1
|
Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333:781-815. [PMID: 14568537 DOI: 10.1016/j.jmb.2003.08.040] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences and structures of all P-loop-fold proteins were compared with the aim of reconstructing the principal events in the evolution of P-loop-containing kinases. It is shown that kinases and some related proteins comprise a monophyletic assemblage within the P-loop NTPase fold. An evolutionary classification of these proteins was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of approximately 40 distinct protein families within the P-loop kinase class. Most of these enzymes phosphorylate nucleosides and nucleotides, as well as sugars, coenzyme precursors, adenosine 5'-phosphosulfate and polynucleotides. In addition, the class includes sulfotransferases, amide bond ligases, pyrimidine and dihydrofolate reductases, and several other families of enzymes that have acquired new catalytic capabilities distinct from the ancestral kinase reaction. Our reconstruction of the early history of the P-loop NTPase fold includes the initial split into the common ancestor of the kinase and the GTPase classes, and the common ancestor of ATPases. This was followed by the divergence of the kinases, which primarily phosphorylated nucleoside monophosphates (NMP), but could have had broader specificity. We provide evidence for the presence of at least two to four distinct P-loop kinases, including distinct forms specific for dNMP and rNMP, and related enzymes in the last universal common ancestor of all extant life forms. Subsequent evolution of kinases seems to have been dominated by the emergence of new bacterial and, to a lesser extent, archaeal families. Some of these enzymes retained their kinase activity but evolved new substrate specificities, whereas others acquired new activities, such as sulfate transfer and reduction. Eukaryotes appear to have acquired most of their kinases via horizontal gene transfer from Bacteria, partly from the mitochondrial and chloroplast endosymbionts and partly at later stages of evolution. A distinct superfamily of kinases, which we designated DxTN after its sequence signature, appears to have evolved in selfish replicons, such as bacteriophages, and was subsequently widely recruited by eukaryotes for multiple functions related to nucleic acid processing and general metabolism. In the course of this analysis, several previously undetected groups of predicted kinases were identified, including widespread archaeo-eukaryotic and archaeal families. The results could serve as a framework for systematic experimental characterization of new biochemical and biological functions of kinases.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
2
|
Inagaki Y, Doolittle WF, Baldauf SL, Roger AJ. Lateral transfer of an EF-1alpha gene: origin and evolution of the large subunit of ATP sulfurylase in eubacteria. Curr Biol 2002; 12:772-6. [PMID: 12007424 DOI: 10.1016/s0960-9822(02)00816-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is generally accepted that new genes arise via duplication and functional divergence of existing genes, in accordance with Ohno's model, now called "Mutation During Redundancy," or MDR. In this model, one of the two gene copies is free to acquire novel (although likely related) activities through mutation, since only one copy is required for its original function. However, duplication within a genome is not the only process that might give rise to this situation: acquisition of a functionally redundant gene by lateral gene transfer (LGT) could also initiate the MDR process. Here we describe a probable instance, involving LGT of an archaeal or eukaryotic elongation factor 1alpha (EF-1alpha) gene. The large subunit of ATP sulfurylase (CysN or the N-terminal portion of NodQ), found mainly in proteobacteria, is clearly related to translation elongation factors. However, our analyses show that cysN arose from an EF-1alpha gene initially acquired by LGT, not from a within-genome duplication of the resident EF-Tu gene. To our knowledge, this is the first unequivocal case of LGT followed by functional modification to be described; this mechanism could be a potentially important force in establishing genes with novel functions in genomes.
Collapse
Affiliation(s)
- Yuji Inagaki
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | | | |
Collapse
|
3
|
Folch-Mallol JL, Manyani H, Marroquí S, Sousa C, Vargas C, Nava N, Colmenero-Flores JM, Quinto C, Megías M. Sulfation of nod factors via nodHPQ is nodD independent in Rhizobium tropici CIAT899. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:979-987. [PMID: 9768515 DOI: 10.1094/mpmi.1998.11.10.979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cosmid from the Rhizobium tropici CIAT899 symbiotic plasmid, containing most of the nodulation genes described in this strain, has been isolated. Although this cosmid does not carry a nodD gene, it confers ability to heterologous Rhizobium spp. to nodulate R. tropici hosts (Phaseolus vulgaris, Macroptilium atropurpureum, and Leucaena leucocephala). The observed phenotype is due to constitutive expression of the nodABCSUIJ operon, which has lost its regulatory region and is expressed from a promoter present in the cloning vector. Thin-layer chromatography (TLC) analysis of the Nod factors produced by this construction shows that it is still capable of synthesizing sulfated compounds, suggesting that the nodHPQ genes are organized as an operon that is transcribed in a nodD-independent manner and is not regulated by flavonoids.
