1
|
Acuña-Amador L, Barloy-Hubler F. In silico analysis of Ffp1, an ancestral Porphyromonas spp. fimbrillin, shows differences with Fim and Mfa. Access Microbiol 2024; 6:000771.v3. [PMID: 39130734 PMCID: PMC11316588 DOI: 10.1099/acmi.0.000771.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Background. Scant information is available regarding fimbrillins within the genus Porphyromonas, with the notable exception of those belonging to Porphyromonas gingivalis, which have been extensively researched for several years. Besides fim and mfa, a third P. gingivalis adhesin called filament-forming protein 1 (Ffp1) has recently been described and seems to be pivotal for outer membrane vesicle (OMV) production. Objective. We aimed to investigate the distribution and diversity of type V fimbrillin, particularly Ffp1, in the genus Porphyromonas. Methods. A bioinformatics phylogenomic analysis was conducted using all accessible Porphyromonas genomes to generate a domain search for fimbriae, using hidden Markov model profiles. Results. Ffp1 was identified as the sole fimbrillin present in all analysed genomes. After manual verification (i.e. biocuration) of both structural and functional annotations and 3D modelling, this protein was determined to be a type V fimbrillin, with a closer structural resemblance to a Bacteroides ovatus fimbrillin than to FimA or Mfa1 from P. gingivalis. Conclusion. It appears that Ffp1 is an ancestral fimbria, transmitted through vertical inheritance and present across all Porphyromonas species. Additional investigations are necessary to elucidate the biogenesis of Ffp1 fimbriae and their potential role in OMV production and niche adaptation.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Frederique Barloy-Hubler
- Université de Rennes 1, CNRS, UMR 6553 ECOBIO (Écosystèmes, Biodiversité, Évolution), 35042 Rennes, France
| |
Collapse
|
2
|
Rothenberger CM, Yu M, Kim HM, Cheung YW, Chang YW, Davey ME. An outer membrane vesicle specific lipoprotein promotes Porphyromonas gingivalis aggregation on red blood cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100249. [PMID: 38974668 PMCID: PMC11225709 DOI: 10.1016/j.crmicr.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Porphyromonas gingivalis uses a variety of mechanisms to actively interact with and promote the hydrolysis of red blood cells (RBCs) to obtain iron in the form of heme. In this study, we investigated the function of lipoprotein PG1881 which was previously shown to be up-regulated during subsurface growth and selectively enriched on outer membrane vesicles (OMVs). Our results show that wildtype strain W83 formed large aggregates encompassing RBCs whereas the PG1881 deletion mutant remained predominately as individual cells. Using a PG1881 antibody, immunofluorescence revealed that the wildtype strain's aggregation to RBCs involves an extracellular matrix enriched with PG1881. Our findings discover that RBCs elicit cell aggregation and matrix formation by P. gingivalis and that this process is promoted by an OMV-specific lipoprotein. We propose this strategy is advantageous for nutrient acquisition as well as dissemination from the oral cavity and survival of this periodontal pathogen.
Collapse
Affiliation(s)
- Christina M. Rothenberger
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Microbiology, University of Florida College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Manda Yu
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Hey-Min Kim
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Yee-Wai Cheung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ellen Davey
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Fujimoto M, Naiki Y, Sakae K, Iwase T, Miwa N, Nagano K, Nawa H, Hasegawa Y. Structural and antigenic characterization of a novel genotype of Mfa1 fimbriae in Porphyromonas gingivalis. J Oral Microbiol 2023; 15:2215551. [PMID: 37223052 PMCID: PMC10201998 DOI: 10.1080/20002297.2023.2215551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Background Mfa1 fimbriae of the periodontal pathogen Porphyromonas gingivalis are responsible for biofilm formation and comprise five proteins: Mfa1-5. Two major genotypes, mfa170 and mfa153, encode major fimbrillin. The mfa170 genotype is further divided into the mfa170A and mfa170B subtypes. The properties of the novel mfa170B remain unclear. Methods Fimbriae were purified from P. gingivalis strains JI-1 (mfa170A), 1439 (mfa170B), and Ando (mfa153), and their components and their structures were analyzed. Protein expression and variability in the antigenic specificity of fimbrillins were compared using Coomassie staining and western blotting using polyclonal antibodies against Mfa170A, Mfa170B, and Mfa153 proteins. Cell surface expression levels of fimbriae were analyzed by filtration enzyme-linked immunosorbent assays. Results The composition and structures of the purified Mfa1 fimbriae of 1439 was similar to that of JI-1. However, each Mfa1 protein of differential subtype/genotype was specifically detected by western blotting. Mfa170B fimbriae were expressed in several strains such as 1439, JKG9, B42, 1436, and Kyudai-3. Differential protein expression and antigenic heterogeneities were detected in Mfa2-5 between strains. Conclusion Mfa1 fimbriae from the mfa170A and mfa170B genotypes indicated an antigenic difference suggesting the mfa170B, is to be utilized for the novel classification of P. gingivalis.
Collapse
Affiliation(s)
- Miyuna Fujimoto
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Pediatric Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshikazu Naiki
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kotaro Sakae
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tomohiko Iwase
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Naoyoshi Miwa
- Department of Pediatric Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroyuki Nawa
- Department of Pediatric Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
4
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
5
|
Hasegawa Y, Nagano K. Porphyromonas gingivalis FimA and Mfa1 fimbriae: Current insights on localization, function, biogenesis, and genotype. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:190-200. [PMID: 34691295 PMCID: PMC8512630 DOI: 10.1016/j.jdsr.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
In general, the periodontal pathogen Porphyromonas gingivalis expresses distinct FimA and Mfa1 fimbriae. Each of these consists of five FimA–E and five Mfa1–5 proteins encoded by the fim and mfa gene clusters, respectively. The main shaft portion comprises FimA and Mfa1, whereas FimB and Mfa2 are localized on the basal portion and function as anchors and elongation terminators. FimC–E and Mfa3–5 participate in the assembly of an accessory protein complex on the tips of each fimbria. Hence, they serve as ligands for the receptors on host cells and other oral bacterial species. The crystal structures of FimA and Mfa1 fimbrial proteins were recently elucidated and new insights into the localization, function, and biogenesis of these proteins have been reported. Several studies indicated a correlation between P. gingivalis pathogenicity and the fimA genotype but not the mfa1 genotype. We recently revealed polymorphisms of all genes in the fim and mfa gene clusters. Intriguingly, mfa5 occurred in numerous different forms and underwent duplication. Detailed structural and functional knowledge of the fimbrial proteins in the context of the entire filament could facilitate the development of innovative therapeutic strategies for structure-based drug design.
