1
|
Tricou LP, Mouton W, Cara A, Trouillet-Assant S, Bouvard D, Laurent F, Diot A, Josse J. Staphylococcus aureus can use an alternative pathway to be internalized by osteoblasts in absence of β1 integrins. Sci Rep 2024; 14:28643. [PMID: 39562631 PMCID: PMC11576967 DOI: 10.1038/s41598-024-78754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Staphylococcus aureus main internalization mechanism in osteoblasts relies on a tripartite interaction between bacterial fibronectin-binding proteins, extracellular matrix soluble fibronectin, and osteoblasts' β1 integrins. Caveolins, and particularly caveolin-1, have been shown to limit the plasma membrane microdomain mobility, and consequently reduce the uptake of S. aureus in keratinocytes. In this study, we aimed to deepen our understanding of the molecular mechanisms underlying S. aureus internalization in osteoblasts. Mechanistically, S. aureus internalization requires endosomal recycling of β1 integrins as well as downstream effectors such as Src, Rac1, and PAK1. Surprisingly, in β1 integrin deficient osteoblasts, S. aureus internalization is restored when Caveolin-1 is absent and requires αvβ3/5 integrins as backup fibronectin receptors. Altogether, our data support that β1 integrins regulate the level of detergent-resistant membrane at the plasma membrane in a an endosomal and Caveolin-1 dependent manner.
Collapse
Affiliation(s)
- Léo-Paul Tricou
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - William Mouton
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Andréa Cara
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Sophie Trouillet-Assant
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Daniel Bouvard
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, Montpellier, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, CNRS, UMR5308, ENS de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Lyon, France.
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France.
- Centre Interrégional de Référence pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
2
|
Goldmann O, Lang JC, Rohde M, May T, Molinari G, Medina E. Alpha-hemolysin promotes internalization of Staphylococcus aureus into human lung epithelial cells via caveolin-1- and cholesterol-rich lipid rafts. Cell Mol Life Sci 2024; 81:435. [PMID: 39412594 PMCID: PMC11488825 DOI: 10.1007/s00018-024-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Staphylococcus aureus is a pathogen associated with severe respiratory infections. The ability of S. aureus to internalize into lung epithelial cells complicates the treatment of respiratory infections caused by this bacterium. In the intracellular environment, S. aureus can avoid elimination by the immune system and the action of circulating antibiotics. Consequently, interfering with S. aureus internalization may represent a promising adjunctive therapeutic strategy to enhance the efficacy of conventional treatments. Here, we investigated the host-pathogen molecular interactions involved in S. aureus internalization into human lung epithelial cells. Lipid raft-mediated endocytosis was identified as the main entry mechanism. Thus, bacterial internalization was significantly reduced after the disruption of lipid rafts with methyl-β-cyclodextrin. Confocal microscopy confirmed the colocalization of S. aureus with lipid raft markers such as ganglioside GM1 and caveolin-1. Adhesion of S. aureus to α5β1 integrin on lung epithelial cells via fibronectin-binding proteins (FnBPs) was a prerequisite for bacterial internalization. A mutant S. aureus strain deficient in the expression of alpha-hemolysin (Hla) was significantly impaired in its capacity to enter lung epithelial cells despite retaining its capacity to adhere. This suggests a direct involvement of Hla in the bacterial internalization process. Among the receptors for Hla located in lipid rafts, caveolin-1 was essential for S. aureus internalization, whereas ADAM10 was dispensable for this process. In conclusion, this study supports a significant role of lipid rafts in S. aureus internalization into human lung epithelial cells and highlights the interaction between bacterial Hla and host caveolin-1 as crucial for the internalization process.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Julia C Lang
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
3
|
Moon S, Han S, Jang IH, Ryu J, Rha MS, Cho HJ, Yoon SS, Nam KT, Kim CH, Park MS, Seong JK, Lee WJ, Yoon JH, Chung YW, Ryu JH. Airway epithelial CD47 plays a critical role in inducing influenza virus-mediated bacterial super-infection. Nat Commun 2024; 15:3666. [PMID: 38693120 PMCID: PMC11063069 DOI: 10.1038/s41467-024-47963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.
Collapse
Affiliation(s)
- Sungmin Moon
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seunghan Han
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaechan Ryu
- Microenvironment and Immunity Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Ul Haq I, Khan TA, Krukiewicz K. Etiology, pathology, and host-impaired immunity in medical implant-associated infections. J Infect Public Health 2024; 17:189-203. [PMID: 38113816 DOI: 10.1016/j.jiph.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Host impaired immunity and pathogens adhesion factors are the key elements in analyzing medical implant-associated infections (MIAI). The infection chances are further influenced by surface properties of implants. This review addresses the medical implant-associated pathogens and summarizes the etiology, pathology, and host-impaired immunity in MIAI. Several bacterial and fungal pathogens have been isolated from MIAI; together, they form cross-kingdom species biofilms and support each other in different ways. The adhesion factors initiate the pathogen's adherence on the implant's surface; however, implant-induced impaired immunity promotes the pathogen's colonization and biofilm formation. Depending on the implant's surface properties, immune cell functions get slow or get exaggerated and cause immunity-induced secondary complications resulting in resistant depression and immuno-incompetent fibro-inflammatory zone that compromise implant's performance. Such consequences lead to the unavoidable and straightforward conclusion for the downstream transformation of new ideas, such as the development of multifunctional implant coatings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Taj Ali Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States; Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland.
| |
Collapse
|
5
|
Drumm SD, Cormican P, Owens RA, Mitchell J, Keane OM. Immunoproteomic analysis of the serum IgG response to cell wall-associated proteins of Staphylococcus aureus strains belonging to CC97 and CC151. Vet Res 2023; 54:79. [PMID: 37723537 PMCID: PMC10506246 DOI: 10.1186/s13567-023-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shauna D Drumm
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Seed Testing Laboratory, DAFM Laboratories, Backweston, Celbridge, Co. Kildare, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer Mitchell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
6
|
Dai J, Huang J, Wu S, Zhang F, Li Y, Rong D, Zhao M, Ye Q, Gu Q, Zhang Y, Wei X, Zhang J, Wu Q. Occurrence, Antibiotic Susceptibility, Biofilm Formation and Molecular Characterization of Staphylococcus aureus Isolated from Raw Shrimp in China. Foods 2023; 12:2651. [PMID: 37509743 PMCID: PMC10378822 DOI: 10.3390/foods12142651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to determine the prevalence and characterization of Staphylococcus aureus isolated from 145 shrimp samples from 39 cities in China. The results show that 41 samples (28%) from 24 cities were positive, and most of the positive samples (39/41, 95.1%) were less than 110 MPN/g. Antimicrobial susceptibility testing showed that only seven isolates were susceptible to all 24 antibiotics, whereas 65.1% were multidrug-resistant. Antibiotic resistance genes that confer resistance to β-lactams, aminoglycosides, tetracycline, macrolides, lincosamides and streptogramin B (MLSB), trimethoprim, fosfomycin and streptothricin antibiotics were detected. All S. aureus isolates had the ability to produce biofilm and harbored most of the biofilm-related genes. Genes encoding one or more of the important virulence factors staphylococcal enterotoxins (sea, seb and sec), toxic shock syndrome toxin 1 (tsst-1) and Panton-Valentine leukocidin (PVL) were detected in 47.6% (30/63) of the S. aureus isolates. Molecular typing showed that ST15-t085 (27.0%, 17/63), ST1-t127 (14.3%, 9/63) and ST188-t189 (11.1%, 7/63) were the dominant genetic types. The finding of this study provides the first comprehensive surveillance on the incidence of S. aureus in raw shrimp in China. Some retained genotypes found in this food have been linked to human infections around the world.
