DOI: 10.1038/s41598-019-39669-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The island-like distribution of subalpine habitats across mountain ranges can trigger the parallel evolution of locally adapted ecotypes. Such naturally replicated scenarios allow testing hypotheses on how elevational differentiation structures genetic diversity within species. Nevertheless, the parallel colonization of subalpine habitats across different mountain ranges has only rarely been documented with molecular data. We chose Primula elatior (Primulaceae), naturally spanning entire elevation range in multiple mountain regions of central Europe, to test for the origin of its scattered subalpine populations. Nuclear microsatellite variation revealed three genetic groups corresponding with the distinct study regions. We found that genetic differentiation between foothill and subalpine populations within each region was relatively low, suggesting that the colonization of subalpine habitats occurred independently within each mountain range. Furthermore, the strongest differentiation was usually found between the subalpine populations suggesting that mountain ridges may act as migration barriers that can reduce gene flow more strongly than elevational differences between foothill and subalpine populations. Finally, we found that subalpine colonization did not result in a loss of genetic diversity relative to foothill populations in agreement with the high migration rates that we document here between the subalpine and the foothill populations. In summary, our study shows subalpine Primula elatior populations are genetically diverse and distinct results of parallel colonization events from multiple foothill gene pools.
Collapse
|
21
|
Cortés AJ, Garzón LN, Valencia JB, Madriñán S. On the Causes of Rapid Diversification in the Páramos: Isolation by Ecology and Genomic Divergence in Espeletia. FRONTIERS IN PLANT SCIENCE 2018; 9:1700. [PMID: 30581444 PMCID: PMC6294130 DOI: 10.3389/fpls.2018.01700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/01/2018] [Indexed: 05/10/2023]
Abstract
How diversity arises and what is the relative role of allopatric and ecological divergence are among the most persistent questions in evolution and ecology. Here, we assessed whether ecological divergence has enhanced the diversification of the Neotropical alpine plant complex Espeletia, also known as frailejones. This genus has one of the highest diversification rates ever reported and is distributed in the world's fastest evolving biodiversity hotspot, the Páramo (Neotropical alpine grasslands at elevations of c. 2800-4700 m). Our goal was to determine whether ecology plays a role in divergence within the Espeletia complex by quantifying genome-wide patterns of ecological divergence. We characterized 162 samples of the three most common and contrasting ecotypes (distinct morphotypes occupying particular habitats) co-occurring in six localities in the northern Andes using Genotyping by Sequencing. Contrasting ecotypes were caulescent cloud forest populations, caulescent populations from wind-sheltered and well-irrigated depressions and acaulescent populations from wind-exposed drier slopes. We found high polymorphism with a total of 1,273 single nucleotide polymorphisms (SNPs) that defined the relationships among nine genetic clusters. We quantified allelic associations of these markers with localities and habitats using 18 different general and mixed-effects statistical models that accounted for phylogenetic distance. Despite that these models always yielded more SNPs associated with the localities, markers associated with the habitat types were recovered too. We found strong evidence for isolation-by-distance (IBD) across populations despite rampant gene flow, as expected for plant groups with limited seed dispersal. Contrasts between populations of different habitat types showed that an isolation-by-environment (IBE) trend emerged and masked the IBD signal. Maximum likelihood estimation of the number of migrants per generation (Nem) among ecotypes confirmed the IBE pattern. This result illustrates the importance of mountains' environmental variation at a local scale in generating rapid morphological radiations and maintaining multiple adaptations in a fast-evolving ecosystem like the Páramo.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Luz N. Garzón
- Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jhon B. Valencia
- Facultad de Ingeniera y Administracin, Universidad Nacional de Colombia - Sede Palmira, Palmira, Colombia
| | - Santiago Madriñán
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Jardín Botánico de Cartagena “Guillermo Piñeres”, Turbaco, Colombia
| |
Collapse
|
22
|
Milanesi P, Caniglia R, Fabbri E, Puopolo F, Galaverni M, Holderegger R. Combining Bayesian genetic clustering and ecological niche modeling: Insights into wolf intraspecific genetic structure. Ecol Evol 2018; 8:11224-11234. [PMID: 30519439 PMCID: PMC6262746 DOI: 10.1002/ece3.4594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
The distribution of intraspecific genetic variation and how it relates to environmental factors is of increasing interest to researchers in macroecology and biogeography. Recent studies investigated the relationships between the environment and patterns of intraspecific genetic variation across species ranges but only few rigorously tested the relation between genetic groups and their ecological niches. We quantified the relationship of genetic differentiation (F ST) and the overlap of ecological niches (as measured by n-dimensional hypervolumes) among genetic groups resulting from spatial Bayesian genetic clustering in the wolf (Canis lupus) in the Italian peninsula. Within the Italian wolf population, four genetic clusters were detected, and these clusters showed different ecological niches. Moreover, different wolf clusters were significantly related to differences in land cover and human disturbance features. Such differences in the ecological niches of genetic clusters should be interpreted in light of neutral processes that hinder movement, dispersal, and gene flow among the genetic clusters, in order to not prematurely assume any selective or adaptive processes. In the present study, we found that both the plasticity of wolves-a habitat generalist-to cope with different environmental conditions and the occurrence of barriers that limit gene flow lead to the formation of genetic intraspecific genetic clusters and their distinct ecological niches.