Collapse
Affiliation(s)
- Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
6
|
Shoji M, Shibata S, Naito M, Nakayama K. Transport and Polymerization of Porphyromonas gingivalis Type V Pili. Methods Mol Biol 2021; 2210:61-73. [PMID: 32815128 DOI: 10.1007/978-1-0716-0939-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesive pili (or fimbriae) in bacteria are classified into five types, among which type V pili have been most recently described. Type V pili differ from other pili types with respect to transport mechanism, structure, and pilin synthesis. Genes of type V pili are restricted to the phylum Bacteroidetes. Protein subunits that compose type V pili are transported to the cell surface as lipoprotein precursors and then polymerized into a pilus through a strand-exchange mechanism, which is demonstrated by several experiments, including palmitic acid labeling and Cys-Cys cross-linking analysis. Here, we describe the use of these methods to analyze type V pili.
Collapse
Affiliation(s)
- Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan.
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, Japan
| |
Collapse
|
7
|
PorA, a conserved C-terminal domain-containing protein, impacts the PorXY-SigP signaling of the type IX secretion system. Sci Rep 2020; 10:21109. [PMID: 33273542 PMCID: PMC7712824 DOI: 10.1038/s41598-020-77987-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, translocates many virulence factors including the cysteine proteases referred to as gingipains to the cell surface via the type IX secretion system (T9SS). Expression of the T9SS component proteins is regulated by the tandem signaling of the PorXY two-component system and the ECF sigma factor SigP. However, the details of this regulatory pathway are still unknown. We found that one of the T9SS conserved C-terminal domain-containing proteins, PGN_0123, which we have designated PorA, is involved in regulating expression of genes encoding T9SS structural proteins and that PorA can be translocated onto the cell surface without the T9SS translocation machinery. X-ray crystallography revealed that PorA has a domain similar to the mannose-binding domain of Escherichia coli FimH, the tip protein of Type 1 pilus. Mutations in the cytoplasmic domain of the sensor kinase PorY conferred phenotypic recovery on the ΔporA mutant. The SigP sigma factor, which is activated by the PorXY two-component system, markedly decreased in the ΔporA mutant. These results strongly support a potential role for PorA in relaying a signal from the cell surface to the PorXY-SigP signaling pathway.
Collapse
|
8
|
Pierce JV, Fellows JD, Anderson DE, Bernstein HD. A clostripain-like protease plays a major role in generating the secretome of enterotoxigenic Bacteroides fragilis. Mol Microbiol 2020; 115:290-304. [PMID: 32996200 DOI: 10.1111/mmi.14616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/27/2022]
Abstract
Bacteroides fragilis toxin (BFT) is a protein secreted by enterotoxigenic (ETBF) strains of B. fragilis. BFT is synthesized as a proprotein (proBFT) that is predicted to be a lipoprotein and that is cleaved into two discrete fragments by a clostripain-like protease called fragipain (Fpn). In this study, we obtained evidence that Fpn cleaves proBFT following its transport across the outer membrane. Remarkably, we also found that the disruption of the fpn gene led to a strong reduction in the level of >100 other proteins, many of which are predicted to be lipoproteins, in the culture medium of an ETBF strain. Experiments performed with purified Fpn provided direct evidence that the protease releases at least some of these proteins from the cell surface. The observation that wild-type cells outcompeted an fpn- strain in co-cultivation assays also supported the notion that Fpn plays an important role in cell physiology and is not simply dedicated to toxin biogenesis. Finally, we found that purified Fpn altered the adhesive properties of HT29 intestinal epithelial cells. Our results suggest that Fpn is a broad-spectrum protease that not only catalyzes the protein secretion on a wide scale but that also potentially cleaves host cell proteins during colonization.
Collapse
Affiliation(s)
- Jessica V Pierce
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin D Fellows
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Kosolapova AO, Antonets KS, Belousov MV, Nizhnikov AA. Biological Functions of Prokaryotic Amyloids in Interspecies Interactions: Facts and Assumptions. Int J Mol Sci 2020; 21:E7240. [PMID: 33008049 PMCID: PMC7582709 DOI: 10.3390/ijms21197240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloids are fibrillar protein aggregates with an ordered spatial structure called "cross-β". While some amyloids are associated with development of approximately 50 incurable diseases of humans and animals, the others perform various crucial physiological functions. The greatest diversity of amyloids functions is identified within prokaryotic species where they, being the components of the biofilm matrix, function as adhesins, regulate the activity of toxins and virulence factors, and compose extracellular protein layers. Amyloid state is widely used by different pathogenic bacterial species in their interactions with eukaryotic organisms. These amyloids, being functional for bacteria that produce them, are associated with various bacterial infections in humans and animals. Thus, the repertoire of the disease-associated amyloids includes not only dozens of pathological amyloids of mammalian origin but also numerous microbial amyloids. Although the ability of symbiotic microorganisms to produce amyloids has recently been demonstrated, functional roles of prokaryotic amyloids in host-symbiont interactions as well as in the interspecies interactions within the prokaryotic communities remain poorly studied. Here, we summarize the current findings in the field of prokaryotic amyloids, classify different interspecies interactions where these amyloids are involved, and hypothesize about their real occurrence in nature as well as their roles in pathogenesis and symbiosis.