Collapse
Affiliation(s)
- Jingsha Dai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanyu Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Dongli Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miao Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
7
|
Dobrut A, Młodzińska A, Drożdż K, Wójcik-Grzybek D, Michalak K, Pietras-Ożga D, Karakulska J, Biegun K, Brzychczy-Włoch M. The Two-Track Investigation of Fibronectin Binding Protein A of Staphylococcus aureus from Bovine Mastitis as a Potential Candidate for Immunodiagnosis: A Pilot Study. Int J Mol Sci 2023; 24:ijms24076569. [PMID: 37047541 PMCID: PMC10094982 DOI: 10.3390/ijms24076569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Bovine mastitis is the most common disease affecting dairy cattle worldwide and it generates substantial losses for cattle breeders. One of the most common pathogens identified in infected milk samples is Staphylococcus aureus. Currently, there is no fast test for recognizing bacteria species on the market. The aim of this study was to bioinformatically and laboratory detect and characterize the fibronectin binding protein A (FnBPA) of S. aureus (SA) in milk samples obtained from cows diagnosed with mastitis. More than 90,000,000 amino acid sequences were subjected to bioinformatic detection in the search for a potential biomarker for bovine SA. The analysis of FnBPA included the detection of signal peptides and nonclassical proteins, antigenicity, and the prediction of epitopes. To confirm the presence of the fnbA gene in four SA isolates, amplification with specific primers was performed. FnBPA was detected by immunoblotting. The immunoreactivity and selectivity were performed with monoclonal anti-FnBPA antibodies and SA-negative serum. The bioinformatic analysis showed that FnBPA is a surface, conservative, immunoreactive, and species-specific protein with antigenic potential. Its presence was confirmed in all of the SA isolates we studied. Immunoblotting proved its immunoreactivity and specificity. Thus, it can be considered a potential biomarker in mastitis immunodiagnostics.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | | | - Kamil Drożdż
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | - Dagmara Wójcik-Grzybek
- Department of Experimental Physiology, Chair of Physiology, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Infectious Diseases Clinic, University of Life Science in Lublin, 20-033 Lublin, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Infectious Diseases Clinic, University of Life Science in Lublin, 20-033 Lublin, Poland
| | - Jolanta Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland
| | - Katarzyna Biegun
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| |
Collapse
|
8
|
Lyon LM, Doran KS, Horswill AR. Staphylococcus aureus Fibronectin-Binding Proteins Contribute to Colonization of the Female Reproductive Tract. Infect Immun 2023; 91:e0046022. [PMID: 36511703 PMCID: PMC9872658 DOI: 10.1128/iai.00460-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and frequent colonizer of human skin and mucosal membranes, including the vagina, with vaginal colonization reaching nearly 25% in some pregnant populations. MRSA vaginal colonization can lead to aerobic vaginitis (AV), and during pregnancy, bacterial ascension into the upper reproductive tract can lead to adverse birth outcomes. USA300, the most prominent MRSA lineage to colonize pregnant individuals, is a robust biofilm former and causative agent of invasive infections; however, little is known about how it colonizes and ascends in the female reproductive tract (FRT). Our previous studies showed that a MRSA mutant of seven fibrinogen-binding adhesins was deficient in FRT epithelial attachment and colonization. Using both monolayer and multilayer air-liquid interface cell culture models, we determine that one class of these adhesins, the fibronectin binding proteins (FnBPA and FnBPB), are critical for association with human vaginal epithelial cells (hVECs) and hVEC invasion through interactions with α5β1 integrin. We observe that both FnBPs are important for biofilm formation as single and double fnbAB mutants exhibit reduced biofilm formation on hVECs. Using heterologous expression of fnbA and fnbB in Staphylococcus carnosus, FnBPs are also found to be sufficient for hVEC cellular association, invasion, and biofilm formation. In addition, we found that an ΔfnbAB mutant displays attenuated ascension in our murine vaginal colonization model. Better understanding of MRSA FRT colonization and ascension can ultimately inform treatment strategies to limit MRSA vaginal burden or prevent ascension, especially during pregnancy and in those prone to AV.
Collapse
Affiliation(s)
- Laurie M. Lyon
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
9
|
Rodrigues Lopes I, Alcantara LM, Silva RJ, Josse J, Vega EP, Cabrerizo AM, Bonhomme M, Lopez D, Laurent F, Vandenesch F, Mano M, Eulalio A. Microscopy-based phenotypic profiling of infection by Staphylococcus aureus clinical isolates reveals intracellular lifestyle as a prevalent feature. Nat Commun 2022; 13:7174. [PMID: 36418309 PMCID: PMC9684519 DOI: 10.1038/s41467-022-34790-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is increasingly recognized as a facultative intracellular pathogen, although the significance and pervasiveness of its intracellular lifestyle remain controversial. Here, we applied fluorescence microscopy-based infection assays and automated image analysis to profile the interaction of 191 S. aureus isolates from patients with bone/joint infections, bacteremia, and infective endocarditis, with four host cell types, at five times post-infection. This multiparametric analysis revealed that almost all isolates are internalized and that a large fraction replicate and persist within host cells, presenting distinct infection profiles in non-professional vs. professional phagocytes. Phenotypic clustering highlighted interesting sub-groups, including one comprising isolates exhibiting high intracellular replication and inducing delayed host death in vitro and in vivo. These isolates are deficient for the cysteine protease staphopain A. This study establishes S. aureus intracellular lifestyle as a prevalent feature of infection, with potential implications for the effective treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Ines Rodrigues Lopes
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Laura Maria Alcantara
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jerome Josse
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Elena Pedrero Vega
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Ana Marina Cabrerizo
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Melanie Bonhomme
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Daniel Lopez
- grid.4711.30000 0001 2183 4846National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Frederic Laurent
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Francois Vandenesch
- grid.15140.310000 0001 2175 9188Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France ,grid.413852.90000 0001 2163 3825Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Miguel Mano
- grid.8051.c0000 0000 9511 4342Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Department of Life Sciences, University of Coimbra, Coimbra, Portugal ,grid.13097.3c0000 0001 2322 6764British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, United Kingdom
| | - Ana Eulalio
- grid.8051.c0000 0000 9511 4342RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Lu Y, Cai WJ, Ren Z, Han P. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms 2022; 10:1909. [PMID: 36296183 PMCID: PMC9612000 DOI: 10.3390/microorganisms10101909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, implant-associated infection remains a major challenge for orthopedic surgeries. The subject of bacterial biofilms is receiving increasing attention, probably as a result of the wide acknowledgement of the ubiquity of biofilms in the clinical environment, as well as the extreme difficulty in eradicating them. Biofilm can be defined as a structured microbial community of cells that are attached to a substratum and embedded in a matrix of extracellular polymeric substances (EPS) that they have produced. Biofilm development has been proposed as occurring in a multi-step process: (i) attachment and adherence, (ii) accumulation/maturation due to cellular aggregation and EPS production, and (iii) biofilm detachment (also called dispersal) of bacterial cells. In all these stages, characteristic proteinaceous and non-proteinaceous compounds are expressed, and their expression is strictly controlled. Bacterial biofilm formation around implants shelters the bacteria and encourages the persistence of infection, which could lead to implant failure and osteomyelitis. These complications need to be treated by major revision surgeries and extended antibiotic therapies, which could lead to high treatment costs and even increase mortality. Effective preventive and therapeutic measures to reduce risks for implant-associated infections are thus in urgent need.
Collapse
Affiliation(s)
| | | | | | - Pei Han
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Maurin C, Courrier E, He Z, Rigaill J, Josse J, Laurent F, Gain P, Thuret G, Verhoeven PO. Key Role of Staphylococcal Fibronectin-Binding Proteins During the Initial Stage of Staphylococcus aureus Keratitis in Humans. Front Cell Infect Microbiol 2021; 11:745659. [PMID: 34858871 PMCID: PMC8630648 DOI: 10.3389/fcimb.2021.745659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives Staphylococcus aureus is one of the main causes of bacterial keratitis in humans. This study was aimed at investigating the mechanisms of S. aureus adhesion to the human corneal epithelium involved during the initial stage of infectious keratitis. Methods Human corneas stored in a specific active storage machine that restores a normal pluristratified epithelium were used to assess S. aureus adhesion level to intact and injured tissues using immunostaining. S. aureus adhesion to immobilized fibronectin was measured in microtiter plate. Internalization of S. aureus clinical isolates recovered from keratitis was assessed on human corneal epithelial HCE-2 cells. Results Superficial corneal injury unmasked fibronectin molecules expressed within the human corneal epithelium. S. aureus adhesion level was increased by 117-fold in the area of injured epithelium (p < 0.0001). The deletion of staphylococcal fnbA/B genes decreased by 71% the adhesion level to immobilized fibronectin (p < 0.001). The deletion of fnbA/B genes and the incubation of the corneas with anti-fibronectin blocking antibodies prior to the infection significantly reduced the S. aureus adhesion level to injured corneal epithelium (p < 0.001). Finally, S. aureus clinical isolates triggered its internalization in human corneal epithelial cells as efficiently as the 8325-4 wt. Conclusion S. aureus was almost unable to bind the intact corneal epithelium, whereas a superficial epithelial injury of the corneal epithelium strongly increased S. aureus adhesion, which is mainly driven by the interaction between staphylococcal fibronectin-binding proteins and unmasked fibronectin molecules located underneath the most superficial layer of the corneal epithelium.
