1
|
Identification of A Novel Arsenic Resistance Transposon Nested in A Mercury Resistance Transposon of Bacillus sp. MB24. Microorganisms 2019; 7:microorganisms7110566. [PMID: 31744069 PMCID: PMC6920998 DOI: 10.3390/microorganisms7110566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/03/2022] Open
Abstract
A novel TnMERI1-like transposon designated as TnMARS1 was identified from mercury resistant Bacilli isolated from Minamata Bay sediment. Two adjacent ars operon-like gene clusters, ars1 and ars2, flanked by a pair of 78-bp inverted repeat sequences, which resulted in a 13.8-kbp transposon-like fragment, were found to be sandwiched between two transposable genes of the TnMERI1-like transposon of a mercury resistant bacterium, Bacillus sp. MB24. The presence of a single transcription start site in each cluster determined by 5′-RACE suggested that both are operons. Quantitative real time RT-PCR showed that the transcription of the arsR genes contained in each operon was induced by arsenite, while arsR2 responded to arsenite more sensitively and strikingly than arsR1 did. Further, arsenic resistance complementary experiments showed that the ars2 operon conferred arsenate and arsenite resistance to an arsB-knocked out Bacillus host, while the ars1 operon only raised arsenite resistance slightly. This transposon nested in TnMARS1 was designated as TnARS1. Multi-gene cluster blast against bacteria and Bacilli whole genome sequence databases suggested that TnMARS1 is the first case of a TnMERI1-like transposon combined with an arsenic resistance transposon. The findings of this study suggested that TnMERI1-like transposons could recruit other mobile elements into its genetic structure, and subsequently cause horizontal dissemination of both mercury and arsenic resistances among Bacilli in Minamata Bay.
Collapse
|
2
|
Aye SL, Fujiwara K, Doi N. A dual system using compartmentalized partnered replication for selection of arsenic-responsive transcriptional regulator. J Biochem 2018; 164:341-348. [DOI: 10.1093/jb/mvy055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Affiliation(s)
- Seaim Lwin Aye
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, Japan
| |
Collapse
|
3
|
Kang YS, Shi Z, Bothner B, Wang G, McDermott TR. Involvement of the Acr3 and DctA anti-porters in arsenite oxidation in Agrobacterium tumefaciens 5A. Environ Microbiol 2014; 17:1950-62. [PMID: 24674103 DOI: 10.1111/1462-2920.12468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/22/2014] [Indexed: 12/01/2022]
Abstract
Microbial arsenite (AsIII) oxidation forms a critical piece of the arsenic cycle in nature, though our understanding of how and why microorganisms oxidize AsIII remains rudimentary. Our model organism Agrobacterium tumefaciens 5A contains two distinct ars operons (ars1 and ars2) that are similar in their coding region content. The ars1 operon is located nearby the aio operon that is essential for AsIII oxidation. The AsIII/H(+) anti-porters encoded by acr3-1 and acr3-2 are required for maximal AsIII and antimonite (SbIII) resistance, but acr3-1 (negatively regulated by ArsR-1) appears more active in this regard and also required for AsIII oxidation and expression of aioBA. A malate-phosphate anti-porter DctA is regulated by RpoN and AsIII, and is required for normal growth with malate as a sole carbon source. Qualitatively, a ΔdctA mutant was normal for AsIII oxidation and AsIII/SbIII resistance at metalloid concentrations inhibitory to the Δacr3-1 mutant; however, aioBA induction kinetics was significantly phase-shift delayed. Acr3 involvement in AsIII/SbIII resistance is reasonably well understood, but the role of Acr3 and DctA anti-porters in AsIII oxidation and its regulation is unexpected, and suggests that controlled AsIII trafficking across the cytoplasmic membrane is important to a process understood to occur in the periplasm.
Collapse
Affiliation(s)
- Yoon-Suk Kang
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Zunji Shi
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA.,State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
4
|
Abstract
Contamination of the environment with heavy metals has increased drastically over the last few decades. The heavy metals that are toxic include mercury, cadmium, arsenic, and selenium. Of these heavy metals, arsenic is one of the most important global environmental pollutants and is a persistent bioaccumulative carcinogen. It is a toxic metalloid that exists in two major inorganic forms: arsenate and arsenite. Arsenite disrupts enzymatic functions in cells, while arsenate behaves as a phosphate analog and interferes with phosphate uptake and utilization. Despite its toxicity, arsenic may be actively sequestered in plant and animal tissues. Various microbes interact with this metal and have shown resistance to arsenic exposure, and they appear to possess the ars operon for arsenic resistance consisting of three to five genes, i.e., arsRBC or arsRDABC, organized into a single transcriptional unit; some microbes even use it for respiration. Microbial interactions with metals may have several implications for the environment. Microbes may play a role in cycling of toxic heavy metals and in remediation of metal-contaminated sites. There is a correlation between tolerance to heavy metals and antibiotic resistance, a global problem currently threatening the treatment of infections in plants, animals, and humans. The purpose of this review is to highlight the nature and role of toxic arsenic in bacterial systems and to discuss the various genes responsible for this heavy-metal resistance in nature and the mechanisms to detoxify this element.
Collapse
Affiliation(s)
- Sukhvinder Kaur
- Gene Expression Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi
| | - Majid Rasool Kamli
- Gene Expression Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi
| | - Arif Ali
- Gene Expression Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi
| |
Collapse
|
5
|
Cuebas M, Villafane A, McBride M, Yee N, Bini E. Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology (Reading) 2011; 157:2004-2011. [DOI: 10.1099/mic.0.048678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geobacillus kaustophilus strain A1 was previously isolated from a geothermal environment for its ability to grow in the presence of high arsenate levels. In this study, the molecular mechanisms of arsenate resistance of the strain were investigated. As(V) was reduced to As(III), as shown by HPLC analysis. Consistent with the observation that the micro-organism is not capable of anaerobic growth, no respiratory arsenate reductases were identified. Using specific PCR primers based on the genome sequence of G. kaustophilus HTA426, three unlinked genes encoding detoxifying arsenate reductases were detected in strain A1. These genes were designated arsC1, arsC2 and arsC3. While arsC3 is a monocistronic locus, sequencing of the regions flanking arsC1 and arsC2 revealed the presence of additional genes encoding a putative arsenite transporter and an ArsR-like regulator upstream of each arsenate reductase, indicating the presence of sequences with putative roles in As(V) reduction, As(III) export and arsenic-responsive regulation. RT-PCR demonstrated that both sets of genes were co-transcribed. Furthermore, arsC1 and arsC2, monitored by quantitative real-time RT-PCR, were upregulated in response to As(V), while arsC3 was constitutively expressed at a low level. A mechanism for regulation of As(V) detoxification by Geobacillus that is both consistent with our findings and relevant to the biogeochemical cycle of arsenic and its mobility in the environment is proposed.