Collapse
Affiliation(s)
- Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia (K.S.A.); (M.V.B.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
10
|
Shoji M, Shibata S, Sueyoshi T, Naito M, Nakayama K. Biogenesis of Type V pili. Microbiol Immunol 2020; 64:643-656. [DOI: 10.1111/1348-0421.12838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Satoshi Shibata
- Molecular Cryo‐Electron Microscopy Unit Okinawa Institute of Science and Technology Graduate University Onna Okinawa Japan
| | - Takayuki Sueyoshi
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences Nagasaki University Nagasaki Nagasaki Japan
| |
Collapse
|
11
|
Heads or tails for type V pilus assembly. Nat Microbiol 2020; 5:782-784. [PMID: 32467624 DOI: 10.1038/s41564-020-0732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Structure of polymerized type V pilin reveals assembly mechanism involving protease-mediated strand exchange. Nat Microbiol 2020; 5:830-837. [DOI: 10.1038/s41564-020-0705-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
|
13
|
Peptide-Based Inhibitors of Fimbrial Biogenesis in Porphyromonas gingivalis. Infect Immun 2019; 87:IAI.00750-18. [PMID: 30642895 DOI: 10.1128/iai.00750-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a progressive inflammatory disease that affects roughly half of American adults. Colonization of the oral cavity by the Gram-negative bacterial pathogen Porphyromonas gingivalis is a key event in the initiation and development of periodontal disease. Adhesive surface structures termed fimbriae (pili) mediate interactions of P. gingivalis with other bacteria and with host cells throughout the course of disease. The P. gingivalis fimbriae are assembled via a novel mechanism that involves proteolytic processing of lipidated precursor subunits and their subsequent polymerization on the bacterial surface. Given their extracellular assembly mechanism and central roles in pathogenesis, the P. gingivalis fimbriae are attractive targets for anti-infective therapeutics to prevent or treat periodontal disease. Here we confirm that conserved sequences in the N and C termini of the Mfa1 fimbrial subunit protein perform critical roles in subunit polymerization. We show that treatment of P. gingivalis with peptides corresponding to the conserved C-terminal region inhibits the extracellular assembly of Mfa fimbriae on the bacterial surface. We also show that peptide treatment interferes with the function of Mfa fimbriae by reducing P. gingivalis adhesion to Streptococcus gordonii in a dual-species biofilm model. Finally, we show that treatment of bacteria with similar peptides inhibits extracellular polymerization of the Fim fimbriae, which are also expressed by P. gingivalis These results support a donor strand-based assembly mechanism for the P. gingivalis fimbriae and demonstrate the feasibility of using extracellular peptides to disrupt the biogenesis and function of these critical periodontal disease virulence factors.
Collapse
|
14
|
Abstract
To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.
Collapse
Affiliation(s)
- Magdalena Lukaszczyk
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
15
|
Lee JY, Miller DP, Wu L, Casella CR, Hasegawa Y, Lamont RJ. Maturation of the Mfa1 Fimbriae in the Oral Pathogen Porphyromonas gingivalis. Front Cell Infect Microbiol 2018; 8:137. [PMID: 29868494 PMCID: PMC5954841 DOI: 10.3389/fcimb.2018.00137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
The Mfa1 fimbriae of the periodontal pathogen Porphyromonas gingivalis are involved in adhesion, including binding to synergistic species in oral biofilms. Mfa1 fimbriae are comprised of 5 proteins: the structural component Mfa1, the anchor Mfa2, and Mfa3-5 which constitute the fimbrial tip complex. Interactions among the Mfa proteins and the polymerization mechanism for Mfa1 are poorly understood. Here we show that Mfa3 can bind to Mfa1, 2, 4, and 5 in vitro, and may function as an adaptor protein interlinking other fimbrial subunits. Polymerization of Mfa1 is independent of Mfa3-5 and requires proteolytic processing mediated by the RgpA/B arginine gingipains of P. gingivalis. Both the N- and C- terminal regions of Mfa1 are necessary for polymerization; however, potential β-strand disrupting amino acid substitutions in these regions do not impair Mfa1 polymerization. In contrast, substitution of hydrophobic amino acids with charged residues in either the N- or C- terminal domains yielded Mfa1 proteins that failed to polymerize. Collectively, these results indicate that Mfa3 serves as an adaptor protein between Mfa1 and other accessory fimbrial proteins. Mfa1 fimbrial polymerization is dependent on hydrophobicity in both the N- and C-terminal regions, indicative of an assembly mechanism involving the terminal regions forming a hydrophobic binding interface between Mfa1 subunits.
Collapse
Affiliation(s)
- Jae Y Lee
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Leng Wu
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Carolyn R Casella
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| |
Collapse
|
16
|
Cell Cycle Arrest and Apoptosis Induced by Porphyromonas gingivalis Require Jun N-Terminal Protein Kinase- and p53-Mediated p38 Activation in Human Trophoblasts. Infect Immun 2018; 86:IAI.00923-17. [PMID: 29339463 DOI: 10.1128/iai.00923-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, has been implicated as a causative agent of preterm delivery of low-birth-weight infants. We previously reported that P. gingivalis activated cellular DNA damage signaling pathways and ERK1/2 that lead to G1 arrest and apoptosis in extravillous trophoblast cells (HTR-8 cells) derived from the human placenta. In the present study, we further examined alternative signaling pathways mediating cellular damage caused by P. gingivalis. P. gingivalis infection of HTR-8 cells induced phosphorylation of p38 and Jun N-terminal protein kinase (JNK), while their inhibitors diminished both G1 arrest and apoptosis. In addition, heat shock protein 27 (HSP27) was phosphorylated through both p38 and JNK, and knockdown of HSP27 with small interfering RNA (siRNA) prevented both G1 arrest and apoptosis. Furthermore, regulation of G1 arrest and apoptosis was associated with p21 expression. HTR-8 cells infected with P. gingivalis exhibited upregulation of p21, which was regulated by p53 and HSP27. These results suggest that P. gingivalis induces G1 arrest and apoptosis via novel molecular pathways that involve p38 and JNK with its downstream effectors in human trophoblasts.
Collapse
|
17
|
Structural and functional characterization of shaft, anchor, and tip proteins of the Mfa1 fimbria from the periodontal pathogen Porphyromonas gingivalis. Sci Rep 2018; 8:1793. [PMID: 29379120 PMCID: PMC5789003 DOI: 10.1038/s41598-018-20067-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Very little is known about how fimbriae of Bacteroidetes bacteria are assembled. To shed more light on this process, we solved the crystal structures of the shaft protein Mfa1, the regulatory protein Mfa2, and the tip protein Mfa3 from the periodontal pathogen Porphyromonas gingivalis. Together these build up part of the Mfa1 fimbria and represent three of the five proteins, Mfa1-5, encoded by the mfa1 gene cluster. Mfa1, Mfa2 and Mfa3 have the same overall fold i.e., two β-sandwich domains. Upon polymerization, the first β-strand of the shaft or tip protein is removed by indigenous proteases. Although the resulting void is expected to be filled by a donor-strand from another fimbrial protein, the mechanism by which it does so is still not established. In contrast, the first β-strand in Mfa2, the anchoring protein, is firmly attached by a disulphide bond and is not cleaved. Based on the structural information, we created multiple mutations in P. gingivalis and analysed their effect on fimbrial polymerization and assembly in vivo. Collectively, these data suggest an important role for the C-terminal tail of Mfa1, but not of Mfa3, affecting both polymerization and maturation of downstream fimbrial proteins.
