1
|
Kodešová T, Mašlejová A, Vlková E, Musilová Š, Horváthová K, Šubrtová Salmonová H. In Vitro Utilization of Prebiotics by Listeria monocytogenes. Microorganisms 2024; 12:1876. [PMID: 39338550 PMCID: PMC11433794 DOI: 10.3390/microorganisms12091876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Listeria monocytognes is an emerging pathogen responsible for the serious foodborne disease, listeriosis. The commensal gut microbiota is the first line of defense against pathogen internalization. The gut microbiome can be modified by prebiotic substrates, which are frequently added to food products and dietary supplements. Prebiotics should selectively support the growth of beneficial microbes and thus improve host health. Nevertheless, little is known about their effect on the growth of L. monocytogenes. The aim of this study was to evaluate the growth ability of four L. monocytogenes strains, representing the most common serotypes, on prebiotic oligosaccharides (beta-(1,3)-D-glucan, inulin, fructooligosaccharides, galactooligosaccharides, lactulose, raffinose, stachyose and 2'-fucosyllactose and a mixture of human milk oligosaccharides) as a sole carbon source. The results showed that only beta-(1,3)-D-glucan was metabolized by L. monocytogenes. These cell culture data suggest that beta-(1,3)-D-glucan may not be selectively utilized by healthy commensal bacteria, and its role in intestinal pathogen growth warrants further exploration in vivo.
Collapse
Affiliation(s)
- Tereza Kodešová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Anna Mašlejová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Šárka Musilová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Kristýna Horváthová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Hana Šubrtová Salmonová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| |
Collapse
|
2
|
Hasan MK, Dhungel BA, Govind R. Characterization of an operon required for growth on cellobiose in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001079. [PMID: 34410904 PMCID: PMC8489589 DOI: 10.1099/mic.0.001079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Cellobiose metabolism is linked to the virulence properties in numerous bacterial pathogens. Here, we characterized a putative cellobiose PTS operon of Clostridiodes difficile to investigate the role of cellobiose metabolism in C. difficile pathogenesis. Our gene knockout experiments demonstrated that the putative cellobiose operon enables uptake of cellobiose into C. difficile and allows growth when cellobiose is provided as the sole carbon source in minimal medium. Additionally, using reporter gene fusion assays and DNA pulldown experiments, we show that its transcription is regulated by CelR, a novel transcriptional repressor protein, which directly binds to the upstream region of the cellobiose operon to control its expression. We have also identified cellobiose metabolism to play a significant role in C. difficile physiology as observed by the reduction of sporulation efficiency when cellobiose uptake was compromised in the mutant strain. In corroboration to in vitro study findings, our in vivo hamster challenge experiment showed a significant reduction of pathogenicity by the cellobiose mutant strain in both the primary and the recurrent infection model - substantiating the role of cellobiose metabolism in C. difficile pathogenesis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
3
|
Probiotics, Prebiotics, Synbiotics and Dental Caries. New Perspectives, Suggestions, and Patient Coaching Approach for a Cavity-Free Mouth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Probiotic therapy forms a new strategy for dental caries prevention. Probiotic microorganisms possess the ability to displace cariogenic microorganisms and colonize the oral cavity. They can produce various antimicrobial substances such as bacteriocins, bacteriocin-like peptides, lactic acid, and hydrogen peroxide. Dairy products may be ideal for probiotic administration in dental patients. Many other means have been proposed, primarily for those allergic to dairy components, such as capsules, liquid form, tablets, drops, lozenges, sweetened cakes, and ice creams. The last two forms can be used in a coaching approach for children and elderly patients who find it difficult to avoid sugary beverages in their daily routine and benefit from the suggestion of easy, cheap, and common forms of delicacies. In caries prevention, the concept of the effector strain is already considered an integral part of the contemporary caries cure or prevention strategy in adults. Adults, though, seem not to be favored as much as children at early ages by using probiotics primarily due to their oral microbiome’s stability. In this non-systematic review we describe the modes of action of probiotics, their use in the cariology field, their clinical potential, and propose options to prevent caries through a patient coaching approach for the daily dental practice.
Collapse
|
4
|
Tiensuu T, Guerreiro DN, Oliveira AH, O’Byrne C, Johansson J. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer. Microbiology (Reading) 2019; 165:819-833. [DOI: 10.1099/mic.0.000808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Teresa Tiensuu
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ana H. Oliveira
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Jörgen Johansson
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Cao TN, Joyet P, Aké FMD, Milohanic E, Deutscher J. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression. J Mol Microbiol Biotechnol 2019; 29:10-26. [PMID: 31269503 DOI: 10.1159/000500090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/31/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many bacteria transport cellobiose via a phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In Listeria monocytogenes, two pairs of soluble PTS components (EIIACel1/EIIBCel1 and EIIACel2/EIIBCel2) and the permease EIICCel1 were suggested to contribute to cellobiose uptake. Interestingly, utilization of several carbohydrates, including cellobiose, strongly represses virulence gene expression by inhibiting PrfA, the virulence gene activator. RESULTS The LevR-like transcription regulator CelR activates expression of the cellobiose-induced PTS operons celB1-celC1-celA1, celB2-celA2, and the EIIC-encoding monocistronic celC2. Phosphorylation by P∼His-HPr at His550 activates CelR, whereas phosphorylation by P∼EIIBCel1 or P∼EIIBCel2 at His823 inhibits it. Replacement of His823 with Ala or deletion of both celA or celB genes caused constitutive CelR regulon expression. Mutants lacking EIICCel1, CelR or both EIIACel exhibitedslow cellobiose consumption. Deletion of celC1 or celR prevented virulence gene repression by the disaccharide, but not by glucose and fructose. Surprisingly, deletion of both celA genes caused virulence gene repression even during growth on non-repressing carbohydrates. No cellobiose-related phenotype was found for the celC2 mutant. CONCLUSION The two EIIA/BCel pairs are similarly efficient as phosphoryl donors in EIICCel1-catalyzed cellobiose transport and CelR regulation. The permanent virulence gene repression in the celA double mutant further supports a role of PTSCel components in PrfA regulation.
Collapse
Affiliation(s)
- Thanh Nguyen Cao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Joyet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France, .,Centre National de la Recherche Scientifique, UMR8261 Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France,
| |
Collapse
|
6
|
Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 2019; 103:6463-6472. [PMID: 31267231 PMCID: PMC6667406 DOI: 10.1007/s00253-019-09978-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Adhesion ability to the host is a classical selection criterion for potential probiotic bacteria that could result in a transient colonisation that would help to promote immunomodulatory effects, as well as stimulate gut barrier and metabolic functions. In addition, probiotic bacteria have a potential protective role against enteropathogens through different mechanisms including production of antimicrobial compounds, reduction of pathogenic bacterial adhesion and competition for host cell binding sites. The competitive exclusion by probiotic bacteria has a beneficial effect not only on the gut but also in the urogenital tract and oral cavity. On the other hand, prebiotics may also act as barriers to pathogens and toxins by preventing their adhesion to epithelial receptors. In vitro studies with different intestinal cell lines have been widely used along the last decades to assess the adherence ability of probiotic bacteria and pathogen antagonism. However, extrapolation of these results to in vivo conditions still remains unclear, leading to the need of optimisation of more complex in vitro approaches that include interaction with the resident microbiota to address the current limitations. The aim of this mini review is to provide a comprehensive overview on the potential effect of the adhesive properties of probiotics and prebiotics on the host by focusing on the most recent findings related with adhesion and immunomodulatory and antipathogenic effect on human health.
Collapse
Affiliation(s)
- Andrea Monteagudo-Mera
- Biomedical Sciences, School of Biological Sciences, University of Reading, Reading, RG6 6AH, UK.