Collapse
Affiliation(s)
- Corantin Maurin
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France
| | - Emilie Courrier
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France
| | - Zhiguo He
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France
| | - Josselin Rigaill
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne, France
| | - Jérôme Josse
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal Pathogenesis Team, University of Lyon, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal Pathogenesis Team, University of Lyon, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Department of Bacteriology, Institute for Infectious Agents, Hospices Civiles de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Philippe Gain
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France.,Department of Ophthalmology, University Hospital, St-Etienne, France
| | - Gilles Thuret
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France.,Department of Ophthalmology, University Hospital, St-Etienne, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne, France
| |
Collapse
|
12
|
Casillas-Ituarte NN, Staats AM, Lower BH, Stoodley P, Lower SK. Host blood proteins as bridging ligand in bacterial aggregation as well as anchor point for adhesion in the molecular pathogenesis of Staphylococcus aureus infections. Micron 2021; 150:103137. [PMID: 34392091 PMCID: PMC8484042 DOI: 10.1016/j.micron.2021.103137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Fibronectin (Fn) and fibrinogen (Fg) are major host proteins present in the extracellular matrix, blood, and coatings on indwelling medical devices. The ability of Staphylococcus aureus to cause infections in humans depends on favorable interactions with these host ligands. Closely related bacterial adhesins, fibronectin-binding proteins A and B (FnBPA, FnBPB) were evaluated for two key steps in pathogenesis: clumping and adhesion. Experiments utilized optical spectrophotometry, flow cytometry, and atomic force microscopy to probe FnBPA/B alone or in combination in seven different strains of S. aureus and Lactococcus lactis, a Gram-positive surrogate that naturally lacks adhesins to mammalian ligands. In the absence of soluble ligands, both FnBPA and FnBPB were capable of interacting with adjacent FnBPs from neighboring bacteria to mediate clumping. In the presence of soluble host ligands, clumping was enhanced particularly under shear stress and with Fn present in the media. FnBPB exhibited greater ability to clump compared to FnBPA. The strength of adhesion was similar for immobilized Fn to FnBPA and FnBPB. These findings suggest that these two distinct but closely related bacterial adhesins, have different functional capabilities to interact with host ligands in different settings (e.g., soluble vs. immobilized). Survival and persistence of S. aureus in a human host may depend on complementary roles of FnBPA and FnBPB as they interact with different conformations of Fn or Fg (compact in solution vs. extended on a surface) present in different physiological spaces.
Collapse
Affiliation(s)
- Nadia N Casillas-Ituarte
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA; School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43210, USA.
| | - Amelia M Staats
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, 43210, Columbus, OH, USA
| | - Brian H Lower
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul Stoodley
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, 43210, Columbus, OH, USA; Department of Orthopaedics, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven K Lower
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA; School of Environment and Natural Resources, The Ohio State University, Columbus, OH, 43210, USA; Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, 43210, Columbus, OH, USA
| |
Collapse
|
13
|
Sanabria AM, Janice J, Hjerde E, Simonsen GS, Hanssen AM. Shotgun-metagenomics based prediction of antibiotic resistance and virulence determinants in Staphylococcus aureus from periprosthetic tissue on blood culture bottles. Sci Rep 2021; 11:20848. [PMID: 34675288 PMCID: PMC8531021 DOI: 10.1038/s41598-021-00383-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Shotgun-metagenomics may give valuable clinical information beyond the detection of potential pathogen(s). Identification of antimicrobial resistance (AMR), virulence genes and typing directly from clinical samples has been limited due to challenges arising from incomplete genome coverage. We assessed the performance of shotgun-metagenomics on positive blood culture bottles (n = 19) with periprosthetic tissue for typing and prediction of AMR and virulence profiles in Staphylococcus aureus. We used different approaches to determine if sequence data from reads provides more information than from assembled contigs. Only 0.18% of total reads was derived from human DNA. Shotgun-metagenomics results and conventional method results were consistent in detecting S. aureus in all samples. AMR and known periprosthetic joint infection virulence genes were predicted from S. aureus. Mean coverage depth, when predicting AMR genes was 209 ×. Resistance phenotypes could be explained by genes predicted in the sample in most of the cases. The choice of bioinformatic data analysis approach clearly influenced the results, i.e. read-based analysis was more accurate for pathogen identification, while contigs seemed better for AMR profiling. Our study demonstrates high genome coverage and potential for typing and prediction of AMR and virulence profiles in S. aureus from shotgun-metagenomics data.
Collapse
Affiliation(s)
- Adriana Maria Sanabria
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jessin Janice
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Norwegian Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Centre for Bioinformatics, Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Skov Simonsen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
14
|
Staphylococcus aureus internalization impairs osteoblastic activity and early differentiation process. Sci Rep 2021; 11:17685. [PMID: 34480054 PMCID: PMC8417294 DOI: 10.1038/s41598-021-97246-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is the most frequent aetiology of bone and joint infections (BJI) and can cause relapsing and chronic infections. One of the main factors involved in the chronicization of staphylococcal BJIs is the internalization of S. aureus into osteoblasts, the bone-forming cells. Previous studies have shown that S. aureus triggers an impairment of osteoblasts function that could contribute to bone loss. However, these studies focused mainly on the extracellular effects of S. aureus. Our study aimed at understanding the intracellular effects of S. aureus on the early osteoblast differentiation process. In our in vitro model of osteoblast lineage infection, we first observed that internalized S. aureus 8325-4 (a reference lab strain) significantly impacted RUNX2 and COL1A1 expression compared to its non-internalized counterpart 8325-4∆fnbAB (with deletion of fnbA and fnbB). Then, in a murine model of osteomyelitis, we reported no significant effect for S. aureus 8325-4 and 8325-4∆fnbAB on bone parameters at 7 days post-infection whereas S. aureus 8325-4 significantly decreased trabecular bone thickness at 14 days post-infection compared to 8325-4∆fnbAB. When challenged with two clinical isogenic strains isolated from initial and relapse phase of the same BJI, significant impairments of bone parameters were observed for both initial and relapse strain, without differences between the two strains. Finally, in our in vitro osteoblast infection model, both clinical strains impacted alkaline phosphatase activity whereas the expression of bone differentiation genes was significantly decreased only after infection with the relapse strain. Globally, we highlighted that S. aureus internalization into osteoblasts is responsible for an impairment of the early differentiation in vitro and that S. aureus impaired bone parameters in vivo in a strain-dependent manner.
Collapse
|
15
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
16
|
Petrie LE, Leonard AC, Murphy J, Cox G. Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands. J Biol Chem 2020; 295:16700-16712. [PMID: 32978256 PMCID: PMC7864066 DOI: 10.1074/jbc.ra120.015360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.
Collapse
Affiliation(s)
- Laurenne E Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Julia Murphy
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
17
|
Schlesier T, Siegmund A, Rescher U, Heilmann C. Characterization of the Atl-mediated staphylococcal internalization mechanism. Int J Med Microbiol 2020; 310:151463. [PMID: 33197865 DOI: 10.1016/j.ijmm.2020.151463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus internalization by non-professional phagocytes is considered a main pathogenicity mechanism leading to chronic infections. The well-established mechanism of Staphylococcus aureus internalization is mediated by fibronectin (Fn)-binding proteins (FnBPs), Fn as a bridging molecule and the host cell α5β1 integrin. We previously identified a novel alternative internalization mechanism in Staphylococcus aureus, which involves the major autolysin Atl and the host cell heat shock cognate protein 70 (Hsc70). Atl-dependent internalization is also employed by the coagulase-negative Staphylococcus epidermidis, where it might represent the major or even sole internalization mechanism, because of the lack of FnBP-homologous proteins. In this study, we aimed to further characterize the Atl-dependent staphylococcal internalization mechanism. We performed biomolecular interaction analysis (BIA) to quantify the adhesive properties of Atl and found multivalent and high affinity interactions of Atl with Fn and Hsc70. Confocal laser scanning microscopy (CLSM) and a flow-cytometric internalization assay in combination with different pharmacological inhibitors suggested an involvement of the α5β1 integrin, Fn and Hsc70 and subsequent signaling events mediated by Src and phosphoinositide 3 (PI3) kinases in the Atl-dependent staphylococcal uptake by EA.hy 926 cells. Further characterization of the endocytic machinery implicated a role for clathrin-dependent receptor-mediated endocytosis involving actin cytoskeletal rearrangements and microtubules. In conclusion, Atl ubiquitous among staphylococcal species may substitute for the FnBPs ensuring low-level internalization via a mechanism that seems to share important features with the FnBP-mediated staphylococcal uptake potentially being the prerequisite for the development of therapy-resistant chronic infections by staphylococcal strains that lack FnBPs.
