1
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
2
|
Wu Y, Sun J, Xu X, Mao S, Luan G, Lu X. Engineering cyanobacteria for converting carbon dioxide into isomaltulose. J Biotechnol 2023; 364:1-4. [PMID: 36702257 DOI: 10.1016/j.jbiotec.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Isomaltulose is a promising functional sweetener with broad application prospects in the food industry. Currently, isomaltulose is mainly produced through bioconversion processes based on the isomerization of sucrose, the economic feasibility of which is influenced by the cost of sucrose feedstocks, the biocatalyst preparation, and product purification. Cyanobacterial photosynthetic production utilizing solar energy and carbon dioxide represents a promising route for the supply of sugar products, which can promote both carbon reduction and green production. Previously, some cyanobacteria strains have been successfully engineered for synthesis of sucrose, the main feedstock for isomaltulose production. In this work, we introduced different sucrose isomerases into Synechococcus elongatus PCC 7942 and successfully achieved the isomaltulose synthesis and accumulation in the recombinant strains. Combinatory expression of an Escherichia coli sourced sucrose permease CscB with the sucrose isomerases led to efficient secretion of isomaltulose and significantly elevated the final titer. During a 6-day cultivation, 777 mg/L of isomaltulose was produced by the engineered Synechococcus cell factory. This work demonstrated a new route for isomaltulose biosynthesis utilizing carbon dioxide as the substrate, and provided novel understandings for the plasticity of cyanobacterial photosynthetic metabolism network.
Collapse
Affiliation(s)
- Yannan Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Jiahui Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejing Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoming Mao
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China.
| | - Guodong Luan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
Ma P, Mori T, Zhao C, Thiel T, Johnson CH. Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris. PLoS Genet 2016; 12:e1005922. [PMID: 26982486 PMCID: PMC4794148 DOI: 10.1371/journal.pgen.1005922] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/16/2016] [Indexed: 11/18/2022] Open
Abstract
Circadian (daily) rhythms are a fundamental and ubiquitous property of eukaryotic organisms. However, cyanobacteria are the only prokaryotic group for which bona fide circadian properties have been persuasively documented, even though homologs of the cyanobacterial kaiABC central clock genes are distributed widely among Eubacteria and Archaea. We report the purple non-sulfur bacterium Rhodopseudomonas palustris (that harbors homologs of kaiB and kaiC) only poorly sustains rhythmicity in constant conditions-a defining characteristic of circadian rhythms. Moreover, the biochemical characteristics of the Rhodopseudomonas homolog of the KaiC protein in vivo and in vitro are different from those of cyanobacterial KaiC. Nevertheless, R. palustris cells exhibit adaptive kaiC-dependent growth enhancement in 24-h cyclic environments, but not under non-natural constant conditions. Therefore, our data indicate that Rhodopseudomonas does not have a classical circadian rhythm, but a novel timekeeping mechanism that does not sustain itself in constant conditions. These results question the adaptive value of self-sustained oscillatory capability for daily timekeepers and establish new criteria for circadian-like systems that are based on adaptive properties (i.e., fitness enhancement in rhythmic environments), rather than upon observations of persisting rhythms in constant conditions. We propose that the Rhodopseudomonas system is a "proto" circadian timekeeper, as in an ancestral system that is based on KaiC and KaiB proteins and includes some, but not necessarily all, of the canonical properties of circadian clocks. These data indicate reasonable intermediate steps by which bona fide circadian systems evolved in simple organisms.
Collapse
Affiliation(s)
- Peijun Ma
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chi Zhao
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Abstract
For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value.
Collapse
|
5
|
Sancar G, Brunner M. Circadian clocks and energy metabolism. Cell Mol Life Sci 2014; 71:2667-80. [PMID: 24515123 PMCID: PMC11113245 DOI: 10.1007/s00018-014-1574-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Abstract
Circadian clocks orchestrate behavioral and physiological processes in a time-of-day dependent manner. The network of clock-controlled genes is intimately interconnected with metabolic regulatory circuits. Circadian clocks rhythmically regulate the expression and activity of key metabolic players, which in turn feed back on the circadian machinery on the transcriptional and post-transcriptional level. Mutations of clock genes are often associated with metabolic defects, especially in lipid and glucose metabolism. Accumulating data suggest that the reciprocal coordination of circadian and metabolic pathways is crucial for cellular homeostasis and the health of the organism.
Collapse
Affiliation(s)
- Gencer Sancar
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany,
| | | |
Collapse
|
6
|
Gaudana SB, Krishnakumar S, Alagesan S, Digmurti MG, Viswanathan GA, Chetty M, Wangikar PP. Rhythmic and sustained oscillations in metabolism and gene expression of Cyanothece sp. ATCC 51142 under constant light. Front Microbiol 2013; 4:374. [PMID: 24367360 PMCID: PMC3854555 DOI: 10.3389/fmicb.2013.00374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/21/2013] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria, a group of photosynthetic prokaryotes, oscillate between day and night time metabolisms with concomitant oscillations in gene expression in response to light/dark cycles (LD). The oscillations in gene expression have been shown to sustain in constant light (LL) with a free running period of 24 h in a model cyanobacterium Synechococcus elongatus PCC 7942. However, equivalent oscillations in metabolism are not reported under LL in this non-nitrogen fixing cyanobacterium. Here we focus on Cyanothece sp. ATCC 51142, a unicellular, nitrogen-fixing cyanobacterium known to temporally separate the processes of oxygenic photosynthesis and oxygen-sensitive nitrogen fixation. In a recent report, metabolism of Cyanothece 51142 has been shown to oscillate between photosynthetic and respiratory phases under LL with free running periods that are temperature dependent but significantly shorter than the circadian period. Further, the oscillations shift to circadian pattern at moderate cell densities that are concomitant with slower growth rates. Here we take this understanding forward and demonstrate that the ultradian rhythm under LL sustains at much higher cell densities when grown under turbulent regimes that simulate flashing light effect. Our results suggest that the ultradian rhythm in metabolism may be needed to support higher carbon and nitrogen requirements of rapidly growing cells under LL. With a comprehensive Real time PCR based gene expression analysis we account for key regulatory interactions and demonstrate the interplay between clock genes and the genes of key metabolic pathways. Further, we observe that several genes that peak at dusk in Synechococcus peak at dawn in Cyanothece and vice versa. The circadian rhythm of this organism appears to be more robust with peaking of genes in anticipation of the ensuing photosynthetic and respiratory metabolic phases.
