1
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
2
|
Fischer MA, Engelgeh T, Rothe P, Fuchs S, Thürmer A, Halbedel S. Listeria monocytogenes genes supporting growth under standard laboratory cultivation conditions and during macrophage infection. Genome Res 2022; 32:1711-1726. [PMID: 36114002 PMCID: PMC9528990 DOI: 10.1101/gr.276747.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs widespread in the environment and infects humans when ingested along with contaminated food. Such infections are particularly dangerous for risk group patients, for whom they represent a life-threatening disease. To invent novel strategies to control contamination and disease, it is important to identify those cellular processes that maintain pathogen growth inside and outside the host. Here, we have applied transposon insertion sequencing (Tn-Seq) to L. monocytogenes for the identification of such processes on a genome-wide scale. Our approach identified 394 open reading frames that are required for growth under standard laboratory conditions and 42 further genes, which become necessary during intracellular growth in macrophages. Most of these genes encode components of the translation machinery and act in chromosome-related processes, cell division, and biosynthesis of the cellular envelope. Several cofactor biosynthesis pathways and 29 genes with unknown functions are also required for growth, suggesting novel options for the development of antilisterial drugs. Among the genes specifically required during intracellular growth are known virulence factors, genes compensating intracellular auxotrophies, and several cell division genes. Our experiments also highlight the importance of PASTA kinase signaling for general viability and of glycine metabolism and chromosome segregation for efficient intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Martin A Fischer
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Stephan Fuchs
- MF1 Bioinformatic Support, Robert Koch Institute, 13353 Berlin, Germany
| | - Andrea Thürmer
- MF2 Genome Sequencing, Robert Koch Institute, 13353 Berlin, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| |
Collapse
|
3
|
Forrest S, Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog 2020; 103:36850420964317. [PMID: 33148128 PMCID: PMC10450907 DOI: 10.1177/0036850420964317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein secretion is almost universally employed by bacteria. Some proteins are retained on the cell surface, whereas others are released into the extracellular milieu, often playing a key role in virulence. In this review, we discuss the diverse types and potential functions of post-translational modifications (PTMs) occurring to extracellular bacterial proteins.
Collapse
Affiliation(s)
- Suzanne Forrest
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Betulin efficiently suppresses the process of an experimental Listeria monocytogenes infection as an antagonist against listeriolysin O. Fitoterapia 2019; 139:104409. [PMID: 31698059 DOI: 10.1016/j.fitote.2019.104409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread foodborne intracellular pathogen that invades a variety of cells, causing abortions and severe human diseases. After internalization into host cells, pore-forming cytolysin listeriolysin O (LLO) disrupts the phagosome, which allows the bacterium to survive and colonize the cytoplasm, providing the bacterium the chance to infect neighboring cells. Betulin is an extracted natural compound from birch bark with diverse pharmacological activities. Here, we showed that LLO-induced rabbit red blood cell lysis in vitro was inhibited by preincubation with betulin, which suppressed the oligomerization process. Infectious assays performed with human monocyte macrophages indicated that betulin significantly protected cells against Lm-induced cell injury. In addition, Balb/c mice were used to perform a general infection, and betulin administration obviously inhibited organ damage and bacterial burden in livers and spleens of infected mice. In conclusion, betulin obviously inhibited Lm-induced cell injury in vitro and protected against infection in vivo through an antivirulence effect. Our results showed betulin as a new candidate against listeriosis by targeting LLO and highlight the potential of natural product-based medicine to be applied in the treatment of pathogenic infections.
Collapse
|
5
|
Coelho C, Brown L, Maryam M, Vij R, Smith DFQ, Burnet MC, Kyle JE, Heyman HM, Ramirez J, Prados-Rosales R, Lauvau G, Nakayasu ES, Brady NR, Hamacher-Brady A, Coppens I, Casadevall A. Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. J Biol Chem 2019; 294:1202-1217. [PMID: 30504226 PMCID: PMC6349127 DOI: 10.1074/jbc.ra118.006472] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Outer membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secrete extracellular vesicles (EVs) was not pursued until recently due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following their discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteria are implicated in virulence, toxin release, and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis. Here we report that L. monocytogenes produces EVs with diameters ranging from 20 to 200 nm, containing the pore-forming toxin listeriolysin O (LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Cell-free EV preparations were toxic to mammalian cells, the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC reduced LLO activity. Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multiomics we characterized protein, lipid, and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins. Using immunogold EM we detected LLO at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes during infection. Our findings demonstrate that L. monocytogenes uses EVs for toxin release and implicate these structures in mammalian cytotoxicity.
