1
|
Cassona CP, Ramalhete S, Amara K, Candela T, Kansau I, Denève-Larrazet C, Janoir-Jouveshomme C, Mota LJ, Dupuy B, Serrano M, Henriques AO. Spores of Clostridioides difficile are toxin delivery vehicles. Commun Biol 2024; 7:839. [PMID: 38987278 PMCID: PMC11237016 DOI: 10.1038/s42003-024-06521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.
Collapse
Affiliation(s)
- Carolina P Cassona
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Khira Amara
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Imad Kansau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal.
| |
Collapse
|
2
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
3
|
Dong Q, Lin H, Allen MM, Garneau JR, Sia JK, Smith RC, Haro F, McMillen T, Pope RL, Metcalfe C, Burgo V, Woodson C, Dylla N, Kohout C, Sundararajan A, Snitkin ES, Young VB, Fortier LC, Kamboj M, Pamer EG. Virulence and genomic diversity among clinical isolates of ST1 (BI/NAP1/027) Clostridioides difficile. Cell Rep 2023; 42:112861. [PMID: 37523264 PMCID: PMC10627504 DOI: 10.1016/j.celrep.2023.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
Clostridioides difficile produces toxins that damage the colonic epithelium, causing colitis. Variation in disease severity is poorly understood and has been attributed to host factors and virulence differences between C. difficile strains. We test 23 epidemic ST1 C. difficile clinical isolates for their virulence in mice. All isolates encode a complete Tcd pathogenicity locus and achieve similar colonization densities. However, disease severity varies from lethal to avirulent infections. Genomic analysis of avirulent isolates reveals a 69-bp deletion in the cdtR gene, which encodes a response regulator for binary toxin expression. Deleting the 69-bp sequence in virulent R20291 strain renders it avirulent in mice with reduced toxin gene transcription. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile isolates without reducing colonization and persistence. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Julian R Garneau
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Jonathan K Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rita C Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Tracy McMillen
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rosemary L Pope
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Claire Kohout
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Evan S Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Dupuy B. Regulation of Clostridial Toxin Gene Expression: A Pasteurian Tradition. Toxins (Basel) 2023; 15:413. [PMID: 37505682 PMCID: PMC10467148 DOI: 10.3390/toxins15070413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
The alarming symptoms attributed to several potent clostridial toxins enabled the early identification of the causative agent of tetanus, botulism, and gas gangrene diseases, which belongs to the most famous species of pathogenic clostridia. Although Clostridioides difficile was identified early in the 20th century as producing important toxins, it was identified only 40 years later as the causative agent of important nosocomial diseases upon the advent of antibiotic therapies in hospital settings. Today, C. difficile is a leading public health issue, as it is the major cause of antibiotic-associated diarrhea in adults. In particular, severe symptoms within the spectrum of C. difficile infections are directly related to the levels of toxins produced in the host. This highlights the importance of understanding the regulation of toxin synthesis in the pathogenicity process of C. difficile, whose regulatory factors in response to the gut environment were first identified at the Institut Pasteur. Subsequently, the work of other groups in the field contributed to further deciphering the complex mechanisms controlling toxin production triggered by the intestinal dysbiosis states during infection. This review summarizes the Pasteurian contribution to clostridial toxin regulation studies.
Collapse
Affiliation(s)
- Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
5
|
Omorotionmwan BB, Wang H, Baker JP, Gizynski K, Yoo M, Akaluka C, Zhang Y, Minton NP. Chromosomal engineering of inducible isopropanol- butanol-ethanol production in Clostridium acetobutylicum. Front Bioeng Biotechnol 2023; 11:1218099. [PMID: 37397966 PMCID: PMC10312008 DOI: 10.3389/fbioe.2023.1218099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
The use of environmentally damaging petrochemical feedstocks can be displaced by fermentation processes based on engineered microbial chassis that recycle biomass-derived carbon into chemicals and fuels. The stable retention of introduced genes, designed to extend product range and/or increase productivity, is essential. Accordingly, we have created multiply marked auxotrophic strains of Clostridium acetobutylicum that provide distinct loci (pyrE, argH, purD, pheA) at which heterologous genes can be rapidly integrated using allele-coupled exchange (ACE). For each locus, ACE-mediated insertion is conveniently selected on the basis of the restoration of prototrophy on minimal media. The Clostridioides difficile gene (tcdR) encoding an orthogonal sigma factor (TcdR) was integrated at the pyrE locus under the control of the lactose-inducible, bgaR::PbgaL promoter to allow the simultaneous control of genes/operons inserted at other disparate loci (purD and pheA) that had been placed under the control of the PtcdB promoter. In control experiments, dose-dependent expression of a catP reporter gene was observed with increasing lactose concentration. At the highest doses tested (10 mM) the level of expression was over 10-fold higher than if catP was placed directly under the control of bgaR::PbgaL and over 2-fold greater than achieved using the strong Pfdx promoter of the Clostridium sporogenes ferredoxin gene. The utility of the system was demonstrated in the production of isopropanol by the C. acetobutylicum strain carrying an integrated copy of tcdR following the insertion of a synthetic acetone operon (ctfA/B, adc) at the purD locus and a gene (sadh) encoding a secondary dehydrogenase at pheA. Lactose induction (10 mM) resulted in the production of 4.4 g/L isopropanol and 19.8 g/L Isopropanol-Butanol-Ethanol mixture.