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK.
| |
Collapse
|
7
|
Johansson J, Freitag NE. Regulation of Listeria monocytogenes Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0064-2019. [PMID: 31441398 PMCID: PMC10957223 DOI: 10.1128/microbiolspec.gpp3-0064-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Whereas obligate human and animal bacterial pathogens may be able to depend upon the warmth and relative stability of their chosen replication niche, environmental bacteria such as Listeria monocytogenes that harbor the ability to replicate both within animal cells and in the outside environment must maintain the capability to manage life under a variety of disparate conditions. Bacterial life in the outside environment requires adaptation to wide ranges of temperature, available nutrients, and physical stresses such as changes in pH and osmolarity as well as desiccation. Following ingestion by a susceptible animal host, the bacterium must adapt to similar changes during transit through the gastrointestinal tract and overcome a variety of barriers associated with host innate immune responses. Rapid alteration of patterns of gene expression and protein synthesis represent one strategy for quickly adapting to a dynamic host landscape. Here, we provide an overview of the impressive variety of strategies employed by the soil-dwelling, foodborne, mammalian pathogen L. monocytogenes to straddle diverse environments and optimize bacterial fitness both inside and outside host cells.
Collapse
Affiliation(s)
- Jörgen Johansson
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago IL
| |
Collapse
|
8
|
Abstract
The human colonic flora has both beneficial and pathogenic potentials with respect to host health. There is now much interest in manipulation of the microbiota composition in order to improve the potentially beneficial aspects. The prebiotic approach dictates that non-viable food components are specifically fermented in the colon by indigenous bacteria thought to be of positive value, e.g. bifidobacteria, lactobacilli. Any food ingredient that enters the large intestine is a candidate prebiotic. However, to be effective, selectivity of the fermentation is essential. Most current attention and success has been derived using non-digestible oligosaccharides. Types primarily being looked at include those which contain fructose, xylose, soya, galactose, glucose and mannose. In particular, fructose-containing oligosaccharides, which occur naturally in a variety of plants such as onion, asparagus, chicory, banana and artichoke, fulfil the prebiotic criteria. Various data have shown that fructo-oligosaccharides (FOS) are specifically fermented by bifidobacteria. During controlled feeding studies, ingestion of these prebiotics causes bifidobacteria to become numerically dominant in faeces. Recent studies have indicated that a FOS dose of 4g/d is prebiotic. To exploit this concept more fully, there is a need for assessments of (a) improved determination of the gut microbiota composition and activity; (b) the use of molecular methodologies to assess accurately prebiotic identities and develop efficient bacterial probing strategies; (c) the prebiotic potential of raw and processed foods; and (d) the health consequences of dietary modulation.
Collapse
|
9
|
Koomen J, den Besten HM, Metselaar KI, Tempelaars MH, Wijnands LM, Zwietering MH, Abee T. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of Listeria monocytogenes variants. Int J Food Microbiol 2018; 283:14-21. [DOI: 10.1016/j.ijfoodmicro.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
|
10
|
Hou T, Tako E. The In Ovo Feeding Administration (Gallus Gallus)-An Emerging In Vivo Approach to Assess Bioactive Compounds with Potential Nutritional Benefits. Nutrients 2018; 10:nu10040418. [PMID: 29597266 PMCID: PMC5946203 DOI: 10.3390/nu10040418] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/15/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022] Open
Abstract
In recent years, the in ovo feeding in fertilized broiler (Gallus gallus) eggs approach was further developed and currently is widely applied in the evaluation process of the effects of functional foods (primarily plant origin compounds) on the functionality of the intestinal brush border membrane, as well as potential prebiotic properties and interactions with the intestinal microbial populations. This review collates the information of potential nutrients and their effects on the mineral absorption, gut development, brush border membrane functionality, and immune system. In addition, the advantages and limitations of the in ovo feeding method in the assessment of potential prebiotic effects of plant origin compounds is discussed.
Collapse
Affiliation(s)
- Tao Hou
- College of Food Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Abstract
Upon entry into the host cell cytosol, the facultative intracellular pathogen Listeria monocytogenes coordinates the expression of numerous essential virulence factors by allosteric binding of glutathione (GSH) to the Crp-Fnr family transcriptional regulator PrfA. Here, we report that robust virulence gene expression can be recapitulated by growing bacteria in a synthetic medium containing GSH or other chemical reducing agents. Bacteria grown under these conditions were 45-fold more virulent in an acute murine infection model and conferred greater immunity to a subsequent lethal challenge than bacteria grown in conventional media. During cultivation in vitro, PrfA activation was completely dependent on the intracellular levels of GSH, as a glutathione synthase mutant (ΔgshF) was activated by exogenous GSH but not reducing agents. PrfA activation was repressed in a synthetic medium supplemented with oligopeptides, but the repression was relieved by stimulation of the stringent response. These data suggest that cytosolic L. monocytogenes interprets a combination of metabolic and redox cues as a signal to initiate robust virulence gene expression in vivo. Intracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how these pathogens sense and respond to the intracellular compartment to establish a successful infection is critical to our basic understanding of the pathogenesis of each organism and for the rational design of therapeutic interventions. Listeria monocytogenes is a model intracellular pathogen with robust in vitro and in vivo infection models. Studies of the host-sensing and downstream signaling mechanisms evolved by L. monocytogenes often describe themes of pathogenesis that are broadly applicable to less tractable pathogens. Here, we describe how bacteria use external redox states as a cue to activate virulence.
Collapse
|
12
|
Mahmoudi I, Moussa OB, Hassouna M. Symbiotic, Hypocholesterolemic and Antioxidant Effects of Potential Probiotic Lactobacilli Strains Isolated from Tunisian Camel Milk. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/aim.2017.74027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Kentache T, Milohanic E, Cao TN, Mokhtari A, Aké FM, Ma Pham QM, Joyet P, Deutscher J. Transport and Catabolism of Pentitols by Listeria monocytogenes. J Mol Microbiol Biotechnol 2016; 26:369-380. [PMID: 27553222 DOI: 10.1159/000447774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022] Open
Abstract
Transposon insertion into Listeria monocytogenes lmo2665, which encodes an EIIC of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), was found to prevent D-arabitol utilization. We confirm this result with a deletion mutant and show that Lmo2665 is also required for D-xylitol utilization. We therefore called this protein EIICAxl. Both pentitols are probably catabolized via the pentose phosphate pathway (PPP) because lmo2665 belongs to an operon, which encodes the three PTSAxl components, two sugar-P dehydrogenases, and most PPP enzymes. The two dehydrogenases oxidize the pentitol-phosphates produced during PTS-catalyzed transport to the PPP intermediate xylulose-5-P. L. monocytogenes contains another PTS, which exhibits significant sequence identity to PTSAxl. Its genes are also part of an operon encoding PPP enzymes. Deletion of the EIIC-encoding gene (lmo0508) affected neither D-arabitol nor D-xylitol utilization, although D-arabitol induces the expression of this operon. Both operons are controlled by MtlR/LicR-type transcription activators (Lmo2668 and Lmo0501, respectively). Phosphorylation of Lmo0501 by the soluble PTSAxl components probably explains why D-arabitol also induces the second pentitol operon. Listerial virulence genes are submitted to strong repression by PTS sugars, such as glucose. However, D-arabitol inhibited virulence gene expression only at high concentrations, probably owing to its less efficient utilization compared to glucose.
Collapse
Affiliation(s)
- Takfarinas Kentache
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jarvis NA, O'Bryan CA, Ricke SC, Johnson MG, Crandall PG. A review of minimal and defined media for growth of Listeria monocytogenes. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Relative fermentation of oligosaccharides from human milk and plants by gut microbes. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2730-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Warda AK, Siezen RJ, Boekhorst J, Wells-Bennik MHJ, de Jong A, Kuipers OP, Nierop Groot MN, Abee T. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity. PLoS One 2016; 11:e0156796. [PMID: 27272929 PMCID: PMC4896439 DOI: 10.1371/journal.pone.0156796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.
