1
|
Abstract
Bacterial surface layers (S-layers) have been observed as the outermost cell envelope component in a wide range of bacteria and most archaea. S-layers are monomolecular lattices composed of a single protein or glycoprotein species and have either oblique, square or hexagonal lattice symmetry with unit cell dimensions ranging from 3 to 30 nm. They are generally 5 to 10 nm thick (up to 70 nm in archaea) and represent highly porous protein lattices (30–70% porosity) with pores of uniform size and morphology in the range of 2 to 8 nm. Since S-layers can be considered as one of the simplest protein lattices found in nature and the constituent units are probably the most abundantly expressed proteins on earth, it seems justified to briefly review the different S-layer lattice types, the need for lattice imperfections and the discussion of S-layers from the perspective of an isoporous protein network in the ultrafiltration region. Finally, basic research on S-layers laid the foundation for applications in biotechnology, synthetic biology, and biomimetics.
Collapse
|
2
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
3
|
In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers. Int J Mol Sci 2017; 18:ijms18020400. [PMID: 28216572 PMCID: PMC5343934 DOI: 10.3390/ijms18020400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers.
Collapse
|
4
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
5
|
Truncation Derivatives of the S-Layer Protein of Sporosarcina ureae ATCC 13881 (SslA): Towards Elucidation of the Protein Domain Responsible for Self-Assembly. Molecules 2016; 21:molecules21091117. [PMID: 27563868 PMCID: PMC6272907 DOI: 10.3390/molecules21091117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 11/28/2022] Open
Abstract
The cell surface of Sporosarcina ureae ATCC 13881 is covered by an S-layer (SslA) consisting of identical protein subunits that assemble into lattices exhibiting square symmetry. In this work the self-assembly properties of the recombinant SslA were characterised with an emphasis on the identification of protein regions responsible for self-assembly. To this end, recombinant mature SslA (aa 31-1097) and three SslA truncation derivatives (one N-terminal, one C-terminal and one CN-terminal) were produced in a heterologous expression system, isolated, purified and their properties analysed by in vitro recrystallisation experiments on a functionalised silicon wafer. As a result, recombinant mature SslA self-assembled into crystalline monolayers with lattices resembling the one of the wild-type SslA. The study identifies the central protein domain consisting of amino acids 341-925 self-sufficient for self-assembly. Neither the first 341 amino acids nor the last 172 amino acids of the protein sequence are required to self-assemble into lattices.
Collapse
|
6
|
Kojima S, Muramoto K, Kusano T. Outer Membrane Proteins Derived from Non-cyanobacterial Lineage Cover the Peptidoglycan of Cyanophora paradoxa Cyanelles and Serve as a Cyanelle Diffusion Channel. J Biol Chem 2016; 291:20198-209. [PMID: 27502278 DOI: 10.1074/jbc.m116.746131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
The cyanelle is a primitive chloroplast that contains a peptidoglycan layer between its inner and outer membranes. Despite the fact that the envelope structure of the cyanelle is reminiscent of Gram-negative bacteria, the Cyanophora paradoxa genome appears to lack genes encoding homologs of putative peptidoglycan-associated outer membrane proteins and outer membrane channels. These are key components of Gram-negative bacterial membranes, maintaining structural stability and regulating permeability of outer membrane, respectively. Here, we discovered and characterized two dominant peptidoglycan-associated outer membrane proteins of the cyanelle (∼2 × 10(6) molecules per cyanelle). We named these proteins CppF and CppS (cyanelle peptidoglycan-associated proteins). They are homologous to each other and function as a diffusion channel that allows the permeation of compounds with Mr <1,000 as revealed by permeability measurements using proteoliposomes reconstituted with purified CppS and CppF. Unexpectedly, amino acid sequence analysis revealed no evolutionary linkage to cyanobacteria, showing only a moderate similarity to cell surface proteins of bacteria belonging to Planctomycetes phylum. Our findings suggest that the C. paradoxa cyanelle adopted non-cyanobacterial lineage proteins as its main outer membrane components, providing a physical link with the underlying peptidoglycan layer and functioning as a diffusion route for various small substances across the outer membrane.
Collapse
Affiliation(s)
- Seiji Kojima
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan and Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Koji Muramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
8
|
Abstract
Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.
Collapse
Affiliation(s)
- Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | |
Collapse
|
9
|
Schuster B, Sleytr UB. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface 2014; 11:20140232. [PMID: 24812051 PMCID: PMC4032536 DOI: 10.1098/rsif.2014.0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Biophysics, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
10
|
Baneyx F, Matthaei JF. Self-assembled two-dimensional protein arrays in bionanotechnology: from S-layers to designed lattices. Curr Opin Biotechnol 2013; 28:39-45. [PMID: 24832073 DOI: 10.1016/j.copbio.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 02/04/2023]
Abstract
Although the crystalline S-layer arrays that form the exoskeleton of many archaea and bacteria have been studied for decades, a long-awaited crystal structure coupled with a growing understanding of the S-layer assembly process are injecting new excitement in the field. The trend is amplified by computational strategies that allow for in silico design of protein building blocks capable of self-assembling into 2D lattices and other prescribed quaternary structures. We review these and other recent developments toward achieving unparalleled control over the geometry, chemistry and function of protein-based 2D objects from the nanoscale to the mesoscale.
Collapse
Affiliation(s)
- François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA.
| | - James F Matthaei
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA
| |
Collapse
|
11
|
Janesch B, Koerdt A, Messner P, Schäffer C. The S-layer homology domain-containing protein SlhA from Paenibacillus alvei CCM 2051(T) is important for swarming and biofilm formation. PLoS One 2013; 8:e76566. [PMID: 24058714 PMCID: PMC3776848 DOI: 10.1371/journal.pone.0076566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/28/2013] [Indexed: 01/23/2023] Open
Abstract
Background Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcuspluton, the causative agent of European foulbrood (EFB). Methodology Paenibacillus alvei CCM 2051T is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. Conclusion This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051T.