Collapse
Affiliation(s)
- Bunmi B. Omorotionmwan
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Hengzheng Wang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Jonathan P. Baker
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Krzysztof Gizynski
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Minyeong Yoo
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Cynthia Akaluka
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Dong Q, Lin H, Allen MM, Garneau JR, Sia JK, Smith RC, Haro F, McMillen T, Pope RL, Metcalfe C, Burgo V, Woodson C, Dylla N, Kohout C, Sundararajan A, Snitkin ES, Young VB, Fortier LC, Kamboj M, Pamer EG. Virulence and genomic diversity among clinical isolates of ST1 (BI/NAP1/027) Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523823. [PMID: 36711955 PMCID: PMC9882218 DOI: 10.1101/2023.01.12.523823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clostridioides difficile (C. difficile) , a leading cause of nosocomial infection, produces toxins that damage the colonic epithelium and results in colitis that varies from mild to fulminant. Variation in disease severity is poorly understood and has been attributed to host factors (age, immune competence and intestinal microbiome composition) and/or virulence differences between C. difficile strains, with some, such as the epidemic BI/NAP1/027 (MLST1) strain, being associated with greater virulence. We tested 23 MLST1(ST1) C. difficile clinical isolates for virulence in antibiotic-treated C57BL/6 mice. All isolates encoded a complete Tcd pathogenicity locus and achieved similar colonization densities in mice. Disease severity varied, however, with 5 isolates causing lethal infections, 16 isolates causing a range of moderate infections and 2 isolates resulting in no detectable disease. The avirulent ST1 isolates did not cause disease in highly susceptible Myd88 -/- or germ-free mice. Genomic analysis of the avirulent isolates revealed a 69 base-pair deletion in the N-terminus of the cdtR gene, which encodes a response regulator for binary toxin (CDT) expression. Genetic deletion of the 69 base-pair cdtR sequence in the highly virulent ST1 R20291 C. difficile strain rendered it avirulent and reduced toxin gene transcription in cecal contents. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile strain without reducing colonization and persistence in the gut. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.
Collapse
Affiliation(s)
- Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Marie-Maude Allen
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julian R. Garneau
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan K. Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Rita C. Smith
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Tracy McMillen
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rosemary L. Pope
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Carolyn Metcalfe
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Victoria Burgo
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Che Woodson
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Nicholas Dylla
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Claire Kohout
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Evan S Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Regulatory Networks Controlling Neurotoxin Synthesis in Clostridium botulinum and Clostridium tetani. Toxins (Basel) 2022; 14:toxins14060364. [PMID: 35737025 PMCID: PMC9229411 DOI: 10.3390/toxins14060364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridium botulinum and Clostridium tetani are Gram-positive, spore-forming, and anaerobic bacteria that produce the most potent neurotoxins, botulinum toxin (BoNT) and tetanus toxin (TeNT), responsible for flaccid and spastic paralysis, respectively. The main habitat of these toxigenic bacteria is the environment (soil, sediments, cadavers, decayed plants, intestinal content of healthy carrier animals). C. botulinum can grow and produce BoNT in food, leading to food-borne botulism, and in some circumstances, C. botulinum can colonize the intestinal tract and induce infant botulism or adult intestinal toxemia botulism. More rarely, C. botulinum colonizes wounds, whereas tetanus is always a result of wound contamination by C. tetani. The synthesis of neurotoxins is strictly regulated by complex regulatory networks. The highest levels of neurotoxins are produced at the end of the exponential growth and in the early stationary growth phase. Both microorganisms, except C. botulinum E, share an alternative sigma factor, BotR and TetR, respectively, the genes of which are located upstream of the neurotoxin genes. These factors are essential for neurotoxin gene expression. C. botulinum and C. tetani share also a two-component system (TCS) that negatively regulates neurotoxin synthesis, but each microorganism uses additional distinct sets of TCSs. Neurotoxin synthesis is interlocked with the general metabolism, and CodY, a master regulator of metabolism in Gram-positive bacteria, is involved in both clostridial species. The environmental and nutritional factors controlling neurotoxin synthesis are still poorly understood. The transition from amino acid to peptide metabolism seems to be an important factor. Moreover, a small non-coding RNA in C. tetani, and quorum-sensing systems in C. botulinum and possibly in C. tetani, also control toxin synthesis. However, both species use also distinct regulatory pathways; this reflects the adaptation of C. botulinum and C. tetani to different ecological niches.
Collapse
|
8
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
9
|
Vidor CJ, Hamiot A, Wisniewski J, Mathias RA, Dupuy B, Awad M, Lyras D. A Highly Specific Holin-Mediated Mechanism Facilitates the Secretion of Lethal Toxin TcsL in Paeniclostridium sordellii. Toxins (Basel) 2022; 14:toxins14020124. [PMID: 35202151 PMCID: PMC8878733 DOI: 10.3390/toxins14020124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Protein secretion is generally mediated by a series of distinct pathways in bacteria. Recently, evidence of a novel bacterial secretion pathway involving a bacteriophage-related protein has emerged. TcdE, a holin-like protein encoded by toxigenic isolates of Clostridioides difficile, mediates the release of the large clostridial glucosylating toxins (LCGTs), TcdA and TcdB, and TpeL from C. perfringens uses another holin-like protein, TpeE, for its secretion; however, it is not yet known if TcdE or TpeE secretion is specific to these proteins. It is also unknown if other members of the LCGT-producing clostridia, including Paeniclostridium sordellii (previously Clostridium sordellii), use a similar toxin-release mechanism. Here, we confirm that each of the LCGT-producing clostridia encode functional holin-like proteins in close proximity to the toxin genes. To characterise the respective roles of these holin-like proteins in the release of the LCGTs, P. sordellii and its lethal toxin, TcsL, were used as a model. Construction and analysis of mutants of the P. sordellii tcsE (holin-like) gene demonstrated that TcsE plays a significant role in TcsL release. Proteomic analysis of the secretome from the tcsE mutant confirmed that TcsE is required for efficient TcsL secretion. Unexpectedly, comparative sample analysis showed that TcsL was the only protein significantly altered in its release, suggesting that this holin-like protein has specifically evolved to function in the release of this important virulence factor. This specificity has, to our knowledge, not been previously shown and suggests that this protein may function as part of a specific mechanism for the release of all LCGTs.