Collapse
Affiliation(s)
- Pietro Milanesi
- Swiss Ornithological InstituteSempachSwitzerland
- Area per la Genetica della ConservazioneIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)BolognaItaly
| | - Romolo Caniglia
- Area per la Genetica della ConservazioneIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)BolognaItaly
| | - Elena Fabbri
- Area per la Genetica della ConservazioneIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)BolognaItaly
| | | | | | - Rolf Holderegger
- WSL Swiss Federal Research InstituteBirmensdorfSwitzerland
- Department of Environmental Systems SciencesETH ZürichZürichSwitzerland
| |
Collapse
|
23
|
González-Serna MJ, Cordero PJ, Ortego J. Using high-throughput sequencing to investigate the factors structuring genomic variation of a Mediterranean grasshopper of great conservation concern. Sci Rep 2018; 8:13436. [PMID: 30194365 PMCID: PMC6128945 DOI: 10.1038/s41598-018-31775-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 01/25/2023] Open
Abstract
Inferring the demographic history of species is fundamental for understanding their responses to past climate/landscape alterations and improving our predictions about the future impacts of the different components of ongoing global change. Estimating the time-frame at which population fragmentation took place is also critical to determine whether such process was shaped by ancient events (e.g. past climate/geological changes) or if, conversely, it was driven by recent human activities (e.g. habitat loss). We employed genomic data (ddRAD-Seq) to determine the factors shaping contemporary patterns of genetic variation in the Iberian cross-backed grasshopper Dociostaurus crassiusculus, an endangered species with limited dispersal capacity and narrow habitat requirements. Our analyses indicate the presence of two ancient lineages and three genetic clusters resulted from historical processes of population fragmentation (~18-126 ka) that predate the Anthropocene. Landscape genetic analyses indicate that the limits of major river basins are the main geographical feature explaining large-scale patterns of genomic differentiation, with no apparent effect of human-driven habitat fragmentation. Overall, our study highlights the importance of detailed phylogeographic, demographic and spatially-explicit landscape analyses to identify evolutionary significant units and determine the relative impact of historical vs. anthropogenic factors on processes of genetic fragmentation in taxa of great conservation concern.
Collapse
Affiliation(s)
- María José González-Serna
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC - (CSIC, UCLM, JCCM), Ronda de Toledo, 12, E-13071, Ciudad Real, Spain.
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC - (CSIC, UCLM, JCCM), Ronda de Toledo, 12, E-13071, Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana - EBD - (CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain
| |
Collapse
|
24
|
Pournosrat R, Kaya S, Shaaf S, Kilian B, Ozkan H. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia. PLoS One 2018; 13:e0192386. [PMID: 29420597 PMCID: PMC5805283 DOI: 10.1371/journal.pone.0192386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/21/2018] [Indexed: 11/29/2022] Open
Abstract
Despite the global value of barley, compared to its wild progenitor, genetic variation in this crop has been drastically reduced due to the process of domestication, selection and improvement. In the medium term, this will negatively impact both the vulnerability and yield stability of barley against biotic and abiotic stresses under climate change. Returning to the crop wild relatives (CWR) as sources of new and beneficial alleles is a clear option for enhancing the resilience of diversity and adaptation to climate change. Southeastern Anatolia constitutes an important part of the natural distribution of wild barley in the Fertile Crescent where important crops were initially domesticated. In this study, we investigated genetic diversity in a comprehensive collection of 281 geo-referenced wild barley individuals from 92 collection sites with sample sizes ranging from 1 to 9 individuals per site, collected from southeastern Anatolia and 131 domesticated genotypes from 49 different countries using 40 EST-SSR markers. A total of 375 alleles were detected across entire collection, of which 283 were carried by domesticated genotypes and 316 alleles were present in the wild gene pool. The number of unique alleles in the wild and in the domesticated gene pool was 92 and 59, respectively. The population structure at K = 3 suggested two groups of wild barley namely G1-W consisting wild barley genotypes from the western part and G1-E comprising those mostly from the eastern part of the study area, with a sharp separation from the domesticated gene pool. The geographic and climatic factors jointly showed significant effects on the distribution of wild barley. Using a Latent Factor Mixed Model, we identified four candidate loci potentially involved in adaptation of wild barley to three environmental factors: temperature seasonality, mean temperature of driest quarter, and precipitation of coldest quarter. These loci are probably the targets of genomic regions, with potential roles against abiotic stresses.