Collapse
Affiliation(s)
- J L Folch-Mallol
- Department of Microbiology and Parasitology, University of Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Verma DP. Developmental and metabolic adaptations during symbiosis between legume hosts and rhizobia. Subcell Biochem 1998; 29:1-28. [PMID: 9594643 DOI: 10.1007/978-1-4899-1707-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D P Verma
- Department of Molecular Genetics and Plant Biotechnology Center, Ohio State University, Columbus 43210, USA
| |
Collapse
|
5
|
Laeremans T, Coolsaet N, Verreth C, Snoeck C, Hellings N, Vanderleyden J, Martínez-Romero E. Functional redundancy of genes for sulphate activation enzymes in Rhizobium sp. BR816. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 12):3933-3942. [PMID: 9421916 DOI: 10.1099/00221287-143-12-3933] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The broad-host-range, heat-tolerant Rhizobium strain BR816 produces sulphated Nod metabolites. Two ORFs highly homologous to the Sinorhizobium meliloti nodPQ genes were isolated and sequenced. It was found that Rhizobium sp. BR816 contained two copies of these genes; one copy was localized on the symbiotic plasmid, the other on the megaplasmid. Both nodP genes were interrupted by insertion of antibiotic resistance cassettes, thus constructing a double nodP1P2 mutant strain. However, no detectable differences in Nod factor TLC profile from this mutant were observed as compared to the wild-type strain. Additionally, plant inoculation experiments did not reveal differences between the mutant strain and the wild-type. It is proposed that a third, functionally homologous locus complements mutations in the Nod factor sulphation genes. Southern blot analysis suggested that this locus contains genes necessary for the sulphation of amino acids.
Collapse
Affiliation(s)
- T Laeremans
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. 565-A Cuernavaca, Morelos, Mexico
| | - N Coolsaet
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - C Verreth
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - C Snoeck
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - N Hellings
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - J Vanderleyden
- F. A. Janssens Laboratory of Genetics, Kardinaal Mercierlaan 92, B-3001 Heverlee, Belgium
| | - E Martínez-Romero
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Ap. 565-A Cuernavaca, Morelos, Mexico
| |
Collapse
|
6
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Borges-Walmsley MI, Turner G, Bailey AM, Brown J, Lehmbeck J, Clausen IG. Isolation and characterisation of genes for sulphate activation and reduction in Aspergillus nidulans: implications for evolution of an allosteric control region by gene duplication. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:423-9. [PMID: 7770049 DOI: 10.1007/bf00293143] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A region of the Aspergillus nidulans genome carrying the sA and sC genes, encoding PAPS reductase and ATP sulphurylase, respectively, was isolated by transformation of an sA mutant with a cosmid library. The genes were subcloned and their functions confirmed by retransformation and complementation of A. nidulans strains carrying sA and sC mutations. The physical distance of 2 kb between the genes corresponds to a genetic distance of 1 cM. While the deduced amino acid sequence of the sA gene product shows homology with the equivalent MET16 gene product of Saccharomyces cerevisiae, the sC gene product resembles the equivalent MET3 yeast gene product at the N-terminal end, but differs markedly from it at the C-terminal end, showing homology to the APS kinases of several microorganisms. It is proposed that this C-terminal region does not encode a functional APS kinase, but is responsible for allosteric regulation by PAPS of the sulphate assimilation pathway in A. nidulans, and that the ATP sulphurylase encoding-gene (sC) of filamentous ascomycetes may have evolved from a bifunctional gene similar to the nodQ gene of Rhizobium meliloti.
Collapse
Affiliation(s)
- M I Borges-Walmsley
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|
8
|
Wu M, Repetto B, Glerum DM, Tzagoloff A. Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:264-71. [PMID: 7799934 PMCID: PMC231949 DOI: 10.1128/mcb.15.1.264] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The FAD1 gene of Saccharomyces cerevisiae has been selected from a genomic library on the basis of its ability to partially correct the respiratory defect of pet mutants previously assigned to complementation group G178. Mutants in this group display a reduced level of flavin adenine dinucleotide (FAD) and an increased level of flavin mononucleotide (FMN) in mitochondria. The restoration of respiratory capability by FAD1 is shown to be due to extragenic suppression. FAD1 codes for an essential yeast protein, since disruption of the gene induces a lethal phenotype. The FAD1 product has been inferred to be yeast FAD synthetase, an enzyme that adenylates FMN to FAD. This conclusion is based on the following evidence. S. cerevisiae transformed with FAD1 on a multicopy plasmid displays an increase in FAD synthetase activity. This is also true when the gene is expressed in Escherichia coli. Lastly, the FAD1 product exhibits low but significant primary sequence similarity to sulfate adenyltransferase, which catalyzes a transfer reaction analogous to that of FAD synthetase. The lower mitochondrial concentration of FAD in G178 mutants is proposed to be caused by an inefficient exchange of external FAD for internal FMN. This is supported by the absence of FAD synthetase activity in yeast mitochondria and the presence of both extramitochondrial and mitochondrial riboflavin kinase, the preceding enzyme in the biosynthetic pathway. A lesion in mitochondrial import of FAD would account for the higher concentration of mitochondrial FMN in the mutant if the transport is catalyzed by an exchange carrier. The ability of FAD1 to suppress impaired transport of FAD is explained by mislocalization of the synthetase in cells harboring multiple copies of the gene. This mechanism of suppression is supported by the presence of mitochondrial FAD synthetase activity in S. cerevisiae transformed with FAD1 on a high-copy-number plasmid but not in mitochondrial of a wild-type strain.
