1
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
2
|
Gebremichael Y, Crandall J, Mukhopadhyay R, Xu F. Salmonella Subpopulations Identified from Human Specimens Express Heterogenous Phenotypes That Are Relevant to Clinical Diagnosis. Microbiol Spectr 2023; 11:e0167922. [PMID: 36507668 PMCID: PMC9927314 DOI: 10.1128/spectrum.01679-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clonal bacterial cells can give rise to functionally heterogeneous subpopulations. This diversification is considered an adaptation strategy that has been demonstrated for several bacterial species, including Salmonella enterica serovar Typhimurium. In previous studies on mouse models infected orally with pure Salmonella cultures, derived bacterial cells collected from animal tissues were found to express heterogenous phenotypes. Here, we show mixed Salmonella populations, apparently derived from the same progenitor, present in human specimens collected at a single disease time point, and in a long-term-infected patient, these Salmonella were no longer expressing surface-exposed antigen epitopes by isolates collected at earlier days of the disease. The subpopulations express different phenotypes related to cell surface antigen expression, motility, biofilm formation, biochemical metabolism, and antibiotic resistance, which can all contribute to pathogenicity. Some of the phenotypes correlate with single nucleotide polymorphisms or other sequence changes in bacterial genomes. These genetic variations can alter synthesis of cell membrane-associated molecules such as lipopolysaccharides and lipoproteins, leading to changes in bacterial surface structure and function. This study demonstrates the limitation of Salmonella diagnostic methods that are based on a single-cell population which may not represent the heterogenous bacterial community in infected humans. IMPORTANCE In animal model systems, heterogenous Salmonella phenotypes were found previously to regulate bacterial infections. We describe in this communication that different Salmonella phenotypes also exist in infected humans at a single disease time point and that their phenotypic and molecular traits are associated with different aspects of pathogenicity. Notably, variation in genes encoding antibiotic resistance and two-component systems were observed from the subpopulations of a patient suffering from persistent salmonellosis. Therefore, clinical and public health interventions of the disease that are based on diagnosis of a single-cell population may miss other subpopulations that can cause residual human infections.
Collapse
Affiliation(s)
- Yismashoa Gebremichael
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - John Crandall
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Rituparna Mukhopadhyay
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Fengfeng Xu
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
3
|
Meng J, Young G, Chen J. The Rcs System in Enterobacteriaceae: Envelope Stress Responses and Virulence Regulation. Front Microbiol 2021; 12:627104. [PMID: 33658986 PMCID: PMC7917084 DOI: 10.3389/fmicb.2021.627104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial cell envelope is a protective barrier at the frontline of bacterial interaction with the environment, and its integrity is regulated by various stress response systems. The Rcs (regulator of capsule synthesis) system, a non-orthodox two-component regulatory system (TCS) found in many members of the Enterobacteriaceae family, is one of the envelope stress response pathways. The Rcs system can sense envelope damage or defects and regulate the transcriptome to counteract stress, which is particularly important for the survival and virulence of pathogenic bacteria. In this review, we summarize the roles of the Rcs system in envelope stress responses (ESRs) and virulence regulation. We discuss the environmental and intrinsic sources of envelope stress that cause activation of the Rcs system with an emphasis on the role of RcsF in detection of envelope stress and signal transduction. Finally, the different regulation mechanisms governing the Rcs system's control of virulence in several common pathogens are introduced. This review highlights the important role of the Rcs system in the environmental adaptation of bacteria and provides a theoretical basis for the development of new strategies for control, prevention, and treatment of bacterial infections.
Collapse
Affiliation(s)
- Jiao Meng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Glenn Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Envelope Stress and Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System. J Bacteriol 2020; 202:JB.00272-20. [PMID: 32571967 DOI: 10.1128/jb.00272-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/19/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses a type three secretion system (T3SS) encoded on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. The SPI1 T3SS is regulated by numerous environmental and physiological signals, integrated to either activate or repress invasion. Transcription of hilA, encoding the transcriptional activator of the SPI1 structural genes, is activated by three AraC-like regulators, HilD, HilC, and RtsA, that act in a complex feed-forward loop. Deletion of bamB, encoding a component of the β-barrel assembly machinery, causes a dramatic repression of SPI1, but the mechanism was unknown. Here, we show that partially defective β-barrel assembly activates the RcsCDB regulon, leading to decreased hilA transcription. This regulation is independent of RpoE activation. Though Rcs has been previously shown to repress SPI1 when disulfide bond formation is impaired, we show that activation of Rcs in a bamB background is dependent on the sensor protein RcsF, whereas disulfide bond status is sensed independently. Rcs decreases transcription of the flagellar regulon, including fliZ, the product of which indirectly activates HilD protein activity. Rcs also represses hilD, hilC, and rtsA promoters by an unknown mechanism. Both dsbA and bamB mutants have motility defects, though this is simply regulatory in a bamB background; motility is restored in the absence of Rcs. Effector secretion assays show that repression of SPI1 in a bamB background is also regulatory; if expressed, the SPI1 T3SS is functional in a bamB background. This emphasizes the sensitivity of SPI1 regulation to overall envelope homeostasis.IMPORTANCE Salmonella causes worldwide foodborne illness, leading to massive disease burden and an estimated 600,000 deaths per year. Salmonella infects orally and invades intestinal epithelial cells using a type 3 secretion system that directly injects effector proteins into host cells. This first step in invasion is tightly regulated by a variety of inputs. In this work, we demonstrate that Salmonella senses the functionality of outer membrane assembly in determining regulation of invasion machinery, and we show that Salmonella uses distinct mechanisms to detect specific perturbations in envelope assembly.
Collapse
|
5
|
Kang J, Liu L, Liu Y, Wang X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7121-7131. [PMID: 32588628 DOI: 10.1021/acs.jafc.0c01901] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance and capacity for biofilm formation of Shigella flexneri render previous prevention and control strategies minimally effective. Ferulic acid (FA) has been demonstrated to be useful due to its application in foods as an alternative natural preservative. However, information regarding the S. flexneri phenotype and molecular responses to FA exposure is limited. The present study investigated the effects of FA on S. flexneri planktonic growth and biofilm formation. The results demonstrated that the cell membrane of S. flexneri in planktonic growth mode exhibited irreversible destruction after FA exposure, as characterized by decreased cell viability, leakage of cytoplasmic constituents, accelerated adenosine triphosphate (ATP) consumption, cell membrane depolarization, and cellular morphological changes. FA significantly inhibited S. flexneri adhesion and biofilm formation at a working concentration (1/8 MIC) that almost did not inhibit planktonic growth. Transcriptomics profiling showed that the exposure to a subinhibitory concentration of FA dramatically altered gene expression in the S. flexneri biofilm, as a total of 169 differentially expressed genes (DEGs) were upregulated and 533 DEGs were downregulated, compared to the intact biofilm. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were mainly involved in pathways of ribosomes, ABC transporters, and the citrate cycle. Furthermore, we show that FA altered the transcription of S. flexneri genes associated with adhesion, transcriptional regulation, and the synthesis and transport of extracellular polymeric substances that contribute to biofilm formation. These data provide novel insights into S. flexneri behavioral responses to FA exposure and suggest that FA could effectively constrain S. flexneri and its biofilm formation.