Collapse
Affiliation(s)
- Carolina Coelho
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, , To whom correspondence may be addressed:
Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205. E-mail:
| | - Lisa Brown
- the Department of Microbiology and Immunology and
| | - Maria Maryam
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Raghav Vij
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Daniel F. Q. Smith
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Meagan C. Burnet
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Jennifer E. Kyle
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Heino M. Heyman
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Jasmine Ramirez
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | - Gregoire Lauvau
- the Department of Microbiology and Immunology and ,Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Ernesto S. Nakayasu
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Nathan R. Brady
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Anne Hamacher-Brady
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Isabelle Coppens
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Arturo Casadevall
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, ,the Department of Microbiology and Immunology and ,Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, , Supported by National Institutes of Health Grants 5R01HL059842, 5R01AI033774, 5R37AI033142, and 5R01AI052733. To whom correspondence may be addressed:
Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205. E-mail:
| |
Collapse
|
6
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
7
|
Osborne SE, Brumell JH. Listeriolysin O: from bazooka to Swiss army knife. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630160 DOI: 10.1098/rstb.2016.0222] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Listeria monocytogenes (Lm) is a Gram-positive facultative intracellular pathogen. Infections in humans can lead to listeriosis, a systemic disease with a high mortality rate. One important mechanism of Lm dissemination involves cell-to-cell spread after bacteria have entered the cytosol of host cells. Listeriolysin O (LLO; encoded by the hly gene) is a virulence factor present in Lm that plays a central role in the cell-to-cell spread process. LLO is a member of the cholesterol-dependent cytolysin (CDC) family of toxins that were initially thought to promote disease largely by inducing cell death and tissue destruction-essentially acting like a 'bazooka'. This view was supported by structural studies showing CDCs can form large pores in membranes. However, it is now appreciated that LLO has many subtle activities during Lm infection of host cells, and many of these likely do not involve large pores, but rather small membrane perforations. It is also appreciated that membrane repair pathways of host cells play a major role in limiting membrane damage by LLO and other toxins. LLO is now thought to represent a 'Swiss army knife', a versatile tool that allows Lm to induce many membrane alterations and cellular responses that promote bacterial dissemination during infection.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Suzanne E Osborne
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8 .,Sickkids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
8
|
Aynapudi J, El-Rami F, Ge X, Stone V, Zhu B, Kitten T, Xu P. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation. MICROBIOLOGY-SGM 2017; 163:1306-1318. [PMID: 28869408 PMCID: PMC5817204 DOI: 10.1099/mic.0.000516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biofilm accounts for 65–80 % of microbial infections in humans. Considerable evidence links biofilm formation by oral microbiota to oral disease and consequently systemic infections. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species of the oral microbiota and it contributes to biofilm development in the oral cavity. Due to its altered biofilm formation, we investigated a biofilm mutant, ΔSSA_0351, that is deficient in type I signal peptidase (SPase) in this study. Although the growth curve of the ΔSSA_0351 mutant showed no significant difference from that of the wild-type strain SK36, biofilm assays using both microtitre plate assay and confocal laser scanning microscopy (CLSM) confirmed a sharp reduction in biofilm formation in the mutant compared to the wild-type strain and the paralogous mutant ΔSSA_0849. Scanning electron microscopy (SEM) revealed remarkable differences in the cell surface morphologies and chain length of the ΔSSA_0351 mutant compared with those of the wild-type strain. Transcriptomic and proteomic assays using RNA sequencing and mass spectrometry, respectively, were conducted on the ΔSSA_0351 mutant to evaluate the functional impact of SPase on biofilm formation. Subsequently, bioinformatics analysis revealed a number of proteins that were differentially regulated in the ΔSSA_0351 mutant, narrowing down the list of SPase substrates involved in biofilm formation to lactate dehydrogenase (SSA_1221) and a short-chain dehydrogenase (SSA_0291). With further experimentation, this list defined the link between SSA_0351-encoded SPase, cell wall biosynthesis and biofilm formation.
Collapse
Affiliation(s)
- Jessica Aynapudi
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Present address: School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Victoria Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Walsh SI, Craney A, Romesberg FE. Not just an antibiotic target: Exploring the role of type I signal peptidase in bacterial virulence. Bioorg Med Chem 2016; 24:6370-6378. [PMID: 27769673 PMCID: PMC5279723 DOI: 10.1016/j.bmc.2016.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/23/2023]
Abstract
The looming antibiotic crisis has prompted the development of new strategies towards fighting infection. Traditional antibiotics target bacterial processes essential for viability, whereas proposed antivirulence approaches rely on the inhibition of factors that are required only for the initiation and propagation of infection within a host. Although antivirulence compounds have yet to prove their efficacy in the clinic, bacterial signal peptidase I (SPase) represents an attractive target in that SPase inhibitors exhibit broad-spectrum antibiotic activity, but even at sub-MIC doses also impair the secretion of essential virulence factors. The potential consequences of SPase inhibition on bacterial virulence have not been thoroughly examined, and are explored within this review. In addition, we review growing evidence that SPase has relevant biological functions outside of mediating secretion, and discuss how the inhibition of these functions may be clinically significant.