Collapse
Affiliation(s)
- Sandeep B Gaudana
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - S Krishnakumar
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Swathi Alagesan
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Madhuri G Digmurti
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Ganesh A Viswanathan
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| | - Madhu Chetty
- Gippsland School of Information Technology, Monash University VIC, Australia
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai, Mumbai, India
| |
Collapse
|
7
|
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 exhibits global biphasic circadian oscillations in gene expression under constant-light conditions. Class I genes are maximally expressed in the subjective dusk, whereas class II genes are maximally expressed in the subjective dawn. Here, we identify sequence features that encode the phase of circadian gene expression. We find that, for multiple genes, an ∼70-nucleotide promoter fragment is sufficient to specify class I or II phase. We demonstrate that the gene expression phase can be changed by random mutagenesis and that a single-nucleotide substitution is sufficient to change the phase. Our study provides insight into how the gene expression phase is encoded in the cyanobacterial genome.
Collapse
|
8
|
Chen Y, Holtman CK, Taton A, Golden SS. Functional Analysis of the Synechococcus elongatus PCC 7942 Genome. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Johnson CH, Stewart PL, Egli M. The cyanobacterial circadian system: from biophysics to bioevolution. Annu Rev Biophys 2011; 40:143-67. [PMID: 21332358 DOI: 10.1146/annurev-biophys-042910-155317] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies have unveiled the molecular machinery responsible for the biological clock in cyanobacteria and found that it exerts pervasive control over cellular processes including global gene expression. Indeed, the entire chromosome undergoes daily cycles of topology/compaction! The circadian system comprises both a posttranslational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO can be reconstituted in vitro with three purified proteins (KaiA, KaiB, and KaiC) and ATP. These are the only circadian proteins for which high-resolution structures are available. Phase in this nanoclockwork has been associated with key phosphorylations of KaiC. Structural considerations illuminate the mechanism by which the KaiABC oscillator ratchets unidirectionally. Models of the complete in vivo system have important implications for our understanding of circadian clocks in higher organisms, including mammals. The conjunction of structural, biophysical, and biochemical approaches to this system has brought our understanding of the molecular mechanisms of biological timekeeping to an unprecedented level.
Collapse
|
10
|
Vijayan V, Jain IH, O'Shea EK. A high resolution map of a cyanobacterial transcriptome. Genome Biol 2011; 12:R47. [PMID: 21612627 PMCID: PMC3219970 DOI: 10.1186/gb-2011-12-5-r47] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/23/2011] [Accepted: 05/25/2011] [Indexed: 12/03/2022] Open
Abstract
Background Previous molecular and mechanistic studies have identified several principles of prokaryotic transcription, but less is known about the global transcriptional architecture of bacterial genomes. Here we perform a comprehensive study of a cyanobacterial transcriptome, that of Synechococcus elongatus PCC 7942, generated by combining three high-resolution data sets: RNA sequencing, tiling expression microarrays, and RNA polymerase chromatin immunoprecipitation sequencing. Results We report absolute transcript levels, operon identification, and high-resolution mapping of 5' and 3' ends of transcripts. We identify several interesting features at promoters, within transcripts and in terminators relating to transcription initiation, elongation, and termination. Furthermore, we identify many putative non-coding transcripts. Conclusions We provide a global analysis of a cyanobacterial transcriptome. Our results uncover insights that reinforce and extend the current views of bacterial transcription.
Collapse
Affiliation(s)
- Vikram Vijayan
- Graduate Program in Systems Biology, Harvard University, 52 Oxford Street, Northwest 445,40, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
11
|
Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A 2009; 106:22564-8. [PMID: 20018699 DOI: 10.1073/pnas.0912673106] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 exhibits oscillations in mRNA transcript abundance with 24-h periodicity under continuous light conditions. The mechanism underlying these oscillations remains elusive--neither cis nor trans-factors controlling circadian gene expression phase have been identified. Here, we show that the topological status of the chromosome is highly correlated with circadian gene expression state. We also demonstrate that DNA sequence characteristics of genes that appear monotonically activated and monotonically repressed by chromosomal relaxation during the circadian cycle are similar to those of supercoiling-responsive genes in Escherichia coli. Furthermore, perturbation of superhelical status within the physiological range elicits global changes in gene expression similar to those that occur during the normal circadian cycle.
Collapse
|
12
|
Abstract
Cyanobacteria have become a major model system for analyzing circadian rhythms. The temporal program in this organism enhances fitness in rhythmic environments and is truly global--essentially all genes are regulated by the circadian system. The topology of the chromosome also oscillates and possibly regulates the rhythm of gene expression. The underlying circadian mechanism appears to consist of both a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO can be reconstituted in vitro with three purified proteins (KaiA, KaiB, and KaiC) and ATP. These three core oscillator proteins have been crystallized and structurally determined, the only full-length circadian proteins to be so characterized. The timing of cell division is gated by a circadian checkpoint, but the circadian pacemaker is not influenced by the status of the cell division cycle. This imperturbability may be due to the presence of the PTO that persists under conditions in which metabolism is repressed. Recent biochemical, biophysical, and structural discoveries have brought the cyanobacterial circadian system to the brink of explaining heretofore unexplainable biochemical characteristics of a circadian oscillator: the long time constant, precision, and temperature compensation.
