1
|
Winterhalter C, Pelliciari S, Stevens D, Fenyk S, Marchand E, Cronin N, Soultanas P, Costa TD, Ilangovan A, Murray H. The DNA replication initiation protein DnaD recognises a specific strand of the Bacillus subtilis chromosome origin. Nucleic Acids Res 2023; 51:4322-4340. [PMID: 37093985 PMCID: PMC10201434 DOI: 10.1093/nar/gkad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Nora B Cronin
- LonCEM, London Consortium for Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Aravindan Ilangovan
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
2
|
Putative Cooperative ATP-DnaA Binding to Double-Stranded DnaA Box and Single-Stranded DnaA-Trio Motif upon Helicobacter pylori Replication Initiation Complex Assembly. Int J Mol Sci 2021; 22:ijms22126643. [PMID: 34205762 PMCID: PMC8235120 DOI: 10.3390/ijms22126643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
oriC is a region of the bacterial chromosome at which the initiator protein DnaA interacts with specific sequences, leading to DNA unwinding and the initiation of chromosome replication. The general architecture of oriCs is universal; however, the structure of oriC and the mode of orisome assembly differ in distantly related bacteria. In this work, we characterized oriC of Helicobacter pylori, which consists of two DnaA box clusters and a DNA unwinding element (DUE); the latter can be subdivided into a GC-rich region, a DnaA-trio and an AT-rich region. We show that the DnaA-trio submodule is crucial for DNA unwinding, possibly because it enables proper DnaA oligomerization on ssDNA. However, we also observed the reverse effect: DNA unwinding, enabling subsequent DnaA-ssDNA oligomer formation-stabilized DnaA binding to box ts1. This suggests the interplay between DnaA binding to ssDNA and dsDNA upon DNA unwinding. Further investigation of the ts1 DnaA box revealed that this box, together with the newly identified c-ATP DnaA box in oriC1, constitute a new class of ATP-DnaA boxes. Indeed, in vitro ATP-DnaA unwinds H. pylori oriC more efficiently than ADP-DnaA. Our results expand the understanding of H. pylori orisome formation, indicating another regulatory pathway of H. pylori orisome assembly.
Collapse
|
3
|
Richardson TT, Stevens D, Pelliciari S, Harran O, Sperlea T, Murray H. Identification of a basal system for unwinding a bacterial chromosome origin. EMBO J 2019; 38:e101649. [PMID: 31267560 PMCID: PMC6669920 DOI: 10.15252/embj.2019101649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/03/2023] Open
Abstract
Genome duplication is essential for cell proliferation, and DNA synthesis is generally initiated by dedicated replication proteins at specific loci termed origins. In bacteria, the master initiator DnaA binds the chromosome origin (oriC) and unwinds the DNA duplex to permit helicase loading. However, despite decades of research it remained unclear how the information encoded within oriC guides DnaA-dependent strand separation. To address this fundamental question, we took a systematic genetic approach in vivo and identified the core set of essential sequence elements within the Bacillus subtilis chromosome origin unwinding region. Using this information, we then show in vitro that the minimal replication origin sequence elements are necessary and sufficient to promote the mechanical functions of DNA duplex unwinding by DnaA. Because the basal DNA unwinding system characterized here appears to be conserved throughout the bacterial domain, this discovery provides a framework for understanding oriC architecture, activity, regulation and diversity.