Collapse
Affiliation(s)
- Mariola Cuebas
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Aramis Villafane
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Michelle McBride
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Nathan Yee
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901-8551, USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| |
Collapse
|
6
|
White BR, Stackhouse BT, Holcombe JA. Magnetic gamma-Fe(2)O(3) nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). JOURNAL OF HAZARDOUS MATERIALS 2009; 161:848-853. [PMID: 18571848 DOI: 10.1016/j.jhazmat.2008.04.105] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 05/26/2023]
Abstract
Poly-l-cysteine (PLCys(n)) (n=20) was immobilized onto the surface of commercially available magnetic gamma-Fe(2)O(3) nanoparticles, and its use as a selective heavy metal chelator was demonstrated. Magnetic nanoparticles are an ideal support because they have a large surface area and can easily be retrieved from an aqueous solution. PLCys(n) functionalization was confirmed using FTIR and the quantitative Ellman's test. Metal binding capacities for As(III), Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) were determined at pH 7.0 and compared to adsorption capacities for unfunctionalized gamma-Fe(2)O(3) nanoparticles. The effect of pH on the PLCys(n) functionalized nanoparticles was also investigated. For all of the metals examined, binding capacities (mumol metal/g support) were more than an order of magnitude higher than those obtained for PLCys(n) on traditional supports. For As(III), Cu(II), Ni(II) and Zn(II), the binding capacities were also higher than the metal adsorption capacities of the unfunctionalized particles. Metal uptake was determined to be rapid (< 2.5 min) and metal recoveries of >50% were obtained for all of the metals except As(III). PLCys(n), which has a general metal selectivity towards soft metals acids, was chosen to demonstrate the proof of concept. Greater metal selectivity may be achievable through the use of combinatorial peptide library screening or by using peptide fragments based on known metal binding proteins.
Collapse
Affiliation(s)
- Brianna R White
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, United States
| | | | | |
Collapse
|
7
|
Feliciano J, Liu Y, Daunert S. Novel reporter gene in a fluorescent-based whole cell sensing system. Biotechnol Bioeng 2006; 93:989-97. [PMID: 16489629 DOI: 10.1002/bit.20808] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A common problem encountered when using fluorescence detection in real samples analysis is that the matrix may contain compounds that autofluorescence or that can be excited at the wavelengths of commonly employed fluorescent reporter molecules. This causes an increase in background fluorescence, which in turn tends to compromise the detection limits of the system. To address this issue, we investigated the use of a reporter enzyme that produces fluorescent compounds, which can be excited at wavelengths that are not commonly encountered in compounds present in real samples. For that, a whole cell-based sensing system for arsenite that employs cobA as the reporter gene was developed. The system utilizes genetically engineered bacteria that incorporate the specificity of the ars operon with the sensitivity of the cobA gene. The cobA gene codes for uroporphyrinogen III methyltransferase that converts the substrate uroporphyrinogen (urogen) III into two fluorescent compounds sirohydrochlorin and trimethylpyrrocorphin. Urogen III is ubiquitous within the cell, however, because the cells use it for vitamin B12 and siroheme biosynthesis, this sensing system is limited by substrate availability. By supplementing the media with ALA, a precursor of urogen III, a more stable and reproducible response was obtained. We observed three excitation maxima at 357, 378, and 498 nm, with a single emission maximum at 605 nm. Excitation at 498 nm was selected because it results in less background interference as most endogenous substances are not active at this wavelength. Advantages and limitations of using the cobA gene in whole-cell sensing applications are presented.
Collapse
Affiliation(s)
- Jessika Feliciano
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | |
Collapse
|
8
|
Abstract
Extracytoplasmic solute binding receptors are constituents of primary and secondary active transport systems. Previous studies have shown that the constituents of two such families (ABC and TRAP-T) occur in bacteria and archaea and have undergone minimal shuffling of constituents between systems during evolutionary history. We here show that a third family of binding receptor-dependent transporters, the tripartite tricarboxylate transporter (TTT) family, the prototype of which is the TctABC system of Salmonella typhimurium, occurs in many bacteria but not in archaea or eukaryotes. Phylogenetic analyses suggest that these systems have evolved from a primordial tripartite system with only two out of 39 possible examples of shuffling of constituents between systems. The occurrence of TctA homologues in many bacteria and archaea that apparently lack corresponding TctB and TctC homologues suggests that the appearance of tripartite systems was a relatively recent evolutionary invention that occurred after the divergence of archaea and eukaryotes from bacteria.
Collapse
Affiliation(s)
- Brit Winnen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
9
|
Prithivirajsingh S, Mishra SK, Mahadevan A. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Mol Biol Rep 2002; 28:63-72. [PMID: 11931390 DOI: 10.1023/a:1017950207981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We reported earlier about the detection of a chromosomally located arsenic operon (arsRBC) in a gram-negative bacterium Pseudomonas fluorescens strain MSP3, which showed resistance to elevated levels of sodium arsenate and sodium arsenite. The genes for arsenic resistance were cloned into the HindIII site of pBluescript vector producing three clones MSA1, MSA2 and MSI3 conferring resistance to sodium arsenate and arsenite salts. They were further sub-cloned to delineate the insert size and the sub-clones were designated as MSA11, MSA12 and MSI13. The sub-clone pMSA12 (2.6 kb) fragment was further packaged into EcoRI-PstI site of M13mp19 and sequenced. Nucleotide sequencing revealed the presence of three open reading frames homologous to the arsR, arsB and arsC genes of arsenic resistance. Three cistrons of the ars operon encoded polypeptides ArsR, ArsB and ArsC with molecular weights ranging approximately 12, 37and 24 kDa, respectively. These polypeptides were visualized on SDS-PAGE stained with Coomassie blue and measured in a densitometer. The arsenic resistance operon (arsRBC) of strain MSP3 plasmid pMSA12 consists of 3 genes namely, arsR--encoding a repressor regulatory protein, arsB--the determinant of the membrane efflux protein that confers resistance by pumping arsenic from the cells and arsC--a small cytoplasmic polypeptide required for arsenate resistance only, not for arsenite resistance. ArsB protein is believed to use the cell membrane potential to drive the efflux of intracellular arsenite ions. ArsC encodes for the enzyme arsenate reductase which reduces intracellular As(V) (arsenate) to more toxic As(III) (arsenite) and is subsequently extruded from the cell. The arsenate reductase activity was present in the soluble cytoplasmic fraction in E. coli clones. In the context of specified function of the arsenic operon encoded proteins, uptake and efflux mechanisms were studied in the wild strain and the arsenate/arsenite clones. The cell free filtrates of the arsenate clones (MSA11 and MSA12) obtained from P. fluorescens containing the arsC gene showed that arsenate reduction requires glutathione reductase, glutathione (GSH), glutaredoxin and ArsC protein. The protein was purified in an active form and a spectrophotometric assay was developed in which the oxidation of NADPH was coupled to reduction of arsenate. The molecular weights and the location of the polypeptides were obtained from Coomassie stained SDS-PAGE of extracellular and intracellular fractions of the cells.