Collapse
Affiliation(s)
- Callum J. Vidor
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Audrey Hamiot
- Laboratoire Pathogenèse des Bactéries Anaérobies, UMR-CNRS 6047, Institut Pasteur, Université de Paris, F-75015 Paris, France; (A.H.); (B.D.)
| | - Jessica Wisniewski
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
| | - Rommel A. Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, UMR-CNRS 6047, Institut Pasteur, Université de Paris, F-75015 Paris, France; (A.H.); (B.D.)
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- Correspondence:
| |
Collapse
|
10
|
Domin A, Spruijt-Metz D, Theisen D, Ouzzahra Y, Vögele C. Smartphone-Based Interventions for Physical Activity Promotion: Scoping Review of the Evidence Over the Last 10 Years. JMIR Mhealth Uhealth 2021; 9:e24308. [PMID: 34287209 PMCID: PMC8339983 DOI: 10.2196/24308] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 04/16/2021] [Indexed: 01/19/2023] Open
Abstract
Background Several reviews of mobile health (mHealth) physical activity (PA) interventions suggest their beneficial effects on behavior change in adolescents and adults. Owing to the ubiquitous presence of smartphones, their use in mHealth PA interventions seems obvious; nevertheless, there are gaps in the literature on the evaluation reporting processes and best practices of such interventions. Objective The primary objective of this review is to analyze the development and evaluation trajectory of smartphone-based mHealth PA interventions and to review systematic theory- and evidence-based practices and methods that are implemented along this trajectory. The secondary objective is to identify the range of evidence (both quantitative and qualitative) available on smartphone-based mHealth PA interventions to provide a comprehensive tabular and narrative review of the available literature in terms of its nature, features, and volume. Methods We conducted a scoping review of qualitative and quantitative studies examining smartphone-based PA interventions published between 2008 and 2018. In line with scoping review guidelines, studies were not rejected based on their research design or quality. This review, therefore, includes experimental and descriptive studies, as well as reviews addressing smartphone-based mHealth interventions aimed at promoting PA in all age groups (with a subanalysis conducted for adolescents). Two groups of studies were additionally included: reviews or content analyses of PA trackers and meta-analyses exploring behavior change techniques and their efficacy. Results Included articles (N=148) were categorized into 10 groups: commercial smartphone app content analyses, smartphone-based intervention review studies, activity tracker content analyses, activity tracker review studies, meta-analyses of PA intervention studies, smartphone-based intervention studies, qualitative formative studies, app development descriptive studies, qualitative follow-up studies, and other related articles. Only 24 articles targeted children or adolescents (age range: 5-19 years). There is no agreed evaluation framework or taxonomy to code or report smartphone-based PA interventions. Researchers did not state the coding method, used various evaluation frameworks, or used different versions of behavior change technique taxonomies. In addition, there is no consensus on the best behavior change theory or model that should be used in smartphone-based interventions for PA promotion. Commonly reported systematic practices and methods have been successfully identified. They include PA recommendations, trial designs (randomized controlled trials, experimental trials, and rapid design trials), mixed methods data collection (surveys, questionnaires, interviews, and focus group discussions), scales to assess app quality, and industry-recognized reporting guidelines. Conclusions Smartphone-based mHealth interventions aimed at promoting PA showed promising results for behavior change. Although there is a plethora of published studies on the adult target group, the number of studies and consequently the evidence base for adolescents is limited. Overall, the efficacy of smartphone-based mHealth PA interventions can be considerably improved through a more systematic approach of developing, reporting, and coding of the interventions.
Collapse
Affiliation(s)
- Alex Domin
- Research Group: Self-Regulation and Health, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Donna Spruijt-Metz
- USC mHealth Collaboratory, Center for Economic and Social Research, University of Southern California, Los Angeles, CA, United States
| | - Daniel Theisen
- ALAN - Maladies Rares Luxembourg, Kockelscheuer, Luxembourg
| | - Yacine Ouzzahra
- Research Support Department, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claus Vögele
- Research Group: Self-Regulation and Health, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
11
|
de Dios R, Santero E, Reyes-Ramírez F. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses. Int J Mol Sci 2021; 22:ijms22083900. [PMID: 33918849 PMCID: PMC8103513 DOI: 10.3390/ijms22083900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity. Here, we have clustered 55 ECF groups with experimentally studied representatives into two broad classes of stress responses. The remaining 102 groups still lack any mechanistic or functional insight, representing a myriad of systems yet to explore. In this work, we review the main features of ECFs and discuss the different mechanisms controlling their production and activity, and how they lead to a functional stress response. Finally, we focus in more detail on two well-characterized ECFs, for which the mechanisms to detect and respond to stress are complex and completely different: Escherichia coli RpoE, which is the best characterized ECF and whose structural and functional studies have provided key insights into the transcription initiation by ECF-RNAP holoenzymes, and the ECF15-type EcfG, the master regulator of the general stress response in Alphaproteobacteria.
Collapse
|
12
|
Tetanus Toxin Synthesis is Under the Control of A Complex Network of Regulatory Genes in Clostridium tetani. Toxins (Basel) 2020; 12:toxins12050328. [PMID: 32429286 PMCID: PMC7290440 DOI: 10.3390/toxins12050328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Clostridium tetani produces a potent neurotoxin, the tetanus toxin (TeNT), which is responsible for an often-fatal neurological disease (tetanus) characterized by spastic paralysis. Prevention is efficiently acquired by vaccination with the TeNT toxoid, which is obtained by C.tetani fermentation and subsequent purification and chemical inactivation. C.tetani synthesizes TeNT in a regulated manner. Indeed, the TeNT gene (tent) is mainly expressed in the late exponential and early stationary growth phases. The gene tetR (tetanus regulatory gene), located immediately upstream of tent, encodes an alternative sigma factor which was previously identified as a positive regulator of tent. In addition, the genome of C.tetani encodes more than 127 putative regulators, including 30 two-component systems (TCSs). Here, we investigated the impact of 12 regulators on TeNT synthesis which were selected based on their homology with related regulatory elements involved in toxin production in other clostridial species. Among nine TCSs tested, three of them impact TeNT production, including two positive regulators that indirectly stimulate tent and tetR transcription. One negative regulator was identified that interacts with both tent and tetR promoters. Two other TCSs showed a moderate effect: one binds to the tent promoter and weakly increases the extracellular TeNT level, and another one has a weak inverse effect. In addition, CodY (control of dciA (decoyinine induced operon) Y) but not Spo0A (sporulation stage 0) or the DNA repair protein Mfd (mutation frequency decline) positively controls TeNT synthesis by interacting with the tent promoter. Moreover, we found that inorganic phosphate and carbonate are among the environmental factors that control TeNT production. Our data show that TeNT synthesis is under the control of a complex network of regulators that are largely distinct from those involved in the control of toxin production in Clostridium botulinum or Clostridium difficile.