Collapse
Affiliation(s)
- Jiamu Kang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
6
|
Murret-Labarthe C, Kerhoas M, Dufresne K, Daigle F. New Roles for Two-Component System Response Regulators of Salmonella enterica Serovar Typhi during Host Cell Interactions. Microorganisms 2020; 8:microorganisms8050722. [PMID: 32413972 PMCID: PMC7285189 DOI: 10.3390/microorganisms8050722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
In order to survive external stresses, bacteria need to adapt quickly to changes in their environment. One adaptive mechanism is to coordinate and alter their gene expression by using two-component systems (TCS). TCS are composed of a sensor kinase that activates a transcriptional response regulator by phosphorylation. TCS are involved in motility, virulence, nutrient acquisition, and envelope stress in many bacteria. The pathogenic bacteria Salmonella enterica serovar Typhi (S. Typhi) possess 30 TCSs, is specific to humans, and causes typhoid fever. Here, we have individually deleted each of the 30 response regulators. We have determined their role during interaction with host cells (epithelial cells and macrophages). Deletion of most of the systems (24 out of 30) resulted in a significant change during infection. We have identified 32 new phenotypes associated with TCS of S. Typhi. Some previously known phenotypes associated with TCSs in Salmonella were also confirmed. We have also uncovered phenotypic divergence between Salmonella serovars, as distinct phenotypes between S. Typhi and S. Typhimurium were identified for cpxR. This finding highlights the importance of specifically studying S. Typhi to understand its pathogenesis mechanisms and to develop strategies to potentially reduce typhoid infections.
Collapse
|
7
|
Salvail H, Groisman EA. The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica. PLoS Genet 2020; 16:e1008722. [PMID: 32392214 PMCID: PMC7241856 DOI: 10.1371/journal.pgen.1008722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/21/2020] [Accepted: 03/18/2020] [Indexed: 11/18/2022] Open
Abstract
To survive an environmental stress, organisms must detect the stress and mount an appropriate response. One way that bacteria do so is by phosphorelay systems that respond to a stress by activating a regulator that modifies gene expression. To ensure an appropriate response, a given regulator is typically activated solely by its cognate phosphorelay protein(s). However, we now report that the regulator RcsB is activated by both cognate and non-cognate phosphorelay proteins, depending on the condition experienced by the bacterium Salmonella enterica serovar Typhimurium. The RcsC and RcsD proteins form a phosphorelay that activates their cognate regulator RcsB in response to outer membrane stress and cell wall perturbations, conditions Salmonella experiences during infection. Surprisingly, the non-cognate phosphorelay protein BarA activates RcsB during logarithmic growth in Luria-Bertani medium in three ways. That is, BarA’s cognate regulator SirA promotes transcription of the rcsDB operon; the SirA-dependent regulatory RNAs CsrB and CsrC further increase RcsB-activated gene transcription; and BarA activates RcsB independently of the RcsC, RcsD, and SirA proteins. Activation of a regulator by multiple sensors broadens the spectrum of environments in which a set of genes is expressed without evolving binding sites for different regulators at each of these genes. The phosphorelay is a form of signal transduction used by organisms in all three domains of life. Typically, a phosphorelay consists of sensor proteins that respond to specific signals by activating a cognate regulatory protein that alters gene expression. Phosphorelays exhibit specificity towards their cognate regulators, thereby ensuring that any changes in gene expression help an organism cope with the experienced stress (and not with an unrelated stress). However, we now report that the regulator RcsB is activated by both cognate and non-cognate phosphorelay proteins in the bacterium Salmonella enterica serovar Typhimurium. The phosphorelay proteins RcsC and RcsD activate RcsB upon cell envelope perturbations, whereas the non-cognate phosphorelay protein BarA activates RcsB during rapid growth in Luria-Bertani medium. Our findings establish that BarA controls gene expression via both its cognate regulator SirA and the non-cognate regulator RcsB. In addition, they demonstrate that RcsB controls gene expression in response to multiple signals detected by the RcsC, RcsD, and BarA proteins.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
8
|
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Microorganisms 2020; 8:microorganisms8030357. [PMID: 32131463 PMCID: PMC7142665 DOI: 10.3390/microorganisms8030357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023] Open
Abstract
Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.
Collapse
|
9
|
Torres MA, Terraf MCL, Minahk CJ, Delgado MA. Stability of the Salmonella Typhimurium rcsC11 mutant under different stress conditions. MICROBIOLOGY-SGM 2019; 166:157-168. [PMID: 31714197 DOI: 10.1099/mic.0.000873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The virulence genes of Salmonella are modulated during infection by several regulatory systems, and the RcsCDB system is one of the most important of these. The S. Typhimurium EG14873 (rcsC11) strain harbours the rcsC11 point mutation, displaying a constitutive activation of this system, which is characterized by mucoid colonies and attenuated virulence phenotypes. In this work, the stability of the rcsC11 mutation was analysed under stress conditions. Under acid and anaerobic stresses, we observed the appearance of small and non-mucoid colonies of the rcsC11 strain. The sequencing of the rcsC gene from these colonies showed that the mutation is conserved. Moreover, we found that small colonies were also generated when the wild-type strain grew in acid and anaerobic conditions. It is worth noting that the transition from normal to atypical colonies of both strains only took place after several days of incubation and was not observed during eukaryotic cell infection. Therefore, the appearance of these atypical colonies is a characteristic feature of S. Typhimurium strains under stressful situations and does not involve a reversion of the rcsC11 allele and nor does it imply any risk to mammalian cells. Therefore, we propose that the S. Typhimurium rcsC11 strain is a good candidate for the development of attenuated vaccines.
Collapse
Affiliation(s)
- Mariela A Torres
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - María C Leccese Terraf
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Carlos J Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Mónica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| |
Collapse
|
10
|
Torrez Lamberti MF, Ballesteros MF, López FE, Pescaretti MDLM, Delgado MA. RcsB-dependent effects on nar operon regulation during the aerobic growth of Salmonella Typhimurium. Biochimie 2019; 167:152-161. [PMID: 31563538 DOI: 10.1016/j.biochi.2019.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
The intracellular pathogen Salmonella is an important cause of human foodborne diseases worldwide. Salmonella takes advantage of the phosphorelay regulatory systems to survive in the hostile environment of the host's gastrointestinal tract. It has been reported that the nitrate reductase Z (NR-Z), encoded by the narUZYV operon, is required during Salmonella transition to anaerobic environments and is constitutively produced at low levels, but little is known about the regulatory mechanism involved in the operon gene expression. In this work, we found that the RcsCDB system is activated by high concentrations of specific sugars as a carbon source. In this activation state, the RcsCDB system participates in the negative control of narUZYWV expression. This control strategy occurs during exponential growth when the carbon source is high, allowing for normal aerobic respiration. The RcsCDB system's participation in aerobic respiration is necessary to ensure efficient metabolism and optimal energy consumption when the bacteria are growing exponentially.
Collapse
Affiliation(s)
- Mónica F Torrez Lamberti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - María Florencia Ballesteros
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Fabián E López
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina; Universidad Nacional de Chilecito (UNdeC), 9 de Julio 22, F5360CKB, Chilecito, La Rioja, Argentina
| | - María de Las Mercedes Pescaretti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| | - Mónica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, And Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| |
Collapse
|
11
|
Farizano JV, García-Pastor L, Casadesús J, Delgado MA. Transcriptional regulation of the Salmonella enterica std fimbrial operon by the RcsCDB system. MICROBIOLOGY-SGM 2019; 165:1245-1250. [PMID: 31486760 DOI: 10.1099/mic.0.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica serovar Typhimurium, the RcsCDB regulatory system controls the expression of genes involved in synthesis of colanic acid, formation of flagella and virulence. Here, we show that activation of the RcsCDB system downregulates expression of std, an operon that encodes fimbriae involved in Salmonella attachment to the mucus layer in the large intestine. Bioinformatic analysis predicts the existence of an RcsB-binding site located 180 bp upstream to the +1 transcription start site of the std promoter, and electrophoretic mobility shift assays confirm that RcsB binds the std promoter region in vitro. This study adds RcsB to the list of regulators of std transcription and provides an example of modulation of fimbriae synthesis by a signal transduction system.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San, Miguel de Tucumán, Argentina
| | - Lucia García-Pastor
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Monica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San, Miguel de Tucumán, Argentina
| |
Collapse
|
12
|
Regulatory Effect of SlyA on rcsB Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00673-18. [PMID: 30510144 DOI: 10.1128/jb.00673-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that the rcsC11 mutant, which constitutively activates the RcsB regulator, attenuates Salmonella virulence in an animal model. This attenuated phenotype was also produced by deletion of the slyA gene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulates rcsB transcription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, P rcsDB and P rcsB , which control rcsB transcriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of both rcsB promoters. According to these results, SlyA represses rcsB transcription by direct binding to specific sites located on the rcsB promoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects the Salmonella motility phenotype. In this sense, we observed that under SlyA overproduction, P rcsB is repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms of Salmonella Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCE The antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controlling rcsB transcription from the P rcsB promoter. We also demonstrate that SlyA negatively affects the expression of the rcsB gene by direct binding to P rcsDB and P rcsB promoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms of Salmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.