Collapse
Affiliation(s)
- Alicja K. Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Roland J. Siezen
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- Microbial Bioinformatics, Ede, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | | | - Anne de Jong
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
17
|
Mitchell G, Chen C, Portnoy DA. Strategies Used by Bacteria to Grow in Macrophages. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0012-2015. [PMID: 27337444 PMCID: PMC4922531 DOI: 10.1128/microbiolspec.mchd-0012-2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
Intracellular bacteria are often clinically relevant pathogens that infect virtually every cell type found in host organisms. However, myeloid cells, especially macrophages, constitute the primary cells targeted by most species of intracellular bacteria. Paradoxically, macrophages possess an extensive antimicrobial arsenal and are efficient at killing microbes. In addition to their ability to detect and signal the presence of pathogens, macrophages sequester and digest microorganisms using the phagolysosomal and autophagy pathways or, ultimately, eliminate themselves through the induction of programmed cell death. Consequently, intracellular bacteria influence numerous host processes and deploy sophisticated strategies to replicate within these host cells. Although most intracellular bacteria have a unique intracellular life cycle, these pathogens are broadly categorized into intravacuolar and cytosolic bacteria. Following phagocytosis, intravacuolar bacteria reside in the host endomembrane system and, to some extent, are protected from the host cytosolic innate immune defenses. However, the intravacuolar lifestyle requires the generation and maintenance of unique specialized bacteria-containing vacuoles and involves a complex network of host-pathogen interactions. Conversely, cytosolic bacteria escape the phagolysosomal pathway and thrive in the nutrient-rich cytosol despite the presence of host cell-autonomous defenses. The understanding of host-pathogen interactions involved in the pathogenesis of intracellular bacteria will continue to provide mechanistic insights into basic cellular processes and may lead to the discovery of novel therapeutics targeting infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Virulence Gene Regulation by L-Arabinose in Salmonella enterica. Genetics 2015; 200:807-19. [PMID: 25991823 DOI: 10.1534/genetics.115.178103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by L-arabinose, and not by other pentoses. Transport of L-arabinose is necessary to repress SPI-1; however, repression is independent of L-arabinose metabolism and of the L-arabinose-responsive regulator AraC. SPI-1 repression by L-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of L-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal.
Collapse
|
19
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
20
|
Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes. J Bacteriol 2015; 197:1559-72. [PMID: 25691525 DOI: 10.1128/jb.02522-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Listeriae take up glucose and mannose predominantly through a mannose class phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS(Man)), whose three components are encoded by the manLMN genes. The expression of these genes is controlled by ManR, a LevR-type transcription activator containing two PTS regulation domains (PRDs) and two PTS-like domains (enzyme IIA(Man) [EIIA(Man)]- and EIIB(Gat)-like). We demonstrate here that in Listeria monocytogenes, ManR is activated via the phosphorylation of His585 in the EIIA(Man)-like domain by the general PTS components enzyme I and HPr. We also show that ManR is regulated by the PTS(Mpo) and that EIIB(Mpo) plays a dual role in ManR regulation. First, yeast two-hybrid experiments revealed that unphosphorylated EIIB(Mpo) interacts with the two C-terminal domains of ManR (EIIB(Gat)-like and PRD2) and that this interaction is required for ManR activity. Second, in the absence of glucose/mannose, phosphorylated EIIB(Mpo) (P∼EIIB(Mpo)) inhibits ManR activity by phosphorylating His871 in PRD2. The presence of glucose/mannose causes the dephosphorylation of P∼EIIB(Mpo) and P∼PRD2 of ManR, which together lead to the induction of the manLMN operon. Complementation of a ΔmanR mutant with various manR alleles confirmed the antagonistic effects of PTS-catalyzed phosphorylation at the two different histidine residues of ManR. Deletion of manR prevented not only the expression of the manLMN operon but also glucose-mediated repression of virulence gene expression; however, repression by other carbohydrates was unaffected. Interestingly, the expression of manLMN in Listeria innocua was reported to require not only ManR but also the Crp-like transcription activator Lin0142. Unlike Lin0142, the L. monocytogenes homologue, Lmo0095, is not required for manLMN expression; its absence rather stimulates man expression. IMPORTANCE Listeria monocytogenes is a human pathogen causing the foodborne disease listeriosis. The expression of most virulence genes is controlled by the transcription activator PrfA. Its activity is strongly repressed by carbohydrates, including glucose, which is transported into L. monocytogenes mainly via a mannose/glucose-specific phosphotransferase system (PTS(Man)). Expression of the man operon is regulated by the transcription activator ManR, the activity of which is controlled by a second, low-efficiency PTS of the mannose family, which functions as glucose sensor. Here we demonstrate that the EIIB(Mpo) component plays a dual role in ManR regulation: it inactivates ManR by phosphorylating its His871 residue and stimulates ManR by interacting with its two C-terminal domains.
Collapse
|
21
|
|
22
|
Steer T, Carpenter H, Tuohy K, Gibson GR. Perspectives on the role of the human gut microbiota and its modulation by pro- and prebiotics. Nutr Res Rev 2012; 13:229-54. [PMID: 19087441 DOI: 10.1079/095442200108729089] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the most topical areas of human nutrition is the role of the gut in health and disease. Specifically, this involves interactions between the resident microbiota and dietary ingredients that support their activities. Currently, it is accepted that the gut microflora contains pathogenic, benign and beneficial components. Some microbially induced disease states such as acute gastroenteritis and pseudomembranous colitis have a defined aetiological agent(s). Speculation on the role of microbiota components in disorders such as irritable bowel syndrome, bowel cancer, neonatal necrotising enterocolitis and ulcerative colitis are less well defined, but many studies are convincing. It is evident that the gut microflora composition can be altered through diet. Because of their perceived health-promoting status, bifidobacteria and lactobacilli are the commonest targets. Probiotics involve the use of live micro-organisms in food; prebiotics are carbohydrates selectively metabolized by desirable moieties of the indigenous flora; synbiotics combine the two approaches. Dietary intervention of the human gut microbiota is feasible and has been proven as efficacious in volunteer trials. The health bonuses of such approaches offer the potential to manage many gut disorders prophylactically. However, it is imperative that the best methodologies available are applied to this area of nutritional sciences. This will undoubtedly involve a genomic application to the research and is already under way through molecular tracking of microbiota changes to diet in controlled human trials.
Collapse
Affiliation(s)
- T Steer
- Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Whiteknights, PO Box 226, Reading, RG6 6AP, UK
| | | | | | | |
Collapse
|
23
|
Misra SK, Milohanic E, Aké F, Mijakovic I, Deutscher J, Monnet V, Henry C. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence. Proteomics 2011; 11:4155-65. [PMID: 21956863 DOI: 10.1002/pmic.201100259] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 11/05/2022]
Abstract
Phosphorylation is the most common and widely studied post-translational protein modification in bacteria. It plays an important role in all kinds of cellular processes and controls key regulatory mechanisms, including virulence in certain pathogens. To gain insight into the role of protein phosphorylation in the pathogen Listeria monocytogenes, the serine (Ser), threonine (Thr) and tyrosine (Tyr) phosphoproteome of this bacterium was determined. We used the "gel free" proteomic approach with high accuracy mass spectrometry after enrichment of phosphopeptides. A total of 143 sites of phosphorylation were clearly identified, on 155 unique peptides of 112 phosphoproteins. The Ser/Thr/Tyr phosphorylation site distribution was 93:43:7. All identified phosphopeptides are monophosphorylated, except one and many identified phosphoproteins are related to virulence, translation, phosphoenolpyruvate:sugar phosphotransferase system, glycolysis and stress response. A description of these phosphoproteins is provided together with a comparison of the phosphosites in the L. monocytogenes proteins and in their homologues of other bacteria for which the phosphoproteome has been determined. Compared with the previous studies, we noticed a more extended conservation of the phosphorylation sites in glycolytic enzymes as well as ribosomal proteins.
