1
|
Bank NC, Singh V, McCourt B, Burberry A, Roberts KD, Grubb B, Rodriguez-Palacios A. Antigenic operon fragmentation and diversification mechanism in Bacteroidota impacts gut metagenomics and pathobionts in Crohn's disease microlesions. Gut Microbes 2024; 16:2350150. [PMID: 38841888 PMCID: PMC11164228 DOI: 10.1080/19490976.2024.2350150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.
Collapse
Affiliation(s)
- Nicholas C. Bank
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron Burberry
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kyle D. Roberts
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
| | - Brandon Grubb
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Bank NC, Singh V, Grubb B, McCourt B, Burberry A, Roberts KD, Rodriguez-Palacios A. The basis of antigenic operon fragmentation in Bacteroidota and commensalism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543472. [PMID: 37398285 PMCID: PMC10312583 DOI: 10.1101/2023.06.02.543472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism within the phylum Bacteroidota remain unclear (1, 2). Using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification (3), we characterized the architecture/conservancy of the entire rfb operon in Bacteroidota. Analyzing complete genomes, we discovered that most Bacteroidota have the rfb operon fragmented into non-random gene-singlets and/or doublets/triplets, termed 'minioperons'. To reflect global operon integrity, duplication, and fragmentation principles, we propose a five-category (infra/supernumerary) cataloguing system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in specific micro-niches. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes (4). DNA insertions overrepresenting DNA-exchange-avid species, impact functional metagenomics by inflating gene-based pathway inference and overestimating 'extra-species' abundance. Using bacteria from inflammatory gut-wall cavernous micro-tracts (CavFT) in Crohn's Disease (5), we illustrate that bacteria with supernumerary-fragmented operons cannot produce O-antigen, and that commensal/CavFT Bacteroidota stimulate macrophages with lower potency than Enterobacteriaceae, and do not induce peritonitis in mice. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism offers potential for novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nicholas C Bank
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brandon Grubb
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron Burberry
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kyle D Roberts
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
ElyC and Cyclic Enterobacterial Common Antigen Regulate Synthesis of Phosphoglyceride-Linked Enterobacterial Common Antigen. mBio 2021; 12:e0284621. [PMID: 34809459 PMCID: PMC8609368 DOI: 10.1128/mbio.02846-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gram-negative cell envelope is a complex structure delineating the cell from its environment. Recently, we found that enterobacterial common antigen (ECA) plays a role maintaining the outer membrane (OM) permeability barrier, which excludes toxic molecules including many antibiotics. ECA is a conserved carbohydrate found throughout Enterobacterales (e.g., Salmonella, Klebsiella, and Yersinia). There are two OM forms of ECA (phosphoglyceride-linked ECAPG and lipopolysaccharide-linked ECALPS) and one periplasmic form of ECA (cyclic ECACYC). ECAPG, found in the outer leaflet of the OM, consists of a linear ECA oligomer attached to phosphoglyceride through a phosphodiester linkage. The process through which ECAPG is produced from polymerized ECA is unknown. Therefore, we set out to identify genes interacting genetically with ECAPG biosynthesis in Escherichia coli K-12 using the competition between ECA and peptidoglycan biosynthesis. Through transposon-directed insertion sequencing, we identified an interaction between elyC and ECAPG biosynthesis. ElyC is an inner membrane protein previously shown to alter peptidoglycan biosynthesis rates. We found ΔelyC was lethal specifically in strains producing ECAPG without other ECA forms, suggesting ECAPG biosynthesis impairment or dysregulation. Further characterization suggested ElyC inhibits ECAPG synthesis in a posttranscriptional manner. Moreover, the full impact of ElyC on ECA levels requires the presence of ECACYC. Our data demonstrate ECACYC can regulate ECAPG synthesis in strains wild type for elyC. Overall, our data demonstrate ElyC and ECACYC act in a novel pathway that regulates the production of ECAPG, supporting a model in which ElyC provides feedback regulation of ECAPG production based on the periplasmic levels of ECACYC.
Collapse
|
4
|
Wu BC, Olivia NA, Tembo JM, He YX, Zhang YM, Xue Y, Ye CL, Lv Y, Li WJ, Jiang LY, Huo XX, Sun ZY, Chen ZJ, Qin JC, Li AY, Park CG, Klena JD, Ding HH, Chen T. Loss of the virulence plasmid by Shigella sonnei promotes its interactions with CD207 and CD209 receptors. J Med Microbiol 2021; 70:001297. [PMID: 33591245 PMCID: PMC8346720 DOI: 10.1099/jmm.0.001297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/29/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction. Shigella sonnei, the cause of bacillary dysentery, belongs to Gram-negative enteropathogenic bacteria. S. sonnei contains a 210 kb virulence plasmid that encodes an O-antigen gene cluster of LPSs. However, this virulence plasmid is frequently lost during replication. It is well-documented that after losing the O-antigen and becoming rough strains, the Gram-negative bacteria may express an LPS core on its surface. Previous studies have suggested that by using the LPS core, Gram-negative bacteria can interact with several C-type lectin receptors that are expressed on antigen-presenting cells (APCs).Hypothesis/Gap Statement. S. sonnei by losing the virulence plasmid may hijack APCs via the interactions of LPS-CD209/CD207.Aim. This study aimed to investigate if the S. sonnei rough strain, by losing the virulence plasmid, interacted with APCs that express C-type lectins of human CD207, human CD209a and mouse CD209b.Methodology. SDS-PAGE silver staining was used to examine the O-antigen expression of S. sonnei WT and its rough strain. Invasion assays and inhibition assays were used to examine the ability of S. sonnei WT and its rough strain to invade APCs and investigate whether CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Animal assays were used to observe the dissemination of S. sonnei.Results. S. sonnei did not express O-antigens after losing the virulence plasmid. The S. sonnei rough strain invades with APCs, including human dendritic cells (DCs) and mouse macrophages. CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Expression of the O-antigen reduces the ability of the S. sonnei rough strain to be disseminated to mesenteric lymph nodes and spleens.Conclusion. This work demonstrated that S. sonnei rough strains - by losing the virulence plasmid - invaded APCs through interactions with CD209 and CD207 receptors.
Collapse
Affiliation(s)
- Bi-cong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Njiri A. Olivia
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Department of Biological Sciences, Faculty of Science, Engineering and Technology, Chuka University, 109-60400, Kenya
| | - John Mambwe Tembo
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Department of Paediatrics & Child Health, the University of Zambia – University College London Medical School at Zambia, Lusaka, Zambia
| | - Ying-xia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Clinical Research Center, Wuhan Pulmonary Hospital, Wuhan, Hubei, PR China
| | - Ying-miao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Cheng-lin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Wen-jin Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Ling-Yu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Xi-xiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, PR China
| | - Zi-yong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Zhong-ju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Ji-chao Qin
- Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - An-yi Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John D. Klena
- Centers for Disease Control and Prevention, Atlanta, GE, USA
| | - Hong-hui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
5
|
Wang KC, Huang CH, Chang PR, Huang MT, Fang SB. Role of wzxE in Salmonella Typhimurium lipopolysaccharide biosynthesis and interleukin-8 secretion regulation in human intestinal epithelial cells. Microbiol Res 2020; 238:126502. [PMID: 32535400 DOI: 10.1016/j.micres.2020.126502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
In Salmonella Typhimurium (S. Typhimurium), lipopolysaccharide (LPS) anchored on the bacterial outer membrane is a major immune stimulus that can broadly activate immune cells and induce innate immune responses. wzxE is involved in bacterial LPS biosynthesis but has rarely been reported in Salmonella; wzxE encodes a flipase that can flip the precursor of LPS across the membrane into the periplasm space. Our preliminary data showed that the wzxE transposon mutant of S. Typhimurium could not significantly adhere to and invade into HEp-2 cells, but the mechanism remains unknown. In this study, we infected human LS174T, Caco-2, HeLa, and THP-1 cells with the wild-type S. Typhimurium strain SL1344, its wzxE mutant, and its complemented strain. wzxE depletion significantly attenuated bacterial adhesion and internalization in the four cell types. In addition, the postinfectious production of interleukin-8 (IL-8) was significantly decreased in the Caco-2 cells infected with the wzxE mutant. Bacterial LPS stained with polymyxin B probe also exhibited a reduced signal in the wzxE mutant. The silver staining of purified LPS demonstrated a significant reduction of the O-antigen (OAg) chain in the wzxE mutant. To confirm the role of OAg in the wzxE mutant during infection, we treated the HT-29 cells with the S. Typhimurium strain SL1344, its wzxE mutant, and their purified LPS, which revealed significantly decreased IL-8 secretion in the HT-29 cells treated with purified LPS from the wzxE mutant and with the wzxE mutant. In conclusion, wzxE mediates LPS biosynthesis and plays a major role in bacterial pathogenesis by regulating OAg flipping.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - Pei-Ru Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Te Huang
- Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Zhang Y, Zhang S, He Y, Sun Z, Cai W, Lv Y, Jiang L, Li Q, Zhu S, Li W, Ye C, Wu B, Xue Y, Chen H, Cai H, Chen T. Murine SIGNR1 (CD209b) Contributes to the Clearance of Uropathogenic Escherichia coli During Urinary Tract Infections. Front Cell Infect Microbiol 2020; 9:457. [PMID: 31998663 PMCID: PMC6965063 DOI: 10.3389/fcimb.2019.00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC), a Gram-negative bacterial pathogen, is a major causative agent of urinary tract infections (UTIs). However, the molecular mechanisms of how UPEC causes infections have not been determined. Recent studies indicated that certain enteric Gram-negative bacteria interact with and hijack innate immune receptors DC-SIGN (CD209a) and SIGNR1 (CD209b), often expressed by antigen-presenting cells (APCs), such as macrophages, leading to dissemination and infection. It was not known whether UPEC could utilize DC-SIGN receptors to promote its infection and dissemination similarly to the enteric pathogens. The results of this study reveal that UPEC interacts with CD209-expressing macrophages and transfectants. This interaction is inhibited by anti-CD209 antibody, indicating that CD209s are receptors for UPEC. Additionally, in contrast to the results of previous studies, mice lacking SIGNR1 are more susceptible to infection of this uropathogen, leading to prolonged bacterial persistence. Overall, the results of our study indicate that the innate immune receptor CD209s participate in the clearance of UPEC during UTIs.