Collapse
|
13
|
Cross-talk between the RcsCDB and RstAB systems to control STM1485 gene expression in Salmonella Typhimurium during acid-resistance response. Biochimie 2019; 160:46-54. [PMID: 30763640 DOI: 10.1016/j.biochi.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023]
Abstract
Bacterial survive and respond to adverse changes in the environment by regulating gene transcription through two-component regulatory systems. In Salmonella Typhimurium the STM1485 gene expression is induced under low pH (4.5) during replication inside the epithelial host cell, but it is not involved in sensing or resisting to this condition. Since the RcsCDB system is activated under acidic conditions, we investigated whether this system is able to modulate STM1485 expression. We demonstrated that acid-induced activation of the RcsB represses STM1485 transcription by directly binding to the promoter. Under the same condition, the RstA regulator activates the expression of this gene. Physiologically, we observed that RcsB-dependent repression is required for the survival of bacteria when they are exposed to pancreatic fluids. We hypothesized that STM1485 plays an important role in Salmonella adaptation to pH changes, during transition in the gastrointestinal tract. We suggest that bacteria surviving the gastrointestinal environment invade the epithelial cells, where they can remain in vacuoles. In this new environment, acidity and magnesium starvation activate the expression of the RstA regulator in a PhoPQ-dependent manner, which in turn induces STM1485 expression. These levels of STM1485 allow increased bacterial replication within vacuoles to continue the course of infection.
Collapse
|
14
|
Singh JK, Adams FG, Brown MH. Diversity and Function of Capsular Polysaccharide in Acinetobacter baumannii. Front Microbiol 2019; 9:3301. [PMID: 30687280 PMCID: PMC6333632 DOI: 10.3389/fmicb.2018.03301] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022] Open
Abstract
The Gram-negative opportunistic bacterium Acinetobacter baumannii is a significant cause of hospital-borne infections worldwide. Alarmingly, the rapid development of antimicrobial resistance coupled with the remarkable ability of isolates to persist on surfaces for extended periods of time has led to infiltration of A. baumannii into our healthcare environments. A major virulence determinant of A. baumannii is the presence of a capsule that surrounds the bacterial surface. This capsule is comprised of tightly packed repeating polysaccharide units which forms a barrier around the bacterial cell wall, providing protection from environmental pressures including desiccation and disinfection regimes as well as host immune responses such as serum complement. Additionally, capsule has been shown to confer resistance to a range of clinically relevant antimicrobial compounds. Distressingly, treatment options for A. baumannii infections are becoming increasingly limited, and the urgency to develop effective infection control strategies and therapies to combat infections is apparent. An increased understanding of the contribution of capsule to the pathobiology of A. baumannii is required to determine its feasibility as a target for new strategies to combat drug resistant infections. Significant variation in capsular polysaccharide structures between A. baumannii isolates has been identified, with over 100 distinct capsule types, incorporating a vast variety of sugars. This review examines the studies undertaken to elucidate capsule diversity and advance our understanding of the role of capsule in A. baumannii pathogenesis.
Collapse
Affiliation(s)
- Jennifer K Singh
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Felise G Adams
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
15
|
Chen G, Cao M, Yu J, Guo X, Shi S. Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou's general PseAAC. J Theor Biol 2019; 461:92-101. [DOI: 10.1016/j.jtbi.2018.10.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
|
16
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
The Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium. mBio 2017; 8:mBio.00808-17. [PMID: 28588134 PMCID: PMC5461412 DOI: 10.1128/mbio.00808-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. Colanic acid is a negatively charged polysaccharide capsule produced by Escherichia coli, Salmonella, and other gammaproteobacteria. Research conducted over the 50 years since the discovery of colanic acid suggests that this exopolysaccharide plays an important role for bacteria living in biofilms. However, a precise physiological role for colanic acid has not been defined. In this study, we provide evidence that colanic acid maintains the transmembrane potential and proton motive force during envelope stress. This work provides a new and fundamental insight into bacterial physiology.
Collapse
|
18
|
Ren J, Sang Y, Lu J, Yao YF. Protein Acetylation and Its Role in Bacterial Virulence. Trends Microbiol 2017; 25:768-779. [PMID: 28462789 DOI: 10.1016/j.tim.2017.04.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/21/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Protein acetylation is a universal post-translational modification which is found in both eukaryotes and prokaryotes. This process is achieved enzymatically by the protein acetyltransferase Pat, and nonenzymatically by metabolic intermediates (e.g., acetyl phosphate) in bacteria. Protein acetylation plays a role in bacterial chemotaxis, metabolism, DNA replication, and other cellular processes. Recently, accumulating evidence has suggested that protein acetylation might be involved in bacterial virulence because a number of bacterial virulence factors are acetylated. In this review, we summarize the progress in understanding bacterial protein acetylation and discuss how it mediates bacterial virulence.
Collapse
Affiliation(s)
- Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Lu
- Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
19
|
Ribaudo N, Li X, Davis B, Wood TK, Huang ZJ. A Genome-Scale Modeling Approach to Quantify Biofilm Component Growth of Salmonella Typhimurium. J Food Sci 2016; 82:154-166. [PMID: 27992644 DOI: 10.1111/1750-3841.13565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Salmonella typhimurium (S. typhimurium) is an extremely dangerous foodborne bacterium that infects both animal and human subjects, causing fatal diseases around the world. Salmonella's robust virulence, antibiotic-resistant nature, and capacity to survive under harsh conditions are largely due to its ability to form resilient biofilms. Multiple genome-scale metabolic models have been developed to study the complex and diverse nature of this organism's metabolism; however, none of these models fully integrated the reactions and mechanisms required to study the influence of biofilm formation. This work developed a systems-level approach to study the adjustment of intracellular metabolism of S. typhimurium during biofilm formation. The most advanced metabolic reconstruction currently available, STM_v1.0, was 1st extended to include the formation of the extracellular biofilm matrix. Flux balance analysis was then employed to study the influence of biofilm formation on cellular growth rate and the production rates of biofilm components. With biofilm formation present, biomass growth was examined under nutrient rich and nutrient deficient conditions, resulting in overall growth rates of 0.8675 and 0.6238 h-1 respectively. Investigation of intracellular flux variation during biofilm formation resulted in the elucidation of 32 crucial reactions, and associated genes, whose fluxes most significantly adapt during the physiological response. Experimental data were found in the literature to validate the importance of these genes for the biofilm formation of S. typhimurium. This preliminary investigation on the adjustment of intracellular metabolism of S. typhimurium during biofilm formation will serve as a platform to generate hypotheses for further experimental study on the biofilm formation of this virulent bacterium.