Collapse
Affiliation(s)
- Bettina Janesch
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Andrea Koerdt
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
| | - Paul Messner
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
- * E-mail: (CS); (PM)
| | - Christina Schäffer
- NanoGlycobiology Unit, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Vienna, Austria
- * E-mail: (CS); (PM)
| |
Collapse
|
12
|
Shin SH, Comolli LR, Tscheliessnig R, Wang C, Nam KT, Hexemer A, Siegerist CE, De Yoreo JJ, Bertozzi CR. Self-assembly of "S-bilayers", a step toward expanding the dimensionality of S-layer assemblies. ACS NANO 2013; 7:4946-4953. [PMID: 23705800 DOI: 10.1021/nn400263j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein-based assemblies with ordered nanometer-scale features in three dimensions are of interest as functional nanomaterials but are difficult to generate. Here we report that a truncated S-layer protein assembles into stable bilayers, which we characterized using cryogenic-electron microscopy, tomography, and X-ray spectroscopy. We find that emergence of this supermolecular architecture is the outcome of hierarchical processes; the proteins condense in solution to form 2-D crystals, which then stack parallel to one another to create isotropic bilayered assemblies. Within this bilayered structure, registry between lattices in two layers was disclosed, whereas the intrinsic symmetry in each layer was altered. Comparison of these data to images of wild-type SbpA layers on intact cells gave insight into the interactions responsible for bilayer formation. These results establish a platform for engineering S-layer assemblies with 3-D architecture.
Collapse
Affiliation(s)
- Seong-Ho Shin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pleschberger M, Hildner F, Rünzler D, Gelbmann N, Mayer HF, Sleytr UB, Egelseer EM. Identification of a novel gene cluster in the upstream region of the S-layer gene sbpA involved in cell wall metabolism of Lysinibacillus sphaericus CCM 2177 and characterization of the recombinantly produced autolysin and pyruvyl transferase. Arch Microbiol 2013; 195:323-37. [PMID: 23443476 DOI: 10.1007/s00203-013-0876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
The S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 assembles into a square (p4) lattice structure and recognizes a pyruvylated secondary cell wall polymer (SCWP) as the proper anchoring structure to the rigid cell wall layer. Sequencing of 8,004 bp in the 5'-upstream region of the S-layer gene sbpA led to five ORFs-encoding proteins involved in cell wall metabolism. After cloning and heterologous expression of ORF1 and ORF5 in Escherichia coli, the recombinant autolysin rAbpA and the recombinant pyruvyl transferase rCsaB were isolated, purified, and correct folding was confirmed by circular dichroism. Although rAbpA encoded by ORF1 showed amidase activity, it could attack whole cells of Ly. sphaericus CCM 2177 only after complete extraction of the S-layer lattice. Despite the presence of three S-layer-homology motifs on the N-terminal part, rAbpA did not show detectable affinity to peptidoglycan-containing sacculi, nor to isolated SCWP. As the molecular mass of the autolysin lies above the molecular exclusion limit of the S-layer, AbpA is obviously trapped within the rigid cell wall layer by the isoporous protein lattice. Immunogold-labeling of ultrathin-sectioned whole cells of Ly. sphaericus CCM 2177 with a polyclonal rabbit antiserum raised against rCsaB encoded by ORF5, and cell fractionation experiments demonstrated that the pyruvyl transferase was located in the cytoplasm, but not associated with cell envelope components including the plasma membrane. In enzymatic assays, rCsaB clearly showed pyruvyl transferase activity. By using RT-PCR, specific transcripts for each ORF could be detected. Cotranscription could be confirmed for ORF2 and ORF3.
Collapse
Affiliation(s)
- Magdalena Pleschberger
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Pum D, Toca-Herrera JL, Sleytr UB. S-layer protein self-assembly. Int J Mol Sci 2013; 14:2484-501. [PMID: 23354479 PMCID: PMC3587997 DOI: 10.3390/ijms14022484] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022] Open
Abstract
Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports.
Collapse
Affiliation(s)
- Dietmar Pum
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| | - Jose Luis Toca-Herrera
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| | - Uwe B. Sleytr
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| |
Collapse
|
15
|
Nanoscale mono- and multi-layer cylinder structures formed by recombinant S-layer proteins of mosquitocidal Bacillus sphaericus C3-41. Appl Microbiol Biotechnol 2013; 97:7275-83. [PMID: 23306643 DOI: 10.1007/s00253-012-4664-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/21/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
The mature surface layer (S-layer) protein SlpC of mosquitocidal Bacillus sphaericus C3-41 comprises amino acids 31-1,176 and could recrystallize in vitro. The N-terminal SLH domain is responsible for binding function. Deletion of this part, S-layer proteins could not bind to the cell wall sacculi. To investigate the self-assembly ability of SlpC from B. sphaericus, nine truncations were constructed and their self-assembly properties were compared with the recombinant mature S-layer protein rSlpC₃₁₋₁,₁₇₆. The results showed that rSbsC₃₁₋₁,₁₇₆ and truncations rSlpC₂₁₁₋₁,₁₇₆, rSlpC₂₇₈₋₁,₁₇₆, rSlpC₃₁₋₁,₁₀₀, and rSlpC₃₁₋₁,₀₅₀ could assemble into multilayer cylinder structures, while N-terminal truncations rSlpC₃₃₈₋₁,₁₇₆, rSlpC₄₃₈₋₁,₁₇₆, and rSlpC₄₉₈₋₁,₁₇₆ mainly showed monolayer cylinders in recombinant Escherichia coli BL21 (DE3) cells. Growth phase analysis of the self-assembly process revealed that rSlpC₄₉₈₋₁,₁₇₆ mainly formed monolayer cylinders in the early stage (0.5 and 1 h induction of expression), but few double-layer or multilayer cylinders were also found with the cells growing, while rSlpC₃₁₋₁,₁₇₆ could formed multilayer cylinders in all the growth stage in the E. coli cells. It is concluded that the deletion of the C-terminal 126 aa or the N-terminal 497 aa did not interfere with the self-assembly process, the fragment (amino acids 278 to 337) is essential for the multilayer cylinder formation in E. coli BL21 (DE3) cells in the early stage and the fragment (amino acids 338 to 497) is related to monolayer cylinder formation. The information is important for further studies on the assembly mechanism of S-layer proteins and forms a basis for further studies concerning surface display and nanobiotechnology.
Collapse
|
16
|
Are the surface layer homology domains essential for cell surface display and glycosylation of the S-layer protein from Paenibacillus alvei CCM 2051T? J Bacteriol 2012. [PMID: 23204458 DOI: 10.1128/jb.01487-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Paenibacillus alvei CCM 2051(T) cells are decorated with a two-dimensional (2D) crystalline array comprised of the glycosylated S-layer protein SpaA. At its N terminus, SpaA possesses three consecutive surface layer (S-layer) homology (SLH) domains containing the amino acid motif TRAE, known to play a key role in cell wall binding, as well as the TVEE and TRAQ variations thereof. SpaA is predicted to be anchored to the cell wall by interaction of the SLH domains with a peptidoglycan (PG)-associated, nonclassical, pyruvylated secondary cell wall polymer (SCWP). In this study, we have analyzed the role of the three predicted binding motifs within the SLH domains by mutating them into TAAA motifs, either individually, pairwise, or all of them. Effects were visualized in vivo by homologous expression of chimeras made of the mutated S-layer proteins and enhanced green fluorescent protein and in an in vitro binding assay using His-tagged SpaA variants and native PG-containing cell wall sacculi that either contained SCWP or were deprived of it. Experimental data indicated that (i) the TRAE, TVEE, and TRAQ motifs are critical for the binding function of SLH domains, (ii) two functional motifs are sufficient for cell wall binding, regardless of the domain location, (iii) SLH domains have a dual-recognition function for the SCWP and the PG, and (iv) cell wall anchoring is not necessary for SpaA glycosylation. Additionally, we showed that the SLH domains of SpaA are sufficient for in vivo cell surface display of foreign proteins at the cell surface of P. alvei.