Collapse
Affiliation(s)
- Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wentong Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Sizhe Zhu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenjin Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chenglin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bicong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huahua Cai
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
7
|
Ye C, Li Q, Li X, Park CG, He Y, Zhang Y, Wu B, Xue Y, Yang K, Lv Y, Ying XL, Ding HH, Cai H, Alkraiem AA, Njiri O, Tembo J, Huang HP, Li AY, Gong J, Qin J, Cheng B, Wei X, Sun Z, Zhang SS, Zhang P, Zheng GX, Li W, Kan B, Yan M, Xiding X, Huo X, Zeng Y, Peng H, Fu Y, Klena JD, Skurnik M, Jiang LY, Chen T. Salmonella enterica Serovar Typhimurium Interacts with CD209 Receptors To Promote Host Dissemination and Infection. Infect Immun 2019; 87:e00100-19. [PMID: 31085704 PMCID: PMC6652768 DOI: 10.1128/iai.00100-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, a Gram-negative bacterium, can cause infectious diseases ranging from gastroenteritis to systemic dissemination and infection. However, the molecular mechanisms underlying this bacterial dissemination have yet to be elucidated. A study indicated that using the lipopolysaccharide (LPS) core as a ligand, S Typhimurium was able to bind human dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (hCD209a), an HIV receptor that promotes viral dissemination by hijacking antigen-presenting cells (APCs). In this study, we showed that S Typhimurium interacted with CD209s, leading to the invasion of APCs and potentially the dissemination to regional lymph nodes, spleen, and liver in mice. Shielding of the exposed LPS core through the expression of O-antigen reduces dissemination and infection. Thus, we propose that similar to HIV, S Typhimurium may also utilize APCs via interactions with CD209s as a way to disseminate to the lymph nodes, spleen, and liver to initiate host infection.
Collapse
Affiliation(s)
- Chenglin Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xinyi Li
- Department of Clinical Laboratory, Jingmen No. 1 People's Hospital, Jingmen, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yingxia He
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Yingmiao Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bicong Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ying Xue
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Kun Yang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yin Lv
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Ling Ying
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Hui Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Huahua Cai
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ayman Ahmad Alkraiem
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
- Department of Biology, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Olivia Njiri
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - John Tembo
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Ping Huang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - An-Yi Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jianping Gong
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jichao Qin
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bing Cheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ziyong Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Shu-Sheng Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Pei Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Guo-Xing Zheng
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Wei Li
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Biao Kan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Meiying Yan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Xiamu Xiding
- Division of Disease Control and Prevention for Endemic Diseases, Wenquan Center for Disease Control and Prevention, Xinjiang, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention (CDC), Wuhan, Hubei, China
| | - Yingchun Zeng
- Hubei Provincial Center for Disease Control and Prevention (CDC), Wuhan, Hubei, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yangxin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Ling-Yu Jiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Tie Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Yang K, He Y, Park CG, Kang YS, Zhang P, Han Y, Cui Y, Bulgheresi S, Anisimov AP, Dentovskaya SV, Ying X, Jiang L, Ding H, Njiri OA, Zhang S, Zheng G, Xia L, Kan B, Wang X, Jing H, Yan M, Li W, Wang Y, Xiamu X, Chen G, Ma D, Bartra SS, Plano GV, Klena JD, Yang R, Skurnik M, Chen T. Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection. Front Immunol 2019; 10:96. [PMID: 30915064 PMCID: PMC6422942 DOI: 10.3389/fimmu.2019.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y. pseudotuberculosis evolved to such a remarkably virulent pathogen, Y. pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y. pestis infection. A distinguishing characteristic between the two Yersinia species is that Y. pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y. pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y. pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y. pseudotuberculosis into Y. pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Sun Kang
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Pei Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | | | - Xiaoling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Olivia Adhiambo Njiri
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biological Sciences, Faculty of Science, Technology and Engineering, Chuka University, Chuka, Kenya
| | - Shusheng Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Lianxu Xia
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meiying Yan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Li
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanzhi Wang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Xiding Xiamu
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - John D Klena
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, Helsinki University Central Hospital Laboratory Diagnostics, University of Helsinki, Helsinki, Finland
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
9
|
He YX, Ye CL, Zhang P, Li Q, Park CG, Yang K, Jiang LY, Lv Y, Ying XL, Ding HH, Huang HP, Mambwe Tembo J, Li AY, Cheng B, Zhang SS, Zheng GX, Chen SY, Li W, Xia LX, Kan B, Wang X, Jing HQ, Yang RF, Peng H, Fu YX, Klena JD, Skurnik M, Chen T. Yersinia pseudotuberculosis Exploits CD209 Receptors for Promoting Host Dissemination and Infection. Infect Immun 2019; 87:e00654-18. [PMID: 30348825 PMCID: PMC6300620 DOI: 10.1128/iai.00654-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Yersinia pseudotuberculosis is a Gram-negative enteropathogen and causes gastrointestinal infections. It disseminates from gut to mesenteric lymph nodes (MLNs), spleen, and liver of infected humans and animals. Although the molecular mechanisms for dissemination and infection are unclear, many Gram-negative enteropathogens presumably invade the small intestine via Peyer's patches to initiate dissemination. In this study, we demonstrate that Y. pseudotuberculosis utilizes its lipopolysaccharide (LPS) core to interact with CD209 receptors, leading to invasion of human dendritic cells (DCs) and murine macrophages. These Y. pseudotuberculosis-CD209 interactions result in bacterial dissemination to MLNs, spleens, and livers of both wild-type and Peyer's patch-deficient mice. The blocking of the Y. pseudotuberculosis-CD209 interactions by expression of O-antigen and with oligosaccharides reduces infectivity. Based on the well-documented studies in which HIV-CD209 interaction leads to viral dissemination, we therefore propose an infection route for Y. pseudotuberculosis where this pathogen, after penetrating the intestinal mucosal membrane, hijacks the Y. pseudotuberculosis-CD209 interaction antigen-presenting cells to reach their target destinations, MLNs, spleens, and livers.