Collapse
Affiliation(s)
- Nicholas Ribaudo
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Xianhua Li
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Brett Davis
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| | - Thomas K Wood
- Depts. of Chemical Engineering and Biochemistry and Molecular Biology, Pennsylvania State Univ, Univ. Park, 16802, PA, U.S.A
| | - Zuyi Jacky Huang
- Dept. of Chemical Engineering, Villanova Univ, Villanova, 19085, PA, U.S.A
| |
Collapse
|
20
|
Kühne C, Singer HM, Grabisch E, Codutti L, Carlomagno T, Scrima A, Erhardt M. RflM mediates target specificity of the RcsCDB phosphorelay system for transcriptional repression of flagellar synthesis in Salmonella enterica. Mol Microbiol 2016; 101:841-55. [PMID: 27206164 DOI: 10.1111/mmi.13427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
The bacterial flagellum enables directed movement of Salmonella enterica towards favorable conditions in liquid environments. Regulation of flagellar synthesis is tightly controlled by various environmental signals at transcriptional and post-transcriptional levels. The flagellar master regulator FlhD4 C2 resides on top of the flagellar transcriptional hierarchy and is under autogenous control by FlhD4 C2 -dependent activation of the repressor rflM. The inhibitory activity of RflM depends on the presence of RcsB, the response regulator of the RcsCDB phosphorelay system. In this study, we elucidated the molecular mechanism of RflM-dependent repression of flhDC. We show that RcsB and RflM form a heterodimer that coordinately represses flhDC transcription independent of RcsB phosphorylation. RcsB-RflM complex binds to a RcsB box downstream the P1 transcriptional start site of the flhDC promoter with increased affinity compared to RcsB in the absence of RflM. We propose that RflM stabilizes binding of unphosphorylated RcsB to the flhDC promoter in absence of environmental cues. Thus, RflM is a novel auxiliary regulatory protein that mediates target specificity of RcsB for flhDC repression. The cooperative action of the RcsB-RflM repressor complex allows Salmonella to fine-tune initiation of flagellar gene expression and adds another level to the complex regulation of flagellar synthesis.
Collapse
Affiliation(s)
- Caroline Kühne
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Hanna M Singer
- Microbiologie, Département de Médecine, Université de Fribourg, 1700, Fribourg, Switzerland.,Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Grabisch
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Luca Codutti
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Germany
| | - Teresa Carlomagno
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Germany.,Group of Structural Chemistry, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Andrea Scrima
- Junior Research Group Structural Biology of Autophagy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
21
|
Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis. Curr Top Microbiol Immunol 2016; 398:185-205. [PMID: 27000091 DOI: 10.1007/82_2016_493] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infections by motile, pathogenic bacteria, such as Campylobacter species, Clostridium species, Escherichia coli, Helicobacter pylori, Listeria monocytogenes, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Salmonella species, Vibrio cholerae, and Yersinia species, represent a severe economic and health problem worldwide. Of special importance in this context is the increasing emergence and spread of multidrug-resistant bacteria. Due to the shortage of effective antibiotics for the treatment of infections caused by multidrug-resistant, pathogenic bacteria, the targeting of novel, virulence-relevant factors constitutes a promising, alternative approach. Bacteria have evolved distinct motility structures for movement across surfaces and in aqueous environments. In this review, I will focus on the bacterial flagellum, the associated chemosensory system, and the type-IV pilus as motility devices, which are crucial for bacterial pathogens to reach a preferred site of infection, facilitate biofilm formation, and adhere to surfaces or host cells. Thus, those nanomachines constitute potential targets for the development of novel anti-infectives that are urgently needed at a time of spreading antibiotic resistance. Both bacterial flagella and type-IV pili (T4P) are intricate macromolecular complexes made of dozens of different proteins and their motility function relies on the correct spatial and temporal assembly of various substructures. Specific type-III and type-IV secretion systems power the export of substrate proteins of the bacterial flagellum and type-IV pilus, respectively, and are homologous to virulence-associated type-III and type-II secretion systems. Accordingly, bacterial flagella and T4P represent attractive targets for novel antivirulence drugs interfering with synthesis, assembly, and function of these motility structures.
Collapse
|
22
|
Baisón-Olmo F, Galindo-Moreno M, Ramos-Morales F. Host cell type-dependent translocation and PhoP-mediated positive regulation of the effector SseK1 of Salmonella enterica. Front Microbiol 2015; 6:396. [PMID: 25972862 PMCID: PMC4413795 DOI: 10.3389/fmicb.2015.00396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica expresses two virulence-related type III secretion systems (T3SSs) encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. SseK1 is a poorly characterized substrate of the SPI2-encoded T3SS. Here, we show that this effector is essential to get full virulence both in oral and intraperitoneal mice infections, in spite of not having a role in invasion or intracellular proliferation in cultured mammalian cells. In vitro, expression of sseK1 was higher in media mimicking intracellular conditions, when SPI2 was induced, but it was also significant under SPI1 inducing conditions. A detailed analysis of translocation of SseK1 into host cells unveiled that it was a substrate of both, T3SS1 and T3SS2, although with different patterns and kinetics depending on the specific host cell type (epithelial, macrophages, or fibroblasts). The regulation of the expression of sseK1 was examined using lacZ and bioluminescent lux fusions. The two-component system PhoQ/PhoP is a positive regulator of this gene. A combination of sequence analysis, directed mutagenesis and electrophoretic mobility shift assays showed that phosphorylated PhoP binds directly to the promoter region of sseK1 and revealed a PhoP binding site located upstream of the predicted -35 hexamer of this promoter.
Collapse
Affiliation(s)
- Fernando Baisón-Olmo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla Sevilla, Spain
| | - María Galindo-Moreno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla Sevilla, Spain
| | | |
Collapse
|
23
|
Farizano JV, Torres MA, Pescaretti MDLM, Delgado MA. The RcsCDB regulatory system plays a crucial role in the protection of Salmonella enterica serovar Typhimurium against oxidative stress. MICROBIOLOGY-SGM 2014; 160:2190-2199. [PMID: 25028458 DOI: 10.1099/mic.0.081133-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dps, the most abundant protein during the stationary growth phase, in Salmonella enterica is required for resistance to reactive oxygen species produced by the host during infection. It has been reported that in Salmonella dps expression is controlled by RpoS and Fur proteins. However, the regulation and function of Dps remain to be resolved. In the present work we demonstrate that activation of the complex RcsCDB regulatory system increases dps expression during exponential growth of Salmonella. In addition, we show that such dps upregulation produces high levels of H2O2 resistance. This phenotype allows the bacteria to avoid reactive oxygen species killing at early stages of growth, thus protecting its genetic material.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Mariela A Torres
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - María de Las Mercedes Pescaretti
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Mónica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| |
Collapse
|
24
|
A mutation in rcsB, a gene encoding the core component of the Rcs cascade, enhances the virulence of Edwardsiella tarda. Res Microbiol 2014; 165:226-32. [PMID: 24631591 DOI: 10.1016/j.resmic.2014.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
Edwardsiella tarda, a Gram-negative bacterium of the family Enterobacteriaceae, is the causative agent of the systemic disease edwardsiellosis, which is a major problem in aquaculture industry worldwide. Many virulence-related genes in E. tarda have been investigated, but the Rcs phosphorelay, a two-component pathway, which regulates several cell-surface-associated structures related to invasion and survival in host cells, has not yet been thoroughly studied. In the present study, an rcsB in-frame deletion mutant ΔrcsB was constructed through double-crossover allelic exchange. To complement the rcsB mutation, the ΔrcsB (pACYC184K-rcsB) mutant was constructed by transformation of a low-copy plasmid carrying the intact rcsB into the ΔrcsB mutant of E. tarda. Several virulence-associated characters of the mutants and wild-type strain were tested. Compared with wild-type strain EIB202, biofilm formation decreased significantly in ΔrcsB, while ΔrcsB (pACYC184K-rcsB) recovered the phenotype to some extent. In addition, the capacity for autoagglutination, the percentage of adherence and internalization to Epithelioma papulosum cyprini cells and lethality toward zebrafish embryos significantly increased in ΔrcsB. All these phenomena displayed by mutant ΔrcsB showed a certain degree of recovery, though incomplete, in strain ΔrcsB (pACYC184K-rcsB). Present results indicate that rcsB is involved in regulating the gene expression of virulence factors in E. tarda, as shown in other members of Enterobacteriaceae.