Collapse
Affiliation(s)
- Tomas T Richardson
- Centre for Bacterial Cell BiologyInstitute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Daniel Stevens
- Centre for Bacterial Cell BiologyInstitute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Simone Pelliciari
- Centre for Bacterial Cell BiologyInstitute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Omar Harran
- Centre for Bacterial Cell BiologyInstitute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Theodor Sperlea
- Chromosome Biology GroupLOEWE Center for Synthetic MicrobiologySYNMIKROPhilipps‐Universität MarburgMarburgGermany
| | - Heath Murray
- Centre for Bacterial Cell BiologyInstitute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
4
|
Matthews LA, Simmons LA. Cryptic protein interactions regulate DNA replication initiation. Mol Microbiol 2018; 111:118-130. [PMID: 30285297 DOI: 10.1111/mmi.14142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
DNA replication is a fundamental biological process that is tightly regulated in all cells. In bacteria, DnaA controls when and where replication begins by building a step-wise complex that loads the replicative helicase onto chromosomal DNA. In many low-GC Gram-positive species, DnaA recruits the DnaD and DnaB proteins to function as adaptors to assist in helicase loading. How DnaA, its adaptors and the helicase form a complex at the origin is unclear. We addressed this question using the bacterial two-hybrid assay to determine how the initiation proteins from Bacillus subtilis interact with each other. We show that cryptic interaction sites play a key role in this process and we map these regions for the entire pathway. In addition, we found that the SirA regulator that blocks initiation in sporulating cells binds to a surface on DnaA that overlaps with DnaD. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this surface. Therefore, our study has unveiled key protein interactions essential for initiation and our approach is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| | - Lyle A Simmons
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| |
Collapse
|
5
|
Jaworski P, Donczew R, Mielke T, Weigel C, Stingl K, Zawilak-Pawlik A. Structure and Function of the Campylobacter jejuni Chromosome Replication Origin. Front Microbiol 2018; 9:1533. [PMID: 30050516 PMCID: PMC6052347 DOI: 10.3389/fmicb.2018.01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 01/23/2023] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of foodborne infections worldwide. However, our understanding of its cell cycle is poor. We identified the probable C. jejuni origin of replication (oriC) - a key element for initiation of chromosome replication, which is also important for chromosome structure, maintenance and dynamics. The herein characterized C. jejuni oriC is monopartite and contains (i) the DnaA box cluster, (ii) the DnaA-dependent DNA unwinding element (DUE) and (iii) binding sites for regulatory proteins. The cluster of five DnaA boxes and the DUE were found in the dnaA-dnaN intergenic region. Binding of DnaA to this cluster of DnaA-boxes enabled unwinding of the DUE in vitro. However, it was not sufficient to sustain replication of minichromosomes, unless the cluster was extended by additional DnaA boxes located in the 3' end of dnaA. This suggests, that C. jejuni oriC requires these boxes to initiate or to regulate replication of its chromosome. However, further detailed mutagenesis is required to confirm the role of these two boxes in initiation of C. jejuni chromosome replication and thus to confirm partial localization of C. jejuni oriC within a coding region, which has not been reported thus far for any bacterial oriC. In vitro DUE unwinding by DnaA was inhibited by Cj1509, an orphan response regulator and a homolog of HP1021, that has been previously shown to inhibit replication in Helicobacter pylori. Thus, Cj1509 might play a similar role as a regulator of C. jejuni chromosome replication. This is the first systematic analysis of chromosome replication initiation in C. jejuni, and we expect that these studies will provide a basis for future research examining the structure and dynamics of the C. jejuni chromosome, which will be crucial for understanding the pathogens' life cycle and virulence.
Collapse
Affiliation(s)
- Pawel Jaworski
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafal Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christoph Weigel
- Department of Life Science Engineering, Fachbereich 2, HTW Berlin, Berlin, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Grimwade JE, Leonard AC. Targeting the Bacterial Orisome in the Search for New Antibiotics. Front Microbiol 2017; 8:2352. [PMID: 29230207 PMCID: PMC5712111 DOI: 10.3389/fmicb.2017.02352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
There is an urgent need for new antibiotics to combat drug resistant bacteria. Existing antibiotics act on only a small number of proteins and pathways in bacterial cells, and it seems logical that expansion of the target set could lead to development of novel antimicrobial agents. One essential process, not yet exploited for antibiotic discovery, is the initiation stage of chromosome replication, mediated by the bacterial orisome. In all bacteria, orisomes assemble when the initiator protein, DnaA, as well as accessory proteins, bind to a DNA scaffold called the origin of replication (oriC). Orisomes perform the essential tasks of unwinding oriC and loading the replicative helicase, and orisome assembly is tightly regulated in the cell cycle to ensure chromosome replication begins only once. Only a few bacterial orisomes have been fully characterized, and while this lack of information complicates identification of all features that could be targeted, examination of assembly stages and orisome regulatory mechanisms may provide direction for some effective inhibitory strategies. In this perspective, we review current knowledge about orisome assembly and regulation, and identify potential targets that, when inhibited pharmacologically, would prevent bacterial chromosome replication.