Collapse
Affiliation(s)
- Ying-Xia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Cheng-Lin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Pei Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kun Yang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ling-Yu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Ling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Hui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Ping Huang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - John Mambwe Tembo
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
- Department of Paediatrics & Child Health, The University of Zambia-University College London Medical School at Zambia, Lusaka, Zambia
| | - An-Yi Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bing Cheng
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Shu-Sheng Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Guo-Xing Zheng
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Shi-Yun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Lian-Xu Xia
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Biao Kan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Xin Wang
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Huai-Qi Jing
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Rui-Fu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Cyclic Enterobacterial Common Antigen Maintains the Outer Membrane Permeability Barrier of Escherichia coli in a Manner Controlled by YhdP. mBio 2018; 9:mBio.01321-18. [PMID: 30087168 PMCID: PMC6083912 DOI: 10.1128/mbio.01321-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria have an outer membrane (OM) impermeable to many toxic compounds that can be further strengthened during stress. In Enterobacteriaceae, the envelope contains enterobacterial common antigen (ECA), a carbohydrate-derived moiety conserved throughout Enterobacteriaceae, the function of which is poorly understood. Previously, we identified several genes in Escherichia coli K-12 responsible for an RpoS-dependent decrease in envelope permeability during carbon-limited stationary phase. For one of these, yhdP, a gene of unknown function, deletion causes high levels of both vancomycin and detergent sensitivity, independent of growth phase. We isolated spontaneous suppressor mutants of yhdP with loss-of-function mutations in the ECA biosynthesis operon. ECA biosynthesis gene deletions suppressed envelope permeability from yhdP deletion independently of envelope stress responses and interactions with other biosynthesis pathways, demonstrating suppression is caused directly by removing ECA. Furthermore, yhdP deletion changed cellular ECA levels and yhdP was found to co-occur phylogenetically with the ECA biosynthesis operon. Cells make three forms of ECA: ECA lipopolysaccharide (LPS), an ECA chain linked to LPS core; ECA phosphatidylglycerol, a surface-exposed ECA chain linked to phosphatidylglycerol; and cyclic ECA, a cyclized soluble ECA molecule found in the periplasm. We determined that the suppression of envelope permeability with yhdP deletion is caused specifically by the loss of cyclic ECA, despite lowered levels of this molecule found with yhdP deletion. Furthermore, removing cyclic ECA from wild-type cells also caused changes to OM permeability. Our data demonstrate cyclic ECA acts to maintain the OM permeability barrier in a manner controlled by YhdP. Enterobacterial common antigen (ECA) is a surface antigen made by all members of Enterobacteriaceae, including many clinically relevant genera (e.g., Escherichia, Klebsiella, Yersinia). Although this surface-exposed molecule is conserved throughout Enterobacteriaceae, very few functions have been ascribed to it. Here, we have determined that the periplasmic form of ECA, cyclic ECA, plays a role in maintaining the outer membrane permeability barrier. This activity is controlled by a protein of unknown function, YhdP, and deletion of yhdP damages the OM permeability barrier in a cyclic ECA-dependent manner, allowing harmful molecules such as antibiotics into the cell. This role in maintenance of the envelope permeability barrier is the first time a phenotype has been described for cyclic ECA. As the Gram-negative envelope is generally impermeable to antibiotics, understanding the mechanisms through which the barrier is maintained and antibiotics are excluded may lead to improved antibiotic delivery.
Collapse
|
11
|
Kong Y, Qu Y, Wang S, Wang PG, Chen M. Heterologous expression of Shigella dysenteriae serotype 1 O-antigen analog in Escherichia coli K-12 W3110 by transferring a minimum number of genes involved in O-polysaccharide biosynthesis. Biotechnol Lett 2018; 40:1219-1226. [DOI: 10.1007/s10529-018-2584-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
|
12
|
Jorgenson MA, Kannan S, Laubacher ME, Young KD. Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in Escherichia coli by competing for undecaprenyl phosphate. Mol Microbiol 2015; 100:1-14. [PMID: 26593043 DOI: 10.1111/mmi.13284] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 01/31/2023]
Abstract
Bacterial morphology is determined primarily by the architecture of the peptidoglycan (PG) cell wall, a mesh-like layer that encases the cell. To identify novel mechanisms that create or maintain cell shape in Escherichia coli, we used flow cytometry to screen a transposon insertion library and identified a wecE mutant that altered cell shape, causing cells to filament and swell. WecE is a sugar aminotransferase involved in the biosynthesis of enterobacterial common antigen (ECA), a non-essential outer membrane glycolipid of the Enterobacteriaceae. Loss of wecE interrupts biosynthesis of ECA and causes the accumulation of the undecaprenyl pyrophosphate-linked intermediate ECA-lipid II. The wecE shape defects were reversed by: (i) preventing initiation of ECA biosynthesis, (ii) increasing the synthesis of the lipid carrier undecaprenyl phosphate (Und-P), (iii) diverting Und-P to PG synthesis or (iv) promoting Und-P recycling. The results argue that the buildup of ECA-lipid II sequesters part of the pool of Und-P, which, in turn, adversely affects PG synthesis. The data strongly suggest there is competition for a common pool of Und-P, whose proper distribution to alternate metabolic pathways is required to maintain normal cell shape in E. coli.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Suresh Kannan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mary E Laubacher
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
13
|
Ebrecht AC, Orlof AM, Sasoni N, Figueroa CM, Iglesias AA, Ballicora MA. On the Ancestral UDP-Glucose Pyrophosphorylase Activity of GalF from Escherichia coli. Front Microbiol 2015; 6:1253. [PMID: 26617591 PMCID: PMC4643126 DOI: 10.3389/fmicb.2015.01253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
In bacteria, UDP-glucose is a central intermediate in carbohydrate metabolism. The enzyme responsible for its synthesis is encoded by the galU gene and its deletion generates cells unable to ferment galactose. In some bacteria, there is a second gene, galF, encoding for a protein with high sequence identity to GalU. However, the role of GalF has been contradictory regarding its catalytic capability and not well understood. In this work we show that GalF derives from a catalytic (UDP-glucose pyrophosphorylase) ancestor, but its activity is very low compared to GalU. We demonstrated that GalF has some residual UDP-glucose pyrophosphorylase activity by in vitro and in vivo experiments in which the phenotype of a galU (-) strain was reverted by the over-expression of GalF and its mutant. To demonstrate its evolutionary path of "enzyme inactivation" we enhanced the catalysis by mutagenesis and showed the importance of the quaternary structure. This study provides important information to understand the structural and functional evolutionary origin of the protein GalF in enteric bacteria.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina ; Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| | - Agnieszka M Orlof
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| | - Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| |
Collapse
|
14
|
Yang K, Park CG, Cheong C, Bulgheresi S, Zhang S, Zhang P, He Y, Jiang L, Huang H, Ding H, Wu Y, Wang S, Zhang L, Li A, Xia L, Bartra SS, Plano GV, Skurnik M, Klena JD, Chen T. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunol Cell Biol 2015; 93:815-24. [PMID: 25829141 PMCID: PMC4612776 DOI: 10.1038/icb.2015.46] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022]
Abstract
Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Chae G Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Cheolho Cheong
- Institut de Recherches Cliniques de Montréal (IRCM)MontrealQuebecCanada
| | - Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of ViennaViennaAustria
| | - Shusheng Zhang
- Department of Biomedical Science, University of Illinois at ChicagoRockfordILUSA
| | - Pei Zhang
- Department of Biomedical Science, University of Illinois at ChicagoRockfordILUSA
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongping Huang
- The Center for Experimental Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Honghui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Anyi Li
- The Animal Experimental Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lianxu Xia
- Department of Zoonotic Diseases, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and PreventionBeijingChina
| | - Sara S Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of MedicineMiamiFLUSA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of MedicineMiamiFLUSA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Research Programs Unit, Immunobiology, University of Helsinki, and Helsinki University HospitalHelsinkiFinland
| | - John D Klena
- The School of Basic Medical Sciences, Peking UniversityBeijingChina
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
15
|
Islam ST, Lam JS. Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 2012; 15:1001-15. [PMID: 23016929 DOI: 10.1111/j.1462-2920.2012.02890.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/13/2012] [Accepted: 08/18/2012] [Indexed: 11/29/2022]
Abstract
Bacterial cell surface polysaccharides confer resistance to external stress and promote survival in biotic and abiotic environments. Glycan assembly often occurs at the periplasmic leaflet of the inner membrane (IM) from undecaprenyl pyrophosphate (UndPP)-linked polysaccharide units via the Wzx/Wzy-dependent pathway. Wzx is an integral IM protein found in Gram-negative and Gram-positive bacteria that mediates IM translocation of UndPP-linked sugar repeats from the cytoplasmic to the periplasmic leaflet; interaction of Wzx with other assembly proteins is indirectly supported by genetic evidence. Topological mapping has indicated 12 α-helical transmembrane segments (TMS), with the number of charged TMS residues fluctuating based on the mapping method used. A novel Wzx tertiary structure model has been built, allowing for substrate-binding or energy-coupling roles to be proposed for functionally important charged and aromatic TMS residues. It has also led to a proposed antiport-like mechanism of Wzx function. Exquisite substrate specificity of Wzx proteins was recently revealed in distinguishing between UndPP-linked substrates with identical main-chain sugar repeats, but differing in the chemical composition of a terminal sugar side-branch cap. The objective of this review is to synthesize the most up-to-date knowledge concerning Wzx flippases and to provide perspective for future investigations in this burgeoning field.
Collapse
Affiliation(s)
- Salim T Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | |
Collapse
|
16
|
Houppert AS, Kwiatkowski E, Glass EM, DeBord KL, Merritt PM, Schneewind O, Marketon MM. Identification of chromosomal genes in Yersinia pestis that influence type III secretion and delivery of Yops into target cells. PLoS One 2012; 7:e34039. [PMID: 22479512 PMCID: PMC3316589 DOI: 10.1371/journal.pone.0034039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/21/2012] [Indexed: 01/05/2023] Open
Abstract
Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague.