Collapse
|
25
|
Mouslim C, Hughes KT. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog 2014; 10:e1003987. [PMID: 24603858 PMCID: PMC3946378 DOI: 10.1371/journal.ppat.1003987] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022] Open
Abstract
The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.
Collapse
Affiliation(s)
- Chakib Mouslim
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
26
|
Jers C, Soufi B, Grangeasse C, Deutscher J, Mijakovic I. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev Proteomics 2014; 5:619-27. [DOI: 10.1586/14789450.5.4.619] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Jutras BL, Jones GS, Verma A, Brown NA, Antonicello AD, Chenail AM, Stevenson B. Posttranscriptional self-regulation by the Lyme disease bacterium's BpuR DNA/RNA-binding protein. J Bacteriol 2013; 195:4915-23. [PMID: 23974034 PMCID: PMC3807498 DOI: 10.1128/jb.00819-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/21/2013] [Indexed: 01/21/2023] Open
Abstract
Bacteria require explicit control over their proteomes in order to compete and survive in dynamic environments. The Lyme disease spirochete Borrelia burgdorferi undergoes substantial protein profile changes during its cycling between vector ticks and vertebrate hosts. In an effort to understand regulation of these transitions, we recently isolated and functionally characterized the borrelial nucleic acid-binding protein BpuR, a PUR domain-containing protein. We now report that this regulatory protein governs its own synthesis through direct interactions with bpuR mRNA. In vitro and in vivo techniques indicate that BpuR binds with high affinity and specificity to the 5' region of its message, thereby inhibiting translation. This negative feedback could permit the bacteria to fine-tune cellular BpuR concentrations. These data add to the understanding of this newly described class of prokaryotic DNA- and RNA-binding regulatory proteins.
Collapse
Affiliation(s)
| | - Grant S. Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | - Nicholas A. Brown
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Alyssa D. Antonicello
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Alicia M. Chenail
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
28
|
Response of extraintestinal pathogenic Escherichia coli to human serum reveals a protective role for Rcs-regulated exopolysaccharide colanic acid. Infect Immun 2013; 82:298-305. [PMID: 24166954 DOI: 10.1128/iai.00800-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal Escherichia coli (ExPEC) organisms are the leading cause of Gram-negative bacterial bloodstream infections. These bacteria adapt to survival in the bloodstream through expression of factors involved in scavenging of nutrients and resisting the killing activity of serum. In this study, the transcriptional response of a prototypic ExPEC strain (CFT073) to human serum was investigated. Resistance of CFT073 to the bactericidal properties of serum involved increased expression of envelope stress regulators, including CpxR, σE, and RcsB. Many of the upregulated genes induced by active serum were regulated by the Rcs two-component system. This system is triggered by envelope stress such as changes to cell wall integrity. RcsB-mediated serum resistance was conferred through induction of the exopolysaccharide colanic acid. Production of this exopolysaccharide may be protective while cell wall damage caused by serum components is repaired.
Collapse
|
29
|
Pescaretti MDLM, Farizano JV, Morero R, Delgado MA. A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica serovar typhimurium. PLoS One 2013; 8:e72527. [PMID: 24023746 PMCID: PMC3762810 DOI: 10.1371/journal.pone.0072527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/11/2013] [Indexed: 12/21/2022] Open
Abstract
The RcsCDB system of Salmonella enterica serovar Typhimurium is implicated in the control of capsule and flagella synthesis. The hybrid sensor RcsC, the phosphotransferase RcsD and the RcsB regulator, constitute the main components of the RcsCDB system. The proposed Rcs signaling cascade involves the autophosphorylation of RcsC and the transfer of the phosphate group to RcsB, mediated by RcsD. We previously reported that the overexpression of rcsB repress the transcription of rcsD by an autoregulation mechanism. Moreover, we demonstrated that during the rcsD repression, the RcsB-dependent flagellar modulation remained active. These results suggest that the Rcs phosphorelay mechanism occurs even in the absence of RcsD. In this work, we established the existence of two alternative phosphorelay pathways driving activation of this system. We demonstrated that RcsC and RcsD can act as histidine kinase proteins which, after autophosphorylated, are able to independently transfer the phosphate to RcsB. Our results suggest that these pathways could be activated by different environmental signals, leading different levels of RcsB-phosphorylated to produce a differential gene modulation. These findings contribute to a better understanding of the complexity and importance of the Rcs system activation, where more than one phosphate flow pathway increases the possibilities to exert gene regulation for a quick environmental changes response.
Collapse
Affiliation(s)
- María de las Mercedes Pescaretti
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
| | - Juan V. Farizano
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
| | - Roberto Morero
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
| | - Mónica A. Delgado
- Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biológica “Dr. Bernabe Bloj”, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
30
|
The virulence of Salmonella enterica Serovar Typhimurium in the insect model galleria mellonella is impaired by mutations in RNase E and RNase III. Appl Environ Microbiol 2013; 79:6124-33. [PMID: 23913419 DOI: 10.1128/aem.02044-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium able to invade and replicate inside eukaryotic cells. To cope with the host defense mechanisms, the bacterium has to rapidly remodel its transcriptional status. Regulatory RNAs and ribonucleases are the factors that ultimately control the fate of mRNAs and final protein levels in the cell. There is growing evidence of the direct involvement of these factors in bacterial pathogenicity. In this report, we validate the use of a Galleria mellonela model in S. Typhimurium pathogenicity studies through the parallel analysis of a mutant with a mutation in hfq, a well-established Salmonella virulence gene. The results obtained with this mutant are similar to the ones reported in a mouse model. Through the use of this insect model, we demonstrate a role for the main endoribonucleases RNase E and RNase III in Salmonella virulence. These ribonuclease mutants show an attenuated virulence phenotype, impairment in motility, and reduced proliferation inside the host. Interestingly, the two mutants trigger a distinct immune response in the host, and the two mutations seem to have an impact on distinct bacterial functions.
Collapse
|
31
|
A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains. Infect Immun 2013; 81:3148-62. [PMID: 23774599 DOI: 10.1128/iai.00097-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens.
Collapse
|
32
|
Papasergi S, Galbo R, Lanza-Cariccio V, Domina M, Signorino G, Biondo C, Pernice I, Poyart C, Trieu-Cuot P, Teti G, Beninati C. Analysis of the Streptococcus agalactiae exoproteome. J Proteomics 2013; 89:154-64. [PMID: 23770297 DOI: 10.1016/j.jprot.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/13/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED The two-component regulatory system CovRS is the main regulator of virulence gene expression in Group B Streptococcus (GBS), the leading cause of invasive infections in neonates. In this study we analyzed by mass spectrometry the GBS extracellular protein complex (i.e. the exoproteome) of NEM316 wild-type (WT) strain and its isogenic covRS deletion mutant (ΔcovRS). A total of 53 proteins, 49 of which had classical secretion signals, were identified: 12 were released by both strains while 21 and 20 were released exclusively by WT and ΔcovRS strains, respectively. In addition to known surface proteins, we detected here unstudied cell-wall associated proteins and/or orthologs of putative virulence factors present in other pathogenic streptococci. While the functional role of these proteins remains to be elucidated, our data suggest that the analysis of the exoproteome of bacterial pathogens under different gene expression conditions may be a powerful tool for the rapid identification of novel virulence factors and vaccine candidates. BIOLOGICAL SIGNIFICANCE We believe that this manuscript will be of interest to Journal of Proteomics readers since the paper describes the identification of several putative virulence factors and vaccine candidates of the group B streptococcus, an important pathogen, using a simple proteomics strategy involving LC-MS analysis of culture supernatants obtained from two strains with divergent gene expression patterns. This technique provided the most comprehensive inventory of extracellular proteins obtained from a single streptococcal species thus far. The approach described has the added benefit of being easily applicable to a large number of different strains, making it ideal for the identification of conserved vaccine candidates.