Collapse
|
24
|
Piveteau P, Depret G, Pivato B, Garmyn D, Hartmann A. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment. PLoS One 2011; 6:e24881. [PMID: 21966375 PMCID: PMC3179493 DOI: 10.1371/journal.pone.0024881] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/19/2011] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for listeriosis. In order to study the processes underlying its ability to adapt to the soil environment, whole-genome arrays were used to analyse transcriptome modifications 15 minutes, 30 minutes and 18 h after inoculation of L. monocytogenes EGD-e in soil extracts. Growth was observed within the first day of incubation and large numbers were still detected in soil extract and soil microcosms one year after the start of the experiment. Major transcriptional reprofiling was observed. Nutrient acquisition mechanisms (phosphoenolpyruvate-dependent phosphotransferase systems and ABC transporters) and enzymes involved in catabolism of specific carbohydrates (β-glucosidases; chitinases) were prevalent. This is consistent with the overrepresentation of the CodY regulon that suggests that in a nutrient depleted environment, L. monocytogenes recruits its extensive repertoire of transporters to acquire a range of substrates for energy production.
Collapse
|
25
|
Zgair AK, Chhibber S. Adhering ability of Stenotrophomonas maltophilia is dependent on growth conditions. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711040230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Aké FMD, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011; 81:274-93. [PMID: 21564334 DOI: 10.1111/j.1365-2958.2011.07692.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes transports glucose/mannose via non-PTS permeases and phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS). Two mannose class PTS are encoded by the constitutively expressed mpoABCD and the inducible manLMN operons. The man operon encodes the main glucose transporter because manL or manM deletion significantly slows glucose utilization, whereas mpoA deletion has no effect. The PTS(Mpo) mainly functions as a constitutively synthesized glucose sensor controlling man operon expression by phosphorylating and interacting with ManR, a LevR-like transcription activator. EIIB(Mpo) plays a dual role in ManR regulation: P~EIIB(Mpo) prevailing in the absence of glucose phosphorylates and thereby inhibits ManR activity, whereas unphosphorylated EIIB(Mpo) prevailing during glucose uptake is needed to render ManR active. In contrast to mpoA, deletion of mpoB therefore strongly inhibits man operon expression and glucose consumption. A ΔptsI (EI) mutant consumes glucose at an even slower rate probably via GlcU-like non-PTS transporters. Interestingly, deletion of ptsI, manL, manM or mpoB causes elevated PrfA-mediated virulence gene expression. The PTS(Man) is the major player in glucose-mediated PrfA inhibition because the ΔmpoA mutant showed normal PrfA activity. The four mutants showing PrfA derepression contain no or only little unphosphorylated EIIAB(Man) (ManL), which probably plays a central role in glucose-mediated PrfA regulation.
Collapse
Affiliation(s)
- Francine M D Aké
- Laboratoire de Microbiologie de l'Alimentation au Service de la Santé, AgroParisTech-INRA UMR1319, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
27
|
Larsen MH, Koch AG, Ingmer H. Listeria monocytogenes efficiently invades Caco-2 cells after low-temperature storage in broth and on deli meat. Foodborne Pathog Dis 2010; 7:1013-8. [PMID: 20443727 DOI: 10.1089/fpd.2009.0470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The objective of this study was to investigate how various growth conditions influence the virulence of Listeria monocytogenes monitored by its ability to invade the epithelial cell lines Caco-2 and INT-407. The growth conditions examined were modified atmosphere-packaged deli meat and brain heart infusion broth (BHI) with and without salt. Five strains of L. monocytogenes were selected to investigate their invasiveness and all strains invaded Caco-2 cells at higher levels than INT-407 cells. Further, the clinical strains (3443 and 3734) were more invasive (p < 0.05) than the strains isolated from meat and food-processing environments (3008, 3126, and 4140) after grown in BHI at 30 degrees C. This attenuation could not be ascribed to a defective Internalin A as all strains encoded an intact inlA gene. To determine the influence of food products on virulence, the ability of L. monocytogenes to invade Caco-2 cells was compared after growth on a fermented sausage and on cured cooked ham to that of bacteria grown in BHI broth supplemented with salt. Samples were stored under chilling conditions for up to 4 weeks. The results showed no difference (p > 0.05) in invasiveness after 7 days at 10 degrees C in BHI broth or on sausage, whereas a slight increase (p < 0.05) was observed after incubation on ham for 2 and 4 weeks compared to that in BHI broth. Most importantly, our results show that L. monocytogenes efficiently invade Caco-2 cells even after 4 weeks of storage at chilled temperature. This is highly relevant for safety assessment of this organism in food as these conditions reflect storage of ready-to-eat food products in domestic refrigerators.
Collapse
Affiliation(s)
- Marianne Halberg Larsen
- Department of Veterinary Disease Biology, Centre for Advanced Food Studies, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | |
Collapse
|
28
|
Bruno JC, Freitag NE. Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival. PLoS One 2010; 5:e15138. [PMID: 21151923 PMCID: PMC2998416 DOI: 10.1371/journal.pone.0015138] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 10/25/2010] [Indexed: 01/21/2023] Open
Abstract
PrfA is a key regulator of Listeria monocytogenes pathogenesis and induces the expression of multiple virulence factors within the infected host. PrfA is post-translationally regulated such that the protein becomes activated upon bacterial entry into the cell cytosol. The signal that triggers PrfA activation remains unknown, however mutations have been identified (prfA* mutations) that lock the protein into a high activity state. In this report we examine the consequences of constitutive PrfA activation on L. monocytogenes fitness both in vitro and in vivo. Whereas prfA* mutants were hyper-virulent during animal infection, the mutants were compromised for fitness in broth culture and under conditions of stress. Broth culture prfA*-associated fitness defects were alleviated when glycerol was provided as the principal carbon source; under these conditions prfA* mutants exhibited a competitive advantage over wild type strains. Glycerol and other three carbon sugars have been reported to serve as primary carbon sources for L. monocytogenes during cytosolic growth, thus prfA* mutants are metabolically-primed for replication within eukaryotic cells. These results indicate the critical need for environment-appropriate regulation of PrfA activity to enable L. monocytogenes to optimize bacterial fitness inside and outside of host cells.
Collapse
Affiliation(s)
- Joseph C. Bruno
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nancy E. Freitag
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
29
|
|
30
|
Regulation of mannose phosphotransferase system permease and virulence gene expression in Listeria monocytogenes by the EII(t)Man transporter. Appl Environ Microbiol 2009; 75:6671-8. [PMID: 19734332 DOI: 10.1128/aem.01104-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EII(t)(Man) phosphotransferase system (PTS) permease encoded by the mpt operon is the principal glucose transporter in Listeria monocytogenes. EII(t)(Man) participates in glucose-mediated carbon catabolite repression (CCR) and downregulation of virulence gene expression, and it is the receptor for class IIa bacteriocins. The regulation of this important protein and its roles in gene control were examined using derivatives of strain EGD-e in which the mpt operon or its regulatory genes, manR and lmo0095, were deleted. Real-time reverse transcription-PCR analysis showed that the mpt mRNA level was 10- and 100-fold lower in the lmo0095 and manR deletion strains, respectively. The manR mRNA level was higher in the mpt deletion mutant in medium lacking glucose, possibly due to disruption of a regulatory process that normally downregulates manR transcription in the absence of this sugar. Analysis of the mpt deletion mutant also showed that EII(t)(Man) participates to various degrees in glucose-mediated CCR of PTS operons. CCR of the lmo0027 gene, which encodes a beta-glucoside PTS transporter, required expression of EII(t)(Man). In contrast, genes in two mannose PTS operons (lmo0024, lmo1997, and lmo2002) were repressed by glucose even when EII(t)(Man) was not synthesized. A third mannose PTS operon, mpo, was not regulated by glucose or by the level of EII(t)(Man). Finally, the mRNA levels for five genes in the prfA virulence gene cluster were two- to fourfold higher in the mpt deletion mutant. The results show that EII(t)(Man) participates to various extents in glucose-mediated CCR of PTS operons and makes a small, albeit significant, contribution to downregulation of virulence gene transcription by glucose in strain EGD-e.