Collapse
|
13
|
de Souza Pinto Lemgruber R, Valgepea K, Gonzalez Garcia RA, de Bakker C, Palfreyman RW, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens. Front Microbiol 2019; 10:2549. [PMID: 31803150 PMCID: PMC6873888 DOI: 10.3389/fmicb.2019.02549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Acetogens can fix carbon (CO or CO2) into acetyl-CoA via the Wood-Ljungdahl pathway (WLP) that also makes them attractive cell factories for the production of fuels and chemicals from waste feedstocks. Although most biochemical details of the WLP are well understood and systems-level characterization of acetogen metabolism has recently improved, key transcriptional features such as promoter motifs and transcriptional regulators are still unknown in acetogens. Here, we use differential RNA-sequencing to identify a previously undescribed promoter motif associated with essential genes for autotrophic growth of the model-acetogen Clostridium autoethanogenum. RNA polymerase was shown to bind to the new promoter motif using a DNA-binding protein assay and proteomics enabled the discovery of four candidates to potentially function directly in control of transcription of the WLP and other key genes of C1 fixation metabolism. Next, in vivo experiments showed that a TetR-family transcriptional regulator (CAETHG_0459) and the housekeeping sigma factor (σA) activate expression of a reporter protein (GFP) in-frame with the new promoter motif from a fusion vector in Escherichia coli. Lastly, a protein-protein interaction assay with the RNA polymerase (RNAP) shows that CAETHG_0459 directly binds to the RNAP. Together, the data presented here advance the fundamental understanding of transcriptional regulation of C1 fixation in acetogens and provide a strategy for improving the performance of gas-fermenting bacteria by genetic engineering.
Collapse
Affiliation(s)
| | - Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Christopher de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Robin William Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0034-2018. [PMID: 31111816 PMCID: PMC11257192 DOI: 10.1128/microbiolspec.gpp3-0034-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas D Watts
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Guisado-Fernández E, Giunti G, Mackey LM, Blake C, Caulfield BM. Factors Influencing the Adoption of Smart Health Technologies for People With Dementia and Their Informal Caregivers: Scoping Review and Design Framework. JMIR Aging 2019; 2:e12192. [PMID: 31518262 PMCID: PMC6716546 DOI: 10.2196/12192] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 01/22/2023] Open
Abstract
Background Smart Health technologies (s-Health technologies) are being developed to support people with dementia (PwD) and their informal caregivers at home, to improve care and reduce the levels of burden and stress they experience. However, although s-Health technologies have the potential to facilitate this, the factors influencing a successful implementation in this population are still unknown. Objective The aim of this study was to review existing literature to explore the factors influencing PwD and their informal caregivers’ adoption of s-Health technologies for home care. Methods Following the Arksey and O’Malley methodology, this study is a scoping review providing a narrative description of the scientific literature on factors influencing s-Health technology adoption for PwD and their informal caregivers. A search was conducted using PubMed, the Cochrane library, the IEEE library, and Scopus. Publications screening was conducted by 2 researchers based on inclusion criteria, and full-text analysis was then conducted by 1 researcher. The included articles were thematically analyzed by 2 researchers to gain an insight into factors influencing adoption that PwD and their informal caregivers have to encounter when using s-Health technologies. Relevant information was identified and coded. Codes were later discussed between the researchers for developing and modifying them and for achieving a consensus, and the researchers organized the codes into broader themes. Results Emerging themes were built in a way that said something specific and meaningful about the research question, creating a list of factors influencing the adoption of s-Health technologies for PwD and their informal caregivers, including attitudinal aspects, ethical issues, technology-related challenges, condition-related challenges, and identified gaps. A design framework was created as a guide for future research and innovation in the area of s-Health technologies for PwD and their informal caregivers: DemDesCon for s-Health Technologies. DemDesCon for s-Health Technologies addresses 4 domains to consider for the design and development of s-Health technologies for this population: cognitive decline domain, physical decline domain, social domain, and development domain. Conclusions Although s-Health technologies have been used in health care scenarios, more work is needed for them to fully achieve their potential for use in dementia care. Researchers, businesses, and public governments need to collaborate to design and implement effective technology solutions for PwD and their informal caregivers, but the lack of clear design guidelines seems to be slowing the process. We believe that the DemDesCon framework will provide them with the guidance and assistance needed for creating meaningful devices for PwD home care and informal caregivers, filling a much-needed space in the present knowledge gap.