Collapse
|
33
|
May JF, Groisman EA. Conflicting roles for a cell surface modification in Salmonella. Mol Microbiol 2013; 88:970-83. [PMID: 23646936 DOI: 10.1111/mmi.12236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
Chemical modifications of components of the bacterial cell envelope can enhance resistance to antimicrobial agents. Why then are such modifications produced only under specific conditions? Here, we address this question by examining the role of regulated variations in O-antigen length in the lipopolysaccharide (LPS), a glycolipid that forms most of the outer leaflet of the outer membrane in Gram-negative bacteria. We determined that activation of the PmrA/PmrB two-component system, which is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth of Salmonella in bile. This growth defect required the PmrA-activated gene wzz(st), which encodes the protein that determines long O-antigen chain length and confers resistance to complement-mediated killing. By contrast, this growth defect did not require the wzz(fepE) gene, which controls production of very long O-antigen, or other PmrA-activated genes that mediate modifications of lipid A or core regions of the LPS. Additionally, we establish that long O-antigen inhibits growth in bile only in the presence of enterobacterial common antigen, an outer-membrane glycolipid that contributes to bile resistance. Our results suggest that Salmonella regulates the proportion of long O-antigen in its LPS to respond to the different conditions it faces during infection.
Collapse
Affiliation(s)
- John F May
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
34
|
Schwizer S, Tasara T, Zurfluh K, Stephan R, Lehner A. Identification of genes involved in serum tolerance in the clinical strain Cronobacter sakazakii ES5. BMC Microbiol 2013; 13:38. [PMID: 23414256 PMCID: PMC3621496 DOI: 10.1186/1471-2180-13-38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cronobacter spp. are opportunistic pathogens that can cause septicemia and infections of the central nervous system primarily in premature, low-birth weight and/or immune-compromised neonates. Serum resistance is a crucial virulence factor for the development of systemic infections, including bacteremia. It was the aim of the current study to identify genes involved in serum tolerance in a selected Cronobacter sakazakii strain of clinical origin. RESULTS Screening of 2749 random transposon knock out mutants of a C. sakazakii ES 5 library for modified serum tolerance (compared to wild type) revealed 10 mutants showing significantly increased/reduced resistance to serum killing. Identification of the affected sites in mutants displaying reduced serum resistance revealed genes encoding for surface and membrane proteins as well as regulatory elements or chaperones. By this approach, the involvement of the yet undescribed Wzy_C superfamily domain containing coding region in serum tolerance was observed and experimentally confirmed. Additionally, knock out mutants with enhanced serum tolerance were observed. Examination of respective transposon insertion loci revealed regulatory (repressor) elements, coding regions for chaperones and efflux systems as well as the coding region for the protein YbaJ. Real time expression analysis experiments revealed, that knock out of the gene for this protein negatively affects the expression of the fimA gene, which is a key structural component of the formation of fimbriae. Fimbriae are structures of high immunogenic potential and it is likely that absence/truncation of the ybaJ gene resulted in a non-fimbriated phenotype accounting for the enhanced survival of this mutant in human serum. CONCLUSION By using a transposon knock out approach we were able to identify genes involved in both increased and reduced serum tolerance in Cronobacter sakazakii ES5. This study reveals first insights in the complex nature of serum tolerance of Cronobacter spp.
Collapse
Affiliation(s)
- Sarah Schwizer
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Farizano JV, Pescaretti MDLM, López FE, Hsu FF, Delgado MA. The PmrAB system-inducing conditions control both lipid A remodeling and O-antigen length distribution, influencing the Salmonella Typhimurium-host interactions. J Biol Chem 2012; 287:38778-89. [PMID: 23019341 DOI: 10.1074/jbc.m112.397414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Salmonella enterica serovar Typhimurium lipopolysaccharide consisting of covalently linked lipid A, non-repeating core oligosaccharide, and the O-antigen polysaccharide is the most exposed component of the cell envelope. Previous studies demonstrated that all of these regions act against the host immunity barrier. The aim of this study was to define the role and interaction of PmrAB-dependent gene products required for the lipopolysaccharide component synthesis or modification mainly during the Salmonella infection. The PmrAB two-component system activation promotes a remodeling of lipid A and the core region by addition of 4-aminoarabinose and/or phosphoethanolamine. These PmrA-dependent activities are produced by activation of ugd, pbgPE, pmrC, cpta, and pmrG transcription. In addition, under PmrA regulator activation, the expression of wzz(fepE) and wzz(st) genes is induced, and their products are required to determine the O-antigen chain length. Here we report for the first time that Wzz(st) protein is necessary to maintain the balance of 4-aminoarabinose and phosphoethanolamine lipid A modifications. Moreover, we demonstrate that the interaction of the PmrA-dependent pbgE(2) and pbgE(3) gene products is important for the formation of the short O-antigen region. Our results establish that PmrAB is the global regulatory system that controls lipopolysaccharide modification, leading to a coordinate regulation of 4-aminoarabinose incorporation and O-antigen chain length to respond against the host defense mechanisms.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | | | |
Collapse
|
36
|
SrfJ, a Salmonella type III secretion system effector regulated by PhoP, RcsB, and IolR. J Bacteriol 2012; 194:4226-36. [PMID: 22661691 DOI: 10.1128/jb.00173-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Virulence-related type III secretion systems are present in many Gram-negative bacterial pathogens. These complex devices translocate proteins, called effectors, from the bacterium into the eukaryotic host cell. Here, we identify the product of srfJ, a Salmonella enterica serovar Typhimurium gene regulated by SsrB, as a new substrate of the type III secretion system encoded by Salmonella pathogenicity island 2. The N-terminal 20-amino-acid segment of SrfJ was recognized as a functional secretion and translocation signal specific for this system. Transcription of srfJ was positively regulated by the PhoP/PhoQ system in an SsrB-dependent manner and was negatively regulated by the Rcs system in an SsrB-independent manner. A screen for regulators of an srfJ-lacZ transcriptional fusion using the T-POP transposon identified IolR, the regulator of genes involved in myo-inositol utilization, as an srfJ repressor. Our results suggest that SrfJ is synthesized both inside the host, in response to intracellular conditions, and outside the host, in myo-inositol-rich environments.
Collapse
|
37
|
López FE, de las Mercedes Pescaretti M, Morero R, Delgado MA. Salmonella Typhimurium general virulence factors: A battle of David against Goliath? Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Bateman SL, Seed PC. Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli. Mol Microbiol 2012; 83:908-25. [PMID: 22221182 DOI: 10.1111/j.1365-2958.2012.07977.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX.