Collapse
Affiliation(s)
- M Wu
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | |
Collapse
|
9
|
Schwedock JS, Liu C, Leyh TS, Long SR. Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J Bacteriol 1994; 176:7055-64. [PMID: 7961471 PMCID: PMC197080 DOI: 10.1128/jb.176.22.7055-7064.1994] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nodulation genes nodP and nodQ are required for production of Rhizobium meliloti nodulation (Nod) factors. These sulfated oligosaccharides act as morphogenic signals to alfalfa, the symbiotic host of R. meliloti. In previous work, we have shown that nodP and nodQ encode ATP sulfurylase, which catalyzes the formation of APS (adenosine 5'-phosphosulfate) and PPi. In the subsequent metabolic reaction, APS is converted to PAPS (3'-phosphoadenosine 5'-phosphosulfate) by APS kinase. In Escherichia coli, cysD and cysN encode ATP sulfurylase; cysC encodes APS kinase. Here, we present genetic, enzymatic, and sequence similarity data demonstrating that nodP and nodQ encode both ATP sulfurylase and APS kinase activities and that these enzymes associate into a multifunctional protein complex which we designate the sulfate activation complex. We have previously described the presence of a putative GTP-binding site in the nodQ sequence. The present report also demonstrates that GTP enhances the rate of PAPS synthesis from ATP and sulfate (SO4(2-)) by NodP and NodQ expressed in E. coli. Thus, GTP is implicated as a metabolic requirement for synthesis of the R. meliloti Nod factors.
Collapse
Affiliation(s)
- J S Schwedock
- Department of Biological Sciences, Stanford University, California 94305
| | | | | | | |
Collapse
|
10
|
Cell and Molecular Biology of Rhizobium-Plant. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0074-7696(08)62252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
11
|
Control of the expression of bacterial genes involved in symbiotic nitrogen fixation. World J Microbiol Biotechnol 1993; 9:444-54. [DOI: 10.1007/bf00328032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/1993] [Indexed: 11/27/2022]
|
12
|
Abstract
This review focuses on the functions of nodulation (nod) genes in the interaction between rhizobia and legumes. The nod genes are the key bacterial determinants of the signal exchange between the two symbiotic partners. The product of the nodD gene is a transcriptional activator protein that functions as receptor for a flavonoid plant compound. This signaling induces the expression of a set of nod genes that produces several related Nod factors, substituted lipooligosaccharides. The Nod factors are then excreted and serve as signals sent from the bacterium to the plant. The plant responds with the development of a root nodule. The plant-derived flavonoid, as well as the rhizobial signal, must have distinct chemical structures which guarantee that only matching partners are brought together.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland
| |
Collapse
|
13
|
Sharma PK, Kundu BS, Dogra RC. Molecular mechanism of host specificity in legume-rhizobium symbiosis. Biotechnol Adv 1993; 11:741-79. [PMID: 14538056 DOI: 10.1016/0734-9750(93)90002-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhizobium - legume symbiosis is a highly specific interaction between the two partners. Host specificity is evident at early stages of infection and results from multiple interactions involving signalling among bacteria and host plants. Host specific plant signals (flavanoids) convert the NodD protein to an active form and its binding with nod box initiates the transcription of inducible nod operons. Common nod genes (nodABC) code for an extracellular mitogenic Nod factor which is required for nodule organogenesis. Host specific genes (hsn) modify the Nod factor to induce root hair deformation on specific hosts. The structure of Nod factor controls host range distinction between species and biovars of rhizobia. Interactions of lectins and Exopolysaccharide/Lipopolysaccharide result in host specific attachment of Rhizobium and its subsequent invasion. Change in Expopolysaccharide structure by the transfer of hsn genes enables the Rhizobium to bind with heterologous host lectins. Conversely, changes in root lectins via gene manipulation enables the heterologous rhizobia to bind and initiate nodulation on heterologous hosts. Finally, host specific signals are required to initiate nitrogen fixation in nodules that are formed.