Collapse
Affiliation(s)
- S Prithivirajsingh
- Department of Experimental Radiation Oncology, University of Texas-MD Anderson Cancer Center, Houston 77030, USA.
| | | | | |
Collapse
|
10
|
Kelly DJ, Thomas GH. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 2001; 25:405-24. [PMID: 11524131 DOI: 10.1111/j.1574-6976.2001.tb00584.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Until recently, extracytoplasmic solute receptor (ESR)-dependent uptake systems were invariably found to possess a conserved ATP-binding protein (the ATP-binding cassette protein or ABC protein), which couples ATP hydrolysis to the translocation of the solute across the cytoplasmic membrane. While it is clear that this class of ABC transporter is ubiquitous in prokaryotes, it is now firmly established that other, unrelated types of membrane transport systems exist which also have ESR components. These systems have been designated tripartite ATP-independent periplasmic (TRAP) transporters, and they form a distinct class of ESR-dependent secondary transporters where the driving force for solute accumulation is an electrochemical ion gradient and not ATP hydrolysis. Currently, the most well characterised TRAP transporter at the functional and molecular level is the high-affinity C4-dicarboxylate transport (Dct) system from Rhodobacter capsulatus. This consists of three proteins; an ESR (DctP) and small (DctQ) and large (DctM) integral membrane proteins. The characteristics of this system are discussed in detail. Homologues of the R. capsulatus DctPQM proteins are present in a diverse range of prokaryotes, both bacteria and archaea, but not in eukaryotes. The deduced structures and possible functions of these homologous systems are described. In addition to the DctP family, other types of ESRs can be associated with TRAP transporters. A conserved family of immunogenic extracytoplasmic proteins is shown to be invariably associated with TRAP systems that contain a large DctQM fusion protein. All of the currently known archaeal systems are of this type. It is concluded that TRAP transporters are a widespread and ancient type of solute uptake system that transport a potentially diverse range of solutes and most likely evolved by the addition of auxiliary proteins to a single secondary transporter.
Collapse
Affiliation(s)
- D J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
11
|
Saier MH. Phylogenetic approaches to the identification and characterization of protein families and superfamilies. MICROBIAL & COMPARATIVE GENOMICS 2001; 1:129-50. [PMID: 9689209 DOI: 10.1089/mcg.1996.1.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the advent of megabase genome sequencing, the need for computational analyses increases exponentially. Sequencing errors must be corrected, encoded proteins must be identified, functions must be assigned to these proteins, and distant phylogenetic relationships must be recognized in order to maximize the yield of information obtainable from genome sequencing projects. Both the computer and the human brain have their limitations, but using them in combination, the biologist can vastly extend his or her analytic capabilities. Computer techniques can be used to estimate protein structure, function, biogenesis, and evolution. In this review, the application of available computer programs to several protein families, particularly transport, receptor, and transcriptional regulatory protein families, illustrate our current capabilities and limitations. Although some multidomain protein families are evolutionarily homogeneous, others have mosaic origins. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific protein families is evaluated. It is shown that specific families of enzymes, receptors, transport proteins, and transcriptional regulatory proteins share a common evolutionary origin, frequently diverging in function because of domain splicing and ligation. Some large families arose gradually over evolutionary time, whereas others developed suddenly, due to bursts of intragenic or intergenic (or both) duplication events occurring over relatively short periods of time. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is also shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, USA
| |
Collapse
|
12
|
Saier MH. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv Microb Physiol 2001; 40:81-136. [PMID: 9889977 DOI: 10.1016/s0065-2911(08)60130-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although enzymes catalyzing chemical reactions have long been classified according to the system developed by the Enzyme Commission (EC), no comparable system has been developed or proposed for transport proteins catalyzing transmembrane vectorial reactions. We here propose a comprehensive system, designated the Transport Commission (TC) system, based both on function and phylogeny. The TC system initially categorizes permeases according to mode of transport and energy coupling mechanism, and each category is assigned a one-component TC number (W). The secondary level of classification corresponds to the phylogenetic family (or superfamily) to which a particular permease is assigned, and each family is assigned a two-component TC number (W.X). The third level of classification refers to the phylogenetic cluster within a family (or the family within a superfamily) to which the permease belongs, and each cluster receives a three-component TC number (W.X.Y). Finally, the last level of categorization is based on substrate specificity and polarity of transport, and each entry is assigned a four component TC number (W.X.Y.Z). This system is based on the observation that mode of transport and energy coupling mechanism are fundamental properties of transport systems that very seldom transcend familial lines, but substrate specificity, being readily alterable by point mutations, is a superficial characteristic that often transcends familial lines. The proposed system has the potential to include all known permeases for which sequence data are available and has the flexibility to accommodate the multitude of permeases likely to be revealed by future genome sequencing and biochemical analysis. Major conclusions resulting from our classification efforts are described. The classification system, which will be continuously updated, is available on our World Wide Web site (http:/(/)www-biology.ucsd.edu/ approximately msaier/transport/titlepage.html).