Collapse
Affiliation(s)
- Reza Pournosrat
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Selma Kaya
- University of Çukurova, Faculty of Agriculture, Department of Field Crops, Adana, Turkey
| | - Salar Shaaf
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
- * E-mail: (HO); (BK); (SS)
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Genebank Department, Genome Diversity Group, Seeland, Germany
- * E-mail: (HO); (BK); (SS)
| | - Hakan Ozkan
- University of Çukurova, Faculty of Agriculture, Department of Field Crops, Adana, Turkey
- * E-mail: (HO); (BK); (SS)
| |
Collapse
|
25
|
Mosca E, Di Pierro EA, Budde KB, Neale DB, González-Martínez SC. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species. Mol Ecol 2018; 27:647-658. [PMID: 29274175 DOI: 10.1111/mec.14469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine-scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species-specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate-related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution.
Collapse
Affiliation(s)
- Elena Mosca
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige, Italy.,Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Erica A Di Pierro
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige, Italy
| | | | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
26
|
Seeholzer GF, Brumfield RT. Isolation by distance, not incipient ecological speciation, explains genetic differentiation in an Andean songbird (Aves: Furnariidae:
Cranioleuca antisiensis,
Line‐cheeked Spinetail) despite near threefold body size change across an environmental gradient. Mol Ecol 2017; 27:279-296. [DOI: 10.1111/mec.14429] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Glenn F. Seeholzer
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Robb T. Brumfield
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| |
Collapse
|
27
|
Turner KG, Huang DI, Cronk QCB, Rieseberg LH. Homogenization of Populations in the Wildflower, Texas Bluebonnet (Lupinus texensis). J Hered 2017; 109:152-161. [DOI: 10.1093/jhered/esx094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/26/2017] [Indexed: 11/13/2022] Open
|
28
|
Abstract
Phylogeography documents the spatial distribution of genetic lineages that result from demographic processes, such as population expansion, population contraction, and gene movement, shaped by climate fluctuations and the physical landscape. Because most phylogeographic studies have used neutral markers, the role of selection may have been undervalued. In this paper, we contend that plants provide a useful evolutionary lesson about the impact of selection on spatial patterns of neutral genetic variation, when the environment affects which individuals can colonize new sites, and on adaptive genetic variation, when environmental heterogeneity creates divergence at specific loci underlying local adaptation. Specifically, we discuss five characteristics found in plants that intensify the impact of selection: sessile growth form, high reproductive output, leptokurtic dispersal, isolation by environment, and the potential to evolve longevity. Collectively, these traits exacerbate the impact of environment on movement between populations and local selection pressures-both of which influence phylogeographic structure. We illustrate how these unique traits shape these processes with case studies of the California endemic oak, Quercus lobata, and the western North American lichen, Ramalina menziesii Obviously, the lessons we learn from plant traits are not unique to plants, but they highlight the need for future animal, plant, and microbe studies to incorporate its impact. Modern tools that generate genome-wide sequence data are now allowing us to decipher how evolutionary processes affect the spatial distribution of different kinds of genes and also to better model future spatial distribution of species in response to climate change.