Collapse
Affiliation(s)
- P K Sharma
- Department of Microbiology, CCS Haryana Agricultural University, Hisar-125 004, India
| | | | | |
Collapse
|
14
|
Haffter P, Fox TD. Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:64-73. [PMID: 1279374 DOI: 10.1007/bf00286182] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The PET122 protein is one of three Saccharomyces cerevisiae nuclear gene products required specifically to activate translation of the mitochondrially coded COX3 mRNA. We have previously observed that mutations which remove the carboxy-terminal region of PET122 block translation of the COX3 mRNA but can be suppressed by unlinked nuclear mutations in several genes, two of which have been shown to code for proteins of the small subunit of mitochondrial ribosomes. Here we describe and map two more new genes identified as allele-specific suppressors that compensate for carboxy-terminal truncation of PET122. One of these genes, MRP17, is essential for the expression of all mitochondrial genes and encodes a protein of M(r) 17343. The MRP17 protein is a component of the small ribosomal subunit in mitochondria, as demonstrated by the fact that a missense mutation, mrp17-1, predicted to cause a charge change indeed alters the charge of a mitochondrial ribosomal protein of the expected size. In addition, mrp17-1, in combination with some mutations affecting another mitochondrial ribosomal protein, caused a synthetic defective phenotype. These findings are consistent with a model in which PET122 functionally interacts with the ribosomal small subunit. The second new suppressor gene described here, PET127, encodes a protein too large (M(r) 95900) to be a ribosomal protein and appears to operate by a different mechanism. PET127 is not absolutely required for mitochondrial gene expression and allele-specific suppression of pet122 mutations results from the loss of PET127 function: a pet127 deletion exhibited the same recessive suppressor activity as the original suppressor mutation. These findings suggest the possibility that PET127 could be a novel component of the mitochondrial translation system with a role in promoting accuracy of translational initiation.
Collapse
Affiliation(s)
- P Haffter
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853-2703
| | | |
Collapse
|
15
|
Abstract
Many legumes respond to Rhizobium inoculation by developing unique structures known as nodules on their roots. The development of a legume nodule in which rhizobia convert atmospheric N2 into ammonia is a finely tuned process. Gene expression from both partners of the symbiosis must be temporally and spatially coordinated. Exactly how this coordination takes place is an area of intense study. Nodule morphogenesis appears to be elicited by at least two distinct signals: one from Rhizobium, a product of the nod genes (Nod factor), and a second signal, which is generated within plant tissues after treatment with Nod factor. The identity of the second signal is unknown but changes in the balance of endogenous plant hormones or the sensitivity of plant tissues to these hormones are likely to be involved. These hormonal changes may be triggered by endogenous flavonoids produced by the root in response to inoculation with Rhizobium. There is some controversy as to whether the legume nodule is an organ sui generis or a highly derived lateral root. A resolution of this question may become more critical as attempts to induce nodules on non-legume hosts, such as rice or maize, increase in number and scope. CONTENTS Summary 211 I. Introduction 211 II. Nodule development 213 III. Nodule initiation 220 IV. The second signal for nodule morphogenesis: role for the plant hormones ? 225 V. Lateral root development 229 VI. Are nodules modified lateral roots ? 229 VII. Conclusions and future prospects 231 Acknowledgements and dedication 232 References 232.
Collapse
Affiliation(s)
- Ann M Hirsch
- Department of Biology, University of California-Los Angeles, Los Angeles, CA 90024-1606, USA
| |
Collapse
|
16
|
Düsterhöft A, Philippsen P. DNA sequencing and analysis of a 24.7 kb segment encompassing centromere CEN11 of Saccharomyces cerevisiae reveals nine previously unknown open reading frames. Yeast 1992; 8:749-59. [PMID: 1441752 DOI: 10.1002/yea.320080908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A 24.7 kb segment of the cosmid clone pUKG047 containing a Sau3AI-partial fragment from the centromere region of Saccharomyces cerevisiae chromosome XI was sequenced and analysed. A mixed strategy of directed methods including exonuclease III nested deletion, restriction fragment subcloning and oligonucleotide-directed sequences was carried out. Exclusive use was made of the Applied Biosystems Taq DyeDeoxy Terminator Cycle technology and a laser-based AB1373A sequencing system for reactions, gel electrophoresis and automated reading. A total of 12 open reading frames (ORFs) was found. Nine new ORFs (YK102 to YK110) were identified, three of which (YK102, YK107, YK108) showed homologies to proteins of known function from other organisms. In addition, sequence analysis revealed three recently functionally characterized genes (MET14, VPS/SPO15, PAP1), which could be joined to the earlier published CEN11 region.
Collapse
Affiliation(s)
- A Düsterhöft
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|
17
|
Abstract
Initial stages in the Rhizobium-legume symbiosis can be thought of as a reciprocal molecular conversation: transmission of a gene inducer from legume host to bacterium, with ensuing bacterial synthesis of a morphogen that is transmitted to the plant, switching the developmental fate of the legume root. These signal molecules have a key role in determining bacterium-host specificity and the purified Nod factor compounds provide useful new tools to probe plant cell function.
Collapse
Affiliation(s)
- R F Fisher
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
18
|
Abstract
Members of the GTPase superfamily are extremely important in regulating membrane signalling pathways in all cells. This review focuses on membrane-associated GTPases that have been described in prokaryotes. In bacteria, LepA and NodQ are very similar to protein synthesis elongation factors but apparently have membrane-related functions. The amino acid sequences of FtsY and Ffh are clearly related to eukaryotic factors involved in protein secretion. Obg and Era are not closely related to any GTPase subgroup according to amino acid sequence comparisons, but they are essential for viability. In spite of similarities to well-studied eukaryotic proteins the signalling pathways of these cellular regulators, with the exception of NodQ, have not yet been elucidated.