Collapse
|
18
|
Abstract
Pili are crucial virulence factors for many Gram-negative pathogens. These surface structures provide bacteria with a link to their external environments by enabling them to interact with, and attach to, host cells, other surfaces or each other, or by providing a conduit for secretion. Recent high-resolution structures of pilus filaments and the machineries that produce them, namely chaperone-usher pili, type IV pili, conjugative type IV secretion pili and type V pili, are beginning to explain some of the intriguing biological properties that pili exhibit, such as the ability of chaperone-usher pili and type IV pili to stretch in response to external forces. By contrast, conjugative pili provide a conduit for the exchange of genetic information, and recent high-resolution structures have revealed an integral association between the pilin subunit and a phospholipid molecule, which may facilitate DNA transport. In addition, progress in the area of cryo-electron tomography has provided a glimpse of the overall architecture of the type IV pilus machinery. In this Review, we examine recent advances in our structural understanding of various Gram-negative pilus systems and discuss their functional implications.
Collapse
|
19
|
Nagano K, Hasegawa Y, Yoshida Y, Yoshimura F. Novel fimbrilin PGN_1808 in Porphyromonas gingivalis. PLoS One 2017; 12:e0173541. [PMID: 28296909 PMCID: PMC5351860 DOI: 10.1371/journal.pone.0173541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
Porphyromonas gingivalis, a periodontopathic gram-negative anaerobic bacterium, generally expresses two types of fimbriae, FimA and Mfa1. However, a novel potential fimbrilin, PGN_1808, in P. gingivalis strain ATCC 33277 was recently identified by an in silico structural homology search. In this study, we experimentally examined whether the protein formed a fimbrial structure. Anion-exchange chromatography showed that the elution peak of the protein was not identical to those of the major fimbrilins of FimA and Mfa1, indicating that PGN_1808 is not a component of these fimbriae. Electrophoretic analyses showed that PGN_1808 formed a polymer, although it was detergent and heat labile compared to FimA and Mfa1. Transmission electron microscopy showed filamentous structures (2‒3 nm × 200‒400 nm) on the cell surfaces of a PGN_1808-overexpressing P. gingivalis mutant (deficient in both FimA and Mfa1 fimbriae) and in the PGN_1808 fraction. PGN_1808 was detected in 81 of 84 wild-type strains of P. gingivalis by western blotting, suggesting that the protein is generally present in P. gingivalis.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University 1–100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University 1–100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University 1–100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University 1–100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
20
|
Nakayama K. [The type IX secretion system and the type V pilus in the phylum Bacteroidetes]. Nihon Saikingaku Zasshi 2017; 72:219-227. [PMID: 29109335 DOI: 10.3412/jsb.72.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many bacteria symbiotic and parasitic in humans are included in the genera Bacteroides, Prevotella, Porphyromonas and others, which belong to the phylum Bacteroidetes. We have been studying gingipain, a major secretory protease of Porphyromonas gingivalis which is a periodontopathogenic bacterium belonging to the genus Porphyromonas, and pili which contribute to host colonization in the bacterium. In the process, it was found that gingipain was secreted by a system not reported previously. Furthermore, this secretion system was found to exist widely in the Bacteroidetes phylum bacteria and closely related to the gliding motility of bacteroidete bacteria, and it was named the Por secretion system (later renamed the type IX secretion system). Regarding P. gingivalis pili, it was found that the pilus protein is transported as a lipoprotein to the cell surface, and the pilus formation occurs due to degradation by arginine-gingipain. Pili with this novel formation mechanism was found to be widely present in bacteria belonging to the class Bacteroidia in the phylum Bacteroidetes and was named the type V pili.
Collapse
Affiliation(s)
- Koji Nakayama
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
21
|
Abstract
Pilus assembly in bacteria typically occurs by one of four pathways. In the study by Xu et al., the structures of 20 pilin subunits of human oral and gut Bacteroidales are elucidated, revealing a new pilin superfamily, assembled into pili by a distinct fifth pathway.
Collapse
Affiliation(s)
- Michael J Coyne
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Narita SI, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1414-1423. [PMID: 27871940 DOI: 10.1016/j.bbalip.2016.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
| | - Hajime Tokuda
- University of Morioka, Takizawa, Iwate 020-0694, Japan.
| |
Collapse
|
23
|
Hasegawa Y, Iijima Y, Persson K, Nagano K, Yoshida Y, Lamont RJ, Kikuchi T, Mitani A, Yoshimura F. Role of Mfa5 in Expression of Mfa1 Fimbriae in Porphyromonas gingivalis. J Dent Res 2016; 95:1291-7. [PMID: 27323953 DOI: 10.1177/0022034516655083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fimbriae are protein-based filamentous appendages that protrude from the bacterial cell surface and facilitate host adhesion. Two types of fimbriae, FimA and Mfa1, of the periodontal pathogen Porphyromonas gingivalis are responsible for adherence to other bacteria and to host cells in the oral cavity. Both fimbrial forms are composed of 5 proteins, but there is limited information about their polymerization mechanisms. Here, the authors evaluated the function of Mfa5, one of the Mfa1 fimbrial accessory proteins. Using mfa5 gene disruption and complementation studies, the authors revealed that Mfa5 affects the incorporation of other accessory proteins, Mfa3 and Mfa4, into fibers and the expression of fimbriae on the cell surface. Mfa5 is predicted to have a C-terminal domain (CTD) that uses the type IX secretion system (T9SS), which is limited to this organism and related Bacteroidetes species, for translocation across the outer membrane. To determine the relationship between the putative Mfa5 CTD and the T9SS, mutants were constructed with in-frame deletion of the CTD and deletion of porU, a C-terminal signal peptidase linked to T9SS-mediated secretion. The ∆CTD-expressing strain presented a similar phenotype to the mfa5 disruption mutant with reduced expression of fimbriae lacking all accessory proteins. The ∆porU mutants and the ∆CTD-expressing strain showed intracellular accumulation of Mfa5. These results indicate that Mfa5 function requires T9SS-mediated translocation across the outer membrane, which is dependent on the CTD, and subsequent incorporation into fibers. These findings suggest the presence of a novel polymerization mechanism of the P. gingivalis fimbriae.