Collapse
|
31
|
Freitag NE, Port GC, Miner MD. Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol 2009; 7:623-8. [PMID: 19648949 DOI: 10.1038/nrmicro2171] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes is a bacterium that lives in the soil as a saprophyte but is capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. Recent studies suggest that L. monocytogenes mediates its saprophyte-to-cytosolic-parasite transition through the careful modulation of the activity of a virulence regulatory protein known as PrfA, using a range of environmental cues that include available carbon sources. In this Progress article we describe the regulation of PrfA and its role in the L. monocytogenes transition from the saprophytic stage to the virulent intracellular stage.
Collapse
Affiliation(s)
- Nancy E Freitag
- Department of Microbiology and Immunology (MC790), University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, Illinois 606127344, USA.
| | | | | |
Collapse
|
32
|
Dumas E, Desvaux M, Chambon C, Hébraud M. Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis. Proteomics 2009; 9:3136-55. [DOI: 10.1002/pmic.200800765] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J Oral Microbiol 2009; 1. [PMID: 21523212 PMCID: PMC3077007 DOI: 10.3402/jom.v1i0.1949] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/25/2009] [Accepted: 04/06/2009] [Indexed: 12/13/2022] Open
Abstract
There has been a paradigm shift towards an ecological and microbial community-based approach to understanding oral diseases. This has significant implications for approaches to therapy and has raised the possibility of developing novel strategies through manipulation of the resident oral microbiota and modulation of host immune responses. The increased popularity of using probiotic bacteria and/or prebiotic supplements to improve gastrointestinal health has prompted interest in the utility of this approach for oral applications. Evidence now suggests that probiotics may function not only by direct inhibition of, or enhanced competition with, pathogenic micro-organisms, but also by more subtle mechanisms including modulation of the mucosal immune system. Similarly, prebiotics could promote the growth of beneficial micro-organisms that comprise part of the resident microbiota. The evidence for the use of pro or prebiotics for the prevention of caries or periodontal diseases is reviewed, and issues that could arise from their use, as well as questions that still need to be answered, are raised. A complete understanding of the broad ecological changes induced in the mouth by probiotics or prebiotics will be essential to assess their long-term consequences for oral health and disease.
Collapse
Affiliation(s)
- Deirdre A Devine
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, UK
| | | |
Collapse
|
34
|
|
35
|
Abstract
The PrfA protein, a member of the Crp/Cap-Fnr family of bacterial transcription factors, controls the expression of key virulence determinants of the facultative intracellular pathogen Listeria monocytogenes. Each of the steps of the listerial intracellular infection cycle-host cell invasion, phagosomal escape, cytosolic replication, and direct cell-to-cell spread-is mediated by products of the PrfA regulon. Only 10 of the 2853 genes of the L. monocytogenes EGDe genome have been confirmed as bona fide (directly regulated) members of this regulon, a number surprisingly small given the apparent complexity of listerial intracellular parasitism. PrfA activates transcription by binding as a dimer to a palindromic promoter element of canonical sequence tTAACanntGTtAa, with seven invariant nucleotides (in capitals) and a two-mismatch tolerance. PrfA integrates a number of environmental and bacteria-derived signals to ensure the correct spatio-temporal and niche-adapted expression of the regulon, with maximum induction in the host cell cytosol and repression in the environmental habitat. Regulation operates through changes in PrfA activity-presumably by cofactor-mediated allosteric shift-and concentration, and involves transcriptional, translational and post-translational control mechanisms. There is evidence that PrfA exerts a more global influence on L. monocytogenes physiology via indirect mechanisms.
Collapse
Affiliation(s)
- Mariela Scortti
- Bacterial Molecular Pathogenesis Group, Veterinary Molecular Microbiology Section, Faculty of Medical and Veterinary Sciences, University of Bristol, Langford, UK
| | | | | | | | | |
Collapse
|
36
|
Gibson GR, McCartney AL, Rastall RA. Prebiotics and resistance to gastrointestinal infections. Br J Nutr 2007; 93 Suppl 1:S31-4. [PMID: 15877892 DOI: 10.1079/bjn20041343] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute gut disorder is a cause for significant medicinal and economic concern. Certain individual pathogens of the gut, often transmitted in food or water, have the ability to cause severe discomfort. There is a need to manage such conditions more effectively. The route of reducing the risk of intestinal infections through diet remains largely unexplored. Antibiotics are effective at inhibiting pathogens; however, these should not be prescribed in the absence of disease and therefore cannot be used prophylactically. Moreover, their indiscriminate use has reduced effectiveness. Evidence has accumulated to suggestthat some of the health-promoting bacteria in the gut (probiotics) can elicit a multiplicity of inhibitory effects against pathogens. Hence, an increase in their numbers should prove effective at repressing pathogen colonisation if/when infectious agents enter the gut. As such, fortification of indigenous bifidobacteria/lactobacilli by using prebiotics should improve protection. There are a number of potential mechanisms for lactic acid bacteria to reduce intestinal infections. Firstly, metabolic endproducts such as acids excreted by these micro-organisms may lower the gut pH to levels below those at which pathogens are able to effectively compete. Also, many lactobacilli and bifidobacteria species are able to excrete natural antibiotics, which can have a broad spectrum of activity. Other mechanisms include an improved immune stimulation, competition for nutrients and blocking of pathogen adhesion sites in the gut. Many intestinal pathogens like type 1 fimbriated Escherichia coli, salmonellae and campylobacters utilise oligosaccharide receptor sites in the gut. Once established, they can then cause gastroenteritis through invasive and/or toxin forming properties. One extrapolation of the prebiotic concept is to simulate such receptor sites in the gut lumen. Hence, the pathogen is ‘decoyed’ into not binding at the host mucosal interface. The combined effects of prebiotics upon the lactic acid flora and anti-adhesive strategies may lead towards new dietary interventions against food safety agents.
Collapse
Affiliation(s)
- G R Gibson
- Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, P. O. Box 226, Whiteknights, Reading RG6 6AP, UK.
| | | | | |
Collapse
|
37
|
McGann P, Wiedmann M, Boor KJ. The alternative sigma factor sigma B and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins. Appl Environ Microbiol 2007; 73:2919-30. [PMID: 17337550 PMCID: PMC1892873 DOI: 10.1128/aem.02664-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Some Listeria monocytogenes internalins are recognized as contributing to invasion of mammalian tissue culture cells. While PrfA is well established as a positive regulator of L. monocytogenes virulence gene expression, the stress-responsive sigma(B) has been recognized only recently as contributing to expression of virulence genes, including some that encode internalins. To measure the relative contributions of PrfA and sigma(B) to internalin gene transcription, we used reverse transcription-PCR to quantify transcript levels for eight internalin genes (inlA, inlB, inlC, inlC2, inlD, inlE, inlF, and inlG) in L. monocytogenes 10403S and in isogenic Delta prfA, Delta sigB, and Delta sigB Delta prfA strains. Strains were grown under defined conditions to produce (i) active PrfA, (ii) active sigma(B) and active PrfA, (iii) inactive PrfA, and (iv) active sigma(B) and inactive PrfA. Under the conditions tested, sigma(B) and PrfA contributed differentially to the expression of the various internalins such that (i) both sigma(B) and PrfA contributed to inlA and inlB transcription, (ii) only PrfA contributed to inlC transcription, (iii) only sigma(B) contributed to inlC2 and inlD transcription, and (iv) neither sigma(B) nor PrfA contributed to inlF and inlG transcription. inlE transcript levels were undetectable. The important role for sigma(B) in regulating expression of L. monocytogenes internalins suggests that exposure of this organism to environmental stress conditions, such as those encountered in the gastrointestinal tract, may activate internalin transcription. Interplay between sigma(B) and PrfA also appears to be critical for regulating transcription of some virulence genes, including inlA, inlB, and prfA.