Collapse
Affiliation(s)
- P E March
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854
| |
Collapse
|
19
|
Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé JC. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 1991; 67:1131-43. [PMID: 1760841 DOI: 10.1016/0092-8674(91)90290-f] [Citation(s) in RCA: 252] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The symbiosis between Rhizobium and legumes is highly specific. For example, R. meliloti elicits the formation of root nodules on alfalfa and not on vetch. We recently reported that R. meliloti nodulation (nod) genes determine the production of acylated and sulfated glucosamine oligosaccharide signals. We now show that the biochemical function of the major host-range genes, nodH and nodPQ, is to specify the 6-O-sulfation of the reducing terminal glucosamine. Purified Nod factors (sulfated or not) from nodH+ or nodH- strains exhibited the same plant specificity in a variety of bioassays (root hair deformations, nodulation, changes in root morphology) as the bacterial cells from which they were purified. These results provide strong evidence that the molecular mechanism by which the nodH and nodPQ genes mediate host specificity is by determining the sulfation of the extracellular Nod signals.
Collapse
Affiliation(s)
- P Roche
- Centre de Recherche de Biochimie, CNRS, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Osterås M, Finan TM, Stanley J. Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase: gluconeogenesis and host-dependent symbiotic phenotype. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:257-69. [PMID: 1720862 DOI: 10.1007/bf00290676] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have cloned and sequenced the pckA gene of Rhizobium sp. NGR234, a broad host-range strain. The gene encodes phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of gluconeogenesis. The locus was isolated and subcloned from a genomic library of NGR234 employing hybridization with an R. meliloti pck gene probe and complementation of a Tn5 mutant in this species. The DNA sequence of pckA (NGR234) was determined and encoded a PEPCK protein of 535 amino acids with a molecular weight of 58.4 kDa. The deduced polypeptide sequence was compared to those of three known ATP-dependent PEPCKs. Slightly higher homology was observed with yeast and trypanosome polypeptides than with that of Escherichia coli. We have identified several regions that are conserved in all four PEPCK proteins. A mutant constructed in the pck gene by site-directed mutagenesis with interposon omega failed to grow on succinate, malate and arabinose but grew on glucose and glycerol as sole carbon sources. These data show that NGR234 requires PEPCK-driven gluconeogenesis to grow on TCA cycle intermediates. A host-dependent effect of the pckA mutation was observed on nodule development and nitrogen fixation. Nodules formed by the site-directed mutant on Leucaena leucocephala and Macroptilium atropurpureum were FixRed, but on Vigna unguiculata were Fix-. The expression of the gene was positively regulated in free-living cells of NGR234 by either succinate or host-plant exudates, and was subject to catabolite repression by glucose.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/genetics
- Fabaceae/microbiology
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Gluconeogenesis
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Phenotype
- Phosphoenolpyruvate Carboxykinase (GTP)/genetics
- Plants, Medicinal
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Restriction Mapping
- Rhizobium/genetics
- Rhizobium/growth & development
- Rhizobium/ultrastructure
- Sequence Alignment
- Symbiosis/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- M Osterås
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, University of Geneva, Switzerland
| | | | | |
Collapse
|
21
|
Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A. Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:113-24. [PMID: 1909418 DOI: 10.1007/bf00282455] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of the nod box locus n4 in Rhizobium meliloti was determined and revealed six genes organized in a single transcriptional unit, which are induced in response to a plant signal such as luteolin. Mutations in these genes influence the early steps of nodule development on Medicago, but have no detectable effect on Melilotus, another host for R. meliloti. Based on sequence homology, the first open reading frame (ORF) corresponds to the nodM gene and the last to the nodN gene of Rhizobium leguminosarum. The others do not exhibit similarity to any genes sequenced so far, so we designated them as nolF, nolG, nolH and nolI, respectively. We found that the n4 locus, and especially the nodM and nodN genes, are involved in the production of the root hair deformation (Had) factor. NodM exhibits homology to amidotransferases, primarily to the D-glucosamine synthetase encoded by the glmS gene of Escherichia coli. We demonstrated that in E. coli the regulatory gene nodD together with luteolin can activate nod genes. On this basis we showed that nodM complemented an E. coli glmS- mutation, indicating that nodM can be considered as a glmS gene under plant signal control. Moreover, exogenously supplied D-glucosamine restored nodulation of Medicago by nodM mutants. Our data suggest that in addition to the housekeeping glmS gene of R. melioti, nodM as a second glmS copy provides glucosamine in sufficient amounts for the synthesis of the Had factor.