Collapse
Affiliation(s)
- Estefanía Guisado-Fernández
- University College Dublin School of Public Health, Physiotherapy and Sports Science, Dublin, Ireland.,Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | | | - Laura M Mackey
- University College Dublin School of Public Health, Physiotherapy and Sports Science, Dublin, Ireland
| | - Catherine Blake
- University College Dublin School of Public Health, Physiotherapy and Sports Science, Dublin, Ireland
| | | |
Collapse
|
16
|
Djukovic A, Garcia-Garcera M, Martínez-Paredes E, Isaac S, Artacho A, Martínez J, Ubeda C. Gut colonization by a novel Clostridium species is associated with the onset of epizootic rabbit enteropathy. Vet Res 2018; 49:123. [PMID: 30572930 PMCID: PMC6302431 DOI: 10.1186/s13567-018-0617-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/24/2018] [Indexed: 02/08/2023] Open
Abstract
Epizootic rabbit enteropathy (ERE) represents one of the most devastating diseases affecting rabbit farms. Previous studies showing transmissibility of disease symptoms through oral inoculation of intestinal contents from sick animals suggested a bacterial infectious origin for ERE. However, no etiological agent has been identified yet. On the other hand, ERE is associated with major changes in intestinal microbial communities, pinpointing dysbiosis as an alternative cause for the disease. To better understand the role of intestinal bacteria in ERE development, we have performed a prospective longitudinal study in which intestinal samples collected from the same animals before, during and after disease onset were analyzed using high-throughput sequencing. Changes in hundreds of bacterial groups were detected after the initiation of ERE. In contrast, before ERE onset, the microbiota from rabbits that developed ERE did not differ from those that remained healthy. Notably, an expansion of a single novel Clostridium species (Clostridium cuniculi) was detected the day of ERE onset. C. cuniculi encodes several putative toxins and it is phylogenetically related to the two well-characterized pathogens C. botulinum and C. perfringens. Our results are consistent with a bacterial infectious origin of ERE and discard dysbiosis as the initial trigger of the disease. Although experimental validation is required, results derived from sequencing analysis, propose a key role of C. cuniculi in ERE initiation.
Collapse
Affiliation(s)
- Ana Djukovic
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Avenida de Cataluña, 21, 46020, Valencia, Valencia, Spain
| | - Marc Garcia-Garcera
- Department of Fundamental Microbiology, University of Lausanne, 1006, Lausanne, Switzerland
| | - Eugenio Martínez-Paredes
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, Camino de Vera, s/n., 46022, Valencia, Valencia, Spain
| | - Sandrine Isaac
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Avenida de Cataluña, 21, 46020, Valencia, Valencia, Spain
| | - Alejandro Artacho
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Avenida de Cataluña, 21, 46020, Valencia, Valencia, Spain
| | - Jorge Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Cerdanyola del Vallés, Spain
| | - Carles Ubeda
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública - FISABIO, Avenida de Cataluña, 21, 46020, Valencia, Valencia, Spain. .,CIBER en Epidemiología y Salud Pública, 28029, Madrid, Spain.
| |
Collapse
|
17
|
Zhang BZ, Cai J, Yu B, Hua Y, Lau CC, Kao RYTT, Sze KH, Yuen KY, Huang JD. A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile. BMC Infect Dis 2016; 16:596. [PMID: 27770789 PMCID: PMC5075199 DOI: 10.1186/s12879-016-1924-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/12/2016] [Indexed: 01/04/2023] Open
Abstract
Background Clostridium difficile-associated disease (CDAD) constitutes a great majority of hospital diarrhea cases in industrialized countries and is induced by two types of large toxin molecules: toxin A (TcdA) and toxin B (TcdB). Development of immunotherapeutic approaches, either active or passive, has seen a resurgence in recent years. Studies have described vaccine plasmids that express either TcdA and/or TcdB receptor binding domain (RBD). However, the effectiveness of one vector encoding both toxin RBDs against CDAD has not been evaluated. Methods In the study, we constructed highly optimized plasmids to express the receptor binding domains of both TcdA and TcdB from a single vector. The DNA vaccine was evaluated in two animal models for its immunogenicity and protective effects. Results The DNA vaccine induced high levels of serum antibodies to toxin A and/or B and demonstrated neutralizing activity in both in vitro and in vivo systems. In a C. difficile hamster infection model, immunization with the DNA vaccine reduced infection severity and conferred significant protection against a lethal C. difficile strain. Conclusions This study has demonstrated a single plasmid encoding the RBD domains of C. difficile TcdA and TcdB as a DNA vaccine that could provide protection from C. difficile disease.
Collapse
Affiliation(s)
- Bao-Zhong Zhang
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Jianpiao Cai
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yanhong Hua
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Candy Choiyi Lau
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Richard Yi-Tsun Tsun Kao
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China.
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,HKU-Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China. .,The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
18
|
Martin-Verstraete I, Peltier J, Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins (Basel) 2016; 8:E153. [PMID: 27187475 PMCID: PMC4885068 DOI: 10.3390/toxins8050153] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection.
Collapse
Affiliation(s)
- Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
- UFR Sciences du vivant, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France.
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| |
Collapse
|
19
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
20
|
Miyamoto K, Seike S, Takagishi T, Okui K, Oda M, Takehara M, Nagahama M. Identification of the replication region in pBCNF5603, a bacteriocin-encoding plasmid, in the enterotoxigenic Clostridium perfringens strain F5603. BMC Microbiol 2015; 15:118. [PMID: 26055257 PMCID: PMC4459074 DOI: 10.1186/s12866-015-0443-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
Background Most recent studies of Clostridium perfringens plasmids have focused on toxin-encoding or antibiotic resistance plasmids. To cause intestinal disease, a toxigenic strain must grow in the intestines to levels allowing for sufficient toxin production and this in vivo growth often involves overcoming the normal intestinal microbial population. For this purpose, bacteriocin production might be important. Results In this study, as the first step in the genetic analysis of a co-existing plasmid with an enterotoxin gene (cpe)-encoding plasmid, the bacteriocin gene-encoding plasmid, pBCNF5603, was completely sequenced. This plasmid has some homology with two previously sequenced C. perfringens plasmids, namely, pCP13 carrying a cpb2 gene and pIP404 carrying a bcn gene. Using recombinant plasmids, the rep gene homologous to the PCP63 gene on pCP13 appeared to be functional. Comparative genomics indicated that the identified rep gene homologs were found on two additional toxin plasmids, pCP-OS1 and pCP-TS1. While functional analysis using recombinant plasmids indicated that pBCNF5603 and pCP13 are likely to be incompatible, the plasmid replication and partitioning region of pBCNF5603 alone was insufficient for stable maintenance of this plasmid. Conclusions These findings suggest that pBCNF5603 evolved from recombination events between C. perfringens plasmids and inter-species mobile genetic element(s). In addition, the bcn-encoding plasmid, pBCNF5603, is likely to be included in the Inc family, which includes pCP13 and two variant iota-encoding plasmids. Furthermore, the bcn gene on pBCNF5603 could contribute to gastrointestinal disease induced by enterotoxigenic C. perfringens. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0443-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan.