Collapse
|
17
|
Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol 2012; 97:1941-52. [PMID: 22526799 DOI: 10.1007/s00253-012-4044-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/11/2012] [Accepted: 03/19/2012] [Indexed: 11/28/2022]
Abstract
It was previously shown that the surface (S)-layer proteins covering the cell surface of Lactobacillus crispatus K313 were involved in the adherence of this strain to human intestinal cell line HT-29. To further elucidate the structures and functions of S-layers, three putative S-layer protein genes (slpA, slpB, and slpC) of L. crispatus K313 were amplified by PCR, sequenced, and characterized in detail. Quantitative real-time PCR analysis reveals that slpA was silent under the tested conditions; whereas slpB and slpC, the putative amino acid sequences which exhibited minor similarities to the previously reported S-layer proteins in L. crispatus, were actively expressed. slpB, which was predominantly expressed in L. crispatus K313, was further investigated for its functional domains. Genetic truncation of the untranslated leader sequence (UTLS) of slpB results in a reduction in protein production, indicating that the UTLS contributed to the efficient S-layer protein expression. By producing a set of N- and C-terminally truncated recombinant SlpB proteins in Escherichia coli, the cell wall-binding region was mapped to the C terminus, where rSlpB(380-501) was sufficient for binding to isolated cell wall fragments. Moreover, the binding ability of the C terminus was variable among the Lactobacillus species (S-layer- and non-S-layer-producing strains), and teichoic acid may be acting as the receptor of SlpB. To determine the adhesion region of SlpB to extracellular matrix proteins, ELISA was performed. Binding to immobilized types I and IV collagen was observed with the His-SlpB(1-379) peptides, suggesting that the extracellular matrix protein-binding domain was located in the N terminus.
Collapse
Affiliation(s)
- Zhilan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Zafiu C, Trettenhahn G, Pum D, Sleytr UB, Kautek W. Structural control of surface layer proteins at electrified interfaces investigated by in situ Fourier transform infrared spectroscopy. Phys Chem Chem Phys 2011; 13:13232-7. [PMID: 21698313 DOI: 10.1039/c0cp02127j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In situ Fourier Transform Infrared (FTIR) Spectroscopy complemented by Electrochemical Quartz Microbalance (EQMB) investigations allowed a detailed insight into the influence of the electrode potential on competing adsorption processes and bonding mechanisms of buffer ions and S-layer protein molecules of Lysinibacillus sphaericus CCM2177 at an electrified liquid/gold interface. The S-layer proteins adsorb on gold polarized positively of the point of zero charge by displacing perchlorate anions in the Helmholtz plane by their carboxylate groups. This is indicated by an increase of the peptide and carboxylate infrared absorption signals accompanied by a decrease of the perchlorate signal. S-layers interlinked laterally with Ca(2+) ions, positive of the point of zero charge, resulted in the formation of a crystalline layer participating in the Helmholtz layer. In contrast to the absence of the Ca(2+)-linkers, S-layers remain structurally intact also in the negative polarization domain where the Helmholtz layer is solely sustained by mainly solvated cations without participation of the negatively charged protein carboxylate functions.
Collapse
Affiliation(s)
- Christian Zafiu
- University of Vienna, Department of Physical Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
19
|
Norville JE, Kelly DF, Knight TF, Belcher AM, Walz T. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications. Biotechnol J 2011; 6:807-11. [PMID: 21681963 DOI: 10.1002/biot.201100024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/19/2011] [Accepted: 05/24/2011] [Indexed: 12/24/2022]
Abstract
A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.
Collapse
Affiliation(s)
- Julie E Norville
- Synthetic Biology Working Group, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | |
Collapse
|
20
|
Horejs C, Gollner H, Pum D, Sleytr UB, Peterlik H, Jungbauer A, Tscheliessnig R. Atomistic structure of monomolecular surface layer self-assemblies: toward functionalized nanostructures. ACS NANO 2011; 5:2288-2297. [PMID: 21375257 DOI: 10.1021/nn1035729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The concept of self-assembly is one of the most promising strategies for the creation of defined nanostructures and therefore became an essential part of nanotechnology for the controlled bottom-up design of nanoscale structures. Surface layers (S-layers), which represent the cell envelope of a great variety of prokaryotic cells, show outstanding self-assembly features in vitro and have been successfully used as the basic matrix for molecular construction kits. Here we present the three-dimensional structure of an S-layer lattice based on tetrameric unit cells, which will help to facilitate the directed binding of various molecules on the S-layer lattice, thereby creating functional nanoarrays for applications in nanobiotechnology. Our work demonstrates the successful combination of computer simulations, electron microscopy (TEM), and small-angle X-ray scattering (SAXS) as a tool for the investigation of the structure of self-assembling or aggregating proteins, which cannot be determined by X-ray crystallography. To the best of our knowledge, this is the first structural model at an amino acid level of an S-layer unit cell that exhibits p4 lattice symmetry.