Collapse
Affiliation(s)
- Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.
| | | | | |
Collapse
|
13
|
Holtzendorff J, Partensky F, Mella D, Lennon JF, Hess WR, Garczarek L. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J Biol Rhythms 2008; 23:187-99. [PMID: 18487411 DOI: 10.1177/0748730408316040] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The core oscillator of the circadian clock in cyanobacteria consists of 3 proteins, KaiA, KaiB, and KaiC. All 3 have previously been shown to be essential for clock function. Accordingly, most cyanobacteria possess at least 1 copy of each kai gene. One exception is the marine genus Prochlorococcus, which we suggest here has suffered a stepwise deletion of the kaiA gene, together with significant genome streamlining. Nevertheless, natural Prochlorococcus populations and laboratory cultures are strongly synchronized by the alternation of day and night, displaying 24-h rhythms in DNA replication, with a temporal succession of G1, S, and G2-like cell cycle phases. Using quantitative real-time PCR, we show here that in Prochlorococcus marinus PCC 9511, the mRNA levels of the clock genes kaiB and kaiC, as well as a few other selected genes including psbA, also displayed marked diel variations when cultures were kept under a light-dark rhythm. However, both cell cycle and psbA gene expression rhythms damped very rapidly under continuous light. In the closely related Synechococcus sp. WH8102, which possesses all 3 kai genes, cell cycle rhythms persisted over several days, in agreement with established cyanobacterial models. These data indicate a correlation between the loss of kaiA and a loss of robustness in the endogenous oscillator of Prochlorococcus and raise questions about how a basic KaiBC system may function and through which mechanism the daily "lights-on" and "lights-off" signal could be mediated.
Collapse
Affiliation(s)
- Julia Holtzendorff
- Université Pierre et Marie Curie (Paris 06) and Centre National de la Recherche Scientifique (UMR 7144), Station Biologique, France
| | | | | | | | | | | |
Collapse
|
14
|
Johnson CH. Bacterial circadian programs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:395-404. [PMID: 18419297 DOI: 10.1101/sqb.2007.72.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Twenty years ago, it was widely believed that prokaryotes were too "simple" to have evolved circadian programs. Since that time, however, the cyanobacterial circadian system has progressed from a curiosity to a major model system for analyzing clock phenomena. In addition to globally regulating gene expression, cyanobacteria are one of the only systems in which the adaptive fitness of a circadian system has been rigorously evaluated. Moreover, cyanobacteria are the only clock system in which all essential proteins of the core oscillator have been crystallized and structurally determined, namely, the KaiA, KaiB, and KaiC proteins. A biochemical oscillator can be reconstituted in vitro with these three purified Kai proteins and displays the key properties of temperature-compensated rhythmicity. This result spectacularly demonstrates that a strictly posttranslational clock is sufficient to elaborate circadian phenomena and that a transcription-translation feedback loop is not obligatory. The conjunction of structural information on essential clock proteins with a defined system that reconstitutes circadian oscillations in vitro leads to a turning point whereby biophysical and biochemical approaches bring analyses of circadian clock-work to an unprecedented level of molecular detail.
Collapse
Affiliation(s)
- C H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
15
|
Koksharova OA, Klint J, Rasmussen U. Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. MICROBIOLOGY-SGM 2007; 153:2505-2517. [PMID: 17660415 DOI: 10.1099/mic.0.2007/007039-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial cell division is a highly co-ordinated and fine-tuned process. In the unicellular cyanobacterium Synechococcus sp. strain PCC 7942, inactivating mutations in the ftn2 and ftn6 genes block cell division and result in a phenotype with extensively elongated cells. In order to establish the pleiotropic responses induced and cellular processes affected by blocked cell division, the proteomes of wild-type and the cell division mutants Ftn2 and Ftn6 of Synechococcus sp. strain PCC 7942 were characterized and compared. By separating soluble extracted proteins on 2D gels, more than 800 protein spots were visualized on each SYPRO Ruby-stained gel. Quantitative differences in protein composition were detected by using the PDQuest software, and comparative analysis revealed that 76 protein spots changed significantly in the cell division mutants. These protein spots were selected for identification using peptide mass fingerprints generated by MALDI-TOF MS. Fifty-three protein spots were successfully identified, representing 44 different proteins. The upregulated proteins include proteins involved in cell division/cell morphogenesis, protein synthesis and processing, oxidative stress response, amino acid metabolism, nucleotide biosynthesis, and glycolysis, as well as unknown proteins. Among the downregulated proteins are those involved in chromosome segregation, protein processing, photosynthesis, redox regulation, carbon dioxide fixation, nucleotide biosynthesis, the biosynthetic pathway to fatty acids, and energy production. Besides eliciting common responses, inactivation of Ftn2 and Ftn6 in the mutants may result in different responses in protein levels between the mutants. Among 18 identified differentially affected protein spots, 75 % (9/12) of the protein spots affected in the Ftn2 mutant were upshifted, whereas in the Ftn6 mutant 70 % (7/10) of the affected protein spots were downshifted. Identification of such differentially expressed proteins provides new targets for future studies that will allow assessment of their physiological roles and significance in cyanobacterial cell division.