Collapse
|
29
|
Sakaguchi S, Horie K, Ishikawa N, Nagano AJ, Yasugi M, Kudoh H, Ito M. Simultaneous evaluation of the effects of geographic, environmental and temporal isolation in ecotypic populations of Solidago virgaurea. THE NEW PHYTOLOGIST 2017; 216:1268-1280. [PMID: 28833204 DOI: 10.1111/nph.14744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/07/2017] [Indexed: 05/14/2023]
Abstract
Early stages of ecological speciation can create populations with an ecology and reproduction timing distinct from those of related populations. Landscape genetic models incorporating environmental heterogeneity and population-specific reproductive traits enable the processes of population genetic differentiation to be inferred. We investigated genome-wide genetic variation in ecotypic populations of Solidago virgaurea sensu lato, a herbaceous plant inhabiting a wide range of habitats (woodlands, serpentine barrens and alpine grasslands) and displaying remarkable variation in flowering time. Simultaneous evaluation of environmental factors revealed an overwhelming effect of soil type differences on neutral genetic differentiation, compared with elevational differences. This result probably reflects the abrupt environmental changes generated by geological boundaries, whereas mountain slopes exhibit clinal changes, facilitating gene exchange between neighbouring populations. Temporal isolation was positively associated with genetic differentiation, with some early-flowering serpentine populations having allele frequencies distinct from adjacent nonserpentine populations. Overall, this study highlights the importance of ecological processes and of evolution of flowering time to promote genetic differentiation of S. virgaurea populations in a complex landscape.
Collapse
Affiliation(s)
- Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kenji Horie
- Asahikawa City Northern Wild Plants Garden, Asahikawa, 071-1200, Japan
| | - Naoko Ishikawa
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
- JST CREST, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Masaki Yasugi
- National Institute for Basic Biology, Higashiyama 5-1, Myodaiji, Okazaki, 444-8787, Aichi, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
30
|
Gugger PF, Liang CT, Sork VL, Hodgskiss P, Wright JW. Applying landscape genomic tools to forest management and restoration of Hawaiian koa ( Acacia koa) in a changing environment. Evol Appl 2017; 11:231-242. [PMID: 29387158 PMCID: PMC5775490 DOI: 10.1111/eva.12534] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa. Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.
Collapse
Affiliation(s)
- Paul F Gugger
- Ecology and Evolutionary Biology University of California Los Angeles CA USA.,Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | | | - Victoria L Sork
- Ecology and Evolutionary Biology University of California Los Angeles CA USA.,Institute of the Environment and Sustainability University of California Los Angeles Los Angeles CA USA
| | - Paul Hodgskiss
- USDA Forest Service Pacific Southwest Research Station Davis CA USA
| | - Jessica W Wright
- USDA Forest Service Pacific Southwest Research Station Davis CA USA
| |
Collapse
|
31
|
Deschepper P, Brys R, Fortuna MA, Jacquemyn H. Analysis of spatial genetic variation reveals genetic divergence among populations of Primula veris associated to contrasting habitats. Sci Rep 2017; 7:8847. [PMID: 28821787 PMCID: PMC5562905 DOI: 10.1038/s41598-017-09154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022] Open
Abstract
Genetic divergence by environment is a process whereby selection causes the formation of gene flow barriers between populations adapting to contrasting environments and is often considered to be the onset of speciation. Nevertheless, the extent to which genetic differentiation by environment on small spatial scales can be detected by means of neutral markers is still subject to debate. Previous research on the perennial herb Primula veris has shown that plants from grassland and forest habitats showed pronounced differences in phenology and flower morphology, suggesting limited gene flow between habitats. To test this hypothesis, we sampled 33 populations of P. veris consisting of forest and grassland patches and used clustering techniques and network analyses to identify sets of populations that are more connected to each other than to other sets of populations and estimated the timing of divergence. Our results showed that spatial genetic variation had a significantly modular structure and consisted of four well-defined modules that almost perfectly coincided with habitat features. Genetic divergence was estimated to have occurred about 114 generations ago, coinciding with historic major changes in the landscape. Overall, these results illustrate how populations adapting to different environments become structured genetically within landscapes on small spatial scales.
Collapse
Affiliation(s)
- Pablo Deschepper
- Division of Plant Ecology and Systematics, Biology Department, University of Leuven, Leuven, Belgium.
| | - Rein Brys
- Research Institute for Forest and Nature, Gaverstraat 4, B-9500, Geraardsbergen, Belgium
| | - Miguel A Fortuna
- Department of Evolutionary Biology and Environmental Studies. University of Zurich, Zurich, Switzerland
| | - Hans Jacquemyn
- Division of Plant Ecology and Systematics, Biology Department, University of Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Torroba-Balmori P, Budde KB, Heer K, González-Martínez SC, Olsson S, Scotti-Saintagne C, Casalis M, Sonké B, Dick CW, Heuertz M. Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS One 2017; 12:e0182515. [PMID: 28771629 PMCID: PMC5542443 DOI: 10.1371/journal.pone.0182515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.