Collapse
Affiliation(s)
- Tim Schlesier
- Institute of Medical Microbiology, D-48149, Münster, Germany
| | - Anke Siegmund
- Institute of Medical Microbiology, University Hospital of Jena, D-07747, Jena, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), D-48149, Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University Hospital of Münster, D-48149, Münster, Germany
| | - Christine Heilmann
- Institute of Medical Microbiology, D-48149, Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University Hospital of Münster, D-48149, Münster, Germany.
| |
Collapse
|
18
|
Speziale P, Pietrocola G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front Microbiol 2020; 11:2054. [PMID: 32983039 PMCID: PMC7480013 DOI: 10.3389/fmicb.2020.02054] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus, one of the most important human pathogens, is the causative agent of several infectious diseases including sepsis, pneumonia, osteomyelitis, endocarditis and soft tissue infections. This pathogenicity is due to a multitude of virulence factors including several cell wall-anchored proteins (CWA). CWA proteins have modular structures with distinct domains binding different ligands. The majority of S. aureus strains express two CWA fibronectin (Fn)-binding adhesins FnBPA and FnBPB (Fn-binding proteins A and B), which are encoded by closely related genes. The N-terminus of FnBPA and FnBPB comprises an A domain which binds ligands such as fibrinogen, elastin and plasminogen. The A domain of FnBPB also interacts with histones and this binding results in the neutralization of the antimicrobial activity of these molecules. The C-terminal moiety of these adhesins comprises a long, intrinsically disordered domain composed of 11/10 fibronectin-binding repeats. These repetitive motifs of FnBPs promote invasion of cells that are not usually phagocytic via a mechanism by which they interact with integrin α5β1 through a Fn mediated-bridge. The FnBPA and FnBPB A domains engage in homophilic cell-cell interactions and promote biofilm formation and enhance platelet aggregation. In this review we update the current understanding of the structure and functional properties of FnBPs and emphasize the role they may have in the staphylococcal infections.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
20
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
21
|
Kim CJ, Song KH, Choe PG, Park WB, Kim ES, Park KU, Kim NJ, Park KH, Kwak YG, Cheon S, Jang HC, Kim YK, Lee SH, Kiem SM, Lee S, Kim HB, Oh MD. The microbiological characteristics of Staphylococcus aureus isolated from patients with native valve infective endocarditis. Virulence 2020; 10:948-956. [PMID: 31718473 PMCID: PMC8647854 DOI: 10.1080/21505594.2019.1685631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The microbiological characteristics of Staphylococcus aureus causing infective endocarditis (IE) have not been investigated thoroughly. We compared the characteristics of S. aureus isolates from patients with and without IE. Cases of S. aureus bacteremia (SAB) were collected from 10 hospitals over 7 years. Cases of native valve IE were matched with non-IE controls according to the following criteria: central-line-associated infection, community-acquired infection, methicillin susceptibility, and if possible, the primary site of infection. Genes coding virulence factors were analyzed using multiplex polymerase chain reactions. Fibrinogen and fibronectin-binding properties were assessed using in vitro binding assays. The fibronectin-binding protein A gene (fnbpA) was sequenced. Of 2,365 cases of SAB, 92 had IE. After matching, 37 pairs of S. aureus isolates from the IE cases and non-IE controls were compared; fnbpA was detected in 91.9% of the IE isolates and 100% of the non-IE isolates (p = 0.24). While the fibrinogen binding ratio was similar (1.07 ± 0.33 vs. 1.08 ± 0.26, p = 0.89), the fibronectin-binding ratio was significantly higher in the IE-group (1.31 ± 0.42 vs. 1.06 ± 0.31, p = 0.01). The proportions of major single-nucleotide polymorphisms in fnbpA were as follows: E652D (2.9% vs. 2.7%), H782Q (65.6% vs. 60.6%), and K786N (65.6% vs. 72.7%). The fibronectin-binding ratio was positively correlated with the number of SNPs present in IE cases (p < 0.001) but not in the non-IE controls (p = 0.124). Fibronectin-binding might play a key role in SAB IE. However, the degree of binding may be mediated by genetic variability between isolates.
Collapse
Affiliation(s)
- Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yee Gyung Kwak
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Shinhye Cheon
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejon, Republic of Korea
| | - Hee-Chang Jang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Young Keun Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sun Hee Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sung-Min Kiem
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Shinwon Lee
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, South Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
22
|
Identification and Characterization of Staphylococcus delphini Internalization Pathway in Nonprofessional Phagocytic Cells. Infect Immun 2020; 88:IAI.00002-20. [PMID: 32094259 DOI: 10.1128/iai.00002-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
The intracellular lifestyle of bacteria is widely acknowledged to be an important mechanism in chronic and recurring infection. Among the Staphylococcus genus, only Staphylococcus aureus and Staphylococcus pseudintermedius have been clearly identified as intracellular in nonprofessional phagocytic cells (NPPCs), for which the mechanism is mainly fibronectin-binding dependent. Here, we used bioinformatics tools to search for possible new fibronectin-binding proteins (FnBP-like) in other Staphylococcus species. We found a protein in Staphylococcus delphini called Staphylococcus delphini surface protein Y (SdsY). This protein shares 68% identity with the Staphylococcus pseudintermedius surface protein D (SpsD), 36% identity with S. aureus FnBPA, and 39% identity with S. aureus FnBPB. The SdsY protein possesses the typical structure of FnBP-like proteins, including an N-terminal signal sequence, an A domain, a characteristic repeated pattern, and an LPXTG cell wall anchor motif. The level of adhesion to immobilized fibronectin was significantly higher in all S. delphini strains tested than in the fibronectin-binding-deficient S. aureus DU5883 strain. By using a model of human osteoblast infection, the level of internalization of all strains tested was significantly higher than with the invasive-incompetent S. aureus DU5883. These findings were confirmed by phenotype restoration after transformation of DU5883 by a plasmid expression vector encoding the SdsY repeats. Additionally, using fibronectin-depleted serum and murine osteoblast cell lines deficient for the β1 integrin, the involvement of fibronectin and β1 integrin was demonstrated in S. delphini internalization. The present study demonstrates that additional staphylococcal species are able to invade NPPCs and proposes a method to identify FnBP-like proteins.
Collapse
|
23
|
Konkel ME, Talukdar PK, Negretti NM, Klappenbach CM. Taking Control: Campylobacter jejuni Binding to Fibronectin Sets the Stage for Cellular Adherence and Invasion. Front Microbiol 2020; 11:564. [PMID: 32328046 PMCID: PMC7161372 DOI: 10.3389/fmicb.2020.00564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni, a foodborne pathogen, is one of the most common bacterial causes of gastroenteritis in the world. Undercooked poultry, raw (unpasteurized) dairy products, untreated water, and contaminated produce are the most common sources associated with infection. C. jejuni establishes a niche in the gut by adhering to and invading epithelial cells, which results in diarrhea with blood and mucus in the stool. The process of colonization is mediated, in part, by surface-exposed molecules (adhesins) that bind directly to host cell ligands or the extracellular matrix (ECM) surrounding cells. In this review, we introduce the known and putative adhesins of the foodborne pathogen C. jejuni. We then focus our discussion on two C. jejuni Microbial Surface Components Recognizing Adhesive Matrix Molecule(s) (MSCRAMMs), termed CadF and FlpA, which have been demonstrated to contribute to C. jejuni colonization and pathogenesis. In vitro studies have determined that these two surface-exposed proteins bind to the ECM glycoprotein fibronectin (FN). In vivo studies have shown that cadF and flpA mutants exhibit impaired colonization of chickens compared to the wild-type strain. Additional studies have revealed that CadF and FlpA stimulate epithelial cell signaling pathways necessary for cell invasion. Interestingly, CadF and FlpA have distinct FN-binding domains, suggesting that the functions of these proteins are non-redundant. In summary, the binding of FN by C. jejuni CadF and FlpA adhesins has been demonstrated to contribute to adherence, invasion, and cell signaling.