Collapse
Affiliation(s)
- Shawn I Walsh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: Deciphering their specificity for secreted exoproteins by exoproteomic analysis. J Proteomics 2015; 117:95-105. [DOI: 10.1016/j.jprot.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022]
|
12
|
Zhang W, Xia Y. ER type I signal peptidase subunit (LmSPC1) is essential for the survival of Locusta migratoria manilensis and affects moulting, feeding, reproduction and embryonic development. INSECT MOLECULAR BIOLOGY 2014; 23:269-285. [PMID: 24467622 DOI: 10.1111/imb.12080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The endoplasmic reticulum type I signal peptidase complex (ER SPC) is a conserved enzyme that cleaves the signal peptides of secretory or membrane preproteins. The deletion of this enzyme leads to the accumulation of uncleaved proteins in biomembranes and cell death. However, the physiological functions of ER SPC in insects are not fully understood. Here, a catalytic subunit gene of ER SPC, LmSPC1, was cloned from Locusta migratoria manilensis and its physiological functions were analysed by RNA interference (RNAi). The LmSPC1 open reading frame encoded a protein of 178 amino acids with all five conserved regions of signal peptidases. RNAi-mediated knockdown of LmSPC1 resulted in high mortality. Sixty-nine per cent of dead nymphs died of abnormal moulting, corresponding to decreased activity of moulting fluid protease. Moreover, insects in the RNAi group experienced a decline in food intake, and a decrease in the secretion of total protein and digestive enzymes from midgut tissues to the midgut lumen. Furthermore, the females produced fewer eggs and eggs with disrupted embryogenesis. These results indicate that LmSPC1 is required for the secretion of secretory proteins, affects physiological functions, including moulting, feeding, reproduction and embryonic development, and is essential for survival. Therefore, LmSPC1 may be a potential target for locust control.
Collapse
Affiliation(s)
- W Zhang
- Genetic Engineering Research Center, School of Life Science, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University, Chongqing, China
| | | |
Collapse
|
13
|
Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48. [PMID: 24809022 PMCID: PMC4010754 DOI: 10.3389/fcimb.2014.00048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host.
Collapse
Affiliation(s)
- Filipe Carvalho
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| |
Collapse
|
14
|
Pseudomonas aeruginosa possesses two putative type I signal peptidases, LepB and PA1303, each with distinct roles in physiology and virulence. J Bacteriol 2012; 194:4521-36. [PMID: 22730125 DOI: 10.1128/jb.06678-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I signal peptidases (SPases) cleave signal peptides from proteins during translocation across biological membranes and hence play a vital role in cellular physiology. SPase activity is also of fundamental importance to the pathogenesis of infection for many bacteria, including Pseudomonas aeruginosa, which utilizes a variety of secreted virulence factors, such as proteases and toxins. P. aeruginosa possesses two noncontiguous SPase homologues, LepB (PA0768) and PA1303, which share 43% amino acid identity. Reverse transcription (RT)-PCR showed that both proteases were expressed, while a FRET-based assay using a peptide based on the signal sequence cleavage region of the secreted LasB elastase showed that recombinant LepB and PA1303 enzymes were both active. LepB is positioned within a genetic locus that resembles the locus containing the extensively characterized SPase of E. coli and is of similar size and topology. It was also shown to be essential for viability and to have high sequence identity with SPases from other pseudomonads (≥ 78%). In contrast, PA1303, which is small for a Gram-negative SPase (20 kDa), was found to be dispensable. Mutation of PA1303 resulted in an altered protein secretion profile and increased N-butanoyl homoserine lactone production and influenced several quorum-sensing-controlled phenotypic traits, including swarming motility and the production of rhamnolipid and elastinolytic activity. The data indicate different cellular roles for these P. aeruginosa SPase paralogues; the role of PA1303 is integrated with the quorum-sensing cascade and includes the suppression of virulence factor secretion and virulence-associated phenotypes, while LepB is the primary SPase.
Collapse
|
15
|
Smitha Rao CV, Anné J. Bacterial type I signal peptidases as antibiotic targets. Future Microbiol 2012; 6:1279-96. [PMID: 22082289 DOI: 10.2217/fmb.11.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite an alarming increase in morbidity and mortality caused by multidrug-resistant bacteria, the number of antibiotics available to efficiently combat them is dwindling. Consequently, there is a pressing need for new drugs, preferably with novel modes of action to avert the problem of cross-resistance. Several new targets have been proposed, including proteins essential in the protein secretion pathway such as the type I signal peptidase (SPase), indispensable for the release of the signal peptide during secretion of Sec- and Tat-dependent proteins. The type I SPase is considered to be an attractive target because it is essential, substantially different from the eukaryotic counterpart, and its active site is located at the outer leaflet of the cytoplasmic membrane, permitting relatively easy access to potential inhibitors. A few SPase inhibitors have already been identified, but their suitability as drugs is yet to be confirmed. An overview is given on the currently known SPase inhibitors, how they can give valuable information on the structural, biochemical and target validation aspects of the SPases, the approaches to identify them, and their future potential as drugs.