Collapse
Affiliation(s)
- Andrew S. Houppert
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth Kwiatkowski
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Elizabeth M. Glass
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Kristin L. DeBord
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Peter M. Merritt
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Melanie M. Marketon
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus. J Bacteriol 2012; 194:2646-57. [PMID: 22408159 DOI: 10.1128/jb.06052-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.
Collapse
|
18
|
Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 2012; 356:12-24. [PMID: 22475157 DOI: 10.1016/j.carres.2012.02.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/10/2023]
Abstract
The O-polysaccharide (O-PS; O-antigen) of bacterial lipopolysaccharides is made up of repeating units of one or more sugar residues and displays remarkable structural diversity. Despite the structural variations, there are only three strategies for O-PS assembly. The ATP-binding cassette (ABC)-transporter-dependent mechanism of O-PS biosynthesis is widespread. The Escherichia coli O9a and Klebsiella pneumoniae O2a antigens provide prototypes, which are distinguished by the fine details that link glycan polymerization and chain termination at the cytoplasmic face of the inner membrane to its export via the ABC transporter. Here, we describe the current understanding of these processes. Since glycoconjugate assembly complexes that utilize an ABC transporter-dependent pathway are widespread among the bacterial kingdom, the models described here are expected to extend beyond O-PS biosynthesis systems.
Collapse
Affiliation(s)
- Laura K Greenfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
19
|
Valvano MA. Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system. BIOCHEMISTRY (MOSCOW) 2011; 76:729-35. [DOI: 10.1134/s0006297911070029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Mertens K, Müller-Loennies S, Stengel P, Podschun R, Hansen DS, Mamat U. Antiserum against Raoultella terrigena ATCC 33257 identifies a large number of Raoultella and Klebsiella clinical isolates as serotype O12. Innate Immun 2010; 16:366-80. [PMID: 20053705 DOI: 10.1177/1753425909350057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Raoultella terrigena ATCC 33257, recently reclassified from the genus Klebsiella, is a drinking water isolate and belongs to a large group of non-typeable Klebsiella and Raoultella strains. Using an O-antiserum against a capsule-deficient mutant of this strain, we could show a high prevalence (10.5%) of the R. terrigena O-serotype among non-typeable, clinical Klebsiella and Raoultella isolates. We observed a strong serological cross-reaction with the K. pneumoniae O12 reference strain, indicating that a large percentage of these non-typeable strains may belong to the O12 serotype, although these are currently not detectable by the K. pneumoniae O12 reference antiserum in use. Therefore, we analyzed the O-polysaccharide (O-PS) structure and genetic organization of the wb gene cluster of R. terrigena ATCC 33257, and both confirmed a close relation of R. terrigena and K. pneumoniae O12. The two strains possess an identical O-PS, lipopolysaccharide core structure, and genetic organization of the wb gene cluster. Heterologous expression of the R. terrigena wb gene cluster in Escherichia coli K-12 resulted in the WecA-dependent synthesis of an O-PS reactive with the K. pneumoniae O12 antiserum. The serological data presented here suggest a higher prevalence of the O12-serotype among Klebsiella and Raoultella isolates than generally assumed.
Collapse
Affiliation(s)
- Katja Mertens
- Division of Medical and Biochemical Microbiology, Leibniz-Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang SS, Park CG, Zhang P, Bartra SS, Plano GV, Klena JD, Skurnik M, Hinnebusch BJ, Chen T. Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem 2008; 283:31511-21. [PMID: 18650418 DOI: 10.1074/jbc.m804646200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses plasminogen activator (PLA) on its surface, which has been suggested to play a role in bacterial dissemination. It has been speculated that Y. pestis hijacks antigen-presenting cells, such as macrophages (MPhis) and dendritic cells, to be delivered to lymph nodes to initiate dissemination and infection. Both alveolar MPhis and pulmonary dendritic cells express a C-type lectin receptor, DEC-205 (CD205), which mediates antigen uptake and presentation. However, no ligand has been identified for DEC-205. In this study, we show that the invasion of alveolar MPhisby Y. pestis depends both in vitro and in vivo on the expression of PLA. DEC-205-expressing MPhis and transfectants, but not their negative counterparts, phagocytosed PLA-expressing Y. pestis and Escherichia coli K12 more efficiently than PLA-negative controls. The interactions between PLA-expressing bacteria and DEC-205-expressing transfectants or alveolar MPhis could be inhibited by an anti-DEC-205 antibody. Importantly, the blockage of the PLA-DEC-205 interaction reduced the dissemination of Y. pestis in mice. In conclusion, murine DEC-205 is a receptor for PLA of Y. pestis, and this host-pathogen interaction appears to play a key role in promoting bacterial dissemination.
Collapse
Affiliation(s)
- Shu-sheng Zhang
- Department of Biomedical Sciences, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois 61107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L. Structure and genetics ofShigellaO antigens. FEMS Microbiol Rev 2008; 32:627-53. [DOI: 10.1111/j.1574-6976.2008.00114.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Human dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin (CD209) is a receptor for Yersinia pestis that promotes phagocytosis by dendritic cells. Infect Immun 2008; 76:2070-9. [PMID: 18285492 DOI: 10.1128/iai.01246-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Yersinia pestis is the etiologic agent of bubonic and pneumonic plagues. It is speculated that Y. pestis hijacks antigen-presenting cells (APCs), such as dendritic cells (DCs) and alveolar macrophages, in order to be delivered to lymph nodes. However, how APCs initially capture the bacterium remains uncharacterized. It is well known that HIV-1 uses human DC-specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN) (CD209) receptor, expressed by APCs, to be captured and delivered to target cell, such as CD4+ lymphocytes. Several gram-negative bacteria utilize their core lipopolysaccharides (LPS) as ligands to interact with the human DC-SIGN. Therefore, it is possible that Y. pestis, whose core LPS is naturally exposed, might exploit DC-SIGN to invade APCs. We demonstrate in this study that Y. pestis directly interacts with DC-SIGN and invades both DCs and alveolar macrophages. In contrast, when engineered to cover the core LPS, Y. pestis loses its ability to invade DCs, alveolar macrophages, and DC-SIGN-expressing transfectants. The interaction between Y. pestis and human DCs can be reduced by a combination treatment with anti-CD209 and anti-CD207 antibodies. This study shows that human DC-SIGN is a receptor for Y. pestis that promotes phagocytosis by DCs in vitro.
Collapse
|
24
|
Xu DQ, Cisar JO, Osorio M, Wai TT, Kopecko DJ. Core-linked LPS expression of Shigella dysenteriae serotype 1 O-antigen in live Salmonella Typhi vaccine vector Ty21a: Preclinical evidence of immunogenicity and protection. Vaccine 2007; 25:6167-75. [PMID: 17629369 DOI: 10.1016/j.vaccine.2007.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Shigella dysenteriae serotype 1 (S. dysenteriae 1) causes severe shigellosis that is typically associated with high mortality. Antibodies against Shigella serotype-specific O-polysaccharide (O-Ps) have been shown to be host protective. In this study, the rfb locus and the rfp gene with their cognate promoter regions were PCR-amplified from S. dysenteriae 1, cloned, and sequenced. Deletion analysis showed that eight rfb ORFs plus rfp are necessary for biosynthesis of this O-Ps. A tandemly-linked rfb-rfp gene cassette was cloned into low copy plasmid pGB2 to create pSd1. Avirulent Salmonella enterica serovar Typhi (S. Typhi) Ty21a harboring pSd1 synthesized S. Typhi 9, 12 LPS as well as typical core-linked S. dysenteriae 1 LPS. Animal immunization studies showed that Ty21a (pSd1) induces protective immunity against high stringency challenge with virulent S. dysenteriae 1 strain 1617. These data further demonstrate the utility of S. Typhi Ty21a as a live, bacterial vaccine delivery system for heterologous O-antigens, supporting the promise of a bifunctional oral vaccine for prevention of shigellosis and typhoid fever.
Collapse
Affiliation(s)
- De Qi Xu
- Laboratory of Enteric and Sexually Transmitted Diseases, FDA-CBER, Bethesda, MD 20892, United States.
| | | | | | | | | |
Collapse
|
25
|
Lehrer J, Vigeant KA, Tatar LD, Valvano MA. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J Bacteriol 2007; 189:2618-28. [PMID: 17237164 PMCID: PMC1855806 DOI: 10.1128/jb.01905-06] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/15/2007] [Indexed: 11/20/2022] Open
Abstract
WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.