Collapse
Affiliation(s)
- Y Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Iijima
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - K Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - K Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - T Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - A Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - F Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
24
|
Xu Q, Shoji M, Shibata S, Naito M, Sato K, Elsliger MA, Grant JC, Axelrod HL, Chiu HJ, Farr CL, Jaroszewski L, Knuth MW, Deacon AM, Godzik A, Lesley SA, Curtis MA, Nakayama K, Wilson IA. A Distinct Type of Pilus from the Human Microbiome. Cell 2016; 165:690-703. [PMID: 27062925 DOI: 10.1016/j.cell.2016.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
Abstract
Pili are proteinaceous polymers of linked pilins that protrude from the cell surface of many bacteria and often mediate adherence and virulence. We investigated a set of 20 Bacteroidia pilins from the human microbiome whose structures and mechanism of assembly were unknown. Crystal structures and biochemical data revealed a diverse protein superfamily with a common Greek-key β sandwich fold with two transthyretin-like repeats that polymerize into a pilus through a strand-exchange mechanism. The assembly mechanism of the central, structural pilins involves proteinase-assisted removal of their N-terminal β strand, creating an extended hydrophobic groove that binds the C-terminal donor strands of the incoming pilin. Accessory pilins at the tip and base have unique structural features specific to their location, allowing initiation or termination of the assembly. The Bacteroidia pilus, therefore, has a biogenesis mechanism that is distinct from other known pili and likely represents a different type of bacterial pilus.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Satoshi Shibata
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joanna C Grant
- Joint Center for Structural Genomics, http://www.jcsg.org; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Herbert L Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Carol L Farr
- Joint Center for Structural Genomics, http://www.jcsg.org; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org; Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA; Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mark W Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Ashley M Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org; SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org; Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093, USA; Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott A Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Michael A Curtis
- Centre for Immunology and Infectious Disease (CIID), Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | - Ian A Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Kloppsteck P, Hall M, Hasegawa Y, Persson K. Structure of the fimbrial protein Mfa4 from Porphyromonas gingivalis in its precursor form: implications for a donor-strand complementation mechanism. Sci Rep 2016; 6:22945. [PMID: 26972441 PMCID: PMC4789730 DOI: 10.1038/srep22945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
Gingivitis and periodontitis are chronic inflammatory diseases that can lead to tooth loss. One of the causes of these diseases is the Gram-negative Porphyromonas gingivalis. This periodontal pathogen is dependent on two fimbriae, FimA and Mfa1, for binding to dental biofilm, salivary proteins, and host cells. These fimbriae are composed of five proteins each, but the fimbriae assembly mechanism and ligands are unknown. Here we reveal the crystal structure of the precursor form of Mfa4, one of the accessory proteins of the Mfa1 fimbria. Mfa4 consists of two β-sandwich domains and the first part of the structure forms two well-defined β-strands that run over both domains. This N-terminal region is cleaved by gingipains, a family of proteolytic enzymes that encompass arginine- and lysine-specific proteases. Cleavage of the N-terminal region generates the mature form of the protein. Our structural data allow us to propose that the new N-terminus of the mature protein may function as a donor strand in the polymerization of P. gingivalis fimbriae.
Collapse
Affiliation(s)
| | - Michael Hall
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
26
|
Zhang B, Sirsjö A, Khalaf H, Bengtsson T. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis. Sci Rep 2016; 6:21911. [PMID: 26907358 PMCID: PMC4764818 DOI: 10.1038/srep21911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Boxi Zhang
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Torbjörn Bengtsson
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
27
|
Ikai R, Hasegawa Y, Izumigawa M, Nagano K, Yoshida Y, Kitai N, Lamont RJ, Yoshimura F, Murakami Y. Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis. PLoS One 2015; 10:e0139454. [PMID: 26437277 PMCID: PMC4593637 DOI: 10.1371/journal.pone.0139454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/13/2015] [Indexed: 12/23/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.
Collapse
Affiliation(s)
- Ryota Ikai
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Yoshiaki Hasegawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
- * E-mail:
| | - Masashi Izumigawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Noriyuki Kitai
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States of America
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| |
Collapse
|
28
|
Ohshima H. Oral Biosciences: The annual review 2014. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Klarström Engström K, Khalaf H, Kälvegren H, Bengtsson T. The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Mol Oral Microbiol 2014; 30:62-73. [PMID: 25043711 DOI: 10.1111/omi.12067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Platelets are considered to have important functions in inflammatory processes and as actors in the innate immunity. Several studies have shown associations between cardiovascular disease and periodontitis, where the oral anaerobic pathogen Porphyromonas gingivalis has a prominent role in modulating the immune response. Porphyromonas gingivalis has been found in atherosclerotic plaques, indicating spreading of the pathogen via the circulation, with an ability to interact with and activate platelets via e.g. Toll-like receptors (TLR) and protease-activated receptors. We aimed to evaluate how the cysteine proteases, gingipains, of P. gingivalis affect platelets in terms of activation and chemokine secretion, and to further investigate the mechanisms of platelet-bacteria interaction. This study shows that primary features of platelet activation, i.e. changes in intracellular free calcium and aggregation, are affected by P. gingivalis and that arg-gingipains are of great importance for the ability of the bacterium to activate platelets. The P. gingivalis induced a release of the chemokine RANTES, however, to a much lower extent compared with the TLR2/1-agonist Pam3 CSK4 , which evoked a time-dependent release of the chemokine. Interestingly, the TLR2/1-evoked response was abolished by a following addition of viable P. gingivalis wild-types and gingipain mutants, showing that both Rgp and Kgp cleave the secreted chemokine. We also demonstrate that Pam3 CSK4 -stimulated platelets release migration inhibitory factor and plasminogen activator inhibitor-1, and that also these responses were antagonized by P. gingivalis. These results supports immune-modulatory activities of P. gingivalis and further clarify platelets as active players in innate immunity and in sensing bacterial infections, and as target cells in inflammatory reactions induced by P. gingivalis infection.