Collapse
Affiliation(s)
- Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | | | | | | |
Collapse
|
24
|
Talukdar PK, Negretti NM, Turner KL, Konkel ME. Molecular Dissection of the Campylobacter jejuni CadF and FlpA Virulence Proteins in Binding to Host Cell Fibronectin. Microorganisms 2020; 8:E389. [PMID: 32168837 PMCID: PMC7143056 DOI: 10.3390/microorganisms8030389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni, a zoonotic pathogen that frequently colonizes poultry, possesses two Microbial Surface Components Recognizing Adhesive Matrix Molecule(s) (MSCRAMMs) termed CadF and FlpA that bind to the glycoprotein fibronectin (FN). Previous to this study, it was not known whether the CadF and FlpA proteins were functionally redundant or if both were required to potentiate host cell binding and signaling processes. We addressed these questions by generating a complete repertoire of cadF and flpA mutants and complemented isolates, and performing multiple phenotypic assays. Both CadF and FlpA were found to be necessary for the maximal binding of C. jejuni to FN and to host cells. In addition, both CadF and FlpA are required for the delivery of the C. jejuni Cia effector proteins into the cytosol of host target cells, which in turn activates the MAPK signaling pathway (Erk 1/2) that is required for the C. jejuni invasion of host cells. These data demonstrate the non-redundant and bi-functional nature of these two C. jejuni FN-binding proteins. Taken together, the C. jejuni CadF and FlpA adhesins facilitate the binding of C. jejuni to the host cells, permit delivery of effector proteins into the cytosol of a host target cell, and aid in the rewiring of host cell signaling pathways to alter host cell behavior.
Collapse
Affiliation(s)
| | | | | | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7520, USA; (P.K.T.); (N.M.N.); (K.L.T.)
| |
Collapse
|
25
|
Haghi Ghahremanloi Olia A, Ghahremani M, Ahmadi A, Sharifi Y. Comparison of biofilm production and virulence gene distribution among community- and hospital-acquired Staphylococcus aureus isolates from northwestern Iran. INFECTION GENETICS AND EVOLUTION 2020; 81:104262. [PMID: 32109606 DOI: 10.1016/j.meegid.2020.104262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The emergence of antimicrobial-resistant isolates among Staphylococcus aureus and their genetic variations has become a major concern worldwide. The present study aims at comparing the biofilm formation and the genes encoding adhesion molecules in methicillin-susceptible, community- and hospital-acquired methicillin-resistant, vancomycin-intermediate and vancomycin-resistant S. aureus isolates. METHODOLOGY The current study was conducted on 60 S.aureus isolates, collected at Urmia University of Medical Sciences, Iran, between the years 2014 and 2015. The modified Congo-red agar and Microtiter plate methods were used to determine biofilm production. PCR was used to detect the genes which were associated with a protein family of staphylococcal microbial surface components recognizing adhesive matrix molecules. The data were analyzed using SPSS (IBM SPSS Statistics, version 16). RESULTS Of 60 isolates, 57 (95%) were biofilm producers. Unlike the bbp gene, which was only detected in 3 (5%) isolates, the eno and icaD genes were identified as the most prevalent as they were detected in 53 (88.3%) and 50 (85%) of 60 isolates, respectively. The dominant virulotype comprised eight genes (icaA, icaD, clfA, clfB, fnbA, cna, eno, ebpS) in eight isolates, six of which were community-acquired-MRSAs. CONCLUSION A high percentage of the S. aureus isolates could produce a biofilm which is more common among methicillin-susceptible isolates. The high frequency of eno and icaD genes suggests that these genes may synergistically function in the onset and progression of bacterial colonization and biofilm formation. Meanwhile, this ability may help the bacteria resist the exposure of antibacterial agents and cause severe infections.
Collapse
Affiliation(s)
- Ali Haghi Ghahremanloi Olia
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Maryam Ghahremani
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yaeghob Sharifi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran; Cellular and molecular research center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran.
| |
Collapse
|
26
|
Luqman A, Ebner P, Reichert S, Sass P, Kabagema-Bilan C, Heilmann C, Ruth P, Götz F. A new host cell internalisation pathway for SadA-expressing staphylococci triggered by excreted neurochemicals. Cell Microbiol 2019; 21:e13044. [PMID: 31099148 PMCID: PMC6771854 DOI: 10.1111/cmi.13044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a facultative intracellular pathogen that invades a wide range of professional and nonprofessional phagocytes by triggering internalisation by interaction of surface‐bound adhesins with corresponding host cell receptors. Here, we identified a new concept of host cell internalisation in animal‐pathogenic staphylococcal species. This new mechanism exemplified by Staphylococcus pseudintermedius ED99 is not based on surface‐bound adhesins but is due to excreted small neurochemical compounds, such as trace amines (TAs), dopamine (DOP), and serotonin (SER), that render host cells competent for bacterial internalisation. The neurochemicals are produced by only one enzyme, the staphylococcal aromatic amino acid decarboxylase (SadA). Here, we unravelled the mechanism of how neurochemicals trigger internalisation into the human colon cell line HT‐29. We found that TAs and DOP are agonists of the α2‐adrenergic receptor, which, when activated, induces a cascade of reactions involving a decrease in the cytoplasmic cAMP level and an increase in F‐actin formation. The signalling cascade of SER follows a different pathway. SER interacts with 5HT receptors that trigger F‐actin formation without decreasing the cytoplasmic cAMP level. The neurochemical‐induced internalisation in host cells is independent of the fibronectin‐binding protein pathway and has an additive effect. In a sadA deletion mutant, ED99ΔsadA, internalisation was decreased approximately threefold compared with that of the parent strain, and treating S. aureus USA300 with TAs increased internalisation by approximately threefold.
Collapse
Affiliation(s)
- Arif Luqman
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.,Microbiology Division, Generasi Biologi Indonesia (Genbinesia) Foundation, Gresik, Indonesia
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Sebastian Reichert
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Peter Sass
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | | | - Christine Heilmann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Peter Ruth
- Institute for Pharmacy, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Laumay F, Corvaglia AR, Diene SM, Girard M, Oechslin F, van der Mee-Marquet N, Entenza JM, François P. Temperate Prophages Increase Bacterial Adhesin Expression and Virulence in an Experimental Model of Endocarditis Due to Staphylococcus aureus From the CC398 Lineage. Front Microbiol 2019; 10:742. [PMID: 31105650 PMCID: PMC6492496 DOI: 10.3389/fmicb.2019.00742] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/25/2019] [Indexed: 01/13/2023] Open
Abstract
Until 2007, Staphylococcus aureus from clonal complex 398 (CC398) was exclusively associated with livestock species and companion animals. Recently, several studies described the emergence of S. aureus CC398 as etiologies of severe infections in humans living in an animal-free environment. Recent sequencing efforts showed that the mobile genetic elements found in CC398 isolates were specific for each population and enabled differentiation of strains responsible for asymptomatic colonization from strains involved in bloodstream infections. We mobilized prophages from a human CC398 isolate and introduced them into two naïve ancestral isolates devoid of prophages that exclusively colonize animals. These lysogenized ancestral CC398 isolates acquired features related to virulence, such as an increased capacity to adhere to human extracellular matrix proteins and the ability to invade and survive within non-phagocytic cells. Pathogenicity of several clinical isolates from the CC398 lineage as well as ancestral and in vitro lysogenized ancestral counterparts was assessed in a model of infectious endocarditis in rats. Natural and artificial lysogens were not only more invasive than their prophage-free parent but also showed an increased capacity to multiply within aortic vegetations. This study identified prophages as mediators of bacterial virulence in a model of infectious endocarditis, probably through promotion of interaction with extracellular matrix components. Further studies are needed to identify mechanisms leading to promotion of intrinsic virulence.