Collapse
Affiliation(s)
- Paloma Torroba-Balmori
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Palencia, Spain
| | | | - Katrin Heer
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
- Conservation Biology and Ecology, University of Marburg, Marburg, Germany
| | - Santiago C. González-Martínez
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- Sustainable Forest Management Research Institute, University of Valladolid - INIA, Palencia, Spain
- UMR BIOGECO, INRA, University of Bordeaux, Cestas, France
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
| | | | | | - Bonaventure Sonké
- Ecole Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
- Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Christopher W. Dick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Smithsonian Tropical Research Institute, Republic of Panama
| | - Myriam Heuertz
- Department of Forest Ecology and Genetics, INIA Forest Research Centre, Madrid, Spain
- UMR BIOGECO, INRA, University of Bordeaux, Cestas, France
- Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| |
Collapse
|
33
|
de Lafontaine G, Bousquet J. Asymmetry matters: A genomic assessment of directional biases in gene flow between hybridizing spruces. Ecol Evol 2017; 7:3883-3893. [PMID: 28616185 PMCID: PMC5468134 DOI: 10.1002/ece3.2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 01/08/2023] Open
Abstract
Assessing directional bias in interspecific gene flow might be important in determining the evolutionary trajectory of closely related species pairs. Using a set of 300 single nucleotide polymorphisms (SNPs) having variable propensity to cross species boundary, we evaluated the genomic extent and direction of interspecific gene flow in a progenitor‐derivative spruce species pair (black spruce and red spruce). A higher rate of gene flow was found from black spruce toward red spruce purebreds than vice versa. This asymmetry could reflect the historical gene flow between the two taxa at the time of species inception and during postglacial colonization. A clear asymmetry in introgression was depicted by a greater gene flow between red spruce and hybrids than between black spruce and hybrids. While backcrossing toward red spruce was invariably high across the genome, the actual species boundary is between hybrids and black spruce where gene flow is impeded at those genomic regions impermeable to introgression. Associations between hybrid index and climatic variables (total annual precipitation and mean annual temperature) were tested, as these might indicate a role for exogenous selection in maintaining the species boundary. While an apparent association was found between the hybrid index and precipitation, it collapsed when considered in light of the directional bias in interspecific gene flow. Hence, considering asymmetrical patterns of introgression allowed us to falsify an apparent role for exogenous selection. Although this was not formerly tested here, we suggest that this pattern could result from asymmetrical endogenous selection, a contention that deserves further investigations.
Collapse
Affiliation(s)
- Guillaume de Lafontaine
- Canada Research Chair in Forest Genomics Centre for Forest Research and Institute of Systems and Integrative Biology Université Laval Québec QC Canada.,Department of Plant Biology University of Illinois Urbana IL USA
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics Centre for Forest Research and Institute of Systems and Integrative Biology Université Laval Québec QC Canada
| |
Collapse
|
34
|
Noguerales V, Cordero PJ, Ortego J. Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 2017; 7:3110-3122. [PMID: 28480010 PMCID: PMC5415511 DOI: 10.1002/ece3.2810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding the processes underlying spatial patterns of genetic diversity and structure of natural populations is a central topic in evolutionary biogeography. In this study, we combine data on ancient and contemporary landscape composition to get a comprehensive view of the factors shaping genetic variation across the populations of the scrub‐legume grasshopper (Chorthippus binotatus binotatus) from the biogeographically complex region of southeast Iberia. First, we examined geographical patterns of genetic structure and employed an approximate Bayesian computation (ABC) approach to compare different plausible scenarios of population divergence. Second, we used a landscape genetic framework to test for the effects of (1) Late Miocene paleogeography, (2) Pleistocene climate fluctuations, and (3) contemporary topographic complexity on the spatial patterns of population genetic differentiation. Genetic structure and ABC analyses supported the presence of three genetic clusters and a sequential west‐to‐east splitting model that predated the last glacial maximum (LGM, c. 21 Kya). Landscape genetic analyses revealed that population genetic differentiation was primarily shaped by contemporary topographic complexity, but was not explained by any paleogeographic scenario or resistance distances based on climate suitability in the present or during the LGM. Overall, this study emphasizes the need of integrating information on ancient and contemporary landscape composition to get a comprehensive view of their relative importance to explain spatial patterns of genetic variation in organisms inhabiting regions with complex biogeographical histories.