Collapse
Affiliation(s)
- Christine Horejs
- Department for Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
22
|
The Structure of Bacterial S-Layer Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:73-130. [DOI: 10.1016/b978-0-12-415906-8.00004-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Badelt-Lichtblau H, Kainz B, Völlenkle C, Egelseer EM, Sleytr UB, Pum D, Ilk N. Genetic engineering of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 for the generation of functionalized nanoarrays. Bioconjug Chem 2010; 20:895-903. [PMID: 19402706 DOI: 10.1021/bc800445r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mesophilic organism Lysinibacillus sphaericus CCM 2177 produces the surface (S)-layer protein SbpA, which after secretion completely covers the cell surface with a crystalline array exhibiting square lattice symmetry. Because of its excellent in vitro recrystallization properties on solid supports, SbpA represents a suitable candidate for genetically engineering to create a versatile self-assembly system for the development of a molecular construction kit for nanobiotechnological applications. The first goal of this study was to investigate the surface location of 3 different C-terminal amino acid positions within the S-layer lattice formed by SbpA. Therefore, three derivatives of SbpA were constructed, in which 90, 173, or 200 C-terminal amino acids were deleted, and the sequence encoding the short affinity tag Strep-tag II as well as a single cysteine residue were fused to their C-terminal end. Recrystallization studies of the rSbpA/STII/Cys fusion proteins indicated that C-terminal truncation and functionalization of the S-layer protein did not interfere with the self-assembly capability. Fluorescent labeling demonstrated that the orientation of the crystalline rSbpA(31-1178)/STII/Cys lattice on solid supports was the same, like the orientation of wild-type S-layer protein SbpA on the bacterial cell. In soluble and recrystallized rSbpA/STII/Cys fusion proteins, Strep-tag II was used for prescreening of the surface accessibility, whereas the thiol group of the end-standing cysteine residue was exploited for site-directed chemical linkage of differently sized preactivated macromolecules via heterobifunctional cross-linkers. Finally, functionalized two-dimensional S-layer lattices formed by rSbpA(31-1178)/STII/Cys exhibiting highly accessible cysteine residues in a well-defined arrangement on the surface were utilized for the template-assisted patterning of gold nanoparticles.
Collapse
Affiliation(s)
- Helga Badelt-Lichtblau
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Fukuda M, Watanabe S, Yoshida S, Itoh H, Itoh Y, Kamio Y, Kaneko J. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J Bacteriol 2010; 192:2210-9. [PMID: 20154127 PMCID: PMC2849441 DOI: 10.1128/jb.01406-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 02/08/2010] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus sp. W-61 is capable of utilizing water-insoluble xylan for carbon and energy sources and has three xylanase genes, xyn1, xyn3, and xyn5. Xyn1, Xyn3, and Xyn5 are extracellular enzymes of the glycoside hydrolase (GH) families 11, 30, and 10, respectively. Xyn5 contains several domains including those of carbohydrate-binding modules (CBMs) similar to a surface-layer homologous (SLH) protein. This study focused on the role of Xyn5, localized on the cell surface, in water-insoluble xylan utilization. Electron microscopy using immunogold staining revealed Xyn5 clusters over the entire cell surface. Xyn5 was bound to cell wall fractions through its SLH domain. A Deltaxyn5 mutant grew poorly and produced minimal amounts of Xyn1 and Xyn3 on water-insoluble xylan. A Xyn5 mutant lacking the SLH domain (Xyn5DeltaSLH) grew poorly, secreting Xyn5DeltaSLH into the medium and producing minimal Xyn1 and Xyn3 on water-insoluble xylan. A mutant with an intact xyn5 produced Xyn5 on the cell surface, grew normally, and actively synthesized Xyn1 and Xyn3 on water-insoluble xylan. Quantitative reverse transcription-PCR showed that xylobiose, generated from water-insoluble xylan decomposition by Xyn5, is the most active inducer for xyn1 and xyn3. Luciferase assays using a Xyn5-luciferase fusion protein suggested that xylotriose is the best inducer for xyn5. The cell surface Xyn5 appears to play two essential roles in water-insoluble xylan utilization: (i) generation of the xylo-oligosaccharide inducers of all the xyn genes from water-insoluble xylan and (ii) attachment of the cells to the substrate so that the generated inducers can be immediately taken up by cells to activate expression of the xyn system.
Collapse
Affiliation(s)
- Mutsumi Fukuda
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori 1-1 Amamiyamachi, Sendai 981-8555, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| | - Seiji Watanabe
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori 1-1 Amamiyamachi, Sendai 981-8555, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| | - Shigeki Yoshida
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori 1-1 Amamiyamachi, Sendai 981-8555, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| | - Hiroya Itoh
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori 1-1 Amamiyamachi, Sendai 981-8555, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| | - Yoshifumi Itoh
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori 1-1 Amamiyamachi, Sendai 981-8555, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| | - Yoshiyuki Kamio
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori 1-1 Amamiyamachi, Sendai 981-8555, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| | - Jun Kaneko
- Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori 1-1 Amamiyamachi, Sendai 981-8555, Japan, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan, Department of Human Health and Nutrition, Graduate School of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori 981-1295, Japan
| |
Collapse
|
25
|
Kinns H, Badelt-Lichtblau H, Egelseer EM, Sleytr UB, Howorka S. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus. J Mol Biol 2009; 395:742-53. [PMID: 19836402 DOI: 10.1016/j.jmb.2009.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Surface layer (S-layer) proteins self-assemble into two-dimensional crystalline lattices that cover the cell wall of all archaea and many bacteria. We have generated assembly-negative protein variants of high solubility that will facilitate high-resolution structure determination. Assembly-negative versions of the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 were obtained using an insertion mutagenesis screen. The haemagglutinin epitope tag was inserted at 23 amino acid positions known to be located on the monomer protein surface from a previous cysteine accessibility screen. Limited proteolysis, circular dichroism, and fluorescence were used to probe whether the epitope insertion affected the secondary and tertiary structures of the monomer, while electron microscopy and size-exclusion chromatography were employed to examine proteins' ability to self-assemble. The screen not only identified assembly-compromised mutants with native fold but also yielded correctly folded, self-assembling mutants suitable for displaying epitopes for biomedical and biophysical applications, as well as cryo-electron microscopy imaging. Our study marks an important step in the analysis of the S-layer structure. In addition, the approach of concerted insertion and cysteine mutagenesis can likely be applied for other supramolecular assemblies.
Collapse
Affiliation(s)
- Helen Kinns
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | | | | | | |
Collapse
|
26
|
Schuster B, Sleytr UB. Composite S-layer lipid structures. J Struct Biol 2009; 168:207-16. [PMID: 19303933 PMCID: PMC2886963 DOI: 10.1016/j.jsb.2009.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 01/01/2023]
Abstract
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department für NanoBiotechnologie, Universität für Bodenkultur Wien, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
| | - Uwe B. Sleytr
- Department für NanoBiotechnologie, Universität für Bodenkultur Wien, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
| |
Collapse
|
27
|
Tang J, Ebner A, Kraxberger B, Leitner M, Hykollari A, Kepplinger C, Grunwald C, Gruber HJ, Tampé R, Sleytr UB, Ilk N, Hinterdorfer P. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy. J Struct Biol 2009; 168:217-22. [DOI: 10.1016/j.jsb.2009.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 11/25/2022]
|
28
|
Ferner-Ortner-Bleckmann J, Huber-Gries C, Pavkov T, Keller W, Mader C, Ilk N, Sleytr UB, Egelseer EM. The high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 interacts with the cell wall components by virtue of three specific binding regions. Mol Microbiol 2009; 72:1448-61. [PMID: 19460092 DOI: 10.1111/j.1365-2958.2009.06734.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complete nucleotide sequence encoding the high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 was established by PCR techniques. Based on the hmma gene sequence, the full-length rHMMA, four N- or C-terminal rHMMA truncations as well as three C-terminal rHMMA fragments were cloned and heterologously expressed in Escherichia coli. Purified rHMMA forms were used either for affinity studies with the recombinant (r) S-layer protein SbsC (rSbsC), peptidoglycan-containing sacculi (PGS) and pure peptidoglycan (PG) devoid of the secondary cell wall polymer (SCWP), or for surface plasmon resonance (SPR) studies using rSbsC and isolated SCWP. In the C-terminal part of the HMMA, three specific binding regions, one for each cell wall component (rSbsC, SCWP and PG), could be identified. The functionality of the PG-binding domain could be confirmed by replacing the main part of the SCWP-binding domain of an S-layer protein by the PG-binding domain of the HMMA. The present work describes a completely new and highly economic strategy for cell adhesion of an exoenzyme.