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
13
|
Abstract
A comprehensive classification system for transmembrane molecular transporters has been proposed. This system is based on (i) mode of transport and energy-coupling mechanism, (ii) protein phylogenetic family, (iii) phylogenetic cluster, and (iv) substrate specificity. The proposed "Transport Commission" (TC) system is superficially similar to that implemented decades ago by the Enzyme Commission for enzymes, but it differs from the latter system in that it uses phylogenetic and functional data for classification purposes. Very few families of transporters include members that do not function exclusively in transport. Analyses reported reveal that channels, primary carriers, secondary carriers (uni-, sym-, and antiporters), and group translocators comprise distinct categories of transporters, and that transport mode and energy coupling are relatively immutable characteristics. By contrast, substrate specificity and polarity of transport are often readily mutable. Thus, with very few exceptions, a unified family of transporters includes members that function by a single transport mode and energy-coupling mechanism although a variety of substrates may be transported with either inwardly or outwardly directed polarity. The TC system allows cross-referencing according to substrates transported and protein sequence database accession numbers. Thus, familial assignments of newly sequenced transport proteins are facilitated. In this article I examine families of transporters that are eukaryotic specific. These families include (i) channel proteins, mostly from animals; (ii) facilitators and secondary active transport carriers; (iii) a few ATP-dependent primary active transporters; and (iv) transporters of unknown mode of action or energy-coupling mechanism. None of the several ATP-independent primary active transport energy-coupling mechanisms found in prokaryotes is represented within the eukaryotic-specific families. The analyses reported provide insight into transporter families that may have arisen in eukaryotes after the separation of eukaryotes from archaea and bacteria. On the basis of the reported analyses, it is suggested that the horizontal transfer of genes encoding transport proteins between eukaryotes and members of the other two domains of life occurred very infrequently during evolutionary history.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
14
|
Petänen T, Virta M, Karp M, Romantschuk M. Construction and Use of Broad Host Range Mercury and Arsenite Sensor Plasmids in the Soil Bacterium Pseudomonas fluorescens OS8. MICROBIAL ECOLOGY 2001; 41:360-368. [PMID: 12032610 DOI: 10.1007/s002480000095] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 06/22/2000] [Indexed: 05/23/2023]
Abstract
We have generated new sensors for the specific detection and studies of bioavailability of metals by engineering Pseudomonas fluorescens with reporter gene systems. One broad host range mercury (pTPT11) and two arsenite (pTPT21 and pTPT31) sensor plasmids that express metal presence by luminescence phenotype were constructed and transferred into Escherichia coli DH5a and Pseudomonas fluorescens OS8. The maximal induction was reached after 2 h of incubation in metal solutions at room temperature (22 degrees C). In optimized conditions the half maximal velocity of reaction was achieved at acidic pH using a d-luciferin substrate concentration that was nearly sixfold lower for P. fluorescens OS8 than for E. coli DH5a. When using a luciferin concentration (150 mM) that was optimal for E. coli the luminescence declined rapidly in the case of Pseudomonas, for which the substrate level 25 mM gave a stable reading between about 20 min and 3 h. The ability of the strain OS8 to quantitatively detect specific heavy metals in spiked soil and soil extracts is as good, or even better in being a real-time reporter system, than that of a traditional chemical analysis. The Pseudomonas strain used is an isolate from pine rhizosphere in oil and heavy metal contaminated soil. It is also a good humus soil colonizer and is therefore a good candidate for measuring soil heavy metal bioavailability.
Collapse
Affiliation(s)
- T. Petänen
- Department of Biosciences, Division of General Microbiology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
15
|
Stentz R, Loizel C, Malleret C, Zagorec M. Development of genetic tools for Lactobacillus sakei: disruption of the beta-galactosidase gene and use of lacZ as a reporter gene To study regulation of the putative copper ATPase, AtkB. Appl Environ Microbiol 2000; 66:4272-8. [PMID: 11010870 PMCID: PMC92296 DOI: 10.1128/aem.66.10.4272-4278.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2000] [Accepted: 07/10/2000] [Indexed: 11/20/2022] Open
Abstract
Downstream from the ptsHI operon of Lactobacillus sakei, the genes atkY and atkB, organized in an operon, were observed. The two putative proteins, AtkB and AtkY, show sequence similarity to the Enterococcus hirae copper P-type ATPase, responsible for copper efflux, and its negative regulator. Characterization of AtkB as a copper P-type ATPase could not be demonstrated since an atkB mutant did not show any phenotype. Thus, another strategy was followed in order to investigate the transcriptional regulation of the atkYB locus, leading to the development of new genetic tools for L. sakei. A plasmid was constructed, the use of which allowed gene replacement at the lacLM locus in L. sakei by two successive crossovers. A strain deleted of the lacLM operon encoding the beta-galactosidase of L. sakei was constructed by this method, and the Escherichia coli lacZ gene could then be used as a reporter gene to investigate the regulation of atkYB. Results show that the atkYB operon is induced by small concentrations of CuSO(4) (30 to 40 microM) but not when CuSO(4) is omitted or added at higher concentrations.
Collapse
Affiliation(s)
- R Stentz
- Laboratoire de Recherches sur la Viande, INRA-CRJ, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
16
|
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 2000; 100:2705-38. [PMID: 11749302 DOI: 10.1021/cr990115p] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S Daunert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | | | | | | | | | | |
Collapse
|
17
|
Saier MH. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 2000; 64:354-411. [PMID: 10839820 PMCID: PMC98997 DOI: 10.1128/mmbr.64.2.354-411.2000] [Citation(s) in RCA: 567] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA.
| |
Collapse
|
18
|
Messens J, Hayburn G, Brosens E, Laus G, Wyns L. Development of a downstream process for the isolation of Staphylococcus aureus arsenate reductase overproduced in Escherichia coli. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 737:167-78. [PMID: 10681053 DOI: 10.1016/s0378-4347(99)00363-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arsenate reductase (ArsC) encoded by Staphylococcus aureus arsenic-resistance plasmid pI258 reduces intracellular As(V) (arsenate) to the more toxic As(III) (arsenite). In order to study the structure of ArsC and to unravel biochemical and physical properties of this redox enzyme, wild type enzyme and a number of cysteine mutants were overproduced soluble in Escherichia coli. In this paper we describe a novel purification method to obtain high production levels of highly pure enzyme. A reversed-phase method was developed to separate and analyze the many different forms of ArsC. The oxidation state and the methionine oxidized forms were determined by mass spectroscopy.
Collapse
Affiliation(s)
- J Messens
- Dienst Ultrastructuur, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, St. Genesius-Rode, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Rabus R, Jack DL, Kelly DJ, Saier MH. TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3431-3445. [PMID: 10627041 DOI: 10.1099/00221287-145-12-3431] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tripartite ATP-independent periplasmic transporters (TRAP-T) represent a novel type of secondary active transporter that functions in conjunction with an extracytoplasmic solute-binding receptor. The best characterized TRAP-T family member is from Rhodobacter capsulatus and is specific for C4-dicarboxylates [Forward, J. A., Behrendt, M. C., Wyborn, N. R., Cross, R. & Kelly, D. J. (1997). J Bacteriol 179, 5482-5493]. It consists of three essential proteins, DctP, a periplasmic C4-dicarboxylate-binding receptor, and two integral membrane proteins, DctM and DctQ, which probably span the membrane 12 and 4 times, respectively. Homologues of DctM, DctP and DctQ were identified in all major bacterial subdivisions as well as in archaea. An orphan DctP homologue in the Gram-positive bacterium Bacillus subtilis may serve as a receptor for a two-component transcriptional regulatory system rather than as a constituent of a TRAP-T system. Phylogenetic data suggest that all present day TRAP-T systems probably evolved from a single ancestral transporter with minimal shuffling of constituents between systems. Homologous TRAP-T constituents exhibit decreasing degrees of sequence identity in the order DctM > DctP > DctQ. DctM appears to belong to a large superfamily of transporters, the ion transporter (IT) superfamily, one member of which can function by either protonmotive force- or ATP-dependent energization. It is proposed that IT superfamily members exhibit the unusual capacity to function in conjunction with auxiliary proteins that modify the transport process by providing (i) high-affinity solute reception, (ii) altered energy coupling and (iii) additional yet to be defined functions.