Collapse
Affiliation(s)
- C V Smitha Rao
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | |
Collapse
|
16
|
Moitinho-Silva L, Heineck BL, Reolon LA, Paes JA, Klein CS, Rebelatto R, Schrank IS, Zaha A, Ferreira HB. Mycoplasma hyopneumoniae type I signal peptidase: expression and evaluation of its diagnostic potential. Vet Microbiol 2011; 154:282-91. [PMID: 21831542 DOI: 10.1016/j.vetmic.2011.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 06/09/2011] [Accepted: 07/12/2011] [Indexed: 01/21/2023]
Abstract
Type I signal peptidase (SPase I) is a membrane-anchored protease of the general secretory pathway, which is encoded by the sipS gene in Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP). In this study, the expression of the M. hyopneumoniae SPase I (MhSPase I) was analyzed in virulent and avirulent strains, and the recombinant protein (rMhSPase I), expressed in Escherichia coli, was evaluated regarding its potential as an immunodiagnostic antigen. It was demonstrated that the sipS coding DNA sequence (CDS) is most likely part of an operon, being co-transcribed along with four other CDSs. Quantitative reverse transcriptase PCR and immunoblot assays showed that MhSPase I is expressed by all three strains analyzed, with no transcriptional difference, but with evidence of a higher protein level in a pathogenic strain (7422), in comparison to another pathogenic (7448) and a non-pathogenic (J) strain. rMhSPase I was strongly immunogenic for mice, and the MhSPase I antigenicity was confirmed. Polyclonal serum anti-rMhSPase I presented no detectable cross-reaction with Mycoplasma flocculare and Mycoplasma hyorhinis. Moreover, phylogenetic analysis demonstrated a low conservation between MhSPase I and orthologous proteins from other porcine respiratory disease complex-related bacteria, Firmicutes and other Mycoplasma species. The potential of an rMhSPase I-based ELISA for PEP immunodiagnosis was demonstrated. Overall, we investigated the expression of sipS and the encoded MhSPase I in three M. hyopneumoniae strains and showed that this protein is a good antigen for use in PEP serodiagnosis and possibly vaccination, as well as a potential target for antibiotic development.
Collapse
Affiliation(s)
- Lucas Moitinho-Silva
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schauer K, Geginat G, Liang C, Goebel W, Dandekar T, Fuchs TM. Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. BMC Genomics 2010; 11:573. [PMID: 20955543 PMCID: PMC3091722 DOI: 10.1186/1471-2164-11-573] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background The human pathogen Listeria monocytogenes resides and proliferates within the cytoplasm of epithelial cells. While the virulence factors essentially contributing to this step of the infection cycle are well characterized, the set of listerial genes contributing to intracellular replication remains to be defined on a genome-wide level. Results A comprehensive library of L. monocytogenes strain EGD knockout mutants was constructed upon insertion-duplication mutagenesis, and 1491 mutants were tested for their phenotypes in rich medium and in a Caco-2 cell culture assay. Following sequencing of the plasmid insertion site, 141 different genes required for invasion of and replication in Caco-2 cells were identified. Ten in-frame deletion mutants were constructed that confirmed the data. The genes with known functions are mainly involved in cellular processes including transport, in the intermediary metabolism of sugars, nucleotides and lipids, and in information pathways such as regulatory functions. No function could be ascribed to 18 genes, and a counterpart of eight genes is missing in the apathogenic species L. innocua. Mice infection studies revealed the in vivo requirement of IspE (Lmo0190) involved in mevalonate synthesis, and of the novel ABC transporter Lmo0135-0137 associated with cysteine transport. Based on the data of this genome-scale screening, an extreme pathway and elementary mode analysis was applied that demonstrates the critical role of glycerol and purine metabolism, of fucose utilization, and of the synthesis of glutathione, aspartate semialdehyde, serine and branched chain amino acids during intracellular replication of L. monocytogenes. Conclusion The combination of a genetic screening and a modelling approach revealed that a series of transporters help L. monocytogenes to overcome a putative lack of nutrients within cells, and that a high metabolic flexibility contributes to the intracellular replication of this pathogen.
Collapse
Affiliation(s)
- Kristina Schauer
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, Freising, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Leishmania major: disruption of signal peptidase type I and its consequences on survival, growth and infectivity. Exp Parasitol 2010; 126:135-45. [PMID: 20417202 DOI: 10.1016/j.exppara.2010.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 04/09/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
Leishmania major (L. major) signal peptidase type I (SPase I) is an endopeptidase encoded by a single-copy gene. In all organisms, SPase I is responsible for removing the signal peptide from secretory pre-proteins and releasing mature proteins to cellular or extra-cellular space. In this study, the role of SPase I in L. major is investigated by gene deletion using homologous recombination (HR). The null mutant of SPase I was not possible to create, suggesting that SPase I is an essential gene for parasite survival. The obtained heterozygote mutant by disrupting one allele of SPase I in L. major showed significantly reduced level of infectivity in bone marrow-derived macrophages. In addition, the heterozygote mutants are unable to cause cutaneous lesion in susceptible BALB/c mice. This is the first report showing that SPase I may have an important role in Leishmania infectivity, e.g. in differentiation and survival of amastigotes. Apparently, the SPase I expression is not essential for in vitro growth of the parasite.