Collapse
Affiliation(s)
- Stacey L Bateman
- Department of Molecular Genetics and Microbiology Center for Microbial Pathogenesis Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Pescaretti MDLM, López FE, Morero RD, Delgado MA. The PmrA/PmrB regulatory system controls the expression of the wzzfepE gene involved in the O-antigen synthesis of Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2011; 157:2515-2521. [PMID: 21719537 DOI: 10.1099/mic.0.050088-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The degree of polymerization of O-antigen from Salmonella enterica serovar Typhimurium is controlled by the products of the wzz(s)(t) and wzz(fepE) genes. In the present study we investigated the role of the PmrA/PmrB regulatory system in wzz(fepE) transcription. We report that the direct binding of the PmrA regulator to a specific promoter site induces the expression of the wzz(fepE) gene. This effect increases the amount of very long (VL) O-antigen, which is required for the resistance of Salmonella to serum human complement and polymyxin B, and for the replication of the bacteria within macrophages. The results obtained here highlight functional differences between Wzz(fepE) and Wzz(st), although the genes for both proteins are regulated in a PmrA-dependent way.
Collapse
Affiliation(s)
- María de Las Mercedes Pescaretti
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Fabián E López
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Roberto D Morero
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Mónica A Delgado
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
40
|
Paradela A, Mariscotti JF, Navajas R, Ramos-Fernández A, Albar JP, García-del Portillo F. Inverse regulation in the metabolic genes pckA and metE revealed by proteomic analysis of the Salmonella RcsCDB regulon. J Proteome Res 2011; 10:3386-98. [PMID: 21657791 DOI: 10.1021/pr101294v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The RcsC, RcsD, and RcsB proteins compose a system used by enteric bacteria to sense envelope stress. Signal transmission occurs from the sensor RcsC to the transcriptional regulator RcsB. Accessory proteins, such as IgaA, are known to adjust the response level. In a previous transcriptomic study, we uncovered 85 genes differentially expressed in Salmonella enterica serovar Typhimurium igaA mutants. Here, we extended these observations to proteomics by performing differential isotope-coded protein labeling (ICPL) followed by liquid chromatography-electrospray ionization tandem mass spectrometry. Five-hundred five proteins were identified and quantified, with 75 of them displaying significant changes in response to alterations in the RcsCDB system. Divergent expression at the RNA and protein level was observed for the metabolic genes pckA and metE, involved in gluconeogenesis and methionine synthesis, respectively. When analyzed in diverse environmental conditions, including the intracellular niche of eukaryotic cells, inverse regulation was more evident for metE and in bacteria growing in defined minimal medium or to stationary phase. The RcsCDB system was also shown to repress the synthesis of the small RNA FnrS, previously reported to modulate metE expression. Collectively, these findings provide new insights into post-transcriptional regulatory mechanisms involving the RcsCDB system and its control over metabolic functions.
Collapse
Affiliation(s)
- Alberto Paradela
- Laboratorio de Proteómica, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages. Infect Immun 2011; 79:2182-92. [PMID: 21464085 DOI: 10.1128/iai.01277-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, an intracellular pathogen and leading cause of food-borne illness, encodes a plethora of virulence effectors. Salmonella virulence factors are translocated into host cells and manipulate host cellular activities, providing a more hospitable environment for bacterial proliferation. In this study, we report a new set of virulence factors that is translocated into the host cytoplasm via bacterial outer membrane vesicles (OMV). PagK (or PagK1), PagJ, and STM2585A (or PagK2) are small proteins composed of ∼70 amino acids and have high sequence homology to each other (>85% identity). Salmonella lacking all three homologues was attenuated for virulence in a mouse infection model, suggesting at least partial functional redundancy among the homologues. While each homologue was translocated into the macrophage cytoplasm, their translocation was independent of all three Salmonella gene-encoded type III secretion systems (T3SSs)-Salmonella pathogenicity island 1 (SPI-1) T3SS, SPI-2 T3SS, and the flagellar system. Selected methods, including direct microscopy, demonstrated that the PagK-homologous proteins were secreted through OMV, which were enriched with lipopolysaccharide (LPS) and outer membrane proteins. Vesicles produced by intracellular bacteria also contained lysosome-associated membrane protein 1 (LAMP1), suggesting the possibility of OMV convergence with host cellular components during intracellular trafficking. This study identified novel Salmonella virulence factors secreted via OMV and demonstrated that OMV can function as a vehicle to transfer virulence determinants to the cytoplasm of the infected host cell.
Collapse
|
42
|
Abstract
Salmonella enterica are Gram-negative enteric pathogens that cause typhoid fever and gastroenteritis in humans. Many bacteria, including Salmonella, use signal transduction cascades such as two-component regulatory systems to detect and respond to stimuli in the local microenvironment. During infection, environmental sensing allows bacteria to regulate gene expression to evade host immune defenses and thrive in vivo. Activation of the Salmonella two-component regulatory systems PhoP-PhoQ and PmrA-PmrB and the RcsC-RcsD-RcsB phosphorylay by specific environmental signals in the intestine and within host cells leads to several lipopolysaccharide modifications that promote bacterial survival, cationic antimicrobial peptide resistance and virulence. Many pathogens encode orthologs to Salmonella two-component regulatory systems and also modify the lipopolysaccharide to escape killing by the host immune response. However, these organisms often regulate their virulence genes, including those responsible for lipopolysaccharide modification, in ways that differ from Salmonella. Further examination of bacterial virulence gene regulation and lipopolysaccharide modifications may lead to improved antimicrobial therapies and vaccines.
Collapse
|
43
|
Pescaretti MDLM, López FE, Morero RD, Delgado MA. Transcriptional autoregulation of the RcsCDB phosphorelay system in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2010; 156:3513-3521. [PMID: 20724387 DOI: 10.1099/mic.0.041319-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RcsCDB (Rcs) phosphorelay system is involved in the regulation of many envelope genes, such as those responsible for capsule synthesis, flagella production and O-antigen chain length, as well as in other cellular activities of several enteric bacteria. The system is composed of three proteins: the sensor RcsC, the response regulator RcsB, and the phospho-transfer intermediary protein RcsD. Previously, we reported two important aspects of this system: (a) rcsB gene expression is under the control of P(rcsDB) and P(rcsB) promoters, and (b) rcsD gene transcription decreases when the bacteria reach high levels of the RcsB regulator. In the present work, we demonstrate that the RcsB protein represses rcsD gene expression by binding directly to the P(rcsDB) promoter, negatively autoregulating the Rcs system. Furthermore, we report the physiological role of the RcsB regulator, which is able to modify bacterial swarming behaviour when expressed under the control of the P(rcsB) promoter.
Collapse
Affiliation(s)
- María de Las Mercedes Pescaretti
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Fabián E López
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Roberto D Morero
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Mónica A Delgado
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) and Instituto de Química Biologica 'Dr Bernabe Bloj', Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
44
|
Clarke DJ. The Rcs phosphorelay: more than just a two-component pathway. Future Microbiol 2010; 5:1173-84. [DOI: 10.2217/fmb.10.83] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Rcs phosphorelay is a complex signaling pathway found in many, but not all, members of the Enterobacteriaceae. The complexity of this pathway is due to the direct involvement of three proteins (RcsC, RcsD and RcsB) in the phosphorelay and the presence of multiple accessory proteins with important roles in modulating the inputs and outputs associated with this signaling pathway. This article will discuss the various inputs and outputs associated with the Rcs phosphorelay and also present a model suggesting an important role for this signaling pathway in the temporal control of virulence in Salmonella enterica and biofilm formation in Escherichia coli.