Collapse
Affiliation(s)
- K Klarström Engström
- Department of Biomedicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | | |
Collapse
|
30
|
Hasegawa Y, Murakami Y. Porphyromonas gingivalis fimbriae: Recent developments describing the function and localization of mfa1 gene cluster proteins. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Jayaprakash K, Khalaf H, Bengtsson T. Gingipains from Porphyromonas gingivalis play a significant role in induction and regulation of CXCL8 in THP-1 cells. BMC Microbiol 2014; 14:193. [PMID: 25037882 PMCID: PMC4115476 DOI: 10.1186/1471-2180-14-193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/10/2014] [Indexed: 12/23/2022] Open
Abstract
Background Porphyromonas gingivalis is an important bacterial etiological agent involved in periodontitis. The bacterium expresses two kinds of cysteine proteases called gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). This study evaluated the interaction between P. gingivalis and THP-1 cells, a widely used monocytic cell line, in vitro with a focus on CXCL8 at the gene and protein levels and its fate thereafter in cell culture supernatants. THP-1 cells were stimulated with viable and heat-killed wild-type strains ATCC 33277 or W50 or viable isogenic gingipain mutants of W50, E8 (Rgp mutant) or K1A (Kgp mutant), for 24 hours. Results ELISA and qPCR results show an elevated CXCL8 expression and secretion in THP-1 cells in response to P. gingivalis, where the heat-killed ATCC33277 and W50 induced higher levels of CXCL8 in comparison to their viable counterparts. Furthermore, the Kgp-deficient mutant K1A caused a higher CXCL8 response compared to the Rgp-deficient E8. Chromogenic quantification of lipopolysaccharide (LPS) in supernatant showed no significant differences between viable and heat killed bacteria except that W50 shed highest levels of LPS. The wild-type strains secreted relatively more Rgp during the co-culture with THP-1 cells. The CXCL8 degradation assay of filter-sterilized supernatant from heat-killed W50 treated cells showed that Rgp was most efficient at CXCL8 hydrolysis. Of all tested P. gingivalis strains, adhesion and internalization in THP-1 cells was least conspicuous by Rgp-deficient P. gingivalis (E8), as demonstrated by confocal imaging. Conclusions W50 and its Kgp mutant K1A exhibit a higher immunogenic and proteolytic function in comparison to the Rgp mutant E8. Since K1A differs from E8 in the expression of Rgp, it is rational to conclude that Rgp contributes to immunomodulation in a more dynamic manner in comparison to Kgp. Also, W50 is a more virulent strain when compared to the laboratory strain ATCC33277.
Collapse
|
32
|
Kerr JE, Abramian JR, Dao DHV, Rigney TW, Fritz J, Pham T, Gay I, Parthasarathy K, Wang BY, Zhang W, Tribble GD. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis. PLoS One 2014; 9:e91696. [PMID: 24626479 PMCID: PMC3953592 DOI: 10.1371/journal.pone.0091696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/15/2014] [Indexed: 11/19/2022] Open
Abstract
Porphyromonas gingivalis is a gram–negative anaerobic bacterium, a member of the human oral microbiome, and a proposed “keystone” pathogen in the development of chronic periodontitis, an inflammatory disease of the gingiva. P. gingivalis is a genetically diverse species, and is able to exchange chromosomal DNA between strains by natural competence and conjugation. In this study, we investigate the role of horizontal DNA transfer as an adaptive process to modify behavior, using the major fimbriae as our model system, due to their critical role in mediating interactions with the host environment. We show that P. gingivalis is able to exchange fimbrial allele types I and IV into four distinct strain backgrounds via natural competence. In all recombinants, we detected a complete exchange of the entire fimA allele, and the rate of exchange varies between the different strain backgrounds. In addition, gene exchange within other regions of the fimbrial genetic locus was identified. To measure the biological implications of these allele swaps we compared three genotypes of fimA in an isogenic background, strain ATCC 33277. We demonstrate that exchange of fimbrial allele type results in profound phenotypic changes, including the quantity of fimbriae elaborated, membrane blebbing, auto-aggregation and other virulence-associated phenotypes. Replacement of the type I allele with either the type III or IV allele resulted in increased invasion of gingival fibroblast cells relative to the isogenic parent strain. While genetic variability is known to impact host-microbiome interactions, this is the first study to quantitatively assess the adaptive effect of exchanging genes within the pan genome cloud. This is significant as it presents a potential mechanism by which opportunistic pathogens may acquire the traits necessary to modify host-microbial interactions.
Collapse
Affiliation(s)
- Jennifer E. Kerr
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jared R. Abramian
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Doan-Hieu V. Dao
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Todd W. Rigney
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jamie Fritz
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tan Pham
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Isabel Gay
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kavitha Parthasarathy
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Bing-yan Wang
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wenjian Zhang
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hasegawa Y, Nagano K, Ikai R, Izumigawa M, Yoshida Y, Kitai N, Lamont RJ, Murakami Y, Yoshimura F. Localization and function of the accessory protein Mfa3 in Porphyromonas gingivalis Mfa1 fimbriae. Mol Oral Microbiol 2013; 28:467-80. [PMID: 24118823 DOI: 10.1111/omi.12040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 11/30/2022]
Abstract
The fimbriae of Porphyromonas gingivalis, the causative agent of periodontitis, have been implicated in various aspects of pathogenicity, such as colonization, adhesion and aggregation. Porphyromonas gingivalis ATCC 33277 has two adhesins comprised of the FimA and Mfa1 fimbriae. We characterized the PGN0289 (Mfa3) protein, which is one of the three accessory proteins of Mfa1 fimbriae in P. gingivalis. The Mfa3 protein was present in two different sizes, 40 and 43 kDa, in the cell. The 43-kDa and 40-kDa Mfa3 were detected largely in the inner membrane and the outer membrane, respectively. Purified Mfa1 fimbriae contained the 40-kDa Mfa3 alone. Furthermore, the 40-kDa Mfa3 started with the Ala(44) residue of the deduced amino acid sequence, indicating that the N-terminal region of the nascent protein expressed from the mfa3 gene is processed in the transport step from the inner membrane into fimbriae. Immuno-electron microscopy revealed that Mfa3 localized at the tip of the fimbrial shaft. Interestingly, deletion of the mfa3 gene resulted in the absence of other accessory proteins, PGN0290 and PGN0291, in the purified Mfa1 fimbriae, suggesting that Mfa3 is required for integration of PGN0290 and PGN0291 into fimbriae. A double mutant of mfa3 and fimA genes (phenotype Mfa1 plus, FimA minus) showed increased auto-aggregation and biofilm formation similar to a double mutant of mfa1 and fimA genes (phenotype Mfa1(-) , FimA(-) ). These findings suggest that the tip protein Mfa3 of the Mfa1 fimbriae may function in the integration of accessory proteins and in the colonization of P. gingivalis.