Collapse
Affiliation(s)
- Olga A Koksharova
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov State University, Moscow 119992, Russia
| | - Johan Klint
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Abstract
The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates that global rhythms of transcription are based on rhythmic changes in the status of the cyanobacterial chromosome that are ultimately controlled by the KaiABC oscillator. By using a nonessential, cryptic plasmid (pANS) as a reporter of the superhelical state of DNA in cyanobacteria, we show that the supercoiling status of this plasmid changes in a circadian manner in vivo. The rhythm of topological change in the plasmid is conditional; this change is rhythmic in constant light and in light/dark cycles, but not in constant darkness. In further support of the oscilloid model, cyanobacterial promoters that are removed from their native chromosomal locations and placed on a plasmid preserve their circadian expression patterns.
Collapse
|
17
|
Davies BW, Walker GC. Identification of novel Sinorhizobium meliloti mutants compromised for oxidative stress protection and symbiosis. J Bacteriol 2006; 189:2110-3. [PMID: 17172326 PMCID: PMC1855713 DOI: 10.1128/jb.01802-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Employing a novel two-part screen, we identified Sinorhizobium meliloti mutants that were both sensitive to hydrogen peroxide and symbiotically defective on the host plant Medicago sativa. The mutations affect a wide variety of cellular processes and represent both novel and previously identified genes important in symbiosis.
Collapse
Affiliation(s)
- Bryan W Davies
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
18
|
Mehra A, Hong CI, Shi M, Loros JJ, Dunlap JC, Ruoff P. Circadian rhythmicity by autocatalysis. PLoS Comput Biol 2006; 2:e96. [PMID: 16863394 PMCID: PMC1523307 DOI: 10.1371/journal.pcbi.0020096] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 06/08/2006] [Indexed: 11/18/2022] Open
Abstract
The temperature compensated in vitro oscillation of cyanobacterial KaiC phosphorylation, the first example of a thermodynamically closed system showing circadian rhythmicity, only involves the three Kai proteins (KaiA, KaiB, and KaiC) and ATP. In this paper, we describe a model in which the KaiA- and KaiB-assisted autocatalytic phosphorylation and dephosphorylation of KaiC are the source for circadian rhythmicity. This model, based upon autocatalysis instead of transcription-translation negative feedback, shows temperature-compensated circadian limit-cycle oscillations with KaiC phosphorylation profiles and has period lengths and rate constant values that are consistent with experimental observations.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Christian I Hong
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway
| | - Mi Shi
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Jennifer J Loros
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Peter Ruoff
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Smith RM, Williams SB. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 2006; 103:8564-9. [PMID: 16707582 PMCID: PMC1482530 DOI: 10.1073/pnas.0508696103] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the cyanobacterium Synechococcus elongatus (PCC 7942) the kai genes A, B, and C and the sasA gene encode the functional protein core of the timing mechanism essential for circadian clock regulation of global gene expression. The Kai proteins comprise the central timing mechanism, and the sensor kinase SasA is a primary transducer of temporal information. We demonstrate that the circadian clock also regulates a chromosome compaction rhythm. This chromosome compaction rhythm is both circadian clock-controlled and kai-dependent. Although sasA is required for global gene expression rhythmicity, it is not required for these chromosome compaction rhythms. We also demonstrate direct control by the Kai proteins on the rate at which the SasA protein autophosphorylates. Thus, to generate and maintain circadian rhythms in gene expression, the Kai proteins keep relative time, communicate temporal information to SasA, and may control access to promoter elements by imparting rhythmic chromosome compaction.
Collapse
Affiliation(s)
- Rachelle M. Smith
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112
| | - Stanly B. Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112
- *To whom correspondence should be addressed at:
Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840. E-mail:
| |
Collapse
|
20
|
Abstract
Cyanobacteria such as Synechococcus elongatus PCC 7942, Thermosynechococcus elongatus BP-1, and Synechocystis species strain PCC 6803 have an endogenous timing mechanism that can generate and maintain a 24 h (circadian) periodicity to global (whole genome) gene expression patterns. This rhythmicity extends to many other physiological functions, including chromosome compaction. These rhythmic patterns seem to reflect the periodicity of availability of the primary energy source for these photoautotrophic organisms, the Sun. Presumably, eons of environmentally derived rhythmicity--light/dark cycles--have simply been mechanistically incorporated into the regulatory networks of these cyanobacteria. Genetic and biochemical experimentation over the last 15 years has identified many key components of the primary timing mechanism that generates rhythmicity, the input pathways that synchronize endogenous rhythms to exogenous rhythms, and the output pathways that transduce temporal information from the timekeeper to the regulators of gene expression and function. Amazingly, the primary timing mechanism has evidently been extracted from S. elongatus PCC 7942 and can also keep time in vitro. Mixing the circadian clock proteins KaiA, KaiB, and KaiC from S. elongatus PCC 7942 in vitro and adding ATP results in a circadian rhythm in the KaiC protein phosphorylation state. Nonetheless, many questions still loom regarding how this circadian clock mechanism works, how it communicates with the environment and how it regulates temporal patterns of gene expression. Many details regarding structure and function of the individual clock-related proteins are provided here as a basis to discuss these questions. A strong, data-intensive foundation has been developed to support the working model for the cyanobacterial circadian regulatory system. The eventual addition to that model of the metabolic parameters participating in the command and control of this circadian global regulatory system will ultimately allow a fascinating look into whole-cell physiology and metabolism and the consequential organization of global gene expression patterns.