Collapse
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| |
Collapse
|
35
|
Johnson JS, Gaddis KD, Cairns DM, Konganti K, Krutovsky KV. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. AMERICAN JOURNAL OF BOTANY 2017; 104:439-450. [PMID: 28325831 DOI: 10.3732/ajb.1600262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock (Tsuga mertensiana) on the Alaskan Kenai Peninsula. METHODS We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. KEY RESULTS A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. CONCLUSIONS Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution.
Collapse
Affiliation(s)
- Jeremy S Johnson
- Department of Geography, Texas A&M University, 810 Eller O&M Building, MS 3147 TAMU, College Station, Texas 77843-3147 USA
| | - Keith D Gaddis
- Department of Geography, Texas A&M University, 810 Eller O&M Building, MS 3147 TAMU, College Station, Texas 77843-3147 USA
| | - David M Cairns
- Department of Geography, Texas A&M University, 810 Eller O&M Building, MS 3147 TAMU, College Station, Texas 77843-3147 USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University Veterinary Medical Research Building, MS 2470 TAMU, College Station, Texas 77433-2470 USA
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Ecosystem Science & Management, Texas A&M University, 305 Horticulture and Forest Science Building, MS 2138 TAMU, College Station, Texas 77843-2138 USA
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow 119333, Russia
- Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
36
|
Ortego J, Gugger PF, Sork VL. Impacts of human-induced environmental disturbances on hybridization between two ecologically differentiated Californian oak species. THE NEW PHYTOLOGIST 2017; 213:942-955. [PMID: 27621132 DOI: 10.1111/nph.14182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/04/2016] [Indexed: 05/15/2023]
Abstract
Natural hybridization, which can be involved in local adaptation and in speciation processes, has been linked to different sources of anthropogenic disturbance. Here, we use genotypic data to study range-wide patterns of genetic admixture between the serpentine-soil specialist leather oak (Quercus durata) and the widespread Californian scrub oak (Quercus berberidifolia). First, we estimated hybridization rates and the direction of gene flow. Second, we tested the hypothesis that genetic admixture increases with different sources of environmental disturbance, namely anthropogenic destruction of natural habitats and wildfire frequency estimated from long-term records of fire occurrence. Our analyses indicate considerable rates of hybridization (> 25%), asymmetric gene flow from Q. durata into Q. berberidifolia, and a higher occurrence of hybrids in areas where both species live in close parapatry. In accordance with the environmental disturbance hypothesis, we found that genetic admixture increases with wildfire frequency, but we did not find a significant effect of other sources of human-induced habitat alteration (urbanization, land clearing for agriculture) or a suite of ecological factors (climate, elevation, soil type). Our findings highlight that wildfires constitute an important source of environmental disturbance, promoting hybridization between two ecologically well-differentiated native species.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD, 21532, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
- Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|
37
|
Ribeiro PC, Souza ML, Muller LAC, Ellis VA, Heuertz M, Lemos-Filho JP, Lovato MB. Climatic drivers of leaf traits and genetic divergence in the tree Annona crassiflora: a broad spatial survey in the Brazilian savannas. GLOBAL CHANGE BIOLOGY 2016; 22:3789-3803. [PMID: 27062055 DOI: 10.1111/gcb.13312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
Collapse
Affiliation(s)
- Priciane C Ribeiro
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus L Souza
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Larissa A C Muller
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Vincenzo A Ellis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Myriam Heuertz
- Forest Ecology and Genetics, Forest Research Centre, INIA, 28040, Madrid, Spain
- BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France
| | - José P Lemos-Filho
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Bernadete Lovato
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
38
|
Ostevik KL, Andrew RL, Otto SP, Rieseberg LH. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 2016; 70:2322-2335. [PMID: 27479368 DOI: 10.1111/evo.13027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/12/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023]
Abstract
Measuring reproductive barriers between groups of organisms is an effective way to determine the traits and mechanisms that impede gene flow. However, to understand the ecological and evolutionary factors that drive speciation, it is important to distinguish between the barriers that arise early in the speciation process and those that arise after speciation is largely complete. In this article, we comprehensively test for reproductive isolation between recently diverged (<10,000 years bp) dune and nondune ecotypes of the prairie sunflower, Helianthus petiolaris. We find reproductive barriers acting at multiple stages of hybridization, including premating, postmating-prezygotic, and postzygotic barriers, despite the recent divergence. Barriers include extrinsic selection against immigrants and hybrids, a shift in pollinator assemblage, and postpollination assortative mating. Together, these data suggest that multiple barriers can be important for reducing gene flow in the earliest stages of speciation.