Collapse
Affiliation(s)
- Y Hasegawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan; Department of Microbiology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nagano K. FimA Fimbriae of the Periodontal Disease-associated Bacterium Porphyromonas gingivalis. YAKUGAKU ZASSHI 2013; 133:963-74. [DOI: 10.1248/yakushi.13-00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
35
|
Enersen M, Nakano K, Amano A. Porphyromonas gingivalis fimbriae. J Oral Microbiol 2013; 5:20265. [PMID: 23667717 PMCID: PMC3647041 DOI: 10.3402/jom.v5i0.20265] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022] Open
Abstract
Marginal periodontitis is not a homogeneous disease but is rather influenced by an intricate set of host susceptibility differences as well as diversities in virulence among the harbored organisms. It is likely that clonal heterogeneity of subpopulations with both high and low levels of pathogenicity exists among organisms harbored by individuals with negligible, slight, or even severe periodontal destruction. Therefore, specific virulent clones of periodontal pathogens may cause advanced and/or aggressive periodontitis. Porphyromonas gingivalis is a predominant periodontal pathogen that expresses a number of potential virulence factors involved in the pathogenesis of periodontitis, and accumulated evidence shows that its expression of heterogenic virulence properties is dependent on clonal diversity. Fimbriae are considered to be critical factors that mediate bacterial interactions with and invasion of host tissues, with P. gingivalis shown to express two distinct fimbria-molecules, long and short fimbriae, on the cell surface, both of which seem to be involved in development of periodontitis. Long fimbriae are classified into six types (I to V and Ib) based on the diversity of fimA genes encoding FimA (a subunit of long fimbriae). Studies of clones with type II fimA have revealed their significantly greater adhesive and invasive capabilities as compared to other fimA type clones. Long and short fimbriae induce various cytokine expressions such as IL-1α, IL-β, IL-6, and TNF-α, which result in alveolar bone resorption. Although the clonal diversity of short fimbriae is unclear, distinct short fimbria-molecules have been found in different strains. These fimbriae variations likely influence the development of periodontal disease.
Collapse
Affiliation(s)
- Morten Enersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
36
|
Porphyromonas gingivalis FimA fimbriae: fimbrial assembly by fimA alone in the fim gene cluster and differential antigenicity among fimA genotypes. PLoS One 2012; 7:e43722. [PMID: 22970139 PMCID: PMC3436787 DOI: 10.1371/journal.pone.0043722] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.
Collapse
|
37
|
Nagano K, Abiko Y, Yoshida Y, Yoshimura F. Porphyromonas gingivalis FimA fimbriae: Roles of the fim gene cluster in the fimbrial assembly and antigenic heterogeneity among fimA genotypes. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts. Infect Immun 2012; 80:2847-57. [PMID: 22689813 DOI: 10.1128/iai.00258-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and interventional studies of humans have revealed a close association between periodontal diseases and preterm delivery of low-birth-weight infants. Porphyromonas gingivalis, a periodontal pathogen, can translocate to gestational tissues following oral-hematogenous spread. We previously reported that P. gingivalis invades extravillous trophoblast cells (HTR-8) derived from the human placenta and inhibits proliferation through induction of arrest in the G(1) phase of the cell cycle. The purpose of the present study was to identify signaling pathways mediating cellular impairment caused by P. gingivalis. Following P. gingivalis infection, the expression of Fas was induced and p53 accumulated, responses consistent with response to DNA damage. Ataxia telangiectasia- and Rad3-related kinase (ATR), an essential regulator of DNA damage checkpoints, was shown to be activated together with its downstream signaling molecule Chk2, while the p53 degradation-related protein MDM2 was not induced. The inhibition of ATR prevented both G(1) arrest and apoptosis caused by P. gingivalis in HTR-8 cells. In addition, small interfering RNA (siRNA) knockdown of p53 abrogated both G(1) arrest and apoptosis. The regulation of apoptosis was associated with Ets1 activation. HTR-8 cells infected with P. gingivalis exhibited activation of Ets1, and knockdown of Ets1 with siRNA diminished both G(1) arrest and apoptosis. These results suggest that P. gingivalis activates cellular DNA damage signaling pathways that lead to G(1) arrest and apoptosis in trophoblasts.
Collapse
|
39
|
Inaba H, Tagashira M, Kanda T, Amano A. Proliferation of Smooth Muscle Cells Stimulated byPorphyromonas Gingivalisis Inhibited by Apple Polyphenol. J Periodontol 2011; 82:1616-22. [DOI: 10.1902/jop.2011.100785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Yukitake H, Naito M, Sato K, Shoji M, Ohara N, Yoshimura M, Sakai E, Nakayama K. Effects of non-iron metalloporphyrins on growth and gene expression of Porphyromonas gingivalis. Microbiol Immunol 2011; 55:141-53. [PMID: 21204951 DOI: 10.1111/j.1348-0421.2010.00299.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, requires heme for its growth. Non-iron metalloporphyrins, In-PPIX and Ga-PPIX, were examined for antibacterial effects on P. gingivalis. Both In-PPIX and Ga-PPIX caused retardation of P. gingivalis growth in a dose-dependent fashion. Microarray and qPCR analyses revealed that In-PPIX treatment upregulated the expression of several genes encoding proteins including ClpB and ClpC, which are members of the Clp (caseinolytic protease, Hsp100) family, and aRNR, aRNR-activating protein and thioredoxin reductase, whereas In-PPIX treatment had no effect on the expression of genes encoding proteins involved in heme uptake pathways, Hmu-mediated, Iht-mediated and Tlr-mediated pathways. P. gingivalis ihtA and ihtB mutants were more resistant to In-PPIX than was the wild-type parent, whereas hmuR and tlr mutants did not show such resistance to In-PPIX. The results suggest that In-PPIX is incorporated by the Iht-mediated heme uptake pathway and that it influences protein quality control and nucleotide metabolism and retards growth of P. gingivalis.