Collapse
Affiliation(s)
- Stanly B Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Ditty JL, Canales SR, Anderson BE, Williams SB, Golden SS. Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes. Microbiology (Reading) 2005; 151:2605-2613. [PMID: 16079339 DOI: 10.1099/mic.0.28030-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kaiA, kaiB and kaiC genes encode the core components of the cyanobacterial circadian clock in Synechococcus elongatus PCC 7942. Rhythmic expression patterns of kaiA and of the kaiBC operon normally peak in synchrony. In some mutants the relative timing of peaks (phase relationship) between these transcription units is altered, but circadian rhythms persist robustly. In this study, the importance of the transcriptional timing of kai genes was examined. Expressing either kaiA or kaiBC from a heterologous promoter whose peak expression occurs 12 h out of phase from the norm, and thus 12 h out of phase from the other kai locus, did not affect the time required for one cycle (period) or phase of the circadian rhythm, as measured by bioluminescence reporters. Furthermore, the data confirm that specific cis elements within the promoters of the kai genes are not necessary to sustain clock function.
Collapse
Affiliation(s)
- Jayna L Ditty
- Department of Biology, The University of St Thomas, St Paul, MN 55105, USA
| | - Shannon R Canales
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | - Breanne E Anderson
- Department of Biology, The University of St Thomas, St Paul, MN 55105, USA
| | - Stanly B Williams
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | - Susan S Golden
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| |
Collapse
|
22
|
Ivleva NB, Bramlett MR, Lindahl PA, Golden SS. LdpA: a component of the circadian clock senses redox state of the cell. EMBO J 2005; 24:1202-10. [PMID: 15775978 PMCID: PMC556408 DOI: 10.1038/sj.emboj.7600606] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 02/09/2005] [Indexed: 11/09/2022] Open
Abstract
The endogenous 24-h (circadian) rhythms exhibited by the cyanobacterium Synechococcus elongatus PCC 7942 and other organisms are entrained by a variety of environmental factors. In cyanobacteria, the mechanism that transduces environmental input signals to the central oscillator of the clock is not known. An earlier study identified ldpA as a gene involved in light-dependent modulation of the circadian period, and a candidate member of a clock-entraining input pathway. Here, we report that the LdpA protein is sensitive to the redox state of the cell and exhibits electron paramagnetic resonance spectra consistent with the presence of two Fe4S4 clusters. Moreover, LdpA copurifies with proteins previously shown to be integral parts of the circadian mechanism. We also demonstrate that LdpA affects both the absolute level and light-dependent variation in abundance of CikA, a key input pathway component. The data suggest a novel input pathway to the circadian oscillator in which LdpA is a component of the clock protein complex that senses the redox state of a cell.
Collapse
Affiliation(s)
- Natalia B Ivleva
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Matthew R Bramlett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Susan S Golden
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, Biological Sciences Building, East, Room 314C, College Station, TX 77843-3258, USA. Tel.: +1 979 845 9824; Fax: +1 979 862 7659; E-mail:
| |
Collapse
|
23
|
Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 2004; 14:1481-6. [PMID: 15324665 DOI: 10.1016/j.cub.2004.08.023] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 06/21/2004] [Accepted: 06/22/2004] [Indexed: 11/24/2022]
Abstract
Circadian clocks are thought to enhance the fitness of organisms by improving their ability to adapt to extrinsic influences, specifically daily changes in environmental factors such as light, temperature, and humidity. Some investigators have proposed that circadian clocks provide an additional "intrinsic adaptive value," that is, the circadian clock that regulates the timing of internal events has evolved to be such an integral part of the temporal regulation that it is useful in all conditions, even in constant environments. There have been practically no rigorous tests of either of these propositions. Using cyanobacterial strains with different clock properties growing in competition with each other, we found that strains with a functioning biological clock defeat clock-disrupted strains in rhythmic environments. In contrast to the expectations of the "intrinsic value model," this competitive advantage disappears in constant environments. In addition, competition experiments using strains with different circadian periods showed that cyanobacterial strains compete most effectively in a rhythmic environment when the frequency of their internal biological oscillator and that of the environmental cycle are similar. Together, these studies demonstrate the adaptive value of circadian temporal programming in cyanobacteria but indicate that this adaptive value is only fulfilled in cyclic environments.
Collapse
Affiliation(s)
- Mark A Woelfle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
24
|
Min H, Liu Y, Johnson CH, Golden SS. Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942. J Biol Rhythms 2004; 19:103-12. [PMID: 15038850 DOI: 10.1177/0748730403262056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors analyzed the upstream regulatory region of purF, a gene that is expressed in a minority phase that peaks at dawn (class 2 circadian phasing) in Synechococcus elongatus, to determine whether specific cis elements are responsible for this characteristic expression pattern. Fusions of various promoter-bearing fragments to luciferase reporter genes showed that normal class 2 phasing of purF expression was correlated with promoter strength. No specific cis element that is separable from the promoter was responsible for determining phase. Very weak promoter activity of unstable phasing was mapped to a 50-bp segment. Inclusion of sequences that flank this minimal promoter either upstream or downstream increased the promoter strength and stabilized the phase in class 2, but neither segment was individually necessary. Because the data suggested a role for the overall promoter context rather than a specific "phase element," the authors proposed that DNA topology is important in the phase determination of circadian gene expression in S. elongatus. To test this hypothesis, they fused the well-characterized DNA topology-dependent Escherichia coli fis promoter to luciferase and showed that it acts as a class 2 promoter in S. elongatus.