Collapse
Affiliation(s)
- Patrick McGann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
38
|
Larsen MH, Kallipolitis BH, Christiansen JK, Olsen JE, Ingmer H. The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes. Mol Microbiol 2006; 61:1622-35. [PMID: 16968229 DOI: 10.1111/j.1365-2958.2006.05328.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes is a versatile bacterial pathogen that is able to accommodate to diverse environmental and host conditions. Presently, we have identified a L. monocytogenes two-component response regulator, ResD that is required for the repression of virulence gene expression known to occur in the presence of easily fermentable carbohydrates not found inside host organisms. Structurally and functionally, ResD resembles the respiration regulator ResD in Bacillus subtilis as deletion of the L. monocytogenes resD reduces respiration and expression of cydA, encoding a subunit of cytochrome bd. The resD mutation also reduces expression of mptA encoding the EIIABman component of a mannose/glucose-specific PTS system, indicating that ResD controls sugar uptake. This notion was supported by the poor growth of resD mutant cells that was alleviated by excess of selected carbohydrates. Despite the growth deficient phenotype of the mutant in vitro the mutation did not affect intracellular multiplication in epithelial or macrophage cell lines. When examining virulence gene expression we observed traditional induction by charcoal in both mutant and wild-type cells whereas the repression observed in wild-type cells by fermentable carbohydrates did not occur in resD mutant cells. Thus, ResD is a central regulator of L. monocytogenes when present in the external environment.
Collapse
Affiliation(s)
- Marianne H Larsen
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
39
|
Mertins S, Joseph B, Goetz M, Ecke R, Seidel G, Sprehe M, Hillen W, Goebel W, Müller-Altrock S. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J Bacteriol 2006; 189:473-90. [PMID: 17085572 PMCID: PMC1797385 DOI: 10.1128/jb.00972-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Analysis of Listeria monocytogenes ptsH, hprK, and ccpA mutants defective in carbon catabolite repression (CCR) control revealed significant alterations in the expression of PrfA-dependent genes. The hprK mutant showed high up-regulation of PrfA-dependent virulence genes upon growth in glucose-containing medium whereas expression of these genes was even slightly down-regulated in the ccpA mutant compared to the wild-type strain. The ptsH mutant could only grow in a rich culture medium, and here the PrfA-dependent genes were up-regulated as in the hprK mutant. As expected, HPr-Ser-P was not produced in the hprK and ptsH mutants and synthesized at a similar level in the ccpA mutant as in the wild-type strain. However, no direct correlation was found between the level of HPr-Ser-P or HPr-His-P and PrfA activity when L. monocytogenes was grown in minimal medium with different phosphotransferase system (PTS) carbohydrates. Comparison of the transcript profiles of the hprK and ccpA mutants with that of the wild-type strain indicates that the up-regulation of the PrfA-dependent virulence genes in the hprK mutant correlates with the down-regulation of genes known to be controlled by the efficiency of PTS-mediated glucose transport. Furthermore, growth in the presence of the non-PTS substrate glycerol results in high PrfA activity. These data suggest that it is not the component(s) of the CCR or the common PTS pathway but, rather, the component(s) of subsequent steps that seem to be involved in the modulation of PrfA activity.
Collapse
Affiliation(s)
- Sonja Mertins
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Geng T, Hahm BK, Bhunia AK. Selective enrichment media affect the antibody-based detection of stress-exposed Listeria monocytogenes due to differential expression of antibody-reactive antigens identified by protein sequencing. J Food Prot 2006; 69:1879-86. [PMID: 16924913 DOI: 10.4315/0362-028x-69.8.1879] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Selective enrichment broths are frequently used to recover stressed Listeria cells to detectable levels, but the ability of antibodies to detect these cells from various commonly used enrichment media is unknown. In this study, a polyclonal (PAb) and monoclonal (MAb) antibody were used to examine the variation in antigen expression on healthy or stress-recovered Listeria monocytogenes cells grown in brain heart infusion broth, buffered Listeria enrichment broth (BLEB), Listeria repair broth (LRB), University of Vermont medium (UVM), and Fraser broth (FB) for immunodetection. Indirect enzyme-linked immunosorbent assay (ELISA) data showed that L. monocytogenes subjected to stresses (acid, cold, heat, and salt) and then grown in BLEB gave the highest reaction with the anti-Listeria PAb while those grown in LRB gave the highest reaction with the MAb C11E9. Cells grown in UVM and FB gave poor ELISA values with both antibodies. Western blotting with PAb revealed differential expression of surface proteins of 62, 58, 50, 43, and 30 kDa on L. monocytogenes cells, with most proteins displaying elevated expression in BLEB and LRB but reduced or no expression in UVM or FB. Similar differential expressions were noticed for C11E9. PAb-reactive proteins were identified as putative LPXTG-motif cell-wall anchor-domain protein (62 kDa; lmo0610), flavocytochrome C fumarate reductase chain A homolog protein (58 kDa; lmo0355), enolase (50 kDa; lmo2455), glyceraldehyde 3-phosphate dehydrogenase (43 kDa; lmo2459), and hypothetical phospho-sugar binding protein (30 kDa; lmo0041), respectively, and the MAb-reactive 66-kDa protein was confirmed to be N-acetylmuramidase (lmo2691). In conclusion, BLEB and LRB favorably supported increased expression of antigens and proved to be superior to UVM and FB for immunodetection of stressed L. monocytogenes cells.
Collapse
Affiliation(s)
- Tao Geng
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
41
|
Marr AK, Joseph B, Mertins S, Ecke R, Müller-Altrock S, Goebel W. Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J Bacteriol 2006; 188:3887-901. [PMID: 16707681 PMCID: PMC1482928 DOI: 10.1128/jb.01978-05] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes strains expressing high levels of the virulence regulator PrfA (mutant PrfA* or wild-type PrfA) show strong growth inhibition in minimal media when they are supplemented with glucose but not when they are supplemented with glucose-6-phosphate compared to the growth of isogenic strains expressing low levels of PrfA. A significantly reduced rate of glucose uptake was observed in a PrfA*-overexpressing strain growing in LB supplemented with glucose. Comparative transcriptome analyses were performed with RNA isolated from a prfA mutant and an isogenic strain carrying multiple copies of prfA or prfA* on a plasmid. These analyses revealed that in addition to high transcriptional up-regulation of the known PrfA-regulated virulence genes (group I), there was less pronounced up-regulation of the expression of several phage and metabolic genes (group II) and there was strong down-regulation of several genes involved mainly in carbon and nitrogen metabolism in the PrfA*-overexpressing strain (group III). Among the latter genes are the nrgAB, gltAB, and glnRA operons (involved in nitrogen metabolism), the ilvB operon (involved in biosynthesis of the branched-chain amino acids), and genes for some ABC transporters. Most of the down-regulated genes have been shown previously to belong to a class of genes in Bacillus subtilis whose expression is negatively affected by impaired glucose uptake. Our results lead to the conclusion that excess PrfA (or PrfA*) interferes with a component(s) essential for phosphotransferase system-mediated glucose transport.
Collapse
Affiliation(s)
- A K Marr
- Theodor-Boveri-Institut (Biozentrum), Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Lemes-Marques EG, Yano T. Influence of environmental conditions on the expression of virulence factors by Listeria monocytogenes and their use in species identification. FEMS Microbiol Lett 2004; 239:63-70. [PMID: 15451102 DOI: 10.1016/j.femsle.2004.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/14/2004] [Accepted: 08/17/2004] [Indexed: 11/22/2022] Open
Abstract
The hemolytic, lecithinase or phosphatidylinositol-specific phospholipase C activities of Listeria monocytogenes can be used to differentiate this pathogenic bacteria from L. innocua, apathogenic, frequently isolated from environmental sources and food. However, the interpretation of these characteristics is problematic because of the variation in the expression of virulence factors by L. monocytogenes, which can be influenced by environmental conditions. We used a cheap, simple plate assay to monitor this expression in strains obtained from various sources and grown under different culture conditions. The results were increasingly significant and were obtained adding activated charcoal and different salts to the culture media, and in some cases changing the culture temperature, all with a rigorous control on the process of media sterilization.