Collapse
Affiliation(s)
- Jason Lehrer
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|
26
|
Feng L, Perepelov AV, Zhao G, Shevelev SD, Wang Q, Senchenkova SN, Shashkov AS, Geng Y, Reeves PR, Knirel YA, Wang L. Structural and genetic evidence that the Escherichia coli O148 O antigen is the precursor of the Shigella dysenteriae type 1 O antigen and identification of a glucosyltransferase gene. Microbiology (Reading) 2007; 153:139-147. [PMID: 17185542 DOI: 10.1099/mic.0.2006/001107-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella dysenteriae type 1 is the most virulent serotype of Shigella. Enterotoxigenic Escherichia coli O148 is pathogenic and can cause diarrhoea. The following structure was established for the tetrasaccharide repeating unit of the E. coli O148 O antigen: -->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpNAc-(1-->. This differs from the structure reported earlier for S. dysenteriae type 1 by having a glucose (Glc) residue in place of a galactose (Gal) residue. The two bacteria also have the same genes for O antigen synthesis, with the same organization and high level of DNA identity, except that in S. dysenteriae type 1 wbbG is interrupted by a deletion, and a galactosyltransferase gene wbbP located on a plasmid is responsible for the transfer of galactose to make a novel antigenic epitope of the O antigen. The S. dysenteriae type 1 O antigen was reconstructed by replacing the E. coli O148 wbbG gene with the wbbP gene, and it had the LPS structure and antigenic properties of S. dysenteriae type 1, indicating that the S. dysenteriae type 1 O antigen evolved from that of E. coli O148. It was also confirmed that wbbG of E. coli O148 is a glucosyltransferase gene, and two serotype-specific genes of E. coli O148 and S. dysenteriae type 1 were identified.
Collapse
Affiliation(s)
- Lu Feng
- Tianjin Key Laboratory for Microbial Functional Genomics, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Guang Zhao
- Tianjin Key Laboratory for Microbial Functional Genomics, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| | - Sergei D Shevelev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Quan Wang
- Tianjin Key Laboratory for Microbial Functional Genomics, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Yunqi Geng
- College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Peter R Reeves
- School of Molecular and Microbial Biosciences (G08), University of Sydney, Sydney, NSW 2006, Australia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Lei Wang
- Tianjin Key Laboratory for Microbial Functional Genomics, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 HongDa Street, TEDA, Tianjin 300457, P. R. China
| |
Collapse
|
27
|
Zhang P, Snyder S, Feng P, Azadi P, Zhang S, Bulgheresi S, Sanderson KE, He J, Klena J, Chen T. Role of N-acetylglucosamine within core lipopolysaccharide of several species of gram-negative bacteria in targeting the DC-SIGN (CD209). THE JOURNAL OF IMMUNOLOGY 2006; 177:4002-11. [PMID: 16951363 DOI: 10.4049/jimmunol.177.6.4002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our recent studies have shown that the dendritic cell-specific ICAM nonintegrin CD209 (DC-SIGN) specifically binds to the core LPS of Escherichia coli K12 (E. coli), promoting bacterial adherence and phagocytosis. In this current study, we attempted to map the sites within the core LPS that are directly involved in LPS-DC-SIGN interaction. We took advantage of four sets of well-defined core LPS mutants, which are derived from E. coli, Salmonella enterica serovar Typhimurium, Neisseria gonorrhoeae, and Haemophilus ducreyi and determined interaction of each of these four sets with DC-SIGN. Our results demonstrated that N-acetylglucosamine (GlcNAc) sugar residues within the core LPS in these bacteria play an essential role in targeting the DC-SIGN receptor. Our results also imply that DC-SIGN is an innate immune receptor and the interaction of bacterial core LPS and DC-SIGN may represent a primeval interaction between Gram-negative bacteria and host phagocytic cells.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Rockford, IL 61107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Horzempa J, Dean CR, Goldberg JB, Castric P. Pseudomonas aeruginosa 1244 pilin glycosylation: glycan substrate recognition. J Bacteriol 2006; 188:4244-52. [PMID: 16740931 PMCID: PMC1482975 DOI: 10.1128/jb.00273-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pilin of Pseudomonas aeruginosa 1244 is glycosylated with an oligosaccharide that is structurally identical to the O-antigen repeating unit of this organism. Concordantly, the metabolic source of the pilin glycan is the O-antigen biosynthetic pathway. The present study was conducted to investigate glycan substrate recognition in the 1244 pilin glycosylation reaction. Comparative structural analysis of O subunits that had been previously shown to be compatible with the 1244 glycosylation machinery revealed similarities among sugars at the presumed reducing termini of these oligosaccharides. We therefore hypothesized that the glycosylation substrate was within the sugar at the reducing end of the glycan precursor. Since much is known of PA103 O-antigen genetics and because the sugars at the reducing termini of the O7 (strain 1244) and O11 (strain PA103) are identical (beta-N-acetyl fucosamine), we utilized PA103 and strains that express lipopolysaccharide (LPS) with a truncated O-antigen subunit to test our hypothesis. LPS from a strain mutated in the wbjE gene produced an incomplete O subunit, consisting only of the monosaccharide at the reducing end (beta-d-N-acetyl fucosamine), indicating that this moiety contained substrate recognition elements for WaaL. Expression of pilAO(1244) in PA103 wbjE::aacC1, followed by Western blotting of extracts of these cells, indicated that pilin produced has been modified by the addition of material consistent with a single N-acetyl fucosamine. This was confirmed by analyzing endopeptidase-treated pilin by mass spectrometry. These data suggest that the pilin glycosylation substrate recognition features lie within the reducing-end moiety of the O repeat and that structures of the remaining sugars are irrelevant.
Collapse
Affiliation(s)
- Joseph Horzempa
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, USA
| | | | | | | |
Collapse
|
29
|
Pozsgay V, Ekborg G, Sampathkumar SG. Synthesis of hexa- to tridecasaccharides related to Shigella dysenteriae type 1 for incorporation in experimental vaccines. Carbohydr Res 2006; 341:1408-27. [PMID: 16650395 DOI: 10.1016/j.carres.2006.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 03/27/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
Hexa- to tridecasaccharides corresponding to the O-specific polysaccharide (O-SP) of the Gram-negative bacterium Shigella dysenteriae type 1 were synthesized in solution phase. The syntheses utilized tetra-, octa-, and dodecasaccharide intermediates that represent one to three contiguous tetrasaccharide repeating units of the O-SP [Synlett2003, 743]. These compounds were glycosylated with mono-, di-, and trisaccharide trichloroacetamidates, which were synthesized in this study. The excellent stereodirecting effect of 4,6-O-benzophenone ketals in glycosylation reactions of 2-azido-2-deoxy-glucopyranosyl donors was demonstrated. The free oligosaccharides were characterized by 1H and 13C NMR spectroscopy and by high-resolution mass spectrometry. The oligosaccharides described herein contain the 5-(methoxycarbonyl)pentyl aglycon for eventual attachment to immunogenic carriers using a recently published protocol [J. Org. Chem.2005, 70, 6987].
Collapse
Affiliation(s)
- Vince Pozsgay
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Dr. Rm. 2A29, MSC 2423, Bethesda, MD 20892-2423, USA.
| | | | | |
Collapse
|
30
|
Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 2006; 73:187-94. [PMID: 16847602 DOI: 10.1007/s00253-006-0468-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/11/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Pseudomonas aeruginosa produces the biosurfactants rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs). In this study, we report the production of one family of rhamnolipids, specifically the monorhamnolipids, and of HAAs in a recombinant Escherichia coli strain expressing P. aeruginosa rhlAB operon. We found that the availability in E. coli of dTDP-L: -rhamnose, a substrate of RhlB, restricts the production of monorhamnolipids in E. coli. We present evidence showing that HAAs and the fatty acid dimer moiety of rhamnolipids are the product of RhlA enzymatic activity. Furthermore, we found that in the recombinant E. coli, these compounds have the same chain length of the fatty acid dimer moiety as those produced by P. aeruginosa. These data suggest that it is RhlAB specificity, and not the hydroxyfatty acid relative abundance in the bacterium, that determines the profile of the fatty acid moiety of rhamnolipids and HAAs. The rhamnolipids level produced in recombinant E. coli expressing rhlAB is lower than the P. aeruginosa level and much higher than those reported by others in E. coli, showing that this metabolic engineering strategy lead to an increased rhamnolipids production in this heterologous host.
Collapse
Affiliation(s)
- Natividad Cabrera-Valladares
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Mexico, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Linton D, Dorrell N, Hitchen PG, Amber S, Karlyshev AV, Morris HR, Dell A, Valvano MA, Aebi M, Wren BW. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 2005; 55:1695-703. [PMID: 15752194 DOI: 10.1111/j.1365-2958.2005.04519.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.