Collapse
Affiliation(s)
- Hongtao Min
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| | | | | | | |
Collapse
|
25
|
Thomas C, Andersson CR, Canales SR, Golden SS. PsfR, a factor that stimulates psbAI expression in the cyanobacterium Synechococcus elongatus PCC 7942. Microbiology (Reading) 2004; 150:1031-1040. [PMID: 15073312 DOI: 10.1099/mic.0.26915-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper a gene (psfR) is reported that regulatespsbAIactivity inSynechococcus elongatus, a unicellular photoautotrophic cyanobacterium that carries out oxygenic (plant-type) photosynthesis and exhibits global circadian regulation of gene expression. InS. elongatus, a family of threepsbAgenes encodes the D1 protein of the photosystem II reaction centre. Overexpression ofpsfRresults in increased expression ofpsbAI, but does not affect the circadian timing ofpsbAIexpression.psfRoverexpression affected some, but not all of the genes routinely surveyed for circadian expression. PsfR acts (directly or indirectly) on thepsbAIbasal promoter region.psfRknockout mutants exhibit wild-typepsbAIexpression, suggesting that other factors can regulatepsbAIexpression in the absence of functional PsfR. PsfR contains two receiver-like domains (found in bacterial two-component signal transduction systems), one of which lacks the conserved aspartyl residue required for phosphoryl transfer. PsfR also contains a GGDEF domain. The presence of these domains and the absence of a detectable conserved DNA-binding domain suggest that PsfR may regulatepsbAIexpression via protein–protein interactions or GGDEF activity (the production of cyclic dinucleotides) rather than direct interaction with thepsbAIpromoter.
Collapse
Affiliation(s)
- Colleen Thomas
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Carol R Andersson
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Shannon R Canales
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Susan S Golden
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| |
Collapse
|
26
|
Abstract
Cyanobacteria such as Synechococcus elongatus PCC 7942 exhibit 24-h rhythms of gene expression that are controlled by an endogenous circadian clock that is mechanistically distinct from those described for diverse eukaryotes. Genetic and biochemical experiments over the past decade have identified key components of the circadian oscillator, input pathways that synchronize the clock with the daily environment, and output pathways that relay temporal information to downstream genes. The mechanism of the cyanobacterial circadian clock that is emerging is based principally on the assembly and disassembly of a large complex at whose heart are the proteins KaiA, KaiB, and KaiC. Signal transduction pathways that feed into and out of the clock employ protein domains that are similar to those in two-component regulatory systems of bacteria.
Collapse
Affiliation(s)
- J L Ditty
- Department of Biology, University of St. Thomas, St. Paul, Minnesota 55105, USA.
| | | | | |
Collapse
|
27
|
Schmitz O, Boison G, Bothe H. Quantitative analysis of expression of two circadian clock-controlled gene clusters coding for the bidirectional hydrogenase in the cyanobacterium Synechococcus sp. PCC7942. Mol Microbiol 2001; 41:1409-17. [PMID: 11580844 DOI: 10.1046/j.1365-2958.2001.02612.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hydrogen metabolism is of central interest in cyanobacterial research because of its potential applications. The gene expression and physiological role of the cyanobacterial bidirectional NAD(P)+-reducing hydrogenase are poorly understood. Transcription rates of hoxEF and hoxUYH encoding this enzyme have been studied in Synechococcus sp. PCC7942. PhoxU activity was about three times higher than that of PhoxE. Circadian phasing of both promoters was found to be synchronous and influenced expression levels by at least one order of magnitude. This is the first demonstration of circadian control of gene expression for any hydrogenase. For the majority of PhoxU-driven messages, transcription presumably terminates between hoxU and hoxH. Being part of a polycistronic hoxUYHW... operon, hoxW, encoding a protease involved in C-terminal processing of the hydrogenase large-subunit HoxH, is mainly expressed by its own promoter, PhoxW. The complex transcript formation may be a key feature for controlling bidirectional hydrogenase expression in vivo.
Collapse
Affiliation(s)
- O Schmitz
- Botanical Institute, The University of Cologne, Gyrhofstr. 15, D-50923 Köln, Germany.
| | | | | |
Collapse
|
28
|
Min H, Golden SS. A new circadian class 2 gene, opcA, whose product is important for reductant production at night in Synechococcus elongatus PCC 7942. J Bacteriol 2000; 182:6214-21. [PMID: 11029444 PMCID: PMC94758 DOI: 10.1128/jb.182.21.6214-6221.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in the cyanobacterium Synechococcus elongatus PCC 7942 is under the control of a circadian oscillator, such that peaks and troughs of expression recur with a periodicity of about 24 h in the absence of environmental cues. This can be monitored easily as light production from luciferase gene fusions to S. elongatus promoters. All promoters seem to exhibit circadian oscillation of expression, but the phasing of peak and trough times differs among different genes. The majority of genes are designated class 1, with expression peaks near dusk or subjective dusk (the time corresponding to dusk in the absence of a diurnal cycle). A minority, of which purF is an example, have expression peaks approximately 12 h out of phase with class 1 genes. A screen of Tn5 mutants for those in which purF phasing is altered revealed a mutant that carries an insertion in the opcA gene, previously identified as essential for glucose-6-phosphate dehydrogenase function. However, a different enzymatic reporter and in vitro luciferase assays revealed that the expression pattern of the purF promoter is not altered by opcA inactivation, but rather the reduced flavin mononucleotide substrate of luciferase is limiting at the time of the natural circadian peak. The results suggest that OpcA is involved in temporally separated reductant-generating pathways in S. elongatus and that it has a role outside of its function in activating glucose-6-phosphate dehydrogenase. The opcA gene, expected to be cotranscribed with fbp and zwf, was shown to have its own class 2 promoter, whereas the fbp promoter was determined to be in class 1. Thus, opcA expression is likely to be constitutive by virtue of the activity of two promoters in nearly opposite circadian phases.