Collapse
Affiliation(s)
- Katherine L Ostevik
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
39
|
Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P, Fishman L. The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in Yellowstone Mimulus guttatus. Mol Ecol 2016; 25:5647-5662. [PMID: 27393073 DOI: 10.1111/mec.13753] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Microgeographic adaptation provides a particularly interesting context for understanding the genetic basis of phenotypic divergence and may also present unique empirical challenges. In particular, plant adaptation to extreme soil mosaics may generate barriers to gene flow or shifts in mating system that confound simple genomic scans for adaptive loci. Here, we combine three approaches - quantitative trait locus (QTL) mapping of candidate intervals in controlled crosses, population resequencing (PoolSeq) and analyses of wild recombinant individuals - to investigate one trait associated with Mimulus guttatus (yellow monkeyflower) adaptation to geothermal soils in Yellowstone National Park. We mapped a major QTL causing dense leaf trichomes in thermally adapted plants to a <50-kb region of linkage Group 14 (Tr14) previously implicated in trichome divergence between independent M. guttatus populations. A PoolSeq scan of Tr14 region revealed a cluster of six genes, coincident with the inferred QTL peak, with high allele frequency differences sufficient to explain observed phenotypic differentiation. One of these, the R2R3 MYB transcription factor Migut.N02661, is a plausible functional candidate and was also strongly associated (r2 = 0.27) with trichome phenotype in analyses of wild-collected admixed individuals. Although functional analyses will be necessary to definitively link molecular variants in Tr14 with trichome divergence, our analyses are a major step in that direction. They point to a simple, and parallel, genetic basis for one axis of Mimulus guttatus adaptation to an extreme habitat, suggest a broadly conserved genetic basis for trichome variation across flowering plants and pave the way for further investigations of this challenging case of microgeographic incipient speciation.
Collapse
Affiliation(s)
- Margaret F Hendrick
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA.,Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Boston, MA, 02215, USA
| | - Findley R Finseth
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Minna E Mathiasson
- School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, ME, 04469, USA
| | - Kristen A Palmer
- Department of Biology, Wheaton College, 26 E. Main St., Norton, MA, 02766, USA
| | - Emma M Broder
- Biology Department, Wesleyan University, 45 Wyllys Ave., Middletown, CT, 06259, USA
| | - Peter Breigenzer
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| |
Collapse
|
40
|
Tesson SV, Okamura B, Dudaniec RY, Vyverman W, Löndahl J, Rushing C, Valentini A, Green AJ. Integrating microorganism and macroorganism dispersal: modes, techniques and challenges with particular focus on co-dispersal. ECOSCIENCE 2016. [DOI: 10.1080/11956860.2016.1148458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
He SL, Wang YS, Li DZ, Yi TS. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc). Sci Rep 2016; 6:22795. [PMID: 26952904 PMCID: PMC4782138 DOI: 10.1038/srep22795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes.
Collapse
Affiliation(s)
- Shui-Lian He
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yun-Sheng Wang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Environmental and life Science, Kaili University, Kaili, 650201, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ting-Shuang Yi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
42
|
Milanesi P, Holderegger R, Caniglia R, Fabbri E, Randi E. Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl Ecol 2016. [DOI: 10.1016/j.baae.2015.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Riordan EC, Gugger PF, Ortego J, Smith C, Gaddis K, Thompson P, Sork VL. Association of genetic and phenotypic variability with geography and climate in three southern California oaks. AMERICAN JOURNAL OF BOTANY 2016; 103:73-85. [PMID: 26758886 DOI: 10.3732/ajb.1500135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. METHODS We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. KEY RESULTS The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. CONCLUSIONS Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future.