Collapse
Affiliation(s)
- Julia E Grimwade
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
7
|
Zawilak-Pawlik A, Nowaczyk M, Zakrzewska-Czerwińska J. The Role of the N-Terminal Domains of Bacterial Initiator DnaA in the Assembly and Regulation of the Bacterial Replication Initiation Complex. Genes (Basel) 2017; 8:genes8050136. [PMID: 28489024 PMCID: PMC5448010 DOI: 10.3390/genes8050136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022] Open
Abstract
The primary role of the bacterial protein DnaA is to initiate chromosomal replication. The DnaA protein binds to DNA at the origin of chromosomal replication (oriC) and assembles into a filament that unwinds double-stranded DNA. Through interaction with various other proteins, DnaA also controls the frequency and/or timing of chromosomal replication at the initiation step. Escherichia coli DnaA also recruits DnaB helicase, which is present in unwound single-stranded DNA and in turn recruits other protein machinery for replication. Additionally, DnaA regulates the expression of certain genes in E. coli and a few other species. Acting as a multifunctional factor, DnaA is composed of four domains that have distinct, mutually dependent roles. For example, C-terminal domain IV interacts with double-stranded DnaA boxes. Domain III drives ATP-dependent oligomerization, allowing the protein to form a filament that unwinds DNA and subsequently binds to and stabilizes single-stranded DNA in the initial replication bubble; this domain also interacts with multiple proteins that control oligomerization. Domain II constitutes a flexible linker between C-terminal domains III–IV and N-terminal domain I, which mediates intermolecular interactions between DnaA and binds to other proteins that affect DnaA activity and/or formation of the initiation complex. Of these four domains, the role of the N-terminus (domains I–II) in the assembly of the initiation complex is the least understood and appears to be the most species-dependent region of the protein. Thus, in this review, we focus on the function of the N-terminus of DnaA in orisome formation and the regulation of its activity in the initiation complex in different bacteria.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
| | - Małgorzata Nowaczyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw 53-114, Poland.
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, Wrocław 50-383, Poland.
| |
Collapse
|
8
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
9
|
Jameson KH, Wilkinson AJ. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli. Genes (Basel) 2017; 8:E22. [PMID: 28075389 PMCID: PMC5295017 DOI: 10.3390/genes8010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.
Collapse
Affiliation(s)
- Katie H Jameson
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
10
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
11
|
Abstract
The initiation of chromosomal DNA replication starts at a replication origin, which in bacteria is a discrete locus that contains DNA sequence motifs recognized by an initiator protein whose role is to assemble the replication fork machinery at this site. In bacteria with a single chromosome, DnaA is the initiator and is highly conserved in all bacteria. As an adenine nucleotide binding protein, DnaA bound to ATP is active in the assembly of a DnaA oligomer onto these sites. Other proteins modulate DnaA oligomerization via their interaction with the N-terminal region of DnaA. Following the DnaA-dependent unwinding of an AT-rich region within the replication origin, DnaA then mediates the binding of DnaB, the replicative DNA helicase, in a complex with DnaC to form an intermediate named the prepriming complex. In the formation of this intermediate, the helicase is loaded onto the unwound region within the replication origin. As DnaC bound to DnaB inhibits its activity as a DNA helicase, DnaC must dissociate to activate DnaB. Apparently, the interaction of DnaB with primase (DnaG) and primer formation leads to the release of DnaC from DnaB, which is coordinated with or followed by translocation of DnaB to the junction of the replication fork. There, DnaB is able to coordinate its activity as a DNA helicase with the cellular replicase, DNA polymerase III holoenzyme, which uses the primers made by primase for leading strand DNA synthesis.