Collapse
Affiliation(s)
- H Min
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | |
Collapse
|
29
|
Iwasaki H, Kondo T. The current state and problems of circadian clock studies in cyanobacteria. PLANT & CELL PHYSIOLOGY 2000; 41:1013-20. [PMID: 11100773 DOI: 10.1093/pcp/pcd024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Circadian rhythms have been observed in innumerable physiological processes in most of organisms. Recent molecular and genetic studies on circadian clocks in many organisms have identified and characterized several molecular regulatory factors that contribute to generation of such rhythms. The cyanobacterium is the simplest organism known to harbor circadian clocks, and it has become one of most successful model organisms for circadian biology. In this review, we will briefly summarize physiological observations and consideration of circadian rhythms in cyanobacteria, molecular genetics of the clock using Synechococcus, and current knowledge of the input and output pathways that support the cellular circadian system. Finally, we will document some current problems in the studies on the cyanobacterial circadian clock.
Collapse
Affiliation(s)
- H Iwasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Japan.
| | | |
Collapse
|
30
|
Abstract
In the not too distant past, it was common belief that rhythms in the physical environment were the driving force, to which organisms responded passively, for the observed daily rhythms in measurable physiological and behavioral variables. The demonstration that this was not the case, but that both plants and animals possess accurate endogenous time-measuring machinery (i.e., circadian clocks) contributed to heightening interest in the study of circadian biological rhythms. In the last few decades, flourishing studies have demonstrated that most organisms have at least one internal circadian timekeeping device that oscillates with a period close to that of the astronomical day (i.e., 24h). To date, many of the physiological mechanisms underlying the control of circadian rhythmicity have been described, while the improvement of molecular biology techniques has permitted extraordinary advancements in our knowledge of the molecular components involved in the machinery underlying the functioning of circadian clocks in many different organisms, man included. In this review, we attempt to summarize our current understanding of the genetic and molecular biology of circadian clocks in cyanobacteria, fungi, insects, and mammals.
Collapse
Affiliation(s)
- M Zordan
- Department of Biology, University of Padova, Italy
| | | | | | | | | |
Collapse
|
31
|
Mori T, Johnson CH. Circadian control of cell division in unicellular organisms. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:185-92. [PMID: 10740825 DOI: 10.1007/978-1-4615-4253-7_16] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cell division cycles and circadian rhythms are major periodic phenomena in organisms. Circadian oscillators control biochemical, physiological, and behavioral events in a wide range of living systems including almost all eukaryotes that have been tested and some prokaryotes-in particular, the cyanobacteria. Gating of cell division is one of the key processes that has been reported to be regulated by circadian clocks in many organisms. We survey studies of the circadian control of cell division in eukaryotic microorganisms and introduce recent progress on understanding the interaction between circadian rhythms and cell division cycles in cyanobacteria.
Collapse
Affiliation(s)
- T Mori
- Department of Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
32
|
Abstract
A circadian clock, with physiological characteristics similar to those of eukaryotes, functions in the photosynthetic prokaryote, cyanobacteria. The molecular mechanism of this clock has been efficiently dissected using a luciferase reporter gene that reports the status of the clock. A circadian clock gene cluster, kaiABC, has been cloned via rhythm mutants of cyanobacterium, Synechococcus, and many clock mutations mapped to the three kai genes. Although kai genes do not share any homology with clock genes so far identified in eukaryotes, analysis of their expression suggests that a negative feedback control of kaiC expression by KaiC generates the circadian oscillation and that KaiA functions as a positive factor to sustain this oscillation. BioEssays 22:10-15, 2000.
Collapse
Affiliation(s)
- T Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan.
| | | |
Collapse
|
33
|
Abstract
At least one group of prokaryotes is known to have circadian regulation of cellular activities--the cyanobacteria. Their "biological clock" orchestrates cellular events to occur in an optimal temporal program, and it can keep track of circadian time even when the cells are dividing more rapidly than once per day. Growth competition experiments demonstrate that the fitness of cyanobacteria is enhanced when the circadian period matches the period of the environmental cycle. Three genes have been identified that specifically affect circadian phenotypes. These genes, kaiA, kaiB, and kaiC, are adjacent to each other on the chromosome, thus forming a clock gene cluster. The clock gene products appear to interact with each other and form an autoregulatory feedback loop.
Collapse
Affiliation(s)
- C H Johnson
- Department of Biology, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | |
Collapse
|
34
|
Chen YL, Dincturk HB, Knaff DB. An unusual arrangement of pur and lpx genes in the photosynthetic purple sulfur bacterium Allochromatium vinosum. Mol Biol Rep 1999; 26:195-9. [PMID: 10532315 DOI: 10.1023/a:1007010229151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleotide sequence of a 1634 bp DNA fragment from the photosynthetic purple sulfur bacterium Allochromatium vinosum contains one complete and two partial open reading frames. Sequence comparisons to genes from other organisms suggest that this A. vinosum DNA fragment contains, starting from the 5' end, the following: (1) 234 bp at the 3' end of the A. vinosum purH gene, coding for 78 amino acids at the C-terminus of the bi-functional 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide formyltransferase/IMP cyclohydrolase (EC 2.1.2.3), an enzyme involved in de novo purine biosynthesis; (2) 777 bp of the A. vinosum lpxA gene, coding for all 259 amino acids of the UDP-N-acetylglucosamine-O-acyltransferase, an enzyme involved in lipid A biosynthesis; and (3) 567 bp at the 5' end of the A. vinosum purD gene, coding for 189 amino acids at the N-terminus of 5'-phosphoribosyl glycinamide synthetase (EC 6.3.4.13), a second enzyme involved in de novo purine biosynthesis. The presence of a gene coding for an enzyme involved in lipid A biosynthesis between two genes coding for enzymes of the de novo purine biosynthesis pathway represents a unique arrangement of these genes.