Collapse
|
19
|
Bigot A, Raynaud C, Dubail I, Dupuis M, Hossain H, Hain T, Chakraborty T, Charbit A. lmo1273, a novel gene involved in Listeria monocytogenes virulence. Microbiology (Reading) 2009; 155:891-902. [DOI: 10.1099/mic.0.022277-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen able to infect humans and many other mammalian species, leading to serious, often fatal disease. We have previously identified a five-gene locus in the genome of L. monocytogenes EGD-e which comprised three contiguous genes encoding paralogous type I signal peptidases. In the present study, we focused on the two distal genes of the locus (lmo1272 and lmo1273), encoding proteins sharing significant similarities with the YlqF and RnhB proteins, respectively, of Bacillus subtilis. lmo1273 could complement an Escherichia coli rnhA-rnhB thermosensitive growth phenotype, suggesting that it encodes a functional RNase H. Strikingly, inactivation of lmo1273 provoked a strong attenuation of virulence in the mouse model, and kinetic studies in infected mice revealed that multiplication of the lmo1273 mutant in target organs was significantly impaired. However, the mutation did not impair L. monocytogenes intracellular multiplication or cell-to-cell spread in cell culture models. Transcriptional profiles obtained with an lmo1273-overexpressing strain were compared to those of the wild-type strain, using microarray analyses. The data obtained suggest a pleiotropic regulatory role of Lmo1273 and possible links with amino acid uptake.
Collapse
Affiliation(s)
- Armelle Bigot
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Catherine Raynaud
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Iharilalao Dubail
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Marion Dupuis
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Hamid Hossain
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | - Alain Charbit
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| |
Collapse
|
20
|
Dussurget O. Chapter 1 New Insights into Determinants of Listeria Monocytogenes Virulence. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:1-38. [DOI: 10.1016/s1937-6448(08)01401-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Bierne H, Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 2007; 71:377-97. [PMID: 17554049 PMCID: PMC1899877 DOI: 10.1128/mmbr.00039-06] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genome of the human food-borne pathogen Listeria monocytogenes is predicted to encode a high number of surface proteins. This abundance likely reflects the ability of this bacterium to survive in diverse environments, including soil, food, and the human host. This review focuses on the various mechanisms by which listerial proteins are attached at the bacterial surface and their many functions, including peptidoglycan metabolism, protein processing, adhesion to host cells, and invasion of host tissues. Extensive in silico analysis of the domains or motifs present in these mosaic proteins reveals that diverse structural features allow the surface proteome to interact with diverse bacterial or host components. This diversity offers new clues about the molecular bases of Listeria pathogenesis.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France.
| | | |
Collapse
|
22
|
Rajalahti T, Huang F, Klement MR, Pisareva T, Edman M, Sjöström M, Wieslander A, Norling B. Proteins in different Synechocystis compartments have distinguishing N-terminal features: a combined proteomics and multivariate sequence analysis. J Proteome Res 2007; 6:2420-34. [PMID: 17508731 DOI: 10.1021/pr0605973] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria have a cell envelope consisting of a plasma membrane, a periplasmic space with a peptidoglycan layer, and an outer membrane. A third, separate membrane system, the intracellular thylakoid membranes, is the site for both photosynthesis and respiration. All membranes and luminal spaces have unique protein compositions, which impose an intriguing mechanism for protein sorting of extracytoplasmic proteins due to single sets of translocation protein genes. It is shown here by multivariate sequence analyses of many experimentally identified proteins in Synechocystis, that proteins routed for the different extracytosolic compartments have correspondingly different physicochemical properties in their signal peptide and mature N-terminal segments. The full-length mature sequences contain less significant information. From these multivariate, N-terminal property-profile models for proteins with single experimental localization, proteins with ambiguous localization could, to a large extent, be predicted to a defined compartment. The sequence properties involve amino acids varying especially in volume and polarizability and at certain positions in the sequence segments, in a manner typical for the various compartment classes. Potential means of the cell to recognize the property features are discussed, involving the translocation channels and two Type I signal peptidases with different cellular localization, and charge features at their membrane interfaces.
Collapse
Affiliation(s)
- Tarja Rajalahti
- Department of Chemistry, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bigot A, Botton E, Dubail I, Charbit A. A homolog of Bacillus subtilis trigger factor in Listeria monocytogenes is involved in stress tolerance and bacterial virulence. Appl Environ Microbiol 2006; 72:6623-31. [PMID: 17021213 PMCID: PMC1610291 DOI: 10.1128/aem.00624-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular chaperones play an essential role in the folding of nascent chain polypeptides, as well as in the refolding and degradation of misfolded or aggregated proteins. They also assist in protein translocation and participate in stress functions. We identified a gene, designated tig, encoding a protein homologous to trigger factor (TF), a cytosolic ribosome-associated chaperone, in the genome of Listeria monocytogenes. We constructed a chromosomal Delta tig deletion and evaluated the impact of the mutation on bacterial growth in broth under various stress conditions and on pathogenesis. The Delta tig deletion did not affect cell viability but impaired survival in the presence of heat and ethanol stresses. We also identified the ffh gene, encoding a protein homologous to the SRP54 eukaryotic component of the signal recognition particle. However, a Delta ffh deletion was not tolerated, suggesting that Ffh is essential, as it is in Bacillus subtilis and Escherichia coli. Thus, although dispensable for growth, TF is involved in the stress response of L. monocytogenes. The Delta tig mutant showed no or very modest intracellular survival defects in eukaryotic cells. However, in vivo it showed a reduced capacity to persist in the spleens and livers of infected mice, revealing that TF has a role in the pathogenicity of L. monocytogenes.