Collapse
Affiliation(s)
- Eneida G Lemes-Marques
- Instituto Adolfo Lutz, Laboratório Regional de Campinas-rua São Carlos 720, 13035-420, Campinas, SP, Brazil.
| | | |
Collapse
|
43
|
Milenbachs Lukowiak A, Mueller KJ, Freitag NE, Youngman P. Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways. MICROBIOLOGY-SGM 2004; 150:321-333. [PMID: 14766910 DOI: 10.1099/mic.0.26718-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of the major virulence cluster in Listeria monocytogenes is positively regulated by the transcription factor PrfA and is influenced by several environmental factors, including the presence of readily metabolized carbohydrates such as cellobiose and glucose. Although little is understood about the mechanisms through which environmental factors influence expression of the PrfA regulon, evidence for structural and functional similarities of PrfA to the CRP-FNR family of regulatory proteins suggests the possibility that PrfA activity could be modulated by a small molecule ligand. The identity of components of the PrfA-associated regulatory pathway was sought through the isolation of mutants that exhibit high levels of PrfA-controlled gene expression in the presence of cellobiose or glucose. Here are described the properties and preliminary genetic analysis in two different genetic loci, gcr and csr, both unlinked by general transduction to the major virulence cluster. A mutation in gcr deregulates the expression of PrfA-controlled genes in the presence of several repressing sugars and other environmental conditions, a phenotype similar to that of a G145S substitution in PrfA itself. A mutation in the csr locus, within csrA, results in a cellobiose-specific defect in virulence gene regulation. Gene products encoded by the csr locus share homology with proteins involved in the sensing and transport of beta-glucosides in other bacteria. Mutations in both gcr and csr are required for full relief of cellobiose-mediated repression of the PrfA regulon. These results suggest the existence of two semi-independent pathways for cellobiose-mediated repression and further reconcile conflicting reports in previous literature concerning the repressive effects of carbohydrates on virulence gene expression in L. monocytogenes.
Collapse
Affiliation(s)
| | - Kimberly J Mueller
- Seattle Biomedical Research Institute, 4 Nickerson St, Seattle, WA 98109, USA
| | - Nancy E Freitag
- Department of Pathobiology and Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Seattle Biomedical Research Institute, 4 Nickerson St, Seattle, WA 98109, USA
| | - Philip Youngman
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Dalet K, Arous S, Cenatiempo Y, Héchard Y. Characterization of a unique σ54–dependent PTS operon of the lactose family in Listeria monocytogenes. Biochimie 2003; 85:633-8. [PMID: 14505817 DOI: 10.1016/s0300-9084(03)00134-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sigma(54) subunit of the RNA polymerase directs the expression of specific operons in association with cognate activators. Three different activators have been detected in the Listeria monocytogenes genome on the basis of the high conservation of a specific domain. Among them, the LacR activator, of the LevR family, was found just upstream from a newly described sigma(54)-dependent operon, lpo, which presents a classical -24/-12 consensus promoter. The lpo operon encodes proteins similar to subunits of a PTS permease (EII) of the lactose family, namely LpoA (IIA) and LpoB (IIB). It also encodes a third putative protein, LpoO, with an unknown function but sharing high similarity with proteins also encoded within PTS operons from other bacteria and bearing a RGD motif. The expression of lpo was clearly dependent on LacR and sigma(54), and was induced by cellobiose, chitobiose and lactose. It underlies that the lpo operon likely encodes proteins involved in the utilization of these sugars by L. monocytogenes.
Collapse
Affiliation(s)
- Karine Dalet
- Laboratoire de Microbiologie Fondamentale et Appliquée, IBMIG, UFR Sciences, ESA CNRS 6031, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 cedex, Poitiers, France
| | | | | | | |
Collapse
|
45
|
Milohanic E, Glaser P, Coppée JY, Frangeul L, Vega Y, Vázquez-Boland JA, Kunst F, Cossart P, Buchrieser C. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 2003; 47:1613-25. [PMID: 12622816 DOI: 10.1046/j.1365-2958.2003.03413.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PrfA is the major regulator of Listeria virulence gene expression. This protein is a member of the Crp/Fnr family of transcription regulators. To gain a deeper understanding of the PrfA regulon, we constructed a whole-genome array based on the complete genome sequence of Listeria monocytogenes strain EGDe and evaluated the expression profiles of the wild-type EGDe and a prfA-deleted mutant (EGDe Delta prfA). Both strains were grown at 37 degrees C in brain-heart infusion broth (BHI) and BHI supplemented with either activated charcoal, a compound known to enhance virulence gene expression, or cellobiose, a sugar reported to downregulate virulence gene expression in spite of full expression of PrfA. We identified three groups of genes that are regulated differently. Group I comprises, in addition to the 10 already known genes, two new genes, lmo2219 and lmo0788, both positively regulated and preceded by a putative PrfA box. Group II comprises eight negatively regulated genes: lmo0278 is preceded by a putative PrfA box, and the remaining seven genes (lmo0178-lmo0184) are organized in an operon. Group III comprises 53 genes, of which only two (lmo0596 and lmo2067) are preceded by a putative PrfA box. Charcoal addition induced upregulation of group I genes but abolished regulation by PrfA of most group III genes. In the presence of cellobiose, all the group I genes were downregulated, whereas group III genes remained fully activated. Group II genes were repressed in all conditions tested. A comparison of the expression profiles between a second L. monocytogenes strain (P14), its spontaneous mutant expressing a constitutively active PrfA variant (P14prfA*) and its corresponding prfA-deleted mutant (P14 Delta prfA) and the EGDe strain revealed interesting strain-specific differences. Sequences strongly similar to a sigma B-dependent promoter were identified upstream of 22 group III genes. These results suggest that PrfA positively regulates a core set of 12 genes preceded by a PrfA box and probably expressed from a sigma A-dependent promoter. In contrast, a second set of PrfA-regulated genes lack a PrfA box and are expressed from a sigma B-dependent promoter. This study reveals that PrfA can act as an activator or a repressor and suggests that PrfA may directly or indirectly activate different sets of genes in association with different sigma factors.
Collapse
Affiliation(s)
- Eliane Milohanic
- Unité des Interactions Bactéries-Cellules and Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gardan R, Duché O, Leroy-Sétrin S, Labadie J. Role of ctc from Listeria monocytogenes in osmotolerance. Appl Environ Microbiol 2003; 69:154-61. [PMID: 12513990 PMCID: PMC152465 DOI: 10.1128/aem.69.1.154-161.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen with the ability to grow under conditions of high osmolarity. In a previous study, we reported the identification of 12 proteins showing high induction after salt stress. One of these proteins is highly similar to the general stress protein Ctc of Bacillus subtilis. In this study, induction of Ctc after salt stress was confirmed at the transcriptional level by using RNA slot blot experiments. To explore the role of the ctc gene product in resistance to stresses, we constructed a ctc insertional mutant. No difference in growth was observed between the wild-type strain LO28 and the ctc mutant either in rich medium after osmotic or heat stress or in minimal medium after heat stress. However, in minimal medium after osmotic stress, the growth rate of the mutant was increased by a factor of 2. Moreover, electron microscopy analysis showed impaired morphology of the mutant grown under osmotic stress conditions in minimal medium. Addition of the osmoprotectant glycine betaine to the medium completely abolished the osmotic sensitivity phenotype of the ctc mutant. Altogether, these results suggest that the Ctc protein of L. monocytogenes is involved in osmotic stress tolerance in the absence of any osmoprotectant in the medium.