Collapse
Affiliation(s)
- Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shoji M, Sato K, Yukitake H, Kondo Y, Narita Y, Kadowaki T, Naito M, Nakayama K. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 2011; 6:e21372. [PMID: 21731719 PMCID: PMC3120885 DOI: 10.1371/journal.pone.0021372] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/26/2011] [Indexed: 01/22/2023] Open
Abstract
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuka Narita
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoko Kadowaki
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Global COE Program at Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
42
|
Shoji M, Yoshimura A, Yoshioka H, Takade A, Takuma Y, Yukitake H, Naito M, Hara Y, Yoshida SI, Nakayama K. Recombinant Porphyromonas gingivalis FimA preproprotein expressed in Escherichia coli is lipidated and the mature or processed recombinant FimA protein forms a short filament in vitro. Can J Microbiol 2011; 56:959-67. [PMID: 21076487 DOI: 10.1139/w10-084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The gram-negative anaerobic bacterium Porphyromonas gingivalis is an etiologically important pathogen for chronic periodontal diseases in adults. Our previous study suggested that the major structural components of both Fim and Mfa fimbriae in this organism are secreted through their lipidated precursors. In this study, we constructed Escherichia coli strains expressing various fimA genes with or without the 5'-terminal DNA region encoding the signal peptide, and we determined whether lipidation of recombinant FimA proteins occurred in E. coli. Lipidation occurred for a recombinant protein from the fimA gene with the 5'-terminal DNA region encoding the signal peptide but not for a recombinant protein from the fimA gene without the signal-peptide-encoding region, as revealed by [3H]palmitic acid labeling experiments. A TLR2-dependent signaling response was induced by the recombinant protein from the fimA gene with the signal-peptide-encoding region but not by a recombinant protein from the fimA gene with the signal-peptide-encoding region that had a base substitution causing an amino acid substitution (C19A). Electron microscopic analysis revealed that recombinant FimA (A-47 - W-383) protein was autopolymerized to form filamentous structures of about 80 nm in length in vitro. The results suggest that FimA protein, a major subunit of Fim fimbriae, is transported to the outer membrane by the lipoprotein sorting system, and a mature or processed FimA protein on the outer membrane is autopolymerized to form Fim fimbriae.
Collapse
Affiliation(s)
- Mikio Shoji
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ito R, Ishihara K, Shoji M, Nakayama K, Okuda K. Hemagglutinin/Adhesin domains ofPorphyromonas gingivalisplay key roles in coaggregation withTreponema denticola. ACTA ACUST UNITED AC 2010; 60:251-60. [DOI: 10.1111/j.1574-695x.2010.00737.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
|
45
|
Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000 2010; 54:15-44. [PMID: 20712631 DOI: 10.1111/j.1600-0757.2010.00377.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Yeh A, Zhou J, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1297-305. [PMID: 20944225 PMCID: PMC2954219 DOI: 10.1107/s1744309110023055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/15/2010] [Indexed: 11/11/2022]
Abstract
Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT_3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment.
Collapse
Affiliation(s)
- Qingping Xu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Herbert L. Axelrod
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Constantina Bakolitsa
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Xiaohui Cai
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Connie Chen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Hsiu-Ju Chiu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Debanu Das
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Marc C. Deller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ellrott
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Carol L. Farr
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anna Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kevin K. Jin
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Piotr Kozbial
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Abhinav Kumar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Winnie W. Lam
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell D. Miller
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Amanda Nopakun
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Christina Puckett
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Henry J. Tien
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christine B. Trame
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Henry van den Bedem
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Tiffany Wooten
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Andrew Yeh
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Jiadong Zhou
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M. Deacon
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
47
|
Analysis of immunostimulatory activity of Porphyromonas gingivalis fimbriae conferred by Toll-like receptor 2. Biochem Biophys Res Commun 2010; 398:86-91. [DOI: 10.1016/j.bbrc.2010.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022]
|
48
|
The native 67-kilodalton minor fimbria of Porphyromonas gingivalis is a novel glycoprotein with DC-SIGN-targeting motifs. J Bacteriol 2010; 192:4103-10. [PMID: 20562309 DOI: 10.1128/jb.00275-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We recently reported that the oral mucosal pathogen Porphyromonas gingivalis, through its 67-kDa Mfa1 (minor) fimbria, targets the C-type lectin receptor DC-SIGN for invasion and persistence within human monocyte-derived dendritic cells (DCs). The DCs respond by inducing an immunosuppressive and Th2-biased CD4(+) T-cell response. We have now purified the native minor fimbria by ion-exchange chromatography and sequenced the fimbria by tandem mass spectrometry (MS/MS), confirming its identity and revealing two putative N-glycosylation motifs as well as numerous putative O-glycosylation sites. We further show that the minor fimbria is glycosylated by ProQ staining and that glycosylation is partially removed by treatment with beta(1-4)-galactosidase, but not by classic N- and O-linked deglycosidases. Further monosaccharide analysis by gas chromatography-mass spectrometry (GC-MS) confirmed that the minor fimbria contains the DC-SIGN-targeting carbohydrates fucose (1.35 nmol/mg), mannose (2.68 nmol/mg), N-acetylglucosamine (2.27 nmol/mg), and N-acetylgalactosamine (0.652 nmol/mg). Analysis by transmission electron microscopy revealed that the minor fimbria forms fibers approximately 200 nm in length that could be involved in targeting or cross-linking DC-SIGN. These findings shed further light on molecular mechanisms of invasion and immunosuppression by this unique mucosal pathogen.
Collapse
|
49
|
Shoji M, Shibata Y, Shiroza T, Yukitake H, Peng B, Chen YY, Sato K, Naito M, Abiko Y, Reynolds EC, Nakayama K. Characterization of hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization. BMC Microbiol 2010; 10:152. [PMID: 20500879 PMCID: PMC2907840 DOI: 10.1186/1471-2180-10-152] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 05/25/2010] [Indexed: 11/24/2022] Open
Abstract
Background The periodontal pathogen Porphyromonas gingivalis is an obligate anaerobe that requires heme for growth. To understand its heme acquisition mechanism, we focused on a hemin-binding protein (HBP35 protein), possessing one thioredoxin-like motif and a conserved C-terminal domain, which are proposed to be involved in redox regulation and cell surface attachment, respectively. Results We observed that the hbp35 gene was transcribed as a 1.1-kb mRNA with subsequent translation resulting in three proteins with molecular masses of 40, 29 and 27 kDa in the cytoplasm, and one modified form of the 40-kDa protein on the cell surface. A recombinant 40-kDa HBP35 exhibited thioredoxin activity in vitro and mutation of the two putative active site cysteine residues abolished this activity. Both recombinant 40- and 27-kDa proteins had the ability to bind hemin, and growth of an hbp35 deletion mutant was substantially retarded under hemin-depleted conditions compared with growth of the wild type under the same conditions. Conclusion P. gingivalis HBP35 exhibits thioredoxin and hemin-binding activities and is essential for growth in hemin-depleted conditions suggesting that the protein plays a significant role in hemin acquisition.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|