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan.
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan.
| | - Kensuke Okui
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan.
| | - Masataka Oda
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan.
| | - Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho 180, Tokushima, 770-8514, Japan.
| |
Collapse
|
21
|
Connan C, Popoff MR. Two-component systems and toxinogenesis regulation in Clostridium botulinum. Res Microbiol 2015; 166:332-43. [PMID: 25592073 DOI: 10.1016/j.resmic.2014.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.
Collapse
Affiliation(s)
- Chloé Connan
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France.
| |
Collapse
|
22
|
Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. INFECTION GENETICS AND EVOLUTION 2014; 30:102-113. [PMID: 25489752 DOI: 10.1016/j.meegid.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 11/21/2022]
Abstract
The whole genomes for six botulinum neurotoxin-producing clostridial strains were sequenced to provide references for under-represented toxin types, bivalent strains or unusual toxin complexes associated with a bont gene. The strains include three Clostridium botulinum Group I strains (CDC 297, CDC 1436, and Prevot 594), a Group II C. botulinum strain (Eklund 202F), a Group IV Clostridium argentinense strain (CDC 2741), and a Group V Clostridium baratii strain (Sullivan). Comparisons of the Group I genomic sequences revealed close relationships and conservation of toxin gene locations with previously published Group I C. botulinum genomes. The bont/F6 gene of strain Eklund 202F was determined to be a chimeric toxin gene composed of bont/F1 and bont/F2. The serotype G strain CDC 2741 remained unfinished in 20 contigs with the bont/G located within a 1.15Mb contig, indicating a possible chromosomal location for this toxin gene. Within the genome of C. baratii Sullivan strain, direct repeats of IS1182 insertion sequence (IS) elements were identified flanking the bont/F7 toxin complex that may be the mechanism of bont insertion into C. baratii. Highlights of the six strains are described and release of their genomic sequences will allow further study of unusual neurotoxin-producing clostridial strains.
Collapse
|
23
|
Carter GP, Larcombe S, Li L, Jayawardena D, Awad MM, Songer JG, Lyras D. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms. Int J Med Microbiol 2014; 304:1147-59. [DOI: 10.1016/j.ijmm.2014.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 02/04/2023] Open
|
24
|
Vidor C, Awad M, Lyras D. Antibiotic resistance, virulence factors and genetics of Clostridium sordellii. Res Microbiol 2014; 166:368-74. [PMID: 25290059 DOI: 10.1016/j.resmic.2014.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/25/2014] [Accepted: 09/09/2014] [Indexed: 02/04/2023]
Abstract
Clostridium sordellii is gram positive bacterial pathogen of humans and animals. While the incidence of human-related C. sordellii infection is low, the mortality rate associated with infection is high. Of particular concern are C. sordellii infections after child-birth or medical abortion, which have an almost 100% mortality rate. Recent genetic and epidemiological work has increased our understanding of how this pathogen has evolved and how it causes disease. This review will summarise studies involving the genetics of C. sordellii, including an antibiotic resistance profile, the genetic determinants of virulence and mutagenesis of C. sordellii.
Collapse
Affiliation(s)
- Callum Vidor
- Department of Microbiology, Monash University, Victoria 3800, Australia.
| | - Milena Awad
- Department of Microbiology, Monash University, Victoria 3800, Australia.
| | - Dena Lyras
- Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
25
|
Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:7651-8. [PMID: 25281376 DOI: 10.1128/aem.02838-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status.
Collapse
|
26
|
Dover N, Barash JR, Burke JN, Hill KK, Detter JC, Arnon SS. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters. PLoS One 2014; 9:e97983. [PMID: 24853378 PMCID: PMC4031146 DOI: 10.1371/journal.pone.0097983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/27/2014] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.
Collapse
Affiliation(s)
- Nir Dover
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Jason R. Barash
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Julianne N. Burke
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| | - Karen K. Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Stephen S. Arnon
- Infant Botulism Treatment and Prevention Program, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
27
|
Variations in virulence and molecular biology among emerging strains of Clostridium difficile. Microbiol Mol Biol Rev 2014; 77:567-81. [PMID: 24296572 DOI: 10.1128/mmbr.00017-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming organism which infects and colonizes the large intestine, produces potent toxins, triggers inflammation, and causes significant systemic complications. Treating C. difficile infection (CDI) has always been difficult, because the disease is both caused and resolved by antibiotic treatment. For three and a half decades, C. difficile has presented a treatment challenge to clinicians, and the situation took a turn for the worse about 10 years ago. An increase in epidemic outbreaks related to CDI was first noticed around 2003, and these outbreaks correlated with a sudden increase in the mortality rate of this illness. Further studies discovered that these changes in CDI epidemiology were associated with the rapid emergence of hypervirulent strains of C. difficile, now collectively referred to as NAP1/BI/027 strains. The discovery of new epidemic strains of C. difficile has provided a unique opportunity for retrospective and prospective studies that have sought to understand how these strains have essentially replaced more historical strains as a major cause of CDI. Moreover, detailed studies on the pathogenesis of NAP1/BI/027 strains are leading to new hypotheses on how this emerging strain causes severe disease and is more commonly associated with epidemics. In this review, we provide an overview of CDI, discuss critical mechanisms of C. difficile virulence, and explain how differences in virulence-associated factors between historical and newly emerging strains might explain the hypervirulence exhibited by this pathogen during the past decade.