Collapse
Affiliation(s)
- Erin C Riordan
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA
| | - Paul F Gugger
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio s/n 41092 Seville, Spain
| | - Carrie Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA
| | - Keith Gaddis
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA
| | - Pam Thompson
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, California 90095-7239 USA Institute of the Environment and Sustainability, University of California Los Angeles, Box 951496, Los Angeles, California 90095-1496 USA
| |
Collapse
|
44
|
Ferrer ES, García-Navas V, Bueno-Enciso J, Barrientos R, Serrano-Davies E, Cáliz-Campal C, Sanz JJ, Ortego J. The influence of landscape configuration and environment on population genetic structure in a sedentary passerine: insights from loci located in different genomic regions. J Evol Biol 2015; 29:205-19. [DOI: 10.1111/jeb.12776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/29/2022]
Affiliation(s)
- E. S. Ferrer
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - V. García-Navas
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - J. Bueno-Enciso
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - R. Barrientos
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - E. Serrano-Davies
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - C. Cáliz-Campal
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| | - J. J. Sanz
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - J. Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
45
|
Funk WC, Murphy MA, Hoke KL, Muths E, Amburgey SM, Lemmon EM, Lemmon AR. Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient. J Evol Biol 2015; 29:241-52. [DOI: 10.1111/jeb.12760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/28/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023]
Affiliation(s)
- W. C. Funk
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - M. A. Murphy
- Department of Ecosystem Science and Management University of Wyoming Laramie WY USA
- Program in Ecology University of Wyoming Laramie WY USA
| | - K. L. Hoke
- Department of Biology Colorado State University Fort Collins CO USA
| | - E. Muths
- U.S. Geological Survey Fort Collins Science Center Fort Collins CO USA
| | - S. M. Amburgey
- Department of Ecosystem Science and Management Pennsylvania State University University Park PA USA
- Intercollege Graduate Degree Program in Ecology Pennsylvania State University University Park PA USA
| | - E. M. Lemmon
- Department of Biology Florida State University Tallahassee FL USA
| | - A. R. Lemmon
- Department of Scientific Computing Florida State University Tallahassee FL USA
| |
Collapse
|
46
|
Expected Shannon Entropy and Shannon Differentiation between Subpopulations for Neutral Genes under the Finite Island Model. PLoS One 2015; 10:e0125471. [PMID: 26067448 PMCID: PMC4465833 DOI: 10.1371/journal.pone.0125471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/24/2015] [Indexed: 01/21/2023] Open
Abstract
Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.
Collapse
|
47
|
Ortego J, Aguirre MP, Noguerales V, Cordero PJ. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper. Evol Appl 2015; 8:621-32. [PMID: 26136826 PMCID: PMC4479516 DOI: 10.1111/eva.12273] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022] Open
Abstract
Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC) Seville, Spain
| | - María P Aguirre
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real, Spain
| | - Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real, Spain
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real, Spain
| |
Collapse
|
48
|
Delmore KE, Hübner S, Kane NC, Schuster R, Andrew RL, Câmara F, Guigó R, Irwin DE. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol Ecol 2015; 24:1873-88. [DOI: 10.1111/mec.13150] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Kira E. Delmore
- Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T1Z4
| | - Sariel Hübner
- Department of Botany; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T1Z4
| | - Nolan C. Kane
- Ecology and Evolutionary Biology; University of Colorado at Boulder; Ramaley N122 Boulder CO 80309-0334 USA
| | - Richard Schuster
- Department of Forest and Conservation Sciences; University of British Columbia; 2424 Main Mall Vancouver BC Canada V6T1Z4
| | - Rose L. Andrew
- Molecular Ecology School of Environmental and Rural Science; University of New England Armidale; Armidale NSW 2351 Australia
| | - Francisco Câmara
- Centre for Genomic Regulation and UPF; Dr Aiguader 88 Barcelona 08003 Spain
| | - Roderic Guigó
- Centre for Genomic Regulation and UPF; Dr Aiguader 88 Barcelona 08003 Spain
| | - Darren E. Irwin
- Department of Zoology; University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T1Z4
| |
Collapse
|
49
|
Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, Jordan R, Oakeshott J, Weeks A, Joseph L, Lockhart P, Borevitz J, Sgrò C. A framework for incorporating evolutionary genomics into biodiversity conservation and management. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40665-014-0009-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Escalante AE, Jardón Barbolla L, Ramírez-Barahona S, Eguiarte LE. The study of biodiversity in the era of massive sequencing. REV MEX BIODIVERS 2014. [DOI: 10.7550/rmb.43498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|