Collapse
Affiliation(s)
- S Chodavarapu
- Michigan State University, East Lansing, MI, United States
| | - J M Kaguni
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
12
|
Verma V, Kumar A, Nitharwal RG, Alam J, Mukhopadhyay AK, Dasgupta S, Dhar SK. 'Modulation of the enzymatic activities of replicative helicase (DnaB) by interaction with Hp0897: a possible mechanism for helicase loading in Helicobacter pylori'. Nucleic Acids Res 2016; 44:3288-303. [PMID: 27001508 PMCID: PMC4838378 DOI: 10.1093/nar/gkw148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
DNA replication in Helicobacter pylori is initiated from a unique site (oriC) on its chromosome where several proteins assemble to form a functional replisome. The assembly of H. pylori replication machinery is similar to that of the model gram negative bacterium Escherichia coli except for the absence of DnaC needed to recruit the hexameric DnaB helicase at the replisome assembly site. In the absence of an obvious DnaC homologue in H. pylori, the question arises as to whether HpDnaB helicase is loaded at the Hp-replication origin by itself or is assisted by other unidentified protein(s). A high-throughput yeast two-hybrid study has revealed two proteins of unknown functions (Hp0897 and Hp0340) that interact with HpDnaB. Here we demonstrate that Hp0897 interacts with HpDnaB helicase in vitro as well as in vivo. Furthermore, the interaction stimulates the DNA binding activity of HpDnaB and modulates its adenosine triphosphate hydrolysis and helicase activities significantly. Prior complex formation of Hp0897 and HpDnaB enhances the binding/loading of DnaB onto DNA. Hp0897, along with HpDnaB, colocalizes with replication complex at initiation but does not move with the replisome during elongation. Together, these results suggest a possible role of Hp0897 in loading of HpDnaB at oriC.
Collapse
Affiliation(s)
- Vijay Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ajay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ram Gopal Nitharwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala-75124, Sweden
| | - Jawed Alam
- National Institute of Cholera and Enteric Diseases, Kolkata-700010, India
| | | | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala-75124, Sweden
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
13
|
Do H, Yun JS, Lee CW, Choi YJ, Kim HY, Kim YJ, Park H, Chang JH, Lee JH. Crystal Structure and Comparative Sequence Analysis of GmhA from Colwellia psychrerythraea Strain 34H Provides Insight into Functional Similarity with DiaA. Mol Cells 2015; 38:1086-95. [PMID: 26612680 PMCID: PMC4697000 DOI: 10.14348/molcells.2015.0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/01/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022] Open
Abstract
The psychrophilic organism Colwellia psychrerythraea strain 34H produces extracellular polysaccharide substances to tolerate cold environments. Sedoheptulose 7-phosphate isomerase (GmhA) is essential for producing d-glycero-d-mannoheptose 7-phosphate, a key mediator in the lipopolysaccharide biosynthetic pathway. We determined the crystal structure of GmhA from C. psychrerythraea strain 34H (CpsGmhA, UniProtKB code: Q47VU0) at a resolution of 2.8 Å. The tetrameric structure is similar to that of homologous GmhA structures. Interestingly, one of the catalytic residues, glutamate, which has been reported to be critical for the activity of other homologous GmhA enzymes, is replaced by a glutamine residue in the CpsGmhA protein. We also found differences in the conformations of several other catalytic residues. Extensive structural and sequence analyses reveal that CpsGmhA shows high similarity to Escherichia coli DnaA initiator-associating protein A (DiaA). Therefore, the CpsGmhA structure reported here may provide insight into the structural and functional correlations between GmhA and DiaA among specific microorganisms.