Collapse
Affiliation(s)
- Ralf Rabus
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA1
| | - Donald L Jack
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA1
| | - David J Kelly
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2UH, UK 2
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA1
| |
Collapse
|
20
|
Alvarez AH, Moreno-Sánchez R, Cervantes C. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 1999; 181:7398-400. [PMID: 10572148 PMCID: PMC103707 DOI: 10.1128/jb.181.23.7398-7400.1999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Everted membrane vesicles of Pseudomonas aeruginosa PAO1 harboring plasmid pCRO616, expressing the ChrA chromate resistance protein, accumulated four times more (51)CrO(4)(2-) than vesicles from plasmidless cells, indicating that a chromate efflux system functions in the resistant strain. Chromate uptake showed saturation kinetics with an apparent K(m) of 0.12 mM chromate and a V(max) of 0. 5 nmol of chromate/min per mg of protein. Uptake of chromate by vesicles was dependent on NADH oxidation and was abolished by energy inhibitors and by the chromate analog sulfate. The mechanism of resistance to chromate determined by ChrA appears to be based on the active efflux of chromate driven by the membrane potential.
Collapse
Affiliation(s)
- A H Alvarez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, 58030 Morelia, Mich., D.F., México
| | | | | |
Collapse
|
21
|
Abstract
Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram-positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.
Collapse
Affiliation(s)
- J F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh 15282, PA, USA.
| | | |
Collapse
|
22
|
Abstract
A sensor plasmid was constructed by inserting the regulation unit from the cadA determinant of plasmid pI258 to control the expression of firefly luciferase. The resulting sensor plasmid pTOO24 is capable of replicating in Gram-positive and Gram-negative bacteria. The expression of the reporter gene as a function of added extracellular heavy metals was studied in Staphylococcus aureus strain RN4220 and Bacillus subtilis strain BR151. Strain RN4220(pTOO24) mainly responded to cadmium, lead and antimony, the lowest detectable concentrations being 10 nM, 33 nM and 1 nM respectively. Strain BR151(pTOO24) responded to cadmium, antimony, zinc and tin at concentrations starting from 3.3 nM, 33 nM, 1 microM, and 100 microM, respectively. The luminescence ratios between induced and uninduced cells, the induction coefficients, of strains RN4220(pTOO24) and BR151(pTOO24) were 23-50 and about 5, respectively. These results were obtained with only 2-3 h incubation times. Freeze-drying of the sensor strains had only moderate effects on the performance with respect to sensitivity or induction coefficients.
Collapse
Affiliation(s)
- S Tauriainen
- University of Turku, Department of Biotechnology, Finland
| | | | | | | |
Collapse
|
23
|
|
24
|
Cai J, Salmon K, DuBow MS. A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2705-2729. [PMID: 9802012 DOI: 10.1099/00221287-144-10-2705] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Operons encoding homologous arsenic-resistance determinants (ars) have been discovered in bacterial plasmids from Gram-positive and Gram-negative organisms, as well as in the Escherichia coli chromosome. However, evidence for this arsenic-resistance determinant in the medically and environmentally important bacterial species Pseudomonas aeruginosa is conflicting. Here the identification of a P. aeruginosa chromosomal ars operon homologue via cloning and complementation of an E. coli ars mutant is reported. The P. aeruginosa chromosomal ars operon contains three potential ORFs encoding proteins with significant sequence similarity to those encoded by the arsR, arsB and arsC genes of the plasmid-based and E. coli chromosomal ars operons. The cloned P. aeruginosa chromosomal ars operon confers augmented resistance to arsenic and antimony oxyanions in an E. coli arsB mutant and in wild-type P. aeruginosa. Expression of the operon was induced by arsenite at the mRNA level. DNA sequences homologous with this operon were detected in some, but not all, species of the genus Pseudomonas, suggesting that its conservation follows their taxonomic-based evolution.
Collapse
|
25
|
Ramanathan S, Shi W, Rosen BP, Daunert S. Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 1998. [DOI: 10.1016/s0003-2670(98)00244-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Tauriainen S, Karp M, Chang W, Virta M. Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 1997; 63:4456-61. [PMID: 9361432 PMCID: PMC168765 DOI: 10.1128/aem.63.11.4456-4461.1997] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Luminescent bacterial strains for the measurement of bioavailable arsenite and antimony were constructed. The expression of firefly luciferase was controlled by the regulatory unit of the ars operon of Staphylococcus aureus plasmid pI258 in recombinant plasmid pTOO21, with S. aureus RN4220, Bacillus subtilis BR151, and Escherichia coli MC1061 as host strains. Strain RN4220(pTOO21) was found to be the most sensitive for metal detection responding to arsenite, antimonite, and cadmium, the lowest detectable concentrations being 100, 33, and 330 nM, respectively. Strains BR151(pTOO21) and MC1061(pTOO21) responded to arsenite, arsenate, antimonite, and cadmium, the lowest detectable concentrations being 3.3 and 330 microM and 330 and 330 nM with BR151(pTOO21), respectively, and 3.3, 33, 3.3, and 33 microM with MC1061(pTOO21), respectively. In the absence of the mentioned ions, the expression of luciferase was repressed and only a small amount of background light was emitted. Other ions did not notably interfere with the measurement in any of the strains tested. Freeze-drying of the cells did not decrease the sensitivity of the detection of arsenite; however, the induction coefficients were somewhat lower.
Collapse
Affiliation(s)
- S Tauriainen
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | |
Collapse
|
27
|
Ramanathan S, Shi W, Rosen BP, Daunert S. Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 1997; 69:3380-4. [PMID: 9271073 DOI: 10.1021/ac970111p] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly sensitive and selective optical sensing system for antimonite has been developed using genetically engineered bacteria. The basis of this system is the ability of certain bacteria to survive in environments that are contaminated with antimonite, arsenite, and arsenate. The survival is conferred to the bacteria by the ars operon, which consists of five genes that code for three structural proteins, ArsA, ArsB, and ArsC, and two regulatory proteins, ArsD and ArsR. ArsA, ArsB, and ArsC form a protein pump system that extrudes antimonite, arsenite, and arsenate once these anions reach the cytoplasm of the bacterium. A method was developed for monitoring antimonite and arsenite by using a single plasmid that incorporates the regulatory gene of the extrusion system, arsR, and the genes of bacterial luciferase, luxA and luxB. In the designed plasmid, ArsR regulates the expression of bacterial luciferase in a manner that is dependent on the concentration of antimonite and arsenite in the sample. Thus, the bioluminescence emitted by luciferase can be related to the concentration of antimonite and arsenite in the sample. Concentrations for antimonite and arsenite in the order of 10(-5) M, which corresponds to subattomole levels, can be detected. This bacterial-based sensing system is highly selective for antimonite and arsenite.