Collapse
|
29
|
Tang J, Ebner A, Badelt-Lichtblau H, Völlenkle C, Rankl C, Kraxberger B, Leitner M, Wildling L, Gruber HJ, Sleytr UB, Ilk N, Hinterdorfer P. Recognition imaging and highly ordered molecular templating of bacterial S-layer nanoarrays containing affinity-tags. NANO LETTERS 2008; 8:4312-4319. [PMID: 19367846 DOI: 10.1021/nl802092c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Functional nanoarrays were fabricated using the chimeric bacterial cell surface layer (S-layer) protein rSbpA fused with the affinity tag Strep-tagII and characterized using various atomic force microscopy (AFM) techniques in aqueous environment. The accessibility of Strep-tagII was verified by single-molecule force spectroscopy studies employing Strep-Tactin as specific ligand. Simultaneous topography and recognition imaging (TREC) of the nanoarray yielded high resolution maps of the Strep-tagll binding sites with a positional accuracy of 1.5 nm. The nanoarrays were used as template for constructing highly ordered molecular binding blocks.
Collapse
Affiliation(s)
- Jilin Tang
- Institute of Biophysics, Johannes Kepler University of Linz, 4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fakhry S, Sorrentini I, Ricca E, De Felice M, Baccigalupi L. Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol 2008; 105:2178-86. [DOI: 10.1111/j.1365-2672.2008.03934.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Zhu C, Yu Z. The surface layer protein of Bacillus thuringiensis CTC forms unique intracellular parasporal inclusion body. J Basic Microbiol 2008; 48:302-7. [PMID: 18720489 DOI: 10.1002/jobm.200800013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus thuringiensis subsp. finitimus strain CTC forms round parasporal inclusion body. The inclusion body protein gene ctc has been cloned and characterized. Sequence homology analysis reveals that the amino acid sequence of CTC protein shows 87% identity with the surface layer (S-layer) protein Sap (GenBank Z36946) in B. anthracis. In this report, transmission electron microscope observation showed that CTC formed intracellular parasporal inclusion body and sheet structure of S-layer-like protein at the spore phase. Furthermore, the ctc gene was transformed into an acrystalliferous B. thuringiensis strain BMB171. The resulting transformant could form parasporal body which had the same shape and molecular weight of protein with that of B. thuringiensis CTC. These results, together with the sequence homology analysis of ctc gene, confirmed that the unique intracellular parasporal inclusion body of B. thuringiensis was comprised of S-layer protein.
Collapse
Affiliation(s)
- Chenguang Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | | |
Collapse
|
32
|
Abstract
There is a growing need to develop clean, nontoxic and environmentally friendly ("green chemistry") procedures for synthesis and assembly of nanoparticles. The use of biological organisms in this area is rapidly gaining importance due to its growing success and ease of formation of nanoparticles. Presently, the potential of bio-organisms ranges from simple prokaryotic bacterial cells to eukaryotic fungus and even live plants. In this article we have reviewed some of these biological systems, which have revolutionized the art of nano-material synthesis.
Collapse
|
33
|
Pavkov T, Egelseer EM, Tesarz M, Svergun DI, Sleytr UB, Keller W. The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 2008; 16:1226-37. [PMID: 18682224 DOI: 10.1016/j.str.2008.05.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 10/21/2022]
Abstract
Surface layers (S-layers) comprise the outermost cell envelope component of most archaea and many bacteria. Here we present the structure of the bacterial S-layer protein SbsC from Geobacillus stearothermophilus, showing a very elongated and flexible molecule, with strong and specific binding to the secondary cell wall polymer (SCWP). The crystal structure of rSbsC((31-844)) revealed a novel fold, consisting of six separate domains, which are connected by short flexible linkers. The N-terminal domain exhibits positively charged residues regularly spaced along the putative ligand binding site matching the distance of the negative charges on the extended SCWP. Upon SCWP binding, a considerable stabilization of the N-terminal domain occurs. These findings provide insight into the processes of S-layer attachment to the underlying cell wall and self-assembly, and also accommodate the observed mechanical strength, the polarity of the S-layer, and the pronounced requirement for surface flexibility inherent to cell growth and division.
Collapse
Affiliation(s)
- Tea Pavkov
- Institute of Molecular Biosciences, Structural Biology, University of Graz, Humboldtsrasse 50/3, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Avall-Jääskeläinen S, Hynönen U, Ilk N, Pum D, Sleytr UB, Palva A. Identification and characterization of domains responsible for self-assembly and cell wall binding of the surface layer protein of Lactobacillus brevis ATCC 8287. BMC Microbiol 2008; 8:165. [PMID: 18828902 PMCID: PMC2571106 DOI: 10.1186/1471-2180-8-165] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus brevis ATCC 8287 is covered by a regular surface (S-) layer consisting of a 435 amino acid protein SlpA. This protein is completely unrelated in sequence to the previously characterized S-layer proteins of Lactobacillus acidophilus group. RESULTS In this work, the self-assembly and cell wall binding domains of SlpA were characterized. The C-terminal self-assembly domain encompassed residues 179-435 of mature SlpA, as demonstrated by the ability of N-terminally truncated recombinant SlpA to form a periodic structure indistinguishable from that formed by full length SlpA. Furthermore, a trypsin degradation analysis indicated the existence of a protease resistant C-terminal domain of 214 amino acids. By producing a set of C-terminally truncated recombinant SlpA (rSlpA) proteins the cell wall binding region was mapped to the N-terminal part of SlpA, where the first 145 amino acids of mature SlpA alone were sufficient for binding to isolated cell wall fragments of L. brevis ATCC 8287. The binding of full length rSlpA to the cell walls was not affected by the treatment of the walls with 5% trichloroacetic acid (TCA), indicating that cell wall structures other than teichoic acids are involved, a feature not shared by the Lactobacillus acidophilus group S-layer proteins characterized so far. Conserved carbohydrate binding motifs were identified in the positively charged N-terminal regions of six Lactobacillus brevis S-layer proteins. CONCLUSION This study identifies SlpA as a two-domain protein in which the order of the functional domains is reversed compared to other characterized Lactobacillus S-layer proteins, and emphasizes the diversity of potential cell wall receptors despite similar carbohydrate binding sequence motifs in Lactobacillus S-layer proteins.