Collapse
Affiliation(s)
- David J Clarke
- Department of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Ireland
| |
Collapse
|
45
|
Bouchart F, Boussemart G, Prouvost AF, Cogez V, Madec E, Vidal O, Delrue B, Bohin JP, Lacroix JM. The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J Bacteriol 2010; 192:3484-90. [PMID: 20418397 PMCID: PMC2897653 DOI: 10.1128/jb.00143-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/14/2010] [Indexed: 11/20/2022] Open
Abstract
Dickeya dadantii is a pectinolytic phytopathogen enterobacterium that causes soft rot disease on a wide range of plant species. The virulence of D. dadantii involves several factors, including the osmoregulated periplasmic glucans (OPGs) that are general constituents of the envelope of proteobacteria. In addition to the loss of virulence, opg-negative mutants display a pleiotropic phenotype, including decreased motility and increased exopolysaccharide synthesis. A nitrosoguanidine-induced mutagenesis was performed on the opgG strain, and restoration of motility was used as a screen. The phenotype of the opg mutant echoes that of the Rcs system: high level activation of the RcsCD-RcsB phosphorelay is needed to activate exopolysaccharide synthesis and to repress motility, while low level activation is required for virulence in enterobacteria. Here, we show that mutations in the RcsCDB phosphorelay system restored virulence and motility in a D. dadantii opg-negative strain, indicating a relationship between the Rcs phosphorelay and OPGs.
Collapse
Affiliation(s)
- Franck Bouchart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Gilles Boussemart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Anne-France Prouvost
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Virginie Cogez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Olivier Vidal
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Brigitte Delrue
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Pierre Bohin
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
46
|
Lee EJ, Groisman EA. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 2010; 76:1020-33. [PMID: 20398218 DOI: 10.1111/j.1365-2958.2010.07161.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genome-wide transcriptome analyses of several bacterial species have recently uncovered a hitherto unappreciated amount of antisense transcription. However, the physiological role, regulation and significance of such antisense transcripts are presently unclear. We now report the identification of a cis-encoded 1.2 kb long antisense RNA - termed AmgR - that is complementary to the mgtC portion of the mgtCBR polycistronic message from Salmonella enterica. The mgtCBR mRNA specifies the MgtC protein, which is necessary for survival within macrophages, virulence in mice and growth in low Mg(2+); the Mg(2+) transporter MgtB with no apparent role in virulence; and the membrane peptide MgtR mediating MgtC degradation. Expression of AmgR diminished both MgtC and MgtB protein levels in a process requiring RNase E but independent of RNase III, the RNA chaperone Hfq, and the regulatory peptide MgtR. Inactivation of the chromosomal amgR promoter increased MgtC and MgtB protein levels and enhanced Salmonella virulence. Surprisingly, AmgR transcription is governed by the regulatory protein PhoP, which also directs transcription of the sense mgtCBR mRNA. AmgR may function as a timing device that alters MgtC and MgtB levels after the onset of PhoP-inducing conditions.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
47
|
Andresen L, Sala E, Kõiv V, Mäe A. A role for the Rcs phosphorelay in regulating expression of plant cell wall degrading enzymes in Pectobacterium carotovorum subsp. carotovorum. MICROBIOLOGY-SGM 2010; 156:1323-1334. [PMID: 20110299 DOI: 10.1099/mic.0.033936-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Rcs phosphorelay is a signal transduction system that influences the virulence phenotype of several pathogenic bacteria. In the plant pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) the response regulator of the Rcs phosphorelay, RcsB, represses expression of plant cell wall degrading enzymes (PCWDE) and motility. The focus of this study was to identify genes directly regulated by the binding of RcsB that also regulate expression of PCWDE genes in Pcc. RcsB-binding sites within the regulatory regions of the flhDC operon and the rprA and rsmB genes were identified using DNase I protection assays, while in vivo studies using flhDC : : gusA, rsmB : : gusA and rprA : : gusA gene fusions revealed gene regulation. These experiments demonstrated that the operon flhDC, a flagellar master regulator, was repressed by RcsB, and transcription of rprA was activated by RcsB. Regulation of the rsmB promoter by RcsB is more complicated. Our results show that RcsB represses rsmB expression mainly through modulating flhDC transcription. Neverthless, direct binding of RcsB on the rsmB promoter region is possible in certain conditions. Using an rprA-negative mutant, it was further demonstrated that RprA RNA is not essential for regulating expression of PCWDE under the conditions tested, whereas overexpression of rprA increased protease expression in wild-type cells. Stationary-phase sigma factor, RpoS, is the only known target gene for RprA RNA in Escherichia coli; however, in Pcc the effect of RprA RNA was found to be rpoS-independent. Overall, our results show that the Rcs phosphorelay negatively affects expression of PCWDE by inhibiting expression of flhDC and rsmB.
Collapse
Affiliation(s)
- Liis Andresen
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Erki Sala
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Viia Kõiv
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Andres Mäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
48
|
Pilonieta MC, Erickson KD, Ernst RK, Detweiler CS. A protein important for antimicrobial peptide resistance, YdeI/OmdA, is in the periplasm and interacts with OmpD/NmpC. J Bacteriol 2009; 191:7243-52. [PMID: 19767429 PMCID: PMC2786563 DOI: 10.1128/jb.00688-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/10/2009] [Indexed: 01/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) kill or prevent the growth of microbes. AMPs are made by virtually all single and multicellular organisms and are encountered by bacteria in diverse environments, including within a host. Bacteria use sensor-kinase systems to respond to AMPs or damage caused by AMPs. Salmonella enterica deploys at least three different sensor-kinase systems to modify gene expression in the presence of AMPs: PhoP-PhoQ, PmrA-PmrB, and RcsB-RcsC-RcsD. The ydeI gene is regulated by the RcsB-RcsC-RcsD pathway and encodes a 14-kDa predicted oligosaccharide/oligonucleotide binding-fold (OB-fold) protein important for polymyxin B resistance in broth and also for virulence in mice. We report here that ydeI is additionally regulated by the PhoP-PhoQ and PmrA-PmrB sensor-kinase systems, which confer resistance to cationic AMPs by modifying lipopolysaccharide (LPS). ydeI, however, is not important for known LPS modifications. Two independent biochemical methods found that YdeI copurifies with OmpD/NmpC, a member of the trimeric beta-barrel outer membrane general porin family. Genetic analysis indicates that ompD contributes to polymyxin B resistance, and both ydeI and ompD are important for resistance to cathelicidin antimicrobial peptide, a mouse AMP produced by multiple cell types and expressed in the gut. YdeI localizes to the periplasm, where it could interact with OmpD. A second predicted periplasmic OB-fold protein, YgiW, and OmpF, another general porin, also contribute to polymyxin B resistance. Collectively, the data suggest that periplasmic OB-fold proteins can interact with porins to increase bacterial resistance to AMPs.
Collapse
Affiliation(s)
- M. Carolina Pilonieta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| | - Kimberly D. Erickson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| | - Robert K. Ernst
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| |
Collapse
|
49
|
Pescaretti MDLM, Morero R, Delgado MÃA. Identification of a new promoter for the response regulatorrcsBexpression inSalmonella entericaserovar Typhimurium. FEMS Microbiol Lett 2009; 300:165-73. [DOI: 10.1111/j.1574-6968.2009.01771.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
50
|
Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 2009; 5:e1000651. [PMID: 19763168 PMCID: PMC2731931 DOI: 10.1371/journal.pgen.1000651] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response. Bacteria possess various signaling systems that sense and respond to environmental conditions. The bacterial envelope is at the front line for most external stress conditions; its components sense perturbations and transmit signals to induce transcriptional reprogramming, leading to an adaptive response. In Escherichia coli, at least five response pathways, called Bae, Cpx, Psp, Rcs, and σE, are induced in response to envelope stress. To date, these pathways have been studied mainly individually, and the interconnections and/or overlaps between them have not been extensively characterized. The present study establishes two important characteristics of stress response in E. coli: first, that a given stress solicits the combined responses of several pathways; second, that each individual pathway controls a discrete set of genes involved in the response, and shows little overlap with other pathways. Based on previous knowledge and the present data, we propose that an environmental stress probably impacts on the cell envelope by inducing numerous alterations, each of which may be perceived by different pathways of the stress response and contributes to adapting the cell to different aspects of the stress damage. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response.
Collapse
|