Collapse
Affiliation(s)
- S Ramanathan
- Department of Chemistry, University of Kentucky, Lexington 40506, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Bacterial plasmids encode resistance systems for toxic metal ions, including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO3(2-), Tl+ and Zn2+. The function of most resistance systems is based on the energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The Cd(2+)-resistance ATPase of Gram-positive bacteria (CadA) is membrane cation pump homologous with other bacterial, animal and plant P-type ATPases. CadA has been labeled with 32P from [alpha-32P] ATP and drives ATP-dependent Cd2+ (and Zn2+) uptake by inside-out membrane vesicles (equivalent to efflux from whole cells). Recently, isolated genes defective in the human hereditary diseases of copper metabolism, namely Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to bacterial CadA than to other ATPases from eukaryotes. The arsenic resistance efflux system transports arsenite [As(III)], alternatively using either a double-polypeptide (ArsA and ArsB) ATPase or a single-polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. The triple-polypeptide Czc (Cd2+, Zn2+ and Co2+) chemiosmotic efflux pump consists of inner membrane (CzcA), outer membrane (CzcC) and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell.
Collapse
Affiliation(s)
- S Silver
- Department of Microbiology and Immunology, University of Illinois at Chicago 60612-7344, USA.
| |
Collapse
|
29
|
Huang RN, Lee TC. Arsenite efflux is inhibited by verapamil, cyclosporin A, and GSH-depletingagents in arsenite-resistant chinese hamster ovary cells. Toxicol Appl Pharmacol 1996. [DOI: 10.1016/s0041-008x(96)80004-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Abstract
Bacterial plasmids encode resistance systems for toxic metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, CO2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO3(2-), Tl+, and Zn2+. In addition to understanding of the molecular genetics and environmental roles of these resistances, studies during the last few years have provided surprises and new biochemical mechanisms. Chromosomal determinants of toxic metal resistances are known, and the distinction between plasmid resistances and those from chromosomal genes has blurred, because for some metals (notably mercury and arsenic), the plasmid and chromosomal determinants are basically the same. Other systems, such as copper transport ATPases and metallothionein cation-binding proteins, are only known from chromosomal genes. The largest group of metal resistance systems function by energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The CadA cadmium resistance ATPase of gram-positive bacteria and the CopB copper efflux system of Enterococcus hirae are homologous to P-type ATPases of animals and plants. The CadA ATPase protein has been labeled with 32P from gamma-32P-ATP and drives ATP-dependent Cd2+ uptake by inside-out membrane vesicles. Recently isolated genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to the bacterial CadA and CopB ATPases than to eukaryote ATPases that pump different cations. The arsenic resistance efflux system transports arsenite, using alternatively either a two-component (ArsA and ArsB) ATPase or a single polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As (V)] to arsenite [As (III)], the substrate of the efflux system. The three-component Czc (Cd2+, Zn2+, and CO2+) chemiosmotic efflux pump of soil microbes consists of inner membrane (CzcA), outer membrane (CzcC), and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell. Finally, the first bacterial metallothionein (which by definition is a small protein that binds metal cations by means of numerous cysteine thiolates) has been characterized in cyanobacteria.
Collapse
Affiliation(s)
- S Silver
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago 60612, USA.
| | | |
Collapse
|
31
|
Abstract
A chromosomally located operon (ars) of Escherichia coli has been previously shown to be functional in arsenic detoxification. DNA sequencing revealed three open reading frames homologous to the arsR, arsB, and arsC open reading frames of plasmid-based arsenic resistance operons isolated from both E. coli and staphylococcal species. To examine the outline of transcriptional regulation of the chromosomal ars operon, several transcriptional fusions, using the luciferase-encoding luxAB genes of Vibrio harveyi, were constructed. Measurement of the expression of these gene fusions demonstrated that the operon was rapidly induced by sodium arsenite and negatively regulated by the trans-acting arsR gene product. Northern blotting and primer extension analyses revealed that the chromosomal ars operon is most likely transcribed as a single mRNA of approximately 2100 nucleotides in length and processed into two smaller mRNA products in a manner similar to that found in the E. coli R773 plasmid-borne ars operon. However, transcription was found to initiate at a position that is relatively further upstream of the initiation codon of the arsR coding sequence than that determined for the E. coli R773 plasmid's ars operon.
Collapse
Affiliation(s)
- J Cai
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | | |
Collapse
|
32
|
Bruhn DF, Li J, Silver S, Roberto F, Rosen BP. The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol Lett 1996; 139:149-53. [PMID: 8674982 DOI: 10.1111/j.1574-6968.1996.tb08195.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The arsenical resistance operon of the IncN plasmid R46 consists of 4696 bp and starts with predicted transcriptional control and initiation signals, followed by five genes, arsD, arsA, and arsC. The corresponding Escherichia coli chromosomal ars operon and two staphylococcal ars operons lack arsA and arsD genes. The R46 system contains only the second known versions of arsA and arsD, after those of plasmid R773. Western blot analysis identified the R46 proteins using antibodies against R773 ArsA, ArsD and ArsR.
Collapse
Affiliation(s)
- D F Bruhn
- Biotechnologies Department, Idaho National Engineering Laboratory, Idaho Falls 83415-2203, USA
| | | | | | | | | |
Collapse
|
33
|
Chao CC. Inhibition by arsenite of anticancer drug cis-diamminedichloroplatinum(II) induced DNA repair and drug resistance in HeLa cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1996; 1:199-205. [PMID: 21781682 DOI: 10.1016/1382-6689(96)00010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1995] [Accepted: 02/13/1996] [Indexed: 05/31/2023]
Abstract
We have previously reported a cisplatin-resistant HeLa variant cell line (HeLa/CPR) which exhibited an enhancement in repairing cisplatin-DNA adducts (Chao, 1994, Mol. Pharmacol. 45, 1137-1144). In this study, using this cell line, we investigated the modification, by arsenite, of cisplatin-induced cytotoxicity and DNA repair in the resistant cell line. By a sublethal dose of arsenite, cytotoxicity of the resistant cells was enhanced by 2.5-fold, compared to 1.62-fold in the parental cells. Using enzyme-linked immunosorbent assay (ELISA) and a monoclonal antibody specific for cisplatin-DNA adducts, we found that the resistant cells showed a 5.15-fold decrease in the adduct formation compared to the parental cells. However, in the presence of arsenite, the resistant cells showed only a 1.47-fold decrease in the adduct formation, indicating a more than 3-fold modification. Using host cell reactivation of transfected plasmid DNA carrying cisplatin damage (an indirect detection of DNA repair), arsenite also revealed a ∼2-fold modification of adduct formation in the resistant cells. In addition, the time-dependent potentiation of cytotoxicity by arsenite in both cell lines was parallel to the increase of adduct formation. These results indicate that arsenite is an effective modifier of cisplatin-induced resistance and enhanced DNA repair in HeLa/CPR cells. The results are consistent with the notion that the cisplatin-resistant phenotype in HeLa cells is mainly mediated by enhancement of DNA repair.