Collapse
Affiliation(s)
- Armelle Bigot
- INSERM U-570, CHU Necker-Enfants Malades, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | |
Collapse
|
24
|
Desvaux M, Hébraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805. [PMID: 16911044 DOI: 10.1111/j.1574-6976.2006.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern with its frequent occurrence in food coupled with a high mortality rate. The capacity of a bacterium to secrete proteins to or beyond the bacterial cell surface is of crucial importance in the understanding of biofilm formation and bacterial pathogenesis to further develop defensive strategies. Recent findings in protein secretion in Listeria together with the availability of complete genome sequences of several pathogenic L. monocytogenes strains, as well as nonpathogenic Listeria innocua Clip11262, prompted us to summarize the listerial protein secretion systems. Protein secretion would rely essentially on the Sec (Secretion) pathway. The twin-arginine translocation pathway seems encoded in all but one sequenced Listeria. In addition, a functional flagella export apparatus, a fimbrilin-protein exporter, some holins and a WXG100 secretion system are encoded in listerial genomes. This critical review brings new insights into the physiology and virulence of Listeria species.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique (INRA), Centre de Recherche Clermont-Ferrand-Theix-Lyon, UR 454 Microbiologie, Equipe Qualité et Sécurité des Aliments (QuaSA), Saint-Genès Champanelle, France.
| | | |
Collapse
|
25
|
Dubail I, Bigot A, Lazarevic V, Soldo B, Euphrasie D, Dupuis M, Charbit A. Identification of an essential gene of Listeria monocytogenes involved in teichoic acid biogenesis. J Bacteriol 2006; 188:6580-91. [PMID: 16952950 PMCID: PMC1595501 DOI: 10.1128/jb.00771-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular gram-positive bacterium responsible for severe opportunistic infections in humans and animals. We had previously identified a gene encoding a putative UDP-N-acetylglucosamine 2-epimerase, a precursor of the teichoic acid linkage unit, in the genome of L monocytogenes strain EGD-e. This gene, now designated lmo2537, encodes a protein that shares 62% identity with the cognate epimerase MnaA of Bacillus subtilis and 55% identity with Cap5P of Staphylococcus aureus. Here, we addressed the role of lmo2537 in L. monocytogenes pathogenesis by constructing a conditional knockout mutant. The data presented here demonstrate that lmo2537 is an essential gene of L. monocytogenes that is involved in teichoic acid biogenesis. In vivo, the conditional mutant is very rapidly eliminated from the target organs of infected mice and thus is totally avirulent.
Collapse
Affiliation(s)
- Iharilalao Dubail
- Faculté de Médecine Necker, 156, Rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Bulach DM, Zuerner RL, Wilson P, Seemann T, McGrath A, Cullen PA, Davis J, Johnson M, Kuczek E, Alt DP, Peterson-Burch B, Coppel RL, Rood JI, Davies JK, Adler B. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci U S A 2006; 103:14560-5. [PMID: 16973745 PMCID: PMC1599999 DOI: 10.1073/pnas.0603979103] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis is one of the most common zoonotic diseases in the world, resulting in high morbidity and mortality in humans and affecting global livestock production. Most infections are caused by either Leptospira borgpetersenii or Leptospira interrogans, bacteria that vary in their distribution in nature and rely on different modes of transmission. We report the complete genomic sequences of two strains of L. borgpetersenii serovar Hardjo that have distinct phenotypes and virulence. These two strains have nearly identical genetic content, with subtle frameshift and point mutations being a common form of genetic variation. Starkly limited regions of synteny are shared between the large chromosomes of L. borgpetersenii and L. interrogans, probably the result of frequent recombination events between insertion sequences. The L. borgpetersenii genome is approximately 700 kb smaller and has a lower coding density than L. interrogans, indicating it is decaying through a process of insertion sequence-mediated genome reduction. Loss of gene function is not random but is centered on impairment of environmental sensing and metabolite transport and utilization. These features distinguish L. borgpetersenii from L. interrogans, a species with minimal genetic decay and that survives extended passage in aquatic environments encountering a mammalian host. We conclude that L. borgpetersenii is evolving toward dependence on a strict host-to-host transmission cycle.