Collapse
|
28
|
Carter GP, Cheung JK, Larcombe S, Lyras D. Regulation of toxin production in the pathogenic clostridia. Mol Microbiol 2013; 91:221-31. [DOI: 10.1111/mmi.12469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Glen P. Carter
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Jackie K. Cheung
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Sarah Larcombe
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| |
Collapse
|
29
|
Connan C, Denève C, Mazuet C, Popoff MR. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon 2013; 75:90-100. [DOI: 10.1016/j.toxicon.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/25/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
|
30
|
Li T, Tian R, Cai K, Wang Q, Chen F, Fang H, Luo S, Li Z, Wang D, Hou X, Wang H. The Effect of pH on Growth ofClostridium botulinumType A and Expression ofbontAandbotRDuring Different Growth Stages. Foodborne Pathog Dis 2013; 10:692-7. [DOI: 10.1089/fpd.2012.1457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Renmao Tian
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kun Cai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fanghong Chen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huali Fang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Sen Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dehui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaojun Hou
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
31
|
Zhang Z, Korkeala H, Dahlsten E, Sahala E, Heap JT, Minton NP, Lindström M. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502. PLoS Pathog 2013; 9:e1003252. [PMID: 23555260 PMCID: PMC3610760 DOI: 10.1371/journal.ppat.1003252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved −10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike. Botulinum neurotoxin produced by the spore-forming bacterium Clostridium botulinum is the most poisonous biological substance known to mankind. By blocking neurotransmission, the neurotoxin causes a flaccid paralysis called botulism which may to lead to death upon respiratory muscle collapse. Despite its infamy as the scourge of the food industry, the neurotoxin is attracting increasing interest as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin production by C. botulinum appears tightly regulated, to date only positive regulatory elements, thus enhancing the neurotoxin production, have been implicated in this control. The identification of negative regulators, responsible for down-tuning the neurotoxin synthesis, has proven to be elusive, but would offer novel approaches both for the production of safe foods and for the development of therapeutic neurotoxins. Here, we report a two-component signal transduction system that negatively regulates botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Sahala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - John T. Heap
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
32
|
Novel structural elements within the nonproteolytic clostridium botulinum type F toxin gene cluster. Appl Environ Microbiol 2010; 77:1904-6. [PMID: 21183631 DOI: 10.1128/aem.02422-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sequenced for the first time the complete neurotoxin gene cluster of a nonproteolytic Clostridium botulinum type F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to other C. botulinum neurotoxin gene clusters, lacked the regulatory botR gene and contained an intergenic is element between its orfX2 and orfX3 genes.
Collapse
|
33
|
Carter GP, Rood JI, Lyras D. The role of toxin A and toxin B in Clostridium difficile-associated disease: Past and present perspectives. Gut Microbes 2010; 1:58-64. [PMID: 20664812 PMCID: PMC2906822 DOI: 10.4161/gmic.1.1.10768] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recently, we constructed and characterized isogenic tcdA and tcdB mutants of a virulent Clostridium difficile strain and used a hamster model of disease to demonstrate that toxin B, not toxin A, is essential for virulence of this emerging pathogen. Earlier studies had shown that purified toxin A alone was able to induce C. difficile disease pathology and that purified toxin B was not effective unless it was co-administered with toxin A, suggesting that the toxins act synergistically. In this addendum we discuss this paradigm-shifting conclusion in the context of current strain epidemiology, particularly with respect to naturally occurring toxin A-negative, toxin B-positive isolates and the NAP1/027 epidemic isolates. The role of toxin receptors and how variant toxins might exert their effects is also discussed in relation to the published data. We conclude that it is critical to use the natural infection process to dissect the role of toxins in disease, and that future studies are contingent on such work. The impact and importance of animal models of C. difficile virulence are therefore considered within this frame of reference.
Collapse
|
34
|
Viswanathan VK, Mallozzi MJ, Vedantam G. Clostridium difficile infection: An overview of the disease and its pathogenesis, epidemiology and interventions. Gut Microbes 2010; 1:234-242. [PMID: 21327030 PMCID: PMC3023605 DOI: 10.4161/gmic.1.4.12706] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile infection (CDI) is the primary cause of antibiotic-associated diarrhea and is a significant nosocomial disease. In the past ten years, variant toxin-producing strains of C. difficile have emerged, that have been associated with severe disease as well as outbreaks worldwide. This review summarizes current information on C. difficile pathogenesis and disease, and highlights interventions used to combat single and recurrent episodes of CDI.
Collapse
Affiliation(s)
- VK Viswanathan
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - MJ Mallozzi
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA
| | - Gayatri Vedantam
- Department of Veterinary Science and Microbiology; University of Arizona; Tucson, AZ USA,Research Service; Southern Arizona VA Healthcare System; Tucson, AZ USA
| |
Collapse
|
35
|
Antunes A, Dupuy B. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes. Methods Mol Biol 2010; 646:93-115. [PMID: 20597005 DOI: 10.1007/978-1-60327-365-7_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Toxin A (TcdA) and Toxin B (TcdB) are the major virulence factors that contribute to the pathogenesis of Clostridium difficile-associated diarrhoea (CDAD). These enterotoxins act by glucosylation of members of the Rho protein family of small GTP-binding proteins. This leads to the disorganization of the host cell actin cytoskeleton (cytopathic effect) and apoptosis (cytotoxic effect). Due to their glucosyltransferase activity, they are referred as "clostridial glucosylating toxins". The severe form of CDAD has been recently correlated to the levels of toxin production. This reinforces the idea that regulation of toxin production is an important part of the C. difficile infection. Genes encoding TcdA (tcdA) and TcdB (tcdB) are present in a pathogenicity locus (PaLoc) that also includes three accessory genes: tcdR, tcdE and tcdC. TcdR is an alternative RNA polymerase sigma factor that positively regulates toxin gene transcription as well as its own. TcdE has high homologies with bacteriophage holin proteins. TcdC negatively regulates toxin synthesis by interfering with the RNA polymerase formed with TcdR. Therefore, TcdR and TcdC constitute specific regulators of toxin gene transcription thereby tightly regulating toxin synthesis. In addition a variety of environmental signals, such as the presence of carbon sources or amino acids in the growth medium, and temperature also regulate toxin synthesis.