Collapse
Affiliation(s)
- Silja Avall-Jääskeläinen
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
35
|
Knoll W, Naumann R, Friedrich M, Robertson JWF, Lösche M, Heinrich F, McGillivray DJ, Schuster B, Gufler PC, Pum D, Sleytr UB. Solid supported lipid membranes: new concepts for the biomimetic functionalization of solid surfaces. Biointerphases 2008; 3:FA125. [PMID: 20408662 PMCID: PMC2876326 DOI: 10.1116/1.2913612] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Surface-layer (S-layer) supported lipid membranes on solid substrates are interfacial architectures mimicking the supramolecular principle of cell envelopes which have been optimized for billions of years of evolution in most extreme habitats. The authors implement this biological construction principle in a variety of layered supramolecular architectures consisting of a stabilizing protein monolayer and a functional phospholipid bilayer for the design and development of new types of solid-supported biomimetic membranes with a considerably extended stability and lifetime-compared to existing platforms-as required for novel types of bioanalytical sensors. First, Langmuir monolayers of lipids at the water/air interface are used as test beds for the characterization of different types of molecules which all interact with the lipid layers in various ways and, hence, are relevant for the control of the structure, stability, and function of supported membranes. As an example, the interaction of S-layer proteins from the bulk phase with a monolayer of a phospholipid synthetically conjugated with a secondary cell wall polymer (SCWP) was studied as a function of the packing density of the lipids in the monolayer. Furthermore, SCWPs were used as a new molecular construction element. The exploitation of a specific lectin-type bond between the N-terminal part of selected S-layer proteins and a variety of glycans allowed for the buildup of supramolecular assemblies and thus functional membranes with a further increased stability. Next, S-layer proteins were self-assembled and characterized by the surface-sensitive techniques, surface plasmon resonance spectroscopy and quartz crystal microbalance with dissipation monitoring. The substrates were either planar gold or silicon dioxide sensor surfaces. The assembly of S-layer proteins from solution to solid substrates could nicely be followed in-situ and in real time. As a next step toward S-layer supported bilayer membranes, the authors characterized various architectures based on lipid molecules that were modified by a flexible spacer separating the amphiphiles from the anchor group that allows for a covalent coupling of the lipid to a solid support, e.g., using thiols for Au substrates. Impedance spectroscopy confirmed the excellent charge barrier properties of these constructs with a high electrical resistance. Structural details of various types of these tethered bimolecular lipid membranes were studied by using neutron reflectometry. Finally, first attempts are reported to develop a code based on a SPICE network analysis program which is suitable for the quantitative analysis of the transient and steady-state currents passing through these membranes upon the application of a potential gradient.
Collapse
Affiliation(s)
- W Knoll
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55021 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Horejs C, Pum D, Sleytr UB, Tscheliessnig R. Structure prediction of an S-layer protein by the mean force method. J Chem Phys 2008; 128:065106. [PMID: 18282077 DOI: 10.1063/1.2826375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
S-layer proteins have a wide range of application potential due to their characteristic features concerning self-assembling, assembling on various surfaces, and forming of isoporous structures with functional groups located on the surface in an identical position and orientation. Although considerable knowledge has been experimentally accumulated on the structure, biochemistry, assemble characteristics, and genetics of S-layer proteins, no structural model at atomic resolution has been available so far. Therefore, neither the overall folding of the S-layer proteins-their tertiary structure-nor the exact amino acid or domain allocations in the lattices are known. In this paper, we describe the tertiary structure prediction for the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2. This calculation was based on its amino acid sequence using the mean force method (MF method) achieved by performing molecular dynamic simulations. This method includes mainly the thermodynamic aspects of protein folding as well as steric constraints of the amino acids and is therefore independent of experimental structure analysis problems resulting from biochemical properties of the S-layer proteins. Molecular dynamic simulations were performed in vacuum using the simulation software NAMD. The obtained tertiary structure of SbsB was systematically analyzed by using the mean force method, whereas the verification of the structure is based on calculating the global free energy minimum of the whole system. This corresponds to the potential of mean force, which is the thermodynamically most favorable conformation of the protein. Finally, an S-layer lattice was modeled graphically using CINEMA4D and compared with scanning force microscopy data down to a resolution of 1 nm. The results show that this approach leads to a thermodynamically favorable atomic model of the tertiary structure of the protein, which could be verified by both the MF Method and the lattice model.
Collapse
Affiliation(s)
- C Horejs
- Center for Nanobiotechnology, BOKU University of Natural Resources and Applied Life Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | | | | | | |
Collapse
|
37
|
Petersen BO, Sára M, Mader C, Mayer HF, Sleytr UB, Pabst M, Puchberger M, Krause E, Hofinger A, Duus JØ, Kosma P. Structural characterization of the acid-degraded secondary cell wall polymer of Geobacillus stearothermophilus PV72/p2. Carbohydr Res 2008; 343:1346-58. [PMID: 18420185 DOI: 10.1016/j.carres.2008.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 11/25/2022]
Abstract
The secondary cell wall polymer (SCWP) from Geobacillus stearothermophilus PV72/p2, which is involved in the anchoring of the surface-layer protein to the bacterial cell wall layer, is composed of 2-amino-2-deoxy- and 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-mannose, and 2-acetamido-2-deoxy-D-mannuronic acid. The primary structure of the acid-degraded polysaccharide--liberated by HF-treatment from the cell wall--was determined by high-field NMR spectroscopy and mass spectrometry using N-acetylated and hydrolyzed polysaccharide derivatives as well as Smith-degradation. The polysaccharide was shown to consist of a tetrasaccharide repeating unit containing a pyruvic acid acetal at a side-chain 2-acetamido-2-deoxy-alpha-D-mannopyranosyl residue. Substoichiometric substitutions of the repeating unit were observed concerning the degree of N-acetylation of glucosamine residues and the presence of side-chain linked 2-acetamido-2-deoxy-beta-D-glucopyranosyl units: [Formula: see text].