Collapse
Affiliation(s)
- Floriane Laumay
- Genomic Research Laboratory, Service of Infectious Diseases, Medical University Center, Geneva University Hospitals, Geneva, Switzerland
| | - Anna-Rita Corvaglia
- Genomic Research Laboratory, Service of Infectious Diseases, Medical University Center, Geneva University Hospitals, Geneva, Switzerland
| | - Seydina M Diene
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine et de Pharmacie, Aix-Marseille University, Marseille, France
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Medical University Center, Geneva University Hospitals, Geneva, Switzerland
| | - Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - José Manuel Entenza
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, Medical University Center, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
28
|
Pietrocola G, Nobile G, Alfeo MJ, Foster TJ, Geoghegan JA, De Filippis V, Speziale P. Fibronectin-binding protein B (FnBPB) from Staphylococcus aureus protects against the antimicrobial activity of histones. J Biol Chem 2019; 294:3588-3602. [PMID: 30622139 DOI: 10.1074/jbc.ra118.005707] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that can cause both superficial and deep-seated infections. Histones released by neutrophils kill bacteria by binding to the bacterial cell surface and causing membrane damage. We postulated that cell wall-anchored proteins protect S. aureus from the bactericidal effects of histones by binding to and sequestering histones away from the cell envelope. Here, we focused on S. aureus strain LAC and by using an array of biochemical assays, including surface plasmon resonance and ELISA, discovered that fibronectin-binding protein B (FnBPB) is the main histone receptor. FnBPB bound all types of histones, but histone H3 displayed the highest affinity and bactericidal activity and was therefore investigated further. H3 bound specifically to the A domain of recombinant FnBPB with a KD of 86 nm, ∼20-fold lower than that for fibrinogen. Binding apparently occurred by the same mechanism by which FnBPB binds to fibrinogen, because FnBPB variants defective in fibrinogen binding also did not bind H3. An FnBPB-deletion mutant of S. aureus LAC bound less H3 and was more susceptible to its bactericidal activity and to neutrophil extracellular traps, whereas an FnBPB-overexpressing mutant bound more H3 and was more resistant than the WT. FnBPB bound simultaneously to H3 and plasminogen, which after activation by tissue plasminogen activator cleaved the bound histone. We conclude that FnBPB provides a dual immune-evasion function that captures histones and prevents them from reaching the bacterial membrane and simultaneously binds plasminogen, thereby promoting its conversion to plasmin to destroy the bound histone.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy,
| | - Giulia Nobile
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Mariangela J Alfeo
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Timothy J Foster
- the Microbiology Department, Trinity College Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Dublin 2, Ireland
| | - Vincenzo De Filippis
- the Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 36131 Padova, Italy, and
| | - Pietro Speziale
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy, .,the Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
29
|
Harraghy N, Seiler S, Jacobs K, Hannig M, Menger MD, Herrmann M. Advances in in Vitro and in Vivo Models for Studying the Staphylococcal Factors Involved in Implant Infections. Int J Artif Organs 2018; 29:368-78. [PMID: 16705605 DOI: 10.1177/039139880602900406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implant infections due to staphylococci are one of the greatest threats facing patients receiving implant devices. For many years researchers have sought to understand the mechanisms involved in the adherence of the bacterium to the implanted device and the formation of the unique structure, the biofilm, which protects the indwelling bacteria from the host defence and renders them resistant to antibiotic treatment. A major goal has been to develop in vitro and in vivo models that adequately reflect the real-life situation. From the simple microtiter plate assay and scanning electron microscopy, tools for studying adherence and biofilm formation have since evolved to include specialised equipment for studying adherence, flow cell systems, real-time analysis of biofilm formation using reporter gene assays both in vitro and in vivo, and a wide variety of animal models. In this article, we discuss advances in the last few years in selected in vitro and in vivo models as well as future developments in the study of adherence and biofilm formation by the staphylococci.
Collapse
Affiliation(s)
- N Harraghy
- Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Schulz LT, Dworkin E, Dela-Pena J, Rose WE. Multiple-Dose Oritavancin Evaluation in a Retrospective Cohort of Patients with Complicated Infections. Pharmacotherapy 2017; 38:152-159. [DOI: 10.1002/phar.2057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Emily Dworkin
- Massachusetts General Hospital; Boston Massachusetts
| | | | - Warren E. Rose
- University of Wisconsin School of Pharmacy; Madison Wisconsin
| |
Collapse
|
31
|
Abstract
Invasive bacterial pathogens can capture host plasminogen (Plg) and allow it to form plasmin. This process is of medical importance as surface-bound plasmin promotes bacterial spread by cleaving tissue components and favors immune evasion by degrading opsonins. In Staphylococcus aureus, Plg binding is in part mediated by cell surface fibronectin-binding proteins (FnBPs), but the underlying molecular mechanism is not known. Here, we use single-cell and single-molecule techniques to demonstrate that FnBPs capture Plg by a sophisticated activation mechanism involving fibrinogen (Fg), another ligand found in the blood. We show that while FnBPs bind to Plg through weak (∼200-pN) molecular bonds, direct interaction of the adhesins with Fg through the high-affinity dock, lock, and latch mechanism dramatically increases the strength of the FnBP-Plg bond (up to ∼2,000 pN). Our results point to a new model in which the binding of Fg triggers major conformational changes in the FnBP protein, resulting in the buried Plg-binding domains being projected and exposed away from the cell surface, thereby promoting strong interactions with Plg. This study demonstrated a previously unidentified role for a ligand-binding interaction by a staphylococcal cell surface protein, i.e., changing the protein orientation to activate a cryptic biological function. Staphylococcus aureus captures human plasminogen (Plg) via cell wall fibronectin-binding proteins (FnBPs), but the underlying molecular mechanism is not known. Here we show that the forces involved in the interaction between Plg and FnBPs on the S. aureus surface are weak. However, we discovered that binding of fibrinogen to FnBPs dramatically strengthens the FnBP-Plg bond, therefore revealing an unanticipated role for Fg in the capture of Plg by S. aureus. These experiments favor a model where Fg-induced conformational changes in FnBPs promote their interaction with Plg. This work uncovers a previously undescribed activation mechanism for a staphylococcal surface protein, whereby ligand-binding elicits a cryptic biological function.
Collapse
|
32
|
O'Gara JP. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ Microbiol 2017. [PMID: 28631399 DOI: 10.1111/1462-2920.13833] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colonisation of the human skin by Staphylococcus aureus is a precursor for a variety of infections ranging from boils to sepsis and pneumonia. The rapid emergence of methicillin-resistant S. aureus following the clinical introduction of this antimicrobial drug and reports of resistance to all currently used anti-staphylococcal drugs has added to its formidable reputation. S. aureus survival on the skin and in vivo virulence is underpinned by a remarkable environmental adaptability, made possible by highly orchestrated regulation of gene expression and a capacity to undertake genome remodelling. Depending on the ecological or infection niche, controlled expression of a variety of adhesins can be initiated to facilitate adherence to extracellular matrix proteins, survival against desiccation or biofilm accumulation on implanted medical devices and host tissue. These adherence mechanisms complement toxin and enzyme production, immune evasion strategies, and antibiotic resistance and tolerance to collectively thwart efforts to develop reliable antimicrobial drug regimens and an effective S. aureus vaccine.
Collapse
Affiliation(s)
- James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
33
|
Sjollema J, van der Mei HC, Hall CL, Peterson BW, de Vries J, Song L, Jong EDD, Busscher HJ, Swartjes JJTM. Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. Sci Rep 2017; 7:4369. [PMID: 28663565 PMCID: PMC5491521 DOI: 10.1038/s41598-017-04703-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/08/2017] [Indexed: 01/15/2023] Open
Abstract
Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through multiple, reversibly-binding tethers that detach and successively re-attach, but not collectively detach to cause detachment of an entire bacterium. Arguments build on combining analyses of confined Brownian-motion of bacteria adhering to glass and their AFM force-distance curves and include the following observations: (1) force-distance curves showed detachment events indicative of multiple binding tethers, (2) vibration amplitudes of adhering bacteria parallel to a surface decreased with increasing adhesion-forces acting perpendicular to the surface, (3) nanoscopic displacements of bacteria with relatively long autocorrelation times up to several seconds, in absence of microscopic displacement, (4) increases in Mean-Squared-Displacement over prolonged time periods according to tα with 0 < α ≪ 1, indicative of confined displacement. Analysis of simulated position-maps of adhering particles using a new, in silico model confirmed that adhesion to surfaces is irreversible through detachment and successive re-attachment of reversibly-binding tethers. This makes bacterial adhesion mechanistically comparable with the irreversible adsorption of high-molecular-weight proteins to surfaces, mediated by multiple, reversibly-binding molecular segments.