Collapse
Affiliation(s)
- Dennis Linton
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Beutin L, Tao J, Feng L, Krause G, Zimmermann S, Gleier K, Xia Q, Wang L. Sequence analysis of the Escherichia coli O15 antigen gene cluster and development of a PCR assay for rapid detection of intestinal and extraintestinal pathogenic E. coli O15 strains. J Clin Microbiol 2005; 43:703-10. [PMID: 15695667 PMCID: PMC548065 DOI: 10.1128/jcm.43.2.703-710.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A collection of 33 Escherichia coli serogroup O15 strains was studied with regard to O:H serotypes and virulence markers and for detection of the O-antigen-specific genes wzx and wzy. The strains were from nine different countries, originated from healthy or diseased humans and animals and from food, and were isolated between 1941 and 2003. On the basis of virulence markers and clinical data the strains could be split into different pathogroups, such as uropathogenic E. coli, enteropathogenic E. coli, Shiga toxin-producing E. coli, and enteroaggregative E. coli. H serotyping and genotyping of the flagellin (fliC) gene revealed 11 different H types and a close association between certain H types, virulence markers, and pathogroups was found. Nucleotide sequence analysis of the O-antigen gene cluster revealed putative genes for biosynthesis of O15 antigen. PCR assays were developed for sensitive and specific detection of the O15-antigen-specific genes wzx and wzy. The high pathotype diversity found in the collection of 33 O15 strains contrasted with the high level of similarity found in the genes specific to the O15 antigen. This might indicate that the O15 determinant has been spread by horizontal gene transfer to a number of genetically unrelated strains of E. coli.
Collapse
Affiliation(s)
- Lothar Beutin
- Division of Microbial Toxins, Robert Koch Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Klena J, Zhang P, Schwartz O, Hull S, Chen T. The core lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific intercellular adhesion molecule nonintegrin CD209 receptor. J Bacteriol 2005; 187:1710-5. [PMID: 15716442 PMCID: PMC1064026 DOI: 10.1128/jb.187.5.1710-1715.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dendritic-cell-specific intercellular adhesion molecule nonintegrin (DC-SIGN) CD209 is a receptor for Escherichia coli K-12 that promotes bacterial adherence and phagocytosis. However, the ligand of E. coli for DC-SIGN has not yet been identified. In this study, we found that DC-SIGN did not mediate the phagocytosis of several pathogenic strains of E. coli, including enteropathogenic E. coli, enterohemorrhagic E. coli, enterotoxigenic E. coli, and uropathogenic E. coli, in dendritic cells or HeLa cells expressing human DC-SIGN antigen. However, we showed that an outer core lipopolysaccharide (LPS) (rough) mutant, unlike an inner core LPS (deep rough) mutant or O-antigen-expressing recombinant of E. coli K-12 was phagocytosed. These results demonstrate that the host cells expressing DC-SIGN can phagocytose E. coli in part by interacting with the complete core region of the LPS molecule. These results provide a mechanism for how O antigen acts as an antiphagocytic factor.
Collapse
Affiliation(s)
- John Klena
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | | | | | | | | |
Collapse
|
34
|
Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2004; 338:2503-19. [PMID: 14670712 DOI: 10.1016/j.carres.2003.07.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.
Collapse
Affiliation(s)
- Gabrielle Samuel
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
35
|
Boels IC, Beerthuyzen MM, Kosters MHW, Van Kaauwen MPW, Kleerebezem M, De Vos WM. Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose Biosynthesis. J Bacteriol 2004; 186:1239-48. [PMID: 14973085 PMCID: PMC344400 DOI: 10.1128/jb.186.5.1239-1248.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
dTDP-rhamnose is an important precursor of cell wall polysaccharides and rhamnose-containing exopolysaccharides (EPS) in Lactococcus lactis. We cloned the rfbACBD operon from L. lactis MG1363, which comprises four genes involved in dTDP-rhamnose biosynthesis. When expressed in Escherichia coli, the lactococcal rfbACBD genes could sustain heterologous production of the Shigella flexneri O antigen, providing evidence of their functionality. Overproduction of the RfbAC proteins in L. lactis resulted in doubled dTDP-rhamnose levels, indicating that the endogenous RfbAC activities control the intracellular dTDP-rhamnose biosynthesis rate. However, RfbAC overproduction did not affect rhamnose-containing B40-EPS production levels. A nisin-controlled conditional RfbBD mutant was unable to grow in media lacking the inducer nisin, indicating that the rfb genes have an essential role in L. lactis. Limitation of RfbBD activities resulted in the production of altered EPS. The monomeric sugar of the altered EPS consisted of glucose, galactose, and rhamnose at a molar ratio of 1:0.3:0.2, which is clearly different from the ratio in the native sugar. Biophysical analysis revealed a fourfold-greater molecular mass and a twofold-smaller radius of gyration for the altered EPS, indicating that these EPS are more flexible polymers with changed viscosifying properties. This is the first indication that enzyme activity at the level of central carbohydrate metabolism affects EPS composition.
Collapse
Affiliation(s)
- Ingeborg C Boels
- Wageningen Centre for Food Sciences, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Schäffer C, Wugeditsch T, Messner P, Whitfield C. Functional expression of enterobacterial O-polysaccharide biosynthesis enzymes in Bacillus subtilis. Appl Environ Microbiol 2002; 68:4722-30. [PMID: 12324313 PMCID: PMC126445 DOI: 10.1128/aem.68.10.4722-4730.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Accepted: 07/16/2002] [Indexed: 11/20/2022] Open
Abstract
The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-alpha-D-(14)C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für Ultrastrukturforschung and Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria.
| | | | | | | |
Collapse
|
37
|
D'Souza JM, Wang L, Reeves P. Sequence of the Escherichia coli O26 O antigen gene cluster and identification of O26 specific genes. Gene 2002; 297:123-7. [PMID: 12384293 DOI: 10.1016/s0378-1119(02)00876-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli associated with outbreaks of gastroenteritis and hemolytic uremic syndrome include clones with O antigens O157 and O111. However, O26 has emerged as an O antigen present in pathogenic strains, particularly those implicated in cases of infantile gastroenteritis worldwide. The O26 O antigen gene cluster was sequenced. It was found to contain the genes expected for biosynthesis of nucleotide sugars L-rhamnose, N-acetyl-L-fucosamine and N-acetyl-glucosamine, as well genes for O unit flippase, O antigen polymerase and potential transferase genes. By polymerase chain reaction testing against representative strains for the 166 Escherichia coli O serogroups and some randomly selected Gram-negative bacteria, we identified three O antigen genes that are highly specific to O26. This work provides the basis for a sensitive test for the rapid detection of pathogenic clones with the O26 antigen, which has implications for public health, especially in the control of food-borne outbreaks.
Collapse
Affiliation(s)
- Jocelyne M D'Souza
- Department Of Microbiology, School of Molecular and Microbial Biosciences (G08), University Of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
38
|
Shibata Y, Yamashita Y, Ozaki K, Nakano Y, Koga T. Expression and characterization of streptococcal rgp genes required for rhamnan synthesis in Escherichia coli. Infect Immun 2002; 70:2891-8. [PMID: 12010977 PMCID: PMC128017 DOI: 10.1128/iai.70.6.2891-2898.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization.
Collapse
Affiliation(s)
- Yukie Shibata
- Department of Preventive Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
39
|
Amer AO, Valvano MA. Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2002; 148:571-582. [PMID: 11832520 DOI: 10.1099/00221287-148-2-571] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The integral membrane protein WecA mediates the transfer of N-acetylglucosamine (GlcNAc) 1-phosphate to undecaprenyl phosphate (Und-P) with the formation of a phosphodiester bond. Bacteria employ this reaction during the biosynthesis of enterobacterial common antigen as well as of many O-specific lipopolysaccharides (LPSs). Alignment of a number of prokaryotic and eukaryotic WecA-homologous sequences identified a number of conserved aspartic acid (D) residues in putative cytoplasmic loops II and III of the inner-membrane protein. Site-directed mutagenesis was used to study the role of the conserved residues D90, D91 (loop II), D156 and D159 (loop III). As controls, D35, D94 and D276 were also mutagenized. The resulting WecA derivatives were assessed for function by complementation analysis of O-antigen biosynthesis, by the ability to incorporate radiolabelled precursor to a biosynthetic intermediate, by detection of the terminal GlcNAc residue in LPS and by a tunicamycin competition assay. It was concluded from these analyses that the conserved aspartic acid residues are functionally important, but also that they participate differently in the transfer reaction. Based on these results it is proposed that D90 and D91 are important in forwarding the reaction product to the next biosynthetic step, while D156 and D159 are a part of the catalytic site of the enzyme.