Collapse
Affiliation(s)
- Bent O Petersen
- Department of Chemistry, Carlsberg Laboratory, Valby, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tang J, Ebner A, Ilk N, Lichtblau H, Huber C, Zhu R, Pum D, Leitner M, Pastushenko V, Gruber HJ, Sleytr UB, Hinterdorfer P. High-affinity tags fused to s-layer proteins probed by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1324-1329. [PMID: 18001070 DOI: 10.1021/la702276k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two-dimensional, crystalline bacterial cell surface layers, termed S-layers, are one of the most commonly observed cell surface structures of prokaryotic organisms. In the present study, genetically modified S-layer protein SbpA of Bacillus sphaericus CCM 2177 carrying the short affinity peptide Strep-tag I or Strep-tag II at the C terminus was used to generate a 2D crystalline monomolecular protein lattice on a silicon surface. Because of the genetic modification, the 2D crystals were addressable via Strep-tag through streptavidin molecules. Atomic force microscopy (AFM) was used to investigate the topography of the single-molecules array and the functionality of the fused Strep-tags. In high-resolution imaging under near-physiological conditions, structural details such as protein alignment and spacing were resolved. By applying molecular recognition force microscopy, the Strep-tag moieties were proven to be fully functional and accessible. For this purpose, streptavidin molecules were tethered to AFM tips via approximately 8-nm-long flexible polyethylene glycol (PEG) linkers. These functionalized tips showed specific interactions with 2D protein crystals containing either the Strep-tag I or Strep-tag II, with similar energetic and kinetic behavior in both cases.
Collapse
Affiliation(s)
- Jilin Tang
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kinns H, Howorka S. The surface location of individual residues in a bacterial S-layer protein. J Mol Biol 2008; 377:589-604. [PMID: 18262545 DOI: 10.1016/j.jmb.2008.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/22/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Bacterial surface layer (S-layer) proteins self-assemble into large two-dimensional crystalline lattices that form the outermost cell-wall component of all archaea and many eubacteria. Despite being a large class of self-assembling proteins, little is known about their molecular architecture. We investigated the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 to identify residues located at the subunit-subunit interface and to determine the S-layer's topology. Twenty-three single cysteine mutants, which were previously mapped to the surface of the SbsB monomer, were subjected to a cross-linking screen using the photoactivatable, sulfhydryl-reactive reagent N-[4-(p-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide. Gel electrophoretic analysis on the formation of cross-linked dimers indicated that 8 out of the 23 residues were located at the interface. In combination with surface accessibility data for the assembled protein, 10 residues were assigned to positions at the inner, cell-wall-facing lattice surface, while 5 residues were mapped to the outer, ambient-exposed lattice surface. In addition, the cross-linking screen identified six positions of intramolecular cross-linking within the assembled protein but not in the monomeric S-layer protein. Most likely, these intramolecular cross-links result from conformational changes upon self-assembly. The results are an important step toward the further structural elucidation of the S-layer protein via, for example, X-ray crystallography and cryo-electron microscopy. Our approach of identifying the surface location of residues is relevant to other planar supramolecular protein assemblies.
Collapse
Affiliation(s)
- Helen Kinns
- Department of Chemistry, University College London, Christopher Ingold Building, 20 Gordon Street, London WC1H 0AJ, England, UK
| | | |
Collapse
|
40
|
Ferner-Ortner J, Mader C, Ilk N, Sleytr UB, Egelseer EM. High-affinity interaction between the S-layer protein SbsC and the secondary cell wall polymer of Geobacillus stearothermophilus ATCC 12980 determined by surface plasmon resonance technology. J Bacteriol 2007; 189:7154-8. [PMID: 17644609 PMCID: PMC2045234 DOI: 10.1128/jb.00294-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface plasmon resonance studies using C-terminal truncation forms of the S-layer protein SbsC (recombinant SbsC consisting of amino acids 31 to 270 [rSbsC(31-270)] and rSbsC(31-443)) and the secondary cell wall polymer (SCWP) isolated from Geobacillus stearothermophilus ATCC 12980 confirmed the exclusive responsibility of the N-terminal region comprising amino acids 31 to 270 for SCWP binding. Quantitative analyses indicated binding behavior demonstrating low, medium, and high affinities.
Collapse
Affiliation(s)
- Judith Ferner-Ortner
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | | | | | | | | |
Collapse
|
41
|
Saravia V, Küpcü S, Nolte M, Huber C, Pum D, Fery A, Sleytr UB, Toca-Herrera JL. Bacterial protein patterning by micro-contact printing of PLL-g-PEG. J Biotechnol 2007; 130:247-52. [PMID: 17561298 DOI: 10.1016/j.jbiotec.2007.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/09/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Biomimetic micro-patterned surfaces of three S-layer (fusion) proteins, wild type (SbpA), enhanced green fluorescence protein (SbpA-EGFP) and streptavidin (SbpA-STV), were built by microcontact printing of poly-L-lysine grafted polyethylene glycol (PLL-g-PEG). The functionality of the adsorbed proteins was studied with atomic force microscopy and fluorescence microscopy. Atomic force microscopy (AFM) measurements showed that wild-type SbpA recrystallized on PLL-g-PEG free areas, while fluorescent properties of SbpA-EGFP and the interaction of SbpA-streptavidin heterotetramers with biotin were not affected due to the adsorption on the micro patterned substrates.