Collapse
Affiliation(s)
- Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Connie L Hall
- Department of Biomedical Engineering, The College of New Jersey, Armstong Hall, Room 181, P. O. Box 7718, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Joop de Vries
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lei Song
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ed D de Jong
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jan J T M Swartjes
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
34
|
Wang Y, Ren B, Zhou X, Liu S, Zhou Y, Li B, Jiang Y, Li M, Feng M, Cheng L. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells. PLoS One 2017; 12:e0177166. [PMID: 28472126 PMCID: PMC5417706 DOI: 10.1371/journal.pone.0177166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.
Collapse
Affiliation(s)
- Yuxia Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (LC); (MF)
| |
Collapse
|
35
|
Foster TJ. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2016; 35:1923-1931. [PMID: 27604831 DOI: 10.1007/s10096-016-2763-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 12/01/2022]
Abstract
Staphylococcus aureus expresses two distinct but closely related multifunctional cell wall-anchored (CWA) proteins that bind to the host glycoprotein fibronectin. The fibronectin binding proteins FnBPA and FnBPB comprise two distinct domains. The C-terminal domain comprises a tandem array of repeats that bind to the N-terminal type I modules of fibronectin by the tandem β-zipper mechanism. This causes allosteric activation of a cryptic integrin binding domain, allowing fibronectin to act as a bridge between bacterial cells and the α5β1 integrin on host cells, triggering bacterial uptake by endocytosis. Variants of FnBPA with polymorphisms in fibronectin binding repeats (FnBRs) that increase affinity for the ligand are associated with strains that infect cardiac devices and cause endocarditis, suggesting that binding affinity is particularly important in intravascular infections. The N-terminal A domains of FnBPA and FnBPB have diverged into seven antigenically distinct isoforms. Each binds fibrinogen by the 'dock, lock and latch' mechanism characteristic of clumping factor A. However, FnBPs can also bind to elastin, which is probably important in adhesion to connective tissue in vivo. In addition, they can capture plasminogen from plasma, which can be activated to plasmin by host and bacterial plasminogen activators. The bacterial cells become armed with a host protease which destroys opsonins, contributing to immune evasion and promotes spreading during skin infection. Finally, some methicillin-resistant S. aureus (MRSA) strains form biofilm that depends on the elaboration of FnBPs rather than polysaccharide. The A domains of the FnBPs can interact homophilically, allowing cells to bind together as the biofilm accumulates.
Collapse
Affiliation(s)
- T J Foster
- Microbiology Department, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
36
|
Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet 2016; 63:417-425. [PMID: 27744611 DOI: 10.1007/s00294-016-0656-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
Collapse
|
37
|
Pietrocola G, Nobile G, Gianotti V, Zapotoczna M, Foster TJ, Geoghegan JA, Speziale P. Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B (FnBPB), a Fibrinogen/Fibronectin-binding Protein from Staphylococcus aureus. J Biol Chem 2016; 291:18148-62. [PMID: 27387503 DOI: 10.1074/jbc.m116.731125] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a commensal bacterium that has the ability to cause superficial and deep-seated infections. Like several other invasive pathogens, S. aureus can capture plasminogen from the human host where it can be converted to plasmin by host plasminogen activators or by endogenously expressed staphylokinase. This study demonstrates that sortase-anchored cell wall-associated proteins are responsible for capturing the bulk of bound plasminogen. Two cell wall-associated proteins, the fibrinogen- and fibronectin-binding proteins A and B, were found to bind plasminogen, and one of them, FnBPB, was studied in detail. Plasminogen captured on the surface of S. aureus- or Lactococcus lactis-expressing FnBPB could be activated to the potent serine protease plasmin by staphylokinase and tissue plasminogen activator. Plasminogen bound to recombinant FnBPB with a KD of 0.532 μm as determined by surface plasmon resonance. Plasminogen binding did not to occur by the same mechanism through which FnBPB binds to fibrinogen. Indeed, FnBPB could bind both ligands simultaneously indicating that their binding sites do not overlap. The N3 subdomain of FnBPB contains the full plasminogen-binding site, and this includes, at least in part, two conserved patches of surface-located lysine residues that were recognized by kringle 4 of the host protein.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Giulia Nobile
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Valentina Gianotti
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Marta Zapotoczna
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Timothy J Foster
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Pietro Speziale
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| |
Collapse
|
38
|
Coburn PS, Wiskur BJ, Astley RA, Callegan MC. Blood-Retinal Barrier Compromise and Endogenous Staphylococcus aureus Endophthalmitis. Invest Ophthalmol Vis Sci 2016; 56:7303-11. [PMID: 26559476 DOI: 10.1167/iovs.15-17488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To test the hypothesis that blood-retinal barrier compromise is associated with the development of endogenous Staphylococcus aureus endophthalmitis. METHODS To compromise the blood-retinal barrier in vivo, streptozotocin-induced diabetes was induced in C57BL/6J mice for 1, 3, or 5 months. Diabetic and age-matched nondiabetic mice were intravenously injected with 108 colony-forming units (cfu) of S. aureus, a common cause of endogenous endophthalmitis in diabetics. After 4 days post infection, electroretinography, histology, and bacterial counts were performed. Staphylococcus aureus-induced alterations in in vitro retinal pigment epithelial (RPE) cell barrier structure and function were assessed by anti-ZO-1 immunohistochemistry, FITC-dextran conjugate diffusion, and bacterial transmigration assays. RESULTS We observed one bilateral infection in a control, nondiabetic animal (mean = 1.54 × 103 ± 1.78 × 10² cfu/eye, 7% incidence). Among the 1-month diabetic mice, we observed culture-confirmed unilateral infections in two animals (mean = 5.54 × 10² ± 7.09 × 10² cfu/eye, 12% incidence). Among the 3-month diabetic mice, infections were observed in 11 animals, three with bilateral infections (mean = 2.67 × 10² ± 2.49 × 10² cfu/eye, 58% incidence). Among the 5-month diabetic mice, we observed infections in five animals (mean = 7.88 × 10² ± 1.08 × 10³ cfu/eye, 33% incidence). In vitro, S. aureus infection reduced ZO-1 immunostaining and disrupted the barrier function of cultured RPE cells, resulting in diffusion of fluorophore-conjugated dextrans and transmigration of live bacteria across a permeabilized RPE barrier. CONCLUSIONS Taken together, these results indicated that S. aureus is capable of inducing blood-retinal barrier permeability and causing endogenous bacterial endophthalmitis in normal and diabetic animals.
Collapse
Affiliation(s)
- Phillip S Coburn
- Department of Ophthalmology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Brandt J Wiskur
- Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger A Astley
- Department of Ophthalmology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle C Callegan
- Department of Ophthalmology The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States 2Oklahoma Center for Neuroscience, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States 3Department
| |
Collapse
|
39
|
Goldmann O, Tuchscherr L, Rohde M, Medina E. α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin. Cell Microbiol 2016; 18:807-19. [PMID: 26595647 DOI: 10.1111/cmi.12550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up-regulating the expression of α-hemolysin (Hla), fibronectin-binding protein A and several regulatory systems. We also found that S. aureus induced the up-regulation of β1 integrin expression on MCs and that this effect was mediated by Hla-ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla-ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up-regulation of β1 integrin expression in MCs in a dose-dependent manner. Our data support a model in which S. aureus counter-reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin-binding proteins and by inducing Hla-ADAM10-mediated up-regulation of β1 integrin in MCs. The up-regulation of bacterial fibronectin-binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin-binding proteins to integrin β1 via fibronectin.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| |
Collapse
|
40
|
Moche M, Schlüter R, Bernhardt J, Plate K, Riedel K, Hecker M, Becher D. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions. J Proteome Res 2015; 14:3804-22. [DOI: 10.1021/acs.jproteome.5b00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Moche
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Kristina Plate
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Katharina Riedel
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| |
Collapse
|
41
|
Abstract
AbstractPersistent staphylococcal infections are a major medical problem, especially when they occur on implanted materials or intravascular catheters. This review describes some of the recently discovered molecular mechanisms ofStaphylococcus aureusattachment to host proteins coating biomedical implants. These interactions involve specific surface proteins, called bacterial adhesins, that recognize specific domains of host proteins deposited on indwelling devices, such as fibronectin, fibrinogen, or fibrin. Elucidation of molecular mechanisms ofS aureusadhesion to the different host proteins may lead to the development of specific inhibitors blocking attachment ofS aureus, which may decrease the risk of bacterial colonization of indwelling devices.