Collapse
Affiliation(s)
- N Baev
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
22
|
Ogawa J, Brierley HL, Long SR. Analysis of Rhizobium meliloti nodulation mutant WL131: novel insertion sequence ISRm3 in nodG and altered nodH protein product. J Bacteriol 1991; 173:3060-5. [PMID: 1850728 PMCID: PMC207898 DOI: 10.1128/jb.173.10.3060-3065.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nodulation (nod) genes are required for invasion of legumes by Rhizobium bacteria. Mutant WL131 is a derivative of 102F51 that has a severe Nod- phenotype on alfalfa. Upon examination of the extended DNA region containing host-specific nodulation genes nodFEG and nodH, we found that the nodG gene of WL131 bears a novel insertion sequence, ISRm3. Complementation studies implied, however, that the phenotype on alfalfa correlated with the nodH locus. We found that nodH in WL131 encodes an altered gene product. Correlation of the WL131 defect with nodH was also supported by phenotypic behavior. Each mutation affected nodulation more severely on alfalfa (Medicago sativa) than on sweet clover (Melilotus albus). However, we found that the degree of requirement for nodH in nodulation varied with the conditions under which the plant was grown.
Collapse
Affiliation(s)
- J Ogawa
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | | | |
Collapse
|
23
|
Lewis-Henderson WR, Djordjevic MA. A cultivar-specific interaction between Rhizobium leguminosarum bv. trifolii and subterranean clover is controlled by nodM, other bacterial cultivar specificity genes, and a single recessive host gene. J Bacteriol 1991; 173:2791-9. [PMID: 1673458 PMCID: PMC207859 DOI: 10.1128/jb.173.9.2791-2799.1991] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Insertion mutagenesis identified two negatively acting gene loci which restrict the ability of Rhizobium leguminosarum bv. trifolii TA1 to infect the homologous host Trifolium subterraneum cv. Woogenellup. One locus was confirmed by DNA sequence analysis as the nodM gene, while the other locus, designated csn-1 (cultivar-specific nodulation), is not located on the symbiosis plasmid. The presence of these cultivar specificity loci could be suppressed by the introduction of the nodT gene from ANU843, a related R. leguminosarum bv. trifolii strain. Other nod genes, present in R. leguminosarum bv. viciae (including nodX) and R. meliloti, were capable of complementing R. leguminosarum bv. trifolii TA1 for nodulation on cultivar Woogenellup. Nodulation studies conducted with F2 seedlings from a cross between cultivar Geraldton and cultivar Woogenellup indicated that a single recessive gene, designated rwt1, is responsible for the Nod- association between strain TA1 and cultivar Woogenellup. Parallels can be drawn between this association and gene-for-gene systems common in interactions between plants and biotrophic pathogens.
Collapse
Affiliation(s)
- W R Lewis-Henderson
- Plant-Microbe Interaction Group, Research School of Biological Sciences, Australian National University, Canberra City
| | | |
Collapse
|
24
|
Krishnan HB, Pueppke SG. nolC, a Rhizobium fredii gene involved in cultivar-specific nodulation of soybean, shares homology with a heat-shock gene. Mol Microbiol 1991; 5:737-45. [PMID: 1646377 DOI: 10.1111/j.1365-2958.1991.tb00744.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhizobium fredii strain USDA257 does not nodulate soybean (Glycine max (L.) Merr.) cultivar McCall. Mutant 257DH5, which contains a Tn5 insert in the bacterial chromosome, forms nodules on this cultivar, but acetylene-reduction activity is absent. We have sequenced the region corresponding to the site of Tn5 insertion in this mutant and find that it lies within a 1176bp open reading frame that we designate nolC. nolC encodes a protein of deduced molecular weight 43564. Nucleotide sequences homologous to nolC are present in several other Rhizobium strains, as well as Agrobacterium tumefaciens, but not in Pseudomonas syringae pathovar glycinea. nolC lacks significant sequence homology with known genes that function in nodulation, but is 61% homologous to dnaJ, an Escherichia coli gene that encodes a 41 kDa heat-shock protein. Both R. fredii USDA257 and mutant 257DH5 produce heat-shock proteins of 78, 70, 22, and 16kDa. A 4.3kb EcoRI-HindIII subclone containing nolC expresses a single 43kDa polypeptide in mini-cells. A longer, 9.4kb EcoRI fragment expresses both the 43kDa polypeptide and a 78kDa polypeptide that corresponds in size to that of the largest heat-shock protein. Thus, although nolC has strong sequence homology to dnaJ and appears to be linked to another heat-shock gene, it does not directly function in the heat-shock response.