Collapse
Affiliation(s)
- Amal O Amer
- Departments of Microbiology and Immunology1 and Medicine2, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- Departments of Microbiology and Immunology1 and Medicine2, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
40
|
Dean CR, Datta A, Carlson RW, Goldberg JB. WbjA adds glucose to complete the O-antigen trisaccharide repeating unit of the lipopolysaccharide of Pseudomonas aeruginosa serogroup O11. J Bacteriol 2002; 184:323-6. [PMID: 11741875 PMCID: PMC134784 DOI: 10.1128/jb.184.1.323-326.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide from a wbjA mutant, deficient in a putative glycosyltransferase from Pseudomonas aeruginosa serogroup O11, was compared to that from an O-antigen polymerase mutant. Results suggest that WbjA adds the terminal glucose to complete the serogroup O11 O-antigen unit and identifies the biological repeating unit as [-2)-beta-D-glucose-(1-3)-alpha-L-N-acetylfucosamine-(1-3)-beta-D-N-acetylfucosamine-(1].
Collapse
Affiliation(s)
- Charles R Dean
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
41
|
Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 2001; 40:708-18. [PMID: 11359576 DOI: 10.1046/j.1365-2958.2001.02420.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of producing a wide variety of virulence factors, including extracellular rhamnolipids and lipopolysaccharide. Rhamnolipids are tenso-active glycolipids containing one (mono-rhamnolipid) or two (di-rhamnolipid) L-rhamnose molecules. Rhamnosyltransferase 1 (RhlAB) catalyses the synthesis of mono-rhamnolipid from dTDP-L-rhamnose and beta-hydroxydecanoyl-beta-hydroxydecanoate, whereas di-rhamnolipid is produced from mono-rhamnolipid and dTDP-L-rhamnose. We report here the molecular characterization of rhlC, a gene encoding the rhamnosyltransferase involved in di-rhamnolipid (L-rhamnose-L-rhamnose-beta-hydroxydecanoyl-beta-hydroxydecanoate) production in P. aeruginosa. RhlC is a protein consisting of 325 amino acids with a molecular mass of 35.9 kDa. It contains consensus motifs that are found in other glycosyltransferases involved in the transfer of L-rhamnose to nascent polymer chains. To verify the biological function of RhlC, a chromosomal mutant, RTII-2, was generated by insertional mutagenesis and allelic replacement. This mutant was unable to produce di-rhamnolipid, whereas mono-rhamnolipid was unaffected. In contrast, a null rhlA mutant (PAO1-rhlA) was incapable of producing both mono- and di-rhamnolipid. Complementation of mutant RTII-2 with plasmid pRTII-26 containing rhlC restored the level of di-rhamnolipid production in the recombinant to a level similar to that of the wild-type strain PAO1. The rhlC gene was located in an operon with an upstream gene (PA1131) of unknown function. A sigma54-type promoter for the PA1131-rhlC operon was identified, and a single transcriptional start site was mapped. Expression of the PA1131-rhlC operon was dependent on the P. aeruginosa rhl quorum-sensing system, and a well-conserved lux box was identified in the promoter region. The genetic regulation of rhlC by RpoN and RhlR was in agreement with the observed increasing RhlC rhamnosyltransferase activity during the stationary phase of growth. This is the first report of a rhamnosyltransferase gene responsible for the biosynthesis of di-rhamnolipid.
Collapse
Affiliation(s)
- R Rahim
- Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Bacterial lipopolysaccharides (LPS) typically consist of a hydrophobic domain known as lipid A (or endotoxin), a nonrepeating "core" oligosaccharide, and a distal polysaccharide (or O-antigen). Recent genomic data have facilitated study of LPS assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and have established the importance of lateral gene transfer in generating structural diversity of O-antigens. Many enzymes of lipid A biosynthesis like LpxC have been validated as targets for development of new antibiotics. Key genes for lipid A biosynthesis have unexpectedly also been found in higher plants, indicating that eukaryotic lipid A-like molecules may exist. Most significant has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. TLR4 belongs to a family of innate immunity receptors that possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment, and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking inflammation associated with infection.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
43
|
Wang L, Qu W, Reeves PR. Sequence analysis of four Shigella boydii O-antigen loci: implication for Escherichia coli and Shigella relationships. Infect Immun 2001; 69:6923-30. [PMID: 11598067 PMCID: PMC100072 DOI: 10.1128/iai.69.11.6923-6930.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Accepted: 08/20/2001] [Indexed: 11/20/2022] Open
Abstract
Shigella strains are in reality clones of Escherichia coli and are believed to have emerged relatively recently (G. M. Pupo, R. Lan, and P. R. Reeves, Proc. Natl. Acad. Sci. USA 97:10567-10572, 2000). There are 33 O-antigen forms in these Shigella clones, of which 12 are identical to O antigens of other E. coli strains. We sequenced O-antigen gene clusters from Shigella boydii serotypes 4, 5, 6, and 9 and also studied the O53- and O79-antigen gene clusters of E. coli, encoding O antigens identical to those of S. boydii serotype 4 and S. boydii serotype 5, respectively. In both cases the S. boydii and E. coli O-antigen gene clusters have the same genes and organization. The clusters of both S. boydii 6 and S. boydii 9 O antigens have atypical features, with a functional insertion sequence and a wzx gene located in the orientation opposite to that of all other genes in S. boydii serotype 9 and an rmlC gene located away from other rml genes in S. boydii serotype 6. Sequences of O-antigen gene clusters from another three Shigella clones have been published, and two of them also have abnormal structures, with either the entire cluster or one gene being located on a plasmid in Shigella sonnei or Shigella dysenteriae, respectively. It appears that a high proportion of clusters coding for O antigens specific to Shigella clones have atypical features, perhaps indicating recent formation of these gene clusters.
Collapse
Affiliation(s)
- L Wang
- Department of Microbiology, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
44
|
Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS. Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2803-2814. [PMID: 11065359 DOI: 10.1099/00221287-146-11-2803] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
L-Rhamnose (L-Rha) is a component of the lipopolysaccharide (LPS) core, several O antigen polysaccharides, and the cell surface surfactant rhamnolipid of Pseudomonas aeruginosa. In this study, four contiguous genes (rmlBDAC) responsible for the synthesis of dTDP-L-Rha in P. aeruginosa have been cloned and characterized. Non-polar chromosomal rmlC mutants were generated in P. aeruginosa strains PAO1 (serotype O5) and PAK (serotype O6) and LPS extracted from the mutants was analysed by SDS-PAGE and Western immunoblotting. rmlC mutants of both serotype O5 and serotype O6 synthesized a truncated core region which was unable to act as an attachment point for either A-band or B-band O antigen. A rmd rmlC PAO1 double mutant (deficient in biosynthesis of both D-Rha and L-Rha) was constructed to facilitate structural analysis of the mutant core region. This strain has an incomplete core oligosaccharide region and does not produce A-band O antigen. These results provide the genetic and structural evidence that L-Rha is the receptor on the P. aeruginosa LPS core for the attachment of O polysaccharides. This is the first report of a genetically defined mutation that affects the synthesis of a single sugar in the core oligosaccharide region of P. aeruginosa LPS, and provides further insight into the mechanisms of LPS biosynthesis and assembly in this bacterium.
Collapse
Affiliation(s)
- Rahim Rahim
- Canadian Bacterial Diseases Network, Networks of Centers of Excellence, Heritage Medical Research Building, Hospital Drive, Calgary, Alberta, Canada T2N 4N12
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada, N1G 2W11
| | - Lori L Burrows
- Center for Infection and Biomaterials Research, NU13-143, Toronto General Hospital, Toronto, Ontario, Canada M5G 2C43
| | - Mario A Monteiro
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada K1A OR64
- Canadian Bacterial Diseases Network, Networks of Centers of Excellence, Heritage Medical Research Building, Hospital Drive, Calgary, Alberta, Canada T2N 4N12
| | - Malcolm B Perry
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada K1A OR64
- Canadian Bacterial Diseases Network, Networks of Centers of Excellence, Heritage Medical Research Building, Hospital Drive, Calgary, Alberta, Canada T2N 4N12
| | - Joseph S Lam
- Canadian Bacterial Diseases Network, Networks of Centers of Excellence, Heritage Medical Research Building, Hospital Drive, Calgary, Alberta, Canada T2N 4N12
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada, N1G 2W11
| |
Collapse
|
45
|
Paton JC, Morona JK, Morona R. Characterization of the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae type 19F. Microb Drug Resist 2000; 3:89-99. [PMID: 9109099 DOI: 10.1089/mdr.1997.3.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have used a combination of plasmid insertion/rescue and inverse Polymerase Chain Reaction (PCR) to clone the region of the Streptococcus pneumoniae type 19F chromosome encoding biosynthesis of type 19F capsular polysaccharide (cps19f), which was then subjected to sequence analysis. The cps19f locus is located in the S. pneumoniae chromosome between dexB and aliA, and consists of 15 open reading frames (ORFs), designated cps19fA to cps19fO, that appear to be arranged as a single transcriptional unit. Insertion-duplication mutants in 13 of the 15 ORFs have been constructed in a smooth type 19F strain, all of which resulted in a rough (unencapsulated) phenotype, confirming that the operon is essential for capsule production. Comparison with sequence databases has allowed us to propose functions for 12 of the cps19f gene products, and a biosynthetic pathway for type 19F capsular polysaccharide. Southern hybridization analysis indicated that cps19fA and cps19fB were the only cps genes found in all 16 S. pneumoniae serotypes/groups tested. The region from cps19fG to cps19fK was found only in members of serogroup 19, and within this cps19fI was unique to type 19F.