Collapse
|
42
|
Biofilm-based implant infections in orthopaedics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 830:29-46. [PMID: 25366219 DOI: 10.1007/978-3-319-11038-7_2] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The demand for joint replacement surgery is continuously increasing with rising costs for hospitals and healthcare systems. Staphylococci are the most prevalent etiological agents of orthopedic infections. After an initial adhesin-mediated implant colonization, Staphylococcus aureus and Staphylococcus epidermidis produce biofilm. Biofilm formation proceeds as a four-step process: (1) initial attachment of bacterial cells; (2) cell aggregation and accumulation in multiple cell layers; (3) biofilm maturation and (4) detachment of cells from the biofilm into a planktonic state to initiate a new cycle of biofilm formation elsewhere. The encasing of bacteria in biofilms gives rise to insuperable difficulties not only in the treatment of the infection, but also in assessing the state and the nature of the infection using traditional cultural methods. Therefore, DNA-based molecular methods have been developed to provide rapid identification of all microbial pathogens. To combat biofilm-centered implant infections, new strategies are being developed, among which anti-infective or infective-resistant materials are at the forefront. Infection-resistant materials can be based on different approaches: (i) modifying the biomaterial surface to give anti-adhesive properties, (ii) doping the material with antimicrobial substances, (iii) combining anti-adhesive and antimicrobial effects in the same coating, (iv) designing materials able to oppose biofilm formation and support bone repair.
Collapse
|
43
|
Trouillet-Assant S, Gallet M, Nauroy P, Rasigade JP, Flammier S, Parroche P, Marvel J, Ferry T, Vandenesch F, Jurdic P, Laurent F. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis 2014; 211:571-81. [PMID: 25006047 DOI: 10.1093/infdis/jiu386] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bone and joint infection, mainly caused by Staphylococcus aureus, is associated with significant morbidity and mortality, characterized by severe inflammation and progressive bone destruction. Studies mostly focused on the interaction between S. aureus and osteoblasts, the bone matrix-forming cells, while interactions between S. aureus and osteoclasts, the only cells known to be able to degrade bone, have been poorly explored. METHODS We developed an in vitro infection model of primary murine osteoclasts to study the direct impact of live S. aureus on osteoclastogenesis and osteoclast resorption activity. RESULTS Staphylococcal infection of bone marrow-derived osteoclast precursors induced their differentiation into activated macrophages that actively secreted proinflammatory cytokines. These cytokines enhanced the bone resorption capacity of uninfected mature osteoclasts and promoted osteoclastogenesis of the uninfected precursors at the site of infection. Moreover, infection of mature osteoclasts by live S. aureus directly enhanced their ability to resorb bone by promoting cellular fusion. CONCLUSIONS Our results highlighted two complementary mechanisms involved in bone loss during bone and joint infection, suggesting that osteoclasts could be a pivotal target for limiting bone destruction.
Collapse
Affiliation(s)
- Sophie Trouillet-Assant
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Marlène Gallet
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Pauline Nauroy
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Jean-Philippe Rasigade
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Sacha Flammier
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Peggy Parroche
- CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Jacqueline Marvel
- CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Tristan Ferry
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Francois Vandenesch
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Pierre Jurdic
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Frederic Laurent
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| |
Collapse
|
44
|
Solis N, Parker BL, Kwong SM, Robinson G, Firth N, Cordwell SJ. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach. J Proteome Res 2014; 13:2954-72. [PMID: 24708102 DOI: 10.1021/pr500107p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.
Collapse
Affiliation(s)
- Nestor Solis
- School of Molecular Bioscience, ‡Discipline of Pathology, School of Medical Sciences, and §School of Biological Sciences, The University of Sydney , New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
45
|
McCourt J, O'Halloran DP, McCarthy H, O'Gara JP, Geoghegan JA. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 2014; 353:157-64. [PMID: 24628034 DOI: 10.1111/1574-6968.12424] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus of the USA300 lineage is emerging as an important cause of medical device-related infection. However, few factors required for biofilm accumulation by USA300 strains have been identified, and the processes involved are poorly understood. Here, we identify S. aureus proteins required for the USA300 isolate LAC to form biofilm. A mutant with a deletion of the fnbA and fnbB genes did not express the fibronectin-binding proteins FnBPA and FnBPB and lacked the ability to adhere to fibronectin or to form biofilm. Biofilm formation by the mutant LAC∆fnbAfnbB could be restored by expression of FnBPA or FnBPB from a plasmid demonstrating that both of these proteins can mediate biofilm formation when expressed by LAC. Expression of FnBPA and FnBPB increased bacterial aggregation suggesting that fibronectin-binding proteins can promote the accumulation phase of biofilm. Loss of fibronectin-binding proteins reduced the initial adherence of bacteria, indicating that these proteins are also involved in primary attachment. In summary, these findings improve our understanding of biofilm formation by the USA300 strain LAC by demonstrating that the fibronectin-binding proteins are required.
Collapse
Affiliation(s)
- Jennifer McCourt
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
46
|
Abstract
Staphylococcus aureus is a facultative anaerobic Gram-positive coccus and a member of the normal skin flora, as well as that of the nasal passages of humans. However, S. aureus can also gain entry into the host and cause life-threatening infections or persist as disease foci that develop into suppurative abscesses. While genetically tractable, the manipulation of S. aureus remains challenging. This unit describes methods developed in our laboratory for gene disruption by allelic replacement and transposition. We also provide a protocol for bacteriophage-mediated transduction of mutants marked with selectable alleles and describe plasmid utilization for complementation studies.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
47
|
|
48
|
CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals. J Bacteriol 2014; 196:1184-96. [PMID: 24391052 DOI: 10.1128/jb.00128-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus Agr system regulates virulence gene expression by responding to cell population density (quorum sensing). When an extracellular peptide signal (AIP-III in strain UAMS-1, used for these experiments) reaches a concentration threshold, the AgrC-AgrA two-component regulatory system is activated through a cascade of phosphorylation events, leading to induction of the divergently transcribed agrBDCA operon and the RNAIII gene. RNAIII is a posttranscriptional regulator of numerous metabolic and pathogenesis genes. CodY, a global regulatory protein, is known to repress agrBDCA and RNAIII transcription during exponential growth in rich medium, but the mechanism of this regulation has remained elusive. Here we report that phosphorylation of AgrA by the AgrC protein kinase is required for the overexpression of the agrBDCA operon and the RNAIII gene in a codY mutant during the exponential-growth phase, suggesting that the quorum-sensing system, which normally controls AgrC activation, is active even in exponential-phase cells in the absence of CodY. In part, such premature expression of RNAIII was attributable to higher-than-normal accumulation of AIP-III in a codY mutant strain, as determined using ultrahigh-performance liquid chromatography coupled to mass spectrometry. Although CodY is a strong repressor of the agr locus, CodY bound only weakly to the agrBDCA-RNAIII promoter region, suggesting that direct regulation by CodY is unlikely to be the principal mechanism by which CodY regulates agr and RNAIII expression. Taken together, these results strongly suggest that cell population density signals inducing virulence gene expression can be overridden by nutrient availability, a condition monitored by CodY.
Collapse
|
49
|
Manna AC. Genetic interruption of target genes for investigation of virulence factors. Methods Mol Biol 2014; 1085:149-167. [PMID: 24085695 DOI: 10.1007/978-1-62703-664-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recently, more emphasis has been given to understand molecular genetics and the contribution of a gene in the disease process. In fact, increased understanding of bacterial pathogenesis and intracellular communication has revealed many potential strategies for development of novel agents to treat bacterial infection. Therefore, to study the function and the involvement of a particular gene in pathogenesis, the inactivation or interruption is very important. In this section, various methods leading to inactivation of the gene in Staphylococcus aureus will be discussed.
Collapse
Affiliation(s)
- Adhar C Manna
- Department of Biological Sciences, Presidency University, Kolkata, WB, India
| |
Collapse
|
50
|
Kramko N, Sinitski D, Seebach J, Löffler B, Dieterich P, Heilmann C, Peters G, Schnittler HJ. Early Staphylococcus aureus-induced changes in endothelial barrier function are strain-specific and unrelated to bacterial translocation. Int J Med Microbiol 2013; 303:635-44. [DOI: 10.1016/j.ijmm.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/26/2013] [Accepted: 09/01/2013] [Indexed: 12/14/2022] Open
|