Collapse
Affiliation(s)
- H B Krishnan
- Department of Plant Pathology, University of Missouri, Columbia 65211
| | | |
Collapse
|
25
|
Nodrm-1, a Sulphated Lipo-Oligosaccharide Signal of Rhizobium Meliloti Elicits Hair Deformation, Cortical Cell Division and Nodule Organogenesis on Alfalfa Roots. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-94-015-7934-6_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Kondorosi A, Kondorosi E, John M, Schmidt J, Schell J. The Role of Nodulation Genes in Bacterium-Plant Communication. GENETIC ENGINEERING 1991; 13:115-36. [PMID: 1367410 DOI: 10.1007/978-1-4615-3760-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- A Kondorosi
- Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Samsonova MG, Inge-Vechtomov SG, Taylor P. Structure comparison and evolutionary relations between elongation factors EF-Tu (EF-1 alpha) and SUP 2 proteins. Genetica 1991; 85:35-44. [PMID: 1778473 DOI: 10.1007/bf00056104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
On the basis of high homology and structural similarity, three genes, SUP2 Saccharomyces cerevisiae, SUP2 Pichia pinus and GST1 Homo sapiens, might be considered as members of one family named SUP2. Comparison of the primary structure of SUP2 proteins and elongation factors EF-Tu(EF-1 alpha) from 19 different species was performed. It was found that SUP2 proteins bear more homology to eukaryotic elongation factor than to procaryotic EF-Tu, though the degree of sequence conservation in SUP2 proteins is smaller than in EF-1 alpha factors. The extensive phylogenetic analysis of SUP2 and EF-Tu(EF-1 alpha) genes was performed by means of 3 methods, 2 phenetic and one cladystic (maximal parsimony). The data support the close relation of SUP2 genes to other elongation factor genes.
Collapse
|
30
|
Schwedock J, Long SR. ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 1990; 348:644-7. [PMID: 2250719 DOI: 10.1038/348644a0] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The symbiotic bacterium Rhizobium meliloti stimulates alfalfa (Medicago sativa L.) roots to undergo morphogenesis and form nitrogen-fixing nodules. It has been proposed that the bacterial genes nodABC, common to all Rhizobium, are required for synthesis of an oligosaccharide factor, which is converted to a sulphated form (NodRm-1) by the products of the R. meliloti-specific genes nodH and nodQ1-5; NodRm-1 elicits host-specific plant responses. Previously we have shown that the nodP gene is homologous to a segment of the Escherichia coli genome; when we cloned this E. coli fragment we found that it mapped near 59 minutes, corresponding to the cysDNC locus. The genes cysD and cysN encode proteins that catalyse the synthesis of adenosine 5'-phosphosulphate, the first step in the activation of inorganic sulphate. Here we demonstrate that nodP and nodQ correspond to cysD and cysN, and that their proteins have ATP sulphurylase activity both in vivo and in vitro. We propose that nodP and nodQ synthesize an activated sulphate that is an intermediate in the formation of the alfalfa-specific sulphated nodRm-1 factor.
Collapse
Affiliation(s)
- J Schwedock
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
31
|
Maillet F, Debellé F, Dénarié J. Role of the nodD and syrM genes in the activation of the regulatory gene nodD3, and of the common and host-specific nod genes of Rhizobium meliloti. Mol Microbiol 1990; 4:1975-84. [PMID: 2127953 DOI: 10.1111/j.1365-2958.1990.tb02047.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To analyse the regulation of the nodulation (nod) genes of Rhizobium meliloti RCR2011 we have isolated lacZ gene fusions to a number of common, host-range and regulatory nod genes, using the mini-Mu-lac bacteriophage transposon MudII1734. Common (nodA, nodC, nod region IIa) and host-range (nodE, nodG, nodH) genes were found to be regulated similarly. They were activated (i) by the regulatory nodD1 gene in the presence of flavones such as chrysoeriol, luteolin and 7,3',4'-trihydroxyflavone, (ii) by nodD2 in the presence of alfalfa root exudate but not with the NodD1-activating flavones, and (iii) by the regulatory genes syrM-nodD3 even in the absence of plant inducers. Thus common and host-range nod genes belong to the same regulon. In contrast to the nodD1 gene, the regulatory nodD3 gene was not expressed constitutively and exhibited a complex regulation. It required syrM for expression, was activated by nodD1 in the presence of luteolin and was positively autoregulated.
Collapse
Affiliation(s)
- F Maillet
- Laboratoire de Biologie Moléculaire des Relations, Plantes-Microorganismes, CNRS-INRA, Castanet-Tolosan, France
| | | | | |
Collapse
|
32
|
Vargas C, Martinez LJ, Megias M, Quinto C. Identification and cloning of nodulation genes and host specificity determinants of the broad host-range Rhizobium leguminosarum biovar phaseoli strain CIAT899. Mol Microbiol 1990; 4:1899-910. [PMID: 2082147 DOI: 10.1111/j.1365-2958.1990.tb02039.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rhizobium leguminosarum biovar phaseoli type II strain CIAT899 nodulates a wide range of hosts: Phaseolus vulgaris (beans), Leucaena esculenta (leucaena) and Macroptilium atropurpureum (siratro). A nodulation region from the symbiotic plasmid has been isolated and characterized. This region, which is contained in the overlapping cosmid clones pCV38 and pCV117, is able to induce nodules in beans, leucaena and siratro roots when introduced in strains cured for the symbiotic plasmid, pSym. In addition, this cloned region extends the host range of Rhizobium meliloti and R. leguminosarum biovar (bv.) trifolii wild-type strains to nodulate beans. Analysis of constructed subclones indicates that a 6.4kb HindIII fragment contains the essential genes required for nodule induction on all three hosts. Rhizobium leguminosarum bv. phaseoli type I strain CE3 nodulates only beans. However, CE3 transconjugants harbouring plasmid pCV3802 (which hybridized to a nodD heterologous probe), were capable of eliciting nodules on leucaena and siratro roots. Our results suggest that the CIAT899 DNA region hybridizing with the R. meliloti nodD detector is involved in the extension of host specificity to promote nodule formation in P. vulgaris, L. esculenta and M. atropurpureum.