Collapse
Affiliation(s)
- C C Chao
- Tumor Biology Laboratory, Department of Biochemistry, Chang Gung Medical College, Taoyuan 33332, Taiwan, ROC
| |
Collapse
|
34
|
|
35
|
Oskam L, Hartskeerl RA, Hermans CJ, de Wit MYL, Jarings GH, Nicholls RD, Klatser PR. A 46 kDa integral membrane protein from Mycobacterium leprae resembles a number of bacterial and mammalian membrane transport proteins. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 8):1963-1968. [PMID: 7551058 DOI: 10.1099/13500872-141-8-1963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper we describe the nucleotide sequence of a 3.4 kbp region of the Mycobacterium leprae genome. This region contains an open reading frame of 1290 bp with a coding capacity for a protein of 46,179 Da, designated the 38L protein. Using antibodies against part of the 38L protein, we were able to demonstrate that the 38L protein is present in the membrane protein fraction of M. leprae. The 38L protein showed significant matches with a number of integral membrane proteins involved in the transport of small molecules through the cellular membrane. Among these are a human and a murine protein involved in melanin biosynthesis. The 38L protein might play a role in the hypopigmentation observed in leprosy patients.
Collapse
Affiliation(s)
- Linda Oskam
- Royal Tropical Institute, Department of Biomedical Research,Meibergdreef 39, NL-1105AZ Amsterdam,The Netherlands
| | - Rudy A Hartskeerl
- Royal Tropical Institute, Department of Biomedical Research,Meibergdreef 39, NL-1105AZ Amsterdam,The Netherlands
| | - Caroline J Hermans
- Royal Tropical Institute, Department of Biomedical Research,Meibergdreef 39, NL-1105AZ Amsterdam,The Netherlands
| | - Madeleine Y L de Wit
- Royal Tropical Institute, Department of Biomedical Research,Meibergdreef 39, NL-1105AZ Amsterdam,The Netherlands
| | - Guus H Jarings
- Royal Tropical Institute, Department of Biomedical Research,Meibergdreef 39, NL-1105AZ Amsterdam,The Netherlands
| | - Robert D Nicholls
- Case Western Reserve University, School of Medicine, Department of Genetics,10900 Euclid Avenue, Cleveland, OH 44106,USA
| | - Paul R Klatser
- Royal Tropical Institute, Department of Biomedical Research,Meibergdreef 39, NL-1105AZ Amsterdam,The Netherlands
| |
Collapse
|
36
|
Diorio C, Cai J, Marmor J, Shinder R, DuBow MS. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 1995; 177:2050-6. [PMID: 7721697 PMCID: PMC176848 DOI: 10.1128/jb.177.8.2050-2056.1995] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Arsenic is a known toxic metalloid, whose trivalent and pentavalent ions can inhibit many biochemical processes. Operons which encode arsenic resistance have been found in multicopy plasmids from both gram-positive and gram-negative bacteria. The resistance mechanism is encoded from a single operon which typically consists of an arsenite ion-inducible repressor that regulates expression of an arsenate reductase and inner membrane-associated arsenite export system. Using a lacZ transcriptional gene fusion library, we have identified an Escherichia coli operon whose expression is induced by cellular exposure to sodium arsenite at concentrations as low as 5 micrograms/liter. This chromosomal operon was cloned, sequenced, and found to consist of three cistrons which we named arsR, arsB, and arsC because of their strong homology to plasmid-borne ars operons. Mutants in the chromosomal ars operon were found to be approximately 10- to 100-fold more sensitive to sodium arsenate and arsenite exposure than wild-type E. coli, while wild-type E. coli that contained the operon cloned on a ColE1-based plasmid was found to be at least 2- to 10-fold more resistant to sodium arsenate and arsenite. Moreover, Southern blotting and high-stringency hybridization of this operon with chromosomal DNAs from a number of bacterial species showed homologous sequences among members of the family Enterobacteriaceae, and hybridization was detectable even in Pseudomonas aeruginosa. These results suggest that the chromosomal ars operon may be the evolutionary precursor of the plasmid-borne operon, as a multicopy plasmid location would allow the operon to be amplified and its products to confer increased resistance to this toxic metalloid.
Collapse
Affiliation(s)
- C Diorio
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
37
|
Rouch DA, Lee BT, Morby AP. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 14:132-41. [PMID: 7766205 DOI: 10.1007/bf01569895] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.
Collapse
Affiliation(s)
- D A Rouch
- School of Biological Sciences, University of Birmingham, Edgbaston, UK
| | | | | |
Collapse
|
38
|
Ji G, Silver S. Bacterial resistance mechanisms for heavy metals of environmental concern. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 14:61-75. [PMID: 7766212 DOI: 10.1007/bf01569887] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial species have genetically-determined systems for resistances to toxic heavy metals. Those for metals of environmental concern including mercury cadmium, arsenic and others are briefly summarized, considering the genes of the systems and the biochemical mechanisms by which the resistance proteins function.
Collapse
Affiliation(s)
- G Ji
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612-7344, USA
| | | |
Collapse
|
39
|
Nies DH, Silver S. Ion efflux systems involved in bacterial metal resistances. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 14:186-99. [PMID: 7766211 DOI: 10.1007/bf01569902] [Citation(s) in RCA: 252] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studying metal ion resistance gives us important insights into environmental processes and provides an understanding of basic living processes. This review concentrates on bacterial efflux systems for inorganic metal cations and anions, which have generally been found as resistance systems from bacteria isolated from metal-polluted environments. The protein products of the genes involved are sometimes prototypes of new families of proteins or of important new branches of known families. Sometimes, a group of related proteins (and presumedly the underlying physiological function) has still to be defined. For example, the efflux of the inorganic metal anion arsenite is mediated by a membrane protein which functions alone in Gram-positive bacteria, but which requires an additional ATPase subunit in some Gram-negative bacteria. Resistance to Cd2+ and Zn2+ in Gram-positive bacteria is the result of a P-type efflux ATPase which is related to the copper transport P-type ATPases of bacteria and humans (defective in the human hereditary diseases Menkes' syndrome and Wilson's disease). In contrast, resistance to Zn2+, Ni2+, Co2+ and Cd2+ in Gram-negative bacteria is based on the action of proton-cation antiporters, members of a newly-recognized protein family that has been implicated in diverse functions such as metal resistance/nodulation of legumes/cell division (therefore, the family is called RND). Another new protein family, named CDF for 'cation diffusion facilitator' has as prototype the protein CzcD, which is a regulatory component of a cobalt-zinc-cadmium resistance determinant in the Gram-negative bacterium Alcaligenes eutrophus. A family for the ChrA chromate resistance system in Gram-negative bacteria has still to be defined.