Collapse
Affiliation(s)
- Rozenn Gardan
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique, Theix, 63122 Saint-Genès Champanelle, France.
| | | | | | | |
Collapse
|
47
|
Abstract
Several virulence factors of Listeria monocytogenes have been identified and extensively characterized at the molecular and cell biologic levels, including the hemolysin (listeriolysin O), two distinct phospholipases, a protein (ActA), several internalins, and others. Their study has yielded an impressive amount of information on the mechanisms employed by this facultative intracellular pathogen to interact with mammalian host cells, escape the host cell's killing mechanisms, and spread from one infected cell to others. In addition, several molecular subtyping tools have been developed to facilitate the detection of different strain types and lineages of the pathogen, including those implicated in common-source outbreaks of the disease. Despite these spectacular gains in knowledge, the virulence of L. monocytogenes as a foodborne pathogen remains poorly understood. The available pathogenesis and subtyping data generally fail to provide adequate insight about the virulence of field isolates and the likelihood that a given strain will cause illness. Possible mechanisms for the apparent prevalence of three serotypes (1/2a, 1/2b, and 4b) in human foodborne illness remain unidentified. The propensity of certain strain lineages (epidemic clones) to be implicated in common-source outbreaks and the prevalence of serotype 4b among epidemic-associated stains also remain poorly understood. This review first discusses current progress in understanding the general features of virulence and pathogenesis of L. monocytogenes. Emphasis is then placed on areas of special relevance to the organism's involvement in human foodborne illness, including (i) the relative prevalence of different serotypes and serotype-specific features and genetic markers; (ii) the ability of the organism to respond to environmental stresses of relevance to the food industry (cold, salt, iron depletion, and acid); (iii) the specific features of the major known epidemic-associated lineages; and (iv) the possible reservoirs of the organism in animals and the environment and the pronounced impact of environmental contamination in the food processing facilities. Finally, a discussion is provided on the perceived areas of special need for future research of relevance to food safety, including (i) theoretical modeling studies of niche complexity and contamination in the food processing facilities; (ii) strain databases for comprehensive molecular typing; and (iii) contributions from genomic and proteomic tools, including DNA microarrays for genotyping and expression signatures. Virulence-related genomic and proteomic signatures are expected to emerge from analysis of the genomes at the global level, with the support of adequate epidemiologic data and access to relevant strains.
Collapse
Affiliation(s)
- Sophia Kathariou
- Food Science Department, North Carolina State University, Raleigh 27695, USA.
| |
Collapse
|
48
|
Jaradat ZW, Bhunia AK. Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol 2002; 68:4876-83. [PMID: 12324334 PMCID: PMC126402 DOI: 10.1128/aem.68.10.4876-4883.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth media and environmental conditions influence the expression of adhesion and invasion proteins in Listeria monocytogenes. Here, the expression of the 104-kDa Listeria adhesion protein (LAP) was studied in nutrient-rich media (Trypticase soy broth [TSB] and brain heart infusion [BHI]), minimal medium (Luria-Bertani [LB]), or nutrient-deficient medium (peptone water [PW]) by immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy. Also, the effect of incorporating different concentrations of glucose on LAP expression was studied. Immunoblotting showed that LAP expression was at least twofold higher in LB medium than in TSB or BHI, while PW supported very poor cell growth and LAP expression. ELISA and immunoblotting results showed that higher concentrations of glucose (>1.6 g/liter) lowered the culture pH and suppressed LAP expression by more than 75%; however, the addition of K(2)HPO(4) reduced this effect. L. monocytogenes cells grown in LB media with lower concentrations of glucose showed higher adhesion to Caco-2 cells (3,716 and 4,186 cpm of attached bacteria for 0 and 0.2 g of glucose/liter, respectively), while L. monocytogenes cells grown in LB with higher glucose concentrations exhibited lower adhesion (2,126 and 2,221 cpm for 1.6 and 3.2 g of glucose/liter, respectively). A LAP-negative L. monocytogenes strain (A572) showed low adhesion profiles regardless of the amount of glucose added. Transmission electron microscopy revealed that LAP is localized mainly in the cytoplasm, with only a few molecules located on the cell surface. Growth in LB with high glucose (3.2 g/liter) showed the presence of only a few molecules in the cells, corroborating the results observed with ELISA or immunoblotting. In summary, nutrient-rich media and high concentrations of glucose suppressed LAP expression, which possibly is due to the changes in the pH of the media during growth from the accumulation of sugar fermentation by-products.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
49
|
Liu S, Graham JE, Bigelow L, Morse PD, Wilkinson BJ. Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 2002; 68:1697-705. [PMID: 11916687 PMCID: PMC123842 DOI: 10.1128/aem.68.4.1697-1705.2002] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 01/08/2002] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen that is able to grow at refrigeration temperatures. To investigate microbial gene expression associated with cold acclimation, we used a differential cDNA cloning procedure known as selective capture of transcribed sequences (SCOTS) to identify bacterial RNAs that were expressed at elevated levels in bacteria grown at 10 degrees C compared to those grown at 37 degrees C. A total of 24 different cDNA clones corresponding to open reading frames in the L. monocytogenes strain EGD-e genome were obtained by SCOTS. These included cDNAs for L. monocytogenes genes involved in previously described cold-adaptive responses (flaA and flp), regulatory adaptive responses (rpoN, lhkA, yycJ, bglG, adaB, and psr), general microbial stress responses (groEL, clpP, clpB, flp, and trxB), amino acid metabolism (hisJ, trpG, cysS, and aroA), cell surface alterations (fbp, psr, and flaA), and degradative metabolism (eutB, celD, and mleA). Four additional cDNAs were obtained corresponding to genes potentially unique to L. monocytogenes and showing no significant similarity to any other previously described genes. Northern blot analyses confirmed increased steady-state levels of RNA for all members of a subset of genes examined during growth at a low temperature. These results indicated that L. monocytogenes acclimation to growth at 10 degrees C likely involves amino acid starvation, oxidative stress, aberrant protein synthesis, cell surface remodeling, alterations in degradative metabolism, and induction of global regulatory responses.
Collapse
Affiliation(s)
- Siqing Liu
- Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120, USA
| | | | | | | | | |
Collapse
|
50
|
Shetron-Rama LM, Marquis H, Bouwer HGA, Freitag NE. Intracellular induction of Listeria monocytogenes actA expression. Infect Immun 2002; 70:1087-96. [PMID: 11854187 PMCID: PMC127770 DOI: 10.1128/iai.70.3.1087-1096.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following entry into the host cytosol, the bacterial pathogen Listeria monocytogenes dramatically increases the expression of several key virulence factors. The expression of actA, whose protein product is required for L. monocytogenes actin-based intracellular motility, is increased by more than 200-fold in cytosolic bacteria in comparison to broth-grown cultures. Two distinct promoter elements have been reported to regulate actA expression. One promoter is located immediately upstream of actA coding sequences, while the second promoter is contributed by the upstream mpl gene via the generation of an mpl-actA-plcB transcript. A series of L. monocytogenes mutants were constructed to define the contributions of individual promoter elements to actA expression. The intracellular induction of actA expression was found to be dependent upon the actA proximal promoter; the mpl promoter appeared to contribute to the extracellular induction of actA but did not affect intracellular levels of expression. The actA promoter is dependent upon a regulatory factor known as PrfA for transcriptional activation; however, no increase in actA expression was detected following the introduction of a high-affinity PrfA binding site within the actA promoter. The presence of a mutationally activated form of PrfA, known as PrfA*, increased overall actA expression in broth-grown cultures of both wild-type and actA promoter mutant strains, but the levels of induction observed were still approximately 50-fold lower than those observed for intracellularly grown L. monocytogenes. Collectively, these results indicate that the dramatic induction of actA expression that occurs in the host cell cytosol is mediated through a single promoter element. Furthermore, intracellular induction of actA appears to require additional steps or factors beyond those necessary for the activation and binding of PrfA to the actA promoter.
Collapse
Affiliation(s)
- Lynne M Shetron-Rama
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|