Collapse
Affiliation(s)
- C Vargas
- Departamento de Microbiología y Parasitologia, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
33
|
Purification and biochemical characterization of SELB, a translation factor involved in selenoprotein synthesis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38855-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Onyeocha I, Vieille C, Zimmer W, Baca BE, Flores M, Palacios R, Elmerich C. Physical map and properties of a 90-MDa plasmid of Azospirillum brasilense Sp7. Plasmid 1990; 23:169-82. [PMID: 2217570 DOI: 10.1016/0147-619x(90)90049-i] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homology was previously detected between the DNA restriction fragments containing Rhizobium meliloti nodulation genes and the 90-MDa plasmid, p90, of Azospirillum brasilense Sp7. Two DNA loci from Sp7 genome that complement mutations in the exopolysaccharide synthesis genes, exoB and exoC, of R. meliloti were also shown to be present on the plasmid. A more detailed characterization of the plasmid was undertaken to establish its physical map and to localize the nod homologies and other specific regions. Six loci were mapped, the region homologous to the nodulation genes, nodPQ, of R. meliloti, the exoB and exoC mutation-correcting loci, a locus for Ap resistance, a bla homology region different from the Ap resistance locus, and a region necessary for the maintenance of p90 as an independent replicon. Mobilization into Agrobacterium tumefaciens of p90-Tn5-Mob was obtained at a frequency of 10(-4), with the plasmid helper pJB3JI. Self-transfer of p90 was not demonstrated. Fragments of p90 hybridized with a plasmid of 90 MDa present in most A. brasilense and some A. lipoferum strains, suggesting a plasmid family in Azospirillum.
Collapse
Affiliation(s)
- I Onyeocha
- URA 1300 CNRS, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 1990; 344:781-4. [PMID: 2330031 DOI: 10.1038/344781a0] [Citation(s) in RCA: 603] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rhizobia are symbiotic bacteria that elicit the formation on leguminous plants of specialized organs, root nodules, in which they fix nitrogen. In various Rhizobium species, such as R. leguminosarum and R. meliloti, common and host-specific nodulation (nod) genes have been identified which determine infection and nodulation of specific hosts. Common nodABC genes as well as host-specific nodH and nodQ genes were shown recently, using bioassays, to be involved in the production of extracellular Nod signals. Using R. meliloti strains overproducing symbiotic Nod factors, we have purified the major alfalfa-specific signal, NodRm-1, by gel permeation, ion exchange and C18 reverse-phase high performance liquid chromatography. From mass spectrometry, nuclear magnetic resonance, (35)S-labelling and chemical modification studies, NodRm-1 was shown to be a sulphated beta-1,4-tetrasaccharide of D-glucosamine (Mr 1,102) in which three amino groups were acetylated and one was acylated with a C16 bis-unsaturated fatty acid. This purified Nod signal specifically elicited root hair deformation on the homologous host when added in nanomolar concentration.
Collapse
Affiliation(s)
- P Lerouge
- Centre de Recherches de Biochimie et de Génétique Cellulaire, CNRS LP8201, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Sharma SB, Signer ER. Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev 1990; 4:344-56. [PMID: 2159937 DOI: 10.1101/gad.4.3.344] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tn5-gusA promoter/probe transposons have been constructed that fuse the Escherichia coli gusA reporter gene transcriptionally or translationally with a target promoter. These have been used to monitor expression of Rhizobium meliloti symbiotic genes within alfalfa nodules. Fusions in all 11 nod genes studied show the same pattern of expression: first on the root surface, then throughout the developing nodule, then mainly in the nodule meristem, falling off progressively through the central region, and then disappearing. In contrast, fusions in all five nif genes studied, all four fix genes, and syrM show a second, different pattern: expression beginning later, first throughout the nodule except for the meristem, strongest just behind the meristem, and falling off progressively through the central region. Novel features revealed by these studies include nod expression in the meristem, regulated in planta expression of control genes nodD1 and nodD3, disappearance of nod expression late in organogenesis, and properties of syrM.
Collapse
Affiliation(s)
- S B Sharma
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
37
|
|