Collapse
Affiliation(s)
- Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840,
Korea
| | - Ji-Sook Yun
- Department of Biology Education, Kyungpook National University, Daegu 702-701,
Korea
| | - Chang Woo Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840,
Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840,
Korea
| | - Young Jun Choi
- Department of Biology Education, Kyungpook National University, Daegu 702-701,
Korea
| | - Hye-Yeon Kim
- Protein Structure Group, Korea Basic Science Institute, Chungbuk 363-883,
Korea
| | - Youn-Jung Kim
- Department of Marine Science, Incheon National University, Incheon 406-772,
Korea
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840,
Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840,
Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 702-701,
Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840,
Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840,
Korea
| |
Collapse
|
14
|
Crystal structure and mode of helicase binding of the C-terminal domain of primase from Helicobacter pylori. J Bacteriol 2013; 195:2826-38. [PMID: 23585534 DOI: 10.1128/jb.00091-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To better understand the poor conservation of the helicase binding domain of primases (DnaGs) among the eubacteria, we determined the crystal structure of the Helicobacter pylori DnaG C-terminal domain (HpDnaG-CTD) at 1.78 Å. The structure has a globular subdomain connected to a helical hairpin. Structural comparison has revealed that globular subdomains, despite the variation in number of helices, have broadly similar arrangements across the species, whereas helical hairpins show different orientations. Further, to study the helicase-primase interaction in H. pylori, a complex was modeled using the HpDnaG-CTD and HpDnaB-NTD (helicase) crystal structures using the Bacillus stearothermophilus BstDnaB-BstDnaG-CTD (helicase-primase) complex structure as a template. By using this model, a nonconserved critical residue Phe534 on helicase binding interface of DnaG-CTD was identified. Mutation guided by molecular dynamics, biophysical, and biochemical studies validated our model. We further concluded that species-specific helicase-primase interactions are influenced by electrostatic surface potentials apart from the critical hydrophobic surface residues.
Collapse
|
15
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
16
|
Stelter M, Gutsche I, Kapp U, Bazin A, Bajic G, Goret G, Jamin M, Timmins J, Terradot L. Architecture of a Dodecameric Bacterial Replicative Helicase. Structure 2012; 20:554-64. [DOI: 10.1016/j.str.2012.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 10/28/2022]
|
17
|
Terradot L, Noirot-Gros MF. Bacterial protein interaction networks: puzzle stones from solved complex structures add to a clearer picture. Integr Biol (Camb) 2011; 3:645-52. [PMID: 21584322 DOI: 10.1039/c0ib00023j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global scale studies of protein-protein interaction (PPI) networks have considerably expanded our view of how proteins act in the cell. In particular, bacterial "interactome" surveys have revealed that proteins can sometimes interact with a large number of protein partners and connect different cellular processes. More targeted, pathway-orientated PPI studies have also helped to propose functions for unknown proteins based on the "guilty by association" principle. However, given the immense repertoire of PPIs generated and the variability of PPI networks, more studies are required to understand the role(s) of these interactions in the cell. With the availability of bioinformatic analysis tools, transcriptomics and co-expression experiments for a given interaction, interactomes are being deciphered. More recently, functional and structural studies have been derived from these PPI networks. In this review, we will give a number of examples of how combining functional and structural studies into PPI networks has contributed to understanding the functions of some of these interactions. We discuss how interactomes now represent a unique opportunity to determine the structures of bacterial protein complexes on a large scale by the integration of multiple technologies.
Collapse
Affiliation(s)
- Laurent Terradot
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS Université de Lyon, IFR128, Biologie Structurale des Complexes Macromoléculaires Bactériens, 7 Passage du Vercors, F-69367, Lyon Cedex 07, France.