Collapse
Affiliation(s)
- Dieter M. Bulach
- *Australian Bacterial Pathogenesis Program
- Victorian Bioinformatics Consortium, and
| | - Richard L. Zuerner
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010; and
| | - Peter Wilson
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Annette McGrath
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Paul A. Cullen
- *Australian Bacterial Pathogenesis Program
- Victorian Bioinformatics Consortium, and
| | - John Davis
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matthew Johnson
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Elizabeth Kuczek
- Australian Genome Research Facility, Gehrmann Laboratories, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David P. Alt
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010; and
| | - Brooke Peterson-Burch
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010; and
| | - Ross L. Coppel
- Victorian Bioinformatics Consortium, and
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Julian I. Rood
- *Australian Bacterial Pathogenesis Program
- Victorian Bioinformatics Consortium, and
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - John K. Davies
- *Australian Bacterial Pathogenesis Program
- Victorian Bioinformatics Consortium, and
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Ben Adler
- *Australian Bacterial Pathogenesis Program
- Victorian Bioinformatics Consortium, and
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
27
|
Lety MA, Frehel C, Raynaud C, Dupuis M, Charbit A. Exploring the role of the CTL epitope region of listeriolysin O in the pathogenesis of Listeria monocytogenes. Microbiology (Reading) 2006; 152:1287-1296. [PMID: 16622046 DOI: 10.1099/mic.0.28754-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen responsible for severe opportunistic infections in humans and animals. The secreted cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates phagosomal escape and allows bacterial growth in the cytosol of infected cells. In order to identify new LLO determinants participating in bacterial pathogenesis, this study focused on a major target of LLO proteolytic cleavage in vitro, the CTL epitope region (residues 91–99). Mutations were generated by site-directed mutagenesis in the epitope or in the two clusters of positive charges flanking the epitope. Two LLO mutants (a single mutation K103A and a double mutation R89G, K90G) were normally and stably secreted by L. monocytogenes. In contrast, a mutant carrying four amino acid substitutions in the epitope itself (Y92K, D94A, E97K, Y98F) was highly susceptible to proteolytic degradation. While these three LLO mutant proteins showed a reduced haemolytic activity, they all promoted efficient phagosomal escape and intracellular multiplication in different cell types, and were non-cytotoxic. The deletion of the epitope (Δ91–99), as well as the substitution of two, three or four of the four lysine residues (K103 to K106) by alanine residues did not lead to the production of a detectable protein. These results confirm the lack of correlation between haemolytic activity and phagosomal membrane disruption. They reveal the importance of the 91–99 region in the production of a stable and functional LLO. LD50 determinations in the mouse model suggest a possible link between LLO stability and virulence.
Collapse
Affiliation(s)
- Marie-Annick Lety
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Claude Frehel
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Catherine Raynaud
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Marion Dupuis
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Alain Charbit
- Faculté de Médecine Necker-Enfants Malades, INSERM U-570, 156, rue de Vaugirard, 75730 Paris Cedex 15, France
| |
Collapse
|
28
|
Srivastava R, Pisareva T, Norling B. Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 2006; 5:4905-16. [PMID: 16287171 DOI: 10.1002/pmic.200500111] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purified thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803 were used for the first time in proteomic studies. The membranes were prepared by a combination of sucrose density centrifugation and aqueous polymer two-phase partitioning. In total, 76 different proteins were identified from 2- and 1-D gels by MALDI-TOF MS analysis. Twelve of the identified proteins have a predicted Sec/Tat signal peptide. Fourteen of the proteins were known, or predicted to be, integral membrane proteins. Among the proteins identified were subunits of the well-characterized thylakoid membrane constituents Photosystem I and II, ATP synthase, cytochrome b6f-complex, NADH dehydrogenase, and phycobilisome complex. In addition, novel thylakoid membrane proteins, both integral and peripheral were found, including enzymes involved in protein folding and pigment biosynthesis. The latter were the chlorophyll biosynthesis enzymes, light-dependent protochlorophyllide reductase and geranylgeranyl reductase as well as phytoene desaturase involved in carotenoid biosynthesis and a water-soluble carotenoid-binding protein. Interestingly, in view of the protein sorting mechanism in cyanobacteria, one of the two signal peptidases type I of Synechocystis was found in the thylakoid membrane, whereas the second one has been identified previously in the plasma membrane. Sixteen proteins are hypothetical proteins with unknown function.
Collapse
Affiliation(s)
- Renu Srivastava
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Raynaud C, Charbit A. Regulation of expression of type I signal peptidases in Listeria monocytogenes. Microbiology (Reading) 2005; 151:3769-3776. [PMID: 16272398 DOI: 10.1099/mic.0.28066-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of type I signal peptidases (SPases I) is to remove the signal peptides of preproteins exported by the general secretory pathway. The genome of Listeria monocytogenes contains a locus encoding three contiguous SPases I (denoted SipX, SipY and SipZ). The authors recently showed that SipX and SipZ perform distinct functions in protein secretion and bacterial pathogenicity. Here, the regulation of sip gene expression in broth and in infected eukaryotic cells was studied. The results show that expression of the three sip genes is (i) controlled by two distinct promoter regions that respond differently to growth phase and temperature variations, and (ii) influenced by PrfA (the transcriptional activator regulating most of the virulence genes of L. monocytogenes) and the stress proteins ClpC and ClpP. It was found that sip gene expression was strongly upregulated upon infection of eukaryotic cells when bacteria were still entrapped in the phagosomal compartment. This upregulation is compatible with the need of L. monocytogenes to optimize its production of virulence factors in the early stage of the intracellular cycle.