Collapse
Affiliation(s)
- Y L Chen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409-1061, USA
| | | | | |
Collapse
|
35
|
Katayama M, Tsinoremas NF, Kondo T, Golden SS. cpmA, a gene involved in an output pathway of the cyanobacterial circadian system. J Bacteriol 1999; 181:3516-24. [PMID: 10348865 PMCID: PMC93820 DOI: 10.1128/jb.181.11.3516-3524.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We generated random mutations in Synechococcus sp. strain PCC 7942 to look for genes of output pathways in the cyanobacterial circadian system. A derivative of transposon Tn5 was introduced into the chromosomes of reporter strains in which cyanobacterial promoters drive the Vibrio harveyi luxAB genes and produce an oscillation of bioluminescence as a function of circadian gene expression. Among low-amplitude mutants, one mutant, tnp6, had an insertion in a 780-bp open reading frame. The tnp6 mutation produced an altered circadian phasing phenotype in the expression rhythms of psbAI::luxAB, psbAII::luxAB, and kaiA::luxAB but had no or little effect on those of psbAIII::luxAB, purF::luxAB, kaiB::luxAB, rpoD2::luxAB, ndhD::luxAB, and conII::luxAB. This suggests that the interrupted gene in tnp6, named cpmA (circadian phase modifier), is part of a circadian output pathway that regulates the expression rhythms of psbAI, psbAII, and kaiA.
Collapse
Affiliation(s)
- M Katayama
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- J C Dunlap
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| |
Collapse
|
37
|
Abstract
Prokaryotic cyanobacteria express robust circadian (daily) rhythms, even when growing with doubling times that are considerably faster than once every 24 h. This biological clock orchestrates cellular events to occur in an optimal temporal program. Competition experiments demonstrate that fitness is enhanced when the circadian period resonates with the period of the environmental cycle.
Collapse
Affiliation(s)
- C H Johnson
- Dept of Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | |
Collapse
|
38
|
Abstract
The time structure of a biological system is at least as intricate as its spatial structure. Whereas we have detailed information about the latter, our understanding of the former is still rudimentary. As techniques for monitoring intracellular processes continuously in single cells become more refined, it becomes increasingly evident that periodic behaviour abounds in all time domains. Circadian timekeeping dominates in natural environments. Here the free-running period is about 24 h. Circadian rhythms in eukaryotes and prokaryotes allow predictive matching of intracellular states with environmental changes during the daily cycles. Unicellular organisms provide excellent systems for the study of these phenomena, which pervade all higher life forms. Intracellular timekeeping is essential. The presence of a temperature-compensated oscillator provides such a timer. The coupled outputs (epigenetic oscillations) of this ultradian clock constitute a special class of ultradian rhythm. These are undamped and endogenously driven by a device which shows biochemical properties characteristic of transcriptional and translational elements. Energy-yielding processes, protein turnover, motility and the timing of the cell-division cycle processes are all controlled by the ultradian clock. Different periods characterize different species, and this indicates a genetic determinant. Periods range from 30 min to 4 h. Mechanisms of clock control are being elucidated; it is becoming evident that many different control circuits can provide these functions.
Collapse
Affiliation(s)
- D Lloyd
- Microbiology Group (PABIO), University of Wales Cardiff, UK
| |
Collapse
|
39
|
Abstract
Evidence from a number of laboratories over the past 12 years has established that cyanobacteria, a group of photosynthetic eubacteria, possess a circadian pacemaker that controls metabolic and genetic functions. The cyanobacterial circadian clock exhibits the three intrinsic properties that have come to define the clocks of eukaryotes: The timekeeping mechanism controls rhythms that show a period of about 24 h in the absence of external signals, the phase of the rhythms can be reset by light/dark cues, and the period is relatively insensitive to temperature. The promise of cyanobacteria as simple models for elucidating the biological clock mechanism is being fulfilled, as mutants affected in period, rhythm generation, and rhythm amplitude, isolated through the use of real time reporters of gene expression, have implicated genes involved in these aspects of the clock.
Collapse
Affiliation(s)
- Susan S. Golden
- 1Department of Biology, Texas A&M University, College Station, Texas, 77843, 2Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-01 Japan, 3Department of Biology, Vanderbilt University, Nashville, Tennessee 37235
| | | | | | | |
Collapse
|
40
|
Liu Y, Tsinoremas NF. An unusual gene arrangement for the putative chromosome replication origin and circadian expression of dnaN in Synechococcus sp. strain PCC 7942. Gene 1996; 172:105-9. [PMID: 8654968 DOI: 10.1016/0378-1119(96)00160-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In eubacteria, the clustering of DnaA boxes around the dnaN (beta subunit of DNA polymerase III) and dnaA genes usually defines the chromosome replication origin (oriC). In this study, the dnaN locus from the cyanobacterium Synechococcus sp. strain PCC 7942 was sequenced. The gene order in this region is cbbZp-dnaN-orf288-purL-purF which contrasts with other eubacteria. A cluster of eleven DnaA boxes (consensus sequence: TTTTCCACA) was found in the intergenic region between dnaN and cbbZp. We also found a 41-bp sequence within this region that is 80% identical to the proposed oriC of Streptomyces coelicolor. Therefore, we propose that this intergenic region may serve as an oriC in Synechococcus. Using bacterial luciferase as a reporter, we also showed that dnaN is rhythmically expressed, suggesting that DNA replication could be under circadian control in this organism.
Collapse
Affiliation(s)
- Y Liu
- Department of Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|