Collapse
Affiliation(s)
- J C Paton
- Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, S.A., Australia
| | | | | |
Collapse
|
46
|
Phillips NJ, Miller TJ, Engstrom JJ, Melaugh W, McLaughlin R, Apicella MA, Gibson BW. Characterization of chimeric lipopolysaccharides from Escherichia coli strain JM109 transformed with lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. J Biol Chem 2000; 275:4747-58. [PMID: 10671507 DOI: 10.1074/jbc.275.7.4747] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported the expression of chimeric lipopolysaccharides (LPS) in Escherichia coli strain JM109 (a K-12 strain) transformed with plasmids containing Haemophilus influenzae lipooligosaccharide synthesis genes (lsg) (Abu Kwaik, Y., McLaughlin, R. E., Apicella, M. A., and Spinola, S. M. (1991) Mol. Microbiol. 5, 2475-2480). In this current study, we have analyzed the O-deacylated LPS and free oligosaccharides from three transformants (designated pGEMLOS-4, pGEMLOS-5, and pGEMLOS-7) by matrix-assisted laser desorption ionization, electrospray ionization, and tandem mass spectrometry techniques, along with composition and linkage analyses. These data show that the chimeric LPS consist of the complete E. coli LPS core structure glycosylated on the 7-position of the non-reducing terminal branch heptose with oligosaccharides from H. influenzae. In pGEMLOS-7, the disaccharide Gal1--> 3GlcNAc1--> is added, and in pGEMLOS-5, the structure is extended to Gal1-->4GlcNAc1-->3Gal1-->3GlcNAc1-->. PGEMLOS-5 LPS reacts positively with monoclonal antibody 3F11, an antibody that recognizes the terminal disaccharide of lacto-N-neotetraose. In pGEMLOS-4 LPS, the 3F11 epitope is apparently blocked by glycosylation on the 6-position of the terminal Gal with either Gal or GlcNAc. The biosynthesis of these chimeric LPS was found to be dependent on a functional wecA (formerly rfe) gene in E. coli. By using this carbohydrate expression system, we have been able to examine the functions of the lsg genes independent of the effects of other endogenous Haemophilus genes and expressed proteins.
Collapse
Affiliation(s)
- N J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Amer AO, Valvano MA. The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion. J Bacteriol 2000; 182:498-503. [PMID: 10629198 PMCID: PMC94301 DOI: 10.1128/jb.182.2.498-503.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The correct site for translation initiation for Escherichia coli WecA (Rfe), presumably involved in catalyzing the transfer of N-acetylglucosamine 1-phosphate to undecaprenylphosphate, was determined by using its FLAG-tagged derivatives. The N-terminal region containing three predicted transmembrane helices was found to be necessary for function but not for membrane localization of this protein.
Collapse
Affiliation(s)
- A O Amer
- Department of Microbiology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
48
|
Feldman MF, Marolda CL, Monteiro MA, Perry MB, Parodi AJ, Valvano MA. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 1999; 274:35129-38. [PMID: 10574995 DOI: 10.1074/jbc.274.49.35129] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During O antigen lipopolysaccharide (LPS) synthesis in bacteria, transmembrane migration of undecaprenylpyrophosphate (Und-P-P)-bound O antigen subunits occurs before their polymerization and ligation to the rest of the LPS molecule. Despite the general nature of the translocation process, putative O-antigen translocases display a low level of amino acid sequence similarity. In this work, we investigated whether complete O antigen subunits are required for translocation. We demonstrate that a single sugar, GlcNAc, can be incorporated to LPS of Escherichia coli K-12. This incorporation required the functions of two O antigen synthesis genes, wecA (UDP-GlcNAc:Und-P GlcNAc-1-P transferase) and wzx (O-antigen translocase). Complementation experiments with putative O-antigen translocases from E. coli O7 and Salmonella enterica indicated that translocation of O antigen subunits is independent of the chemical structure of the saccharide moiety. Furthermore, complementation with putative translocases involved in synthesis of exopolysaccharides demonstrated that these proteins could not participate in O antigen assembly. Our data indicate that recognition of a complete Und-P-P-bound O antigen subunit is not required for translocation and suggest a model for O antigen synthesis involving recognition of Und-P-P-linked sugars by a putative complex made of Wzx translocase and other proteins involved in the processing of O antigen.
Collapse
Affiliation(s)
- M F Feldman
- Instituto de Investigaciones Bioquímicas Fundación Campomar, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
49
|
Coimbra RS, Grimont F, Grimont PA. Identification of Shigella serotypes by restriction of amplified O-antigen gene cluster. Res Microbiol 1999; 150:543-53. [PMID: 10577487 DOI: 10.1016/s0923-2508(99)00103-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the scarcity of distinctive biochemical reactions for differentiation of Shigella-Escherichia coli, antigenic analysis has long been used for identification and typing of Shigella isolates. Nevertheless, several intra- and interspecific cross-reactions have been reported to disturb serotyping assays. Shigella serotyping is also occasionally affected by the transition from the smooth (S) form to the rough (R) form. Thus, there is a need for the development of novel robust and discriminating methods for Shigella identification and typing. Characteristically, all genes specifically involved in O-antigen synthesis are clustered in E. coli, Shigella, and Salmonella. Published oligonucleotide sequences complementary to JUMPstart and gene gnd, the conserved flanking sequences upstream and downstream of O-antigen gene clusters, were used to amplify the O-antigen gene cluster of representative strains of each Shigella serotype. A unique, amplified fragment was generally observed for each serotype (size ranging from 6 kbp to 17 kbp). Clearly identifiable and reproducible patterns were obtained for each serotype after MboII digestion of the products, except for S. boydii 12 which showed two distinct patterns, and S. flexneri serotypes 1 to 5 and X and Y which showed a single pattern. A database was built with the Taxotron package allowing automated identification of clinical Shigella isolates to all known serotypes.
Collapse
Affiliation(s)
- R S Coimbra
- Unité des entérobactéries, Inserm 389, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
50
|
Yamamoto S, Miyake K, Koike Y, Watanabe M, Machida Y, Ohta M, Iijima S. Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type Ia. J Bacteriol 1999; 181:5176-84. [PMID: 10464185 PMCID: PMC94020 DOI: 10.1128/jb.181.17.5176-5184.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type-specific capsular polysaccharide (CP) of a group B streptococcus, Streptococcus agalactiae type Ia, is a high-molecular-weight polymer consisting of the pentasaccharide repeating unit 4)-[alpha-D-NeupNAc-(2-->3)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1- ->3 )]-beta-D-Galp-(1-->4)-beta-D-Glcp-(1. Here, cloning, sequencing, and transcription of the type Ia-specific capsular polysaccharide synthesis (cps) genes and functional analysis of these gene products are described. A 26-kb DNA fragment containing 18 complete open reading frames (ORFs) was cloned. These ORFs were designated cpsIaA to cpsIaL, neu (neuraminic acid synthesis gene) A to D, orf1 and ung (uracil DNA glycosylase). The cps gene products of S. agalactiae type Ia were homologous to proteins involved in CP synthesis of S. agalactiae type III and S. pneumoniae serotype 14. Unlike the cps gene cluster of S. pneumoniae serotype 14, transcription of this operon may start from cpsIaA, cpsIaE, and orf1 because putative promoter sequences were found in front of these genes. Northern hybridization, reverse transcription-PCR, and primer extension analyses supported this hypothesis. DNA sequence analysis showed that there were two transcriptional terminators in the 3' end of this operon (downstream of orf1 and ung). The functions of CpsIaE, CpsIaG, CpsIaI, and CpsIaJ were examined by glycosyltransferase assay by using the gene products expressed in Escherichia coli JM109 harboring plasmids containing various S. agalactiae type Ia cps gene fragments. Enzyme assays suggested that the gene products of cpsIaE, cpsIaG, cpsIaI, and cpsIaJ are putative glucosyltransferase, beta-1, 4-galactosyltransferase, beta-1,3-N-acetylglucosaminyltransferase, and beta-1,4-galactosyltransferase, respectively.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | | | | | | | |
Collapse
|