Collapse
Affiliation(s)
- D H Nies
- Institut für Mikrobiologie, Martin-Luther-Universität, Halle, Germany
| | | |
Collapse
|
40
|
Abstract
Arsenic ions, frequently present as environmental pollutants, are very toxic for most microorganisms. Some microbial strains possess genetic determinants that confer resistance. In bacteria, these determinants are often found on plasmids, which has facilitated their study at the molecular level. Bacterial plasmids conferring arsenic resistance encode specific efflux pumps able to extrude arsenic from the cell cytoplasm thus lowering the intracellular concentration of the toxic ions. In Gram-negative bacteria, the efflux pump consists of a two-component ATPase complex. ArsA is the ATPase subunit and is associated with an integral membrane subunit, ArsB. Arsenate is enzymatically reduced to arsenite (the substrate of ArsB and the activator of ArsA) by the small cytoplasmic ArsC polypeptide. In Gram-positive bacteria, comparable arsB and arsC genes (and proteins) are found, but arsA is missing. In addition to the wide spread plasmid arsenic resistance determinant, a few bacteria confer resistance to arsenite with a separate determinant for enzymatic oxidation of more-toxic arsenite to less-toxic arsenate. In contrast to the detailed information on the mechanisms of arsenic resistance in bacteria, little work has been reported on this subject in algae and fungi.
Collapse
Affiliation(s)
- C Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Mich., Mexico
| | | | | | | |
Collapse
|
41
|
Shi W, Wu J, Rosen B. Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32094-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Sofia HJ, Burland V, Daniels DL, Plunkett G, Blattner FR. Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res 1994; 22:2576-86. [PMID: 8041620 PMCID: PMC308212 DOI: 10.1093/nar/22.13.2576] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The DNA sequence of a 225.4 kilobase segment of the Escherichia coli K-12 genome is described here, from 76.0 to 81.5 minutes on the genetic map. This brings the total of contiguous sequence from the E.coli genome project to 725.1 kb (76.0 to 92.8 minutes). We found 191 putative coding genes (ORFs) of which 72 genes were previously known, and 110 of which remain unidentified despite literature and similarity searches. Seven new genes--arsE, arsF, arsG, treF, xylR, xylG, and xylH--were identified as well as the previously mapped pit and dctA genes. The arrangement of proposed genes relative to possible promoters and terminators suggests 90 potential transcription units. Other features include 19 REP elements, 95 computer-predicted bends, 50 Chi sites, and one grey hole. Thirty-one putative signal peptides were found, including those of thirteen known membrane or periplasmic proteins. One tRNA gene (proK) and two insertion sequences (IS5 and IS150) are located in this segment. The genes in this region are organized with equal numbers oriented with or against replication.
Collapse
Affiliation(s)
- H J Sofia
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
43
|
Reizer J, Reizer A, Saier MH. A functional superfamily of sodium/solute symporters. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:133-66. [PMID: 8031825 DOI: 10.1016/0304-4157(94)90003-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eleven families of sodium/solute symporters are defined based on their degrees of sequence similarities, and the protein members of these families are characterized in terms of their solute and cation specificities, their sizes, their topological features, their evolutionary relationships, and their relative degrees and regions of sequence conservation. In some cases, particularly where site-specific mutagenesis analyses have provided functional information about specific proteins, multiple alignments of members of the relevant families are presented, and the degrees of conservation of the mutated residues are evaluated. Signature sequences for several of the eleven families are presented to facilitate identification of new members of these families as they become sequenced. Phylogenetic tree construction reveals the evolutionary relationships between members of each family. One of these families is shown to belong to the previously defined major facilitator superfamily. The other ten families do not show sufficient sequence similarity with each other or with other identified transport protein families to establish homology between them. This study serves to clarify structural, functional and evolutionary relationships among eleven distinct families of functionally related transport proteins.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|
44
|
Saier MH. Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 1994; 58:71-93. [PMID: 8177172 PMCID: PMC372954 DOI: 10.1128/mr.58.1.71-93.1994] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three-dimensional structures have been elucidated for very few integral membrane proteins. Computer methods can be used as guides for estimation of solute transport protein structure, function, biogenesis, and evolution. In this paper the application of currently available computer programs to over a dozen distinct families of transport proteins is reviewed. The reliability of sequence-based topological and localization analyses and the importance of sequence and residue conservation to structure and function are evaluated. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific transport protein families is also evaluated. Channel proteins are proposed to be functionally related to carriers. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes. The possible significance of this apparent topological convergence is discussed.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| |
Collapse
|
45
|
Affiliation(s)
- S Silver
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Skulachev VP. Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts. Antonie Van Leeuwenhoek 1994; 65:271-84. [PMID: 7832586 DOI: 10.1007/bf00872213] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Possible routes for the evolution of cell energetics are considered. It is assumed that u.v. light was the primary energy source for the precursors of the primordial living cell and that primitive energetics might have been based on the use of the adenine moiety of ADP as the u.v. chromophore. It is proposed that the excitation of the adenine residue facilitated phosphorylation of its amino group with subsequent transfer of a phosphoryl group to the terminal phosphate of ADP to form ATP. ATP-driven carbohydrate synthesis is considered as a mechanism for storing u.v.-derived energy, which was then used in the dark. Glycolysis presumably produced compounds like ethanol and CO2, which easily penetrate the membrane and therefore were lost by the cell. Later lactate-producing glycolysis appeared, the end product being non-penetrant and, hence, retained inside the cell to be utilized to regenerate carbohydrates when light energy became available. Production of lactate was accompanied by accumulation of equimolar H+. To avoid acidification of the cell interior, an F0-type H+ channel was employed. Later it was supplemented with F1. This allowed the ATP energy to be used for 'uphill' H+ pumping to the medium, which was acidified due to glycolytic activity of the cells. In the subsequent course of evolution, u.v. light was replaced by visible light, which has lower energy but is less dangerous for the cell. It is assumed that bacteriorhodopsin, a simple and very stable light-driven H+ pump which still exists in halophilic and thermophilic Archaea, was the primary system utilizing visible light. The delta mu-H+ formed was used to reverse the H(+)-ATPase, which began to function as H(+)-ATP-synthase. Later, bacteriorhodopsin photosynthesis was substituted by a more efficient chlorophyll photosynthesis, producing not only ATP, but also carbohydrates. O2, a side product of this process, was consumed by the H(+)-motive respiratory chain to form delta mu-H+ in the dark. At the next stage of evolution, a parallel energy-transducing mechanism appeared which employed Na+ instead of H+ as the coupling ion (the Na+ cycle).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|
47
|
Abstract
Different families of transport proteins catalyze transmembrane solute translocation, employing different mechanisms and energy sources. Several of these functionally dissimilar proteins nevertheless exhibit similar structural units, consisting of six tightly packed alpha-helices which may comprise all or part of a transmembrane channel. It is now recognized that some of these families arose independently of each other by convergence, while others arose from common precursors by divergence. The former families apparently arose at different times in evolutionary history, in different groups of organisms, employing different routes.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| |
Collapse
|