Collapse
Affiliation(s)
- Ana Antunes
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
| | | |
Collapse
|
36
|
Molecular analysis of an extrachromosomal element containing the C2 toxin gene discovered in Clostridium botulinum type C. J Bacteriol 2009; 191:3282-91. [PMID: 19270093 DOI: 10.1128/jb.01797-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum cultures are classified into seven types, types A to G, based on the antigenicity of the neurotoxins produced. Of these seven types, only types C and D produce C2 toxin in addition to the neurotoxin. The C2 toxin consists of two components designated C2I and C2II. The genes encoding the C2 toxin components have been cloned, and it has been stated that they might be on the cell chromosome. The present study confirmed by using pulsed-field gel electrophoresis and subsequent Southern hybridization that these genes are on a large plasmid. The complete nucleotide sequence of this plasmid was determined by using a combination of inverse PCR and primer walking. The sequence was 106,981 bp long and contained 123 potential open reading frames, including the c2I and c2II genes. The 57 products of these open reading frames had sequences similar to those of well-known proteins. It was speculated that 9 these 57 gene products were related to DNA replication, 2 were responsible for the two-component regulatory system, and 3 were sigma factors. In addition, a total of 20 genes encoding proteins related to diverse processes in purine catabolism were found in two regions. In these regions, there were 9 and 11 genes rarely found in plasmids, indicating that this plasmid plays an important role in purine catabolism, as well as in C2 toxin production.
Collapse
|
37
|
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
| |
Collapse
|
38
|
Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes. Appl Environ Microbiol 2008; 74:2778-86. [PMID: 18326685 DOI: 10.1128/aem.02828-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.
Collapse
|
39
|
Matamouros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 2007; 64:1274-88. [PMID: 17542920 DOI: 10.1111/j.1365-2958.2007.05739.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clostridium difficile, an emerging nosocomial pathogen of increasing clinical significance, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The precise mechanisms by which toxin synthesis is regulated in response to environmental change have yet to be discovered. The toxin genes (tcdA and tcdB) are located in a pathogenicity locus (PaLoc), along with tcdR and tcdC. TcdR is an alternative RNA polymerase sigma factor that directly activates toxin gene expression, while the inverse relationship between expression of tcdR, tcdA and tcdB genes on the one hand and tcdC on the other has led to the suggestion that TcdC somehow interferes with toxin gene expression. This idea is further supported by the finding that many recent C. difficile epidemic strains in which toxin production is increased carry a common tcdC deletion mutation. In this report we demonstrate that TcdC negatively regulates toxin synthesis both in vivo and in vitro. TcdC destabilizes the TcdR-containing holoenzyme before open complex formation, apparently by interaction with TcdR or TcdR-containing RNA polymerase holoenzyme or both. In addition, we show that the hypertoxigenicity phenotype of C. difficile epidemic strains is not due to their common 18 bp in-frame deletion in tcdC.
Collapse
Affiliation(s)
- Susana Matamouros
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
40
|
Hadjifrangiskou M, Chen Y, Koehler TM. The alternative sigma factor sigmaH is required for toxin gene expression by Bacillus anthracis. J Bacteriol 2006; 189:1874-83. [PMID: 17189374 PMCID: PMC1855707 DOI: 10.1128/jb.01333-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the structural genes for the anthrax toxin proteins is coordinately controlled by host-related signals, such as elevated CO(2), and the trans-acting positive regulator AtxA. In addition to these requirements, toxin gene expression is under growth phase regulation. The transition state regulator AbrB represses atxA expression to influence toxin synthesis. During the late exponential phase of growth, when AbrB levels begin to decrease, toxin synthesis increases. Here we report that toxin gene expression also requires the presence of sigH, a gene encoding the RNA polymerase sigma factor associated with development in Bacillus subtilis. In the well-studied B. subtilis system, sigma(H) is required for sporulation and other post-exponential-phase processes and is part of a feedback control pathway for abrB expression. Our data indicate that a Bacillus anthracis sigH-null mutant is asporogenous and toxin deficient. Yet the sigma factor is required for toxin gene expression in a manner that is independent of the pathway leading to post-exponential-phase gene expression. Sigma(H) positively controls atxA in an AbrB-independent manner. These findings, combined with previous observations, suggest that the steady-state level of atxA expression is critical for optimal toxin gene transcription. We propose a model whereby, under toxin-inducing growth conditions, control of toxin gene expression is fine-tuned by the independent effects of sigma(H) and AbrB on the expression of atxA.
Collapse
Affiliation(s)
- Maria Hadjifrangiskou
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Health Science Center Medical School, TX 77030, USA
| | | | | |
Collapse
|
41
|
Wade JT, Castro Roa D, Grainger DC, Hurd D, Busby SJW, Struhl K, Nudler E. Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 2006; 13:806-14. [PMID: 16892065 DOI: 10.1038/nsmb1130] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 07/13/2006] [Indexed: 11/08/2022]
Abstract
Bacterial core RNA polymerase (RNAP) must associate with a sigma factor to recognize promoter sequences. Escherichia coli encodes seven sigma factors, each believed to be specific for a largely distinct subset of promoters. Using microarrays representing the entire E. coli genome, we identify 87 in vivo targets of sigma32, the heat-shock sigma factor, and estimate that there are 120-150 sigma32 promoters in total. Unexpectedly, 25% of these sigma32 targets are located within coding regions, suggesting novel regulatory roles for sigma32. The majority of sigma32 promoter targets overlap with those of sigma70, the housekeeping sigma factor. Furthermore, their DNA sequence motifs are often interdigitated, with RNAPsigma70 and RNAPsigma32 initiating transcription in vitro with similar efficiency and from identical positions. SigmaE-regulated promoters also overlap extensively with those for sigma70. These results suggest that extensive functional overlap between sigma factors is an important phenomenon.
Collapse
Affiliation(s)
- Joseph T Wade
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|