Collapse
Affiliation(s)
- V Saravia
- Chemical Engineering Department, URV, Av. Països Catalans 26, 43007 Tarragona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sleytr UB, Huber C, Ilk N, Pum D, Schuster B, Egelseer EM. S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol Lett 2007; 267:131-44. [PMID: 17328112 DOI: 10.1111/j.1574-6968.2006.00573.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Crystalline bacterial cell surface layers (S-layers) have been identified in a great number of different species of bacteria and represent an almost universal feature of archaea. Isolated native S-layer proteins and S-layer fusion proteins incorporating functional sequences self-assemble into monomolecular crystalline arrays in suspension, on a great variety of solid substrates and on various lipid structures including planar membranes and liposomes. S-layers have proven to be particularly suited as building blocks and patterning elements in a biomolecular construction kit involving all major classes of biological molecules (proteins, lipids, glycans, nucleic acids and combinations of them) enabling innovative approaches for the controlled 'bottom-up' assembly of functional supramolecular structures and devices. Here, we review the basic principles of S-layer proteins and the application potential of S-layers in nanobiotechnology and biomimetics including life and nonlife sciences.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Gregor Mendel Strasse 33, A-1180 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
43
|
Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B. S-Layers as a basic building block in a molecular construction kit. FEBS J 2006; 274:323-34. [PMID: 17181542 DOI: 10.1111/j.1742-4658.2006.05606.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystalline arrays of protein or glycoprotein subunits forming surface layers (S-layers) are the most common outermost envelope components of prokaryotic organisms (archaea and bacteria). The wealth of information on the structure, chemistry, genetics, morphogenesis, and function of S-layers has revealed a broad application potential. As S-layers are periodic structures, they exhibit identical physicochemical properties for each molecular unit down to the subnanometer level and possess pores of identical size and morphology. Many applications of S-layers in nanobiotechnology depend on the ability of isolated subunits to recrystallize into monomolecular lattices in suspension or on suitable surfaces and interfaces. S-Layer lattices can be exploited as scaffolding and patterning elements for generating more complex supramolecular assemblies and structures, as required for life and nonlife science applications.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | | | | | | | |
Collapse
|
44
|
May A, Pusztahelyi T, Hoffmann N, Fischer RJ, Bahl H. Mutagenesis of conserved charged amino acids in SLH domains of Thermoanaerobacterium thermosulfurigenes EM1 affects attachment to cell wall sacculi. Arch Microbiol 2006; 185:263-9. [PMID: 16470371 DOI: 10.1007/s00203-006-0092-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/17/2006] [Accepted: 01/20/2006] [Indexed: 02/03/2023]
Abstract
SLH domains (for surface layer homology) are involved in the attachment of proteins to bacterial cell walls. The data presented here assign the conserved TRAE motif within SLH domains a key role for the binding. The charged amino acids arginine (R) or/and glutamic acid (E) were replaced via site-directed mutagenesis by different amino acids. Effects were visualized in an in vitro binding assay using native cell wall sacculi of Thermoanaerobacterium thermosulfurigenes EM1 and different variants of an SLH protein which consisted of the triplicate SLH domain of xylanase XynA of this bacterium and which was purified after expression in Escherichia coli. The results indicated (1) that the TRAE motif is critical for the binding function of SLH domains, (2) that a functional TRAE motif is necessary in all three domains, (3) that a least one (preferentially positively) charged amino acid in the TRAE motif is required for the functionality of the SLH domain, and (4) that the position of the negatively and positively charged amino acids is important. The finding that the cell wall of T. thermosulfurigenes EM1 contains pyruvate (4 microg mg(-1)) is in agreement with the hypothesis that pyruvylated secondary cell wall polymers function as ligand for SLH domains.
Collapse
Affiliation(s)
- Antje May
- Institute of Biological Sciences, Division of Microbiology, University of Rostock, Albert-Einstein-Str. 3, 18051, Rostock, Germany
| | | | | | | | | |
Collapse
|
45
|
Desvaux M, Dumas E, Chafsey I, Hébraud M. Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 2006; 256:1-15. [PMID: 16487313 DOI: 10.1111/j.1574-6968.2006.00122.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In the course of evolution, Gram-positive bacteria, defined here as prokaryotes from the domain Bacteria with a cell envelope composed of one biological membrane (monodermita) and a cell wall composed at least of peptidoglycan and covalently linked teichoic acids, have developed several mechanisms permitting to a cytoplasmic synthesized protein to be present on the bacterial cell surface. Four major types of cell surface displayed proteins are currently recognized: (i) transmembrane proteins, (ii) lipoproteins, (iii) LPXTG-like proteins and (iv) cell wall binding proteins. The subset of proteins exposed on the bacterial cell surface, and thus interacting with extracellular milieu, constitutes the surfaceome. Here, we review exhaustively the current molecular mechanisms involved in protein attachment within the cell envelope of Gram-positive bacteria, from single protein to macromolecular protein structure.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique, Centre de Recherche Clermont-Ferrand - Theix - Lyon, Unité de Microbiologie, Equipe Qualité et Sécurité des Aliments, Site de Theix, Saint-Genès Champanelle, France.
| | | | | | | |
Collapse
|
46
|
Huber C, Liu J, Egelseer EM, Moll D, Knoll W, Sleytr UB, Sára M. Heterotetramers formed by an S-layer-streptavidin fusion protein and core-streptavidin as a nanoarrayed template for biochip development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:142-50. [PMID: 17193570 DOI: 10.1002/smll.200500147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Based on the S-layer protein SbpA of Bacillus sphaericus CCM 2177, an S-layer-streptavidin fusion protein was constructed. After heterologous expression, isolation of the fusion protein, and refolding, functional heterotetramers were obtained that had retained the ability to recrystallize into the square-lattice structure on plain gold chips and on gold chips precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Monolayers generated by recrystallization of heterotetramers on plain gold chips or on gold chips precoated with thiolated SCWP were exploited for the binding of biotinylated oligonucleotides (30-mers). Hybridization experiments with complementary fluorescently labeled oligonucleotides carrying one mismatch or no mismatch (both 15-mers) were performed and evaluated with surface-plasmon-field-enhanced fluorescence spectroscopy. For surfaces generated by the recrystallization of heterotetramers on SCWP-coated gold chips, a detection limit of 1.57 pM could be determined, whereas for surfaces obtained by direct recrystallization of heterotetramers on plain gold chips, a detection limit of 8.2 pM was found. Measuring the association and dissociation processes of oligonucleotides carrying no mismatch led to a dissociation constant of K(D)=6.3 x 10(-10) m, whereas for oligonucleotides carrying one mismatch a dissociation constant of K(D)=7.9 x 10(-9) m was determined. This finding was confirmed by measuring the whole Langmuir isotherm, which resulted in a dissociation constant of K(D)=2.6 x 10(-8) m.
Collapse
Affiliation(s)
- Carina Huber
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Gregor Mendel Strasse 33, 1180 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
48
|
Schäffer C, Messner P. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. MICROBIOLOGY-SGM 2005; 151:643-651. [PMID: 15758211 DOI: 10.1099/mic.0.27749-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell wall of Gram-positive bacteria has been a subject of detailed chemical study over the past five decades. Outside the cytoplasmic membrane of these organisms the fundamental polymer is peptidoglycan (PG), which is responsible for the maintenance of cell shape and osmotic stability. In addition, typical essential cell wall polymers such as teichoic or teichuronic acids are linked to some of the peptidoglycan chains. In this review these compounds are considered as 'classical' cell wall polymers. In the course of recent investigations of bacterial cell surface layers (S-layers) a different class of 'non-classical' secondary cell wall polymers (SCWPs) has been identified, which is involved in anchoring of S-layers to the bacterial cell surface. Comparative analyses have shown considerable differences in chemical composition, overall structure and charge behaviour of these SCWPs. This review discusses the progress that has been made in understanding the structural principles of SCWPs, which may have useful applications in S-layer-based 'supramolecular construction kits' in nanobiotechnology.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| | - Paul Messner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria
| |
Collapse
|