Collapse
Affiliation(s)
- Catherine Raynaud
- INSERM-U570, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris Cedex-15, France
| | - Alain Charbit
- INSERM-U570, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris Cedex-15, France
| |
Collapse
|
30
|
Bigot A, Pagniez H, Botton E, Fréhel C, Dubail I, Jacquet C, Charbit A, Raynaud C. Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity. Infect Immun 2005; 73:5530-9. [PMID: 16113269 PMCID: PMC1231047 DOI: 10.1128/iai.73.9.5530-5539.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/31/2005] [Accepted: 05/11/2005] [Indexed: 11/20/2022] Open
Abstract
Flagellar structures have been shown to participate in virulence in a variety of intestinal pathogens. Here, we have identified two potential flagellar genes of Listeria monocytogenes: lmo0713, encoding a protein similar to the flagellar basal body component FliF, and lmo0716, encoding a protein similar to FliI, the cognate ATPase energizing the flagellar export apparatus. Expression of fliF and fliI appears to be downregulated at 37 degrees C, like that of flaA, encoding flagellin. By constructing two chromosomal deletion mutants, we show that inactivation of either fliF or fliI (i) abolishes bacterial motility and flagella production, (ii) impairs adhesion and entry into nonphagocytic epithelial cells, and (iii) also reduces uptake by bone marrow-derived macrophages. However, the DeltafliF and DeltafliI mutations have only a minor impact on bacterial virulence in the mouse model, indicating that the flagellar secretion apparatus itself is not essential for survival in this animal model. Finally, among 100 human clinical isolates of L. monocytogenes tested, we found 20 strains still motile at 37 degrees C. Notably, all these strains adhered less efficiently than strain EGD-e to Caco-2 cells at 37 degrees C but showed no defect of intracellular multiplication. These data suggest that expression of the flagella at 37 degrees C might hinder optimal adhesion to epithelial cells but has no impact on intracytosolic survival of L. monocytogenes.
Collapse
Affiliation(s)
- Armelle Bigot
- Faculté de Médecine Necker, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhbanko M, Zinchenko V, Gutensohn M, Schierhorn A, Klösgen RB. Inactivation of a predicted leader peptidase prevents photoautotrophic growth of Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:3071-8. [PMID: 15838034 PMCID: PMC1082817 DOI: 10.1128/jb.187.9.3071-3078.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To establish the role of the two putative type I leader peptidases (LepB1 and LepB2) encoded in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803, we generated independent knockout mutants for both genes by introducing kanamycin resistance cassettes into the two open reading frames (sll0716 [lepB1] and slr1377 [lepB2], respectively). Although the insertion was successful in both instances, it was not possible to select homozygous mutant cells for lepB2, suggesting that the function of this gene is essential for cell viability. In contrast, LepB1 is apparently essential only for photoautotrophic growth, because homozygous lepB1::Km(r) cells could be propagated under heterotrophic conditions. They were even capable to some extent of photosynthetic oxygen evolution. However, the photosynthetic activity decreased gradually with extended incubation in the light and was particularly affected by high light intensities. Both features were indicative of photooxidative damage, which was probably caused by inefficient replacement of damaged components of the photosynthetic machinery due to the lack of a leader peptidase removing the signal peptides from photosynthetic precursor proteins. Indeed, processing of the PsbO precursor polypeptide to the corresponding mature protein was significantly affected in the mutant, and reduced amounts of other proteins that are synthesized as precursors with signal peptides accumulated in the cells. These results strongly suggest that LepB1 is important for removal of the signal peptides after membrane transport of the components of the photosynthetic machinery, which in turn is a prerequisite for the biogenesis of a functional photosynthetic electron transport chain.
Collapse
Affiliation(s)
- Maria Zhbanko
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
32
|
van Roosmalen ML, Geukens N, Jongbloed JDH, Tjalsma H, Dubois JYF, Bron S, van Dijl JM, Anné J. Type I signal peptidases of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:279-97. [PMID: 15546672 DOI: 10.1016/j.bbamcr.2004.05.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 05/12/2004] [Indexed: 11/21/2022]
Abstract
Proteins that are exported from the cytoplasm to the periplasm and outer membrane of Gram-negative bacteria, or the cell wall and growth medium of Gram-positive bacteria, are generally synthesized as precursors with a cleavable signal peptide. During or shortly after pre-protein translocation across the cytoplasmic membrane, the signal peptide is removed by signal peptidases. Importantly, pre-protein processing by signal peptidases is essential for bacterial growth and viability. This review is focused on the signal peptidases of Gram-positive bacteria, Bacillus and Streptomyces species in particular. Evolutionary concepts, current knowledge of the catalytic mechanism, substrate specificity requirements and structural aspects are addressed. As major insights in signal peptidase function and structure have been obtained from studies on the signal peptidase LepB of Escherichia coli, similarities and differences between this enzyme and known Gram-positive signal peptidases are highlighted. Notably, while the incentive for previous research on Gram-positive signal peptidases was largely based on their role in the biotechnologically important process of protein secretion, present-day interest in these essential enzymes is primarily derived from the idea that they may serve as targets for novel anti-microbials.
Collapse
Affiliation(s)
- Maarten L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Barnett TC, Patel AR, Scott JR. A novel sortase, SrtC2, from Streptococcus pyogenes anchors a surface protein containing a QVPTGV motif to the cell wall. J Bacteriol 2004; 186:5865-75. [PMID: 15317792 PMCID: PMC516832 DOI: 10.1128/jb.186.17.5865-5875.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.
Collapse
Affiliation(s)
- Timothy C Barnett
- Department of Microbiology and Immunology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | | | | |
Collapse
|