| | | |
Collapse
|
18
|
Zawilak-Pawlik A, Donczew R, Szafrański S, Mackiewicz P, Terradot L, Zakrzewska-Czerwińska J. DiaA/HobA and DnaA: a pair of proteins co-evolved to cooperate during bacterial orisome assembly. J Mol Biol 2011; 408:238-51. [PMID: 21354425 DOI: 10.1016/j.jmb.2011.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/08/2011] [Accepted: 02/17/2011] [Indexed: 11/26/2022]
Abstract
Replication of the bacterial chromosome is initiated by binding the DnaA protein to oriC. Various factors control the ability of DnaA to bind and unwind DNA. Among them, Escherichia coli DiaA and Helicobacter pylori HobA have been characterized recently. They were found to interact with domain I of DnaA and stimulate DnaA binding to oriC. We examined HobA and DiaA functional homology and showed that, despite a high degree of structural similarity, they are not interchangeable because they are unable to interact with heterologous DnaA proteins. We revealed particular structural differences impeding formation of heterologous complexes and, consistently, we restored DiaA-enhanced oriC binding by the hybrid Ec(I)-Hp(II-IV)DnaA protein; i.e. H. pylori DnaA in which domain I was exchanged with that of E. coli. This proved that DiaA and HobA are functional homologs and upon binding to DnaA they exert a similar effect on orisome formation. Interestingly, we showed for the first time that the dynamics of DiaA- and HobA-stimulated orisome assembly are different. HobA enhances and accelerates HpDnaA binding to oriC, whereas DiaA increases but decelerates EcDnaA binding with oriC. We postulate that the different dynamics of orisome formation reflect the distinct strategies adopted by E. coli and H. pylori to regulate the frequency of the replication of their chromosomes. DiaA/HobA homolog have been identified in many proteobacteria and therefore might constitute a common, though species-specific, factor modulating bacterial orisome assembly.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | | | | | | | | | | |
Collapse
|
19
|
The sporulation protein SirA inhibits the binding of DnaA to the origin of replication by contacting a patch of clustered amino acids. J Bacteriol 2011; 193:1302-7. [PMID: 21239581 DOI: 10.1128/jb.01390-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria regulate the frequency and timing of DNA replication initiation by controlling the activity of the replication initiator protein DnaA. SirA is a recently discovered regulator of DnaA in Bacillus subtilis whose synthesis is turned on at the start of sporulation. Here, we demonstrate that SirA contacts DnaA at a patch of 3 residues located on the surface of domain I of the replication initiator protein, corresponding to the binding site used by two unrelated regulators of DnaA found in other bacteria. We show that the interaction of SirA with domain I inhibits the ability of DnaA to bind to the origin of replication. DnaA mutants containing amino acid substitutions of the 3 residues are functional in replication initiation but are immune to inhibition by SirA.
Collapse
|
20
|
Nitharwal RG, Verma V, Dasgupta S, Dhar SK. Helicobacter pylori chromosomal DNA replication: current status and future perspectives. FEBS Lett 2010; 585:7-17. [PMID: 21093441 DOI: 10.1016/j.febslet.2010.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/03/2010] [Accepted: 11/12/2010] [Indexed: 11/30/2022]
Abstract
Helicobacter pylori causes gastritis, gastric ulcer and gastric cancer. Though DNA replication and its control are central to bacterial proliferation, pathogenesis, virulence and/or dormancy, our knowledge of DNA synthesis in slow growing pathogenic bacteria like H. pylori is still preliminary. Here, we review the current understanding of DNA replication, replication restart and recombinational repair in H. pylori. Several differences have been identified between the H. pylori and Escherichia coli replication machineries including the absence of DnaC, the helicase loader usually conserved in gram-negative bacteria. These differences suggest different mechanisms of DNA replication at initiation and restart of stalled forks in H. pylori.
Collapse
Affiliation(s)
- Ram Gopal Nitharwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
21
|
Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 2010; 8:163-70. [PMID: 20157337 DOI: 10.1038/nrmicro2314] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromosomal replication must be limited to once and only once per cell cycle. This is accomplished by multiple regulatory pathways that govern initiator proteins and replication origins. A principal feature of DNA replication is the coupling of the replication reaction to negative-feedback regulation. Some of the factors that are important in this process have been discovered, including the clamp (DNA polymerase III subunit-beta (DnaN)), the datA locus, SeqA, DnaA homologue protein (Hda) and YabA, as well as factors that are involved at other stages of the regulatory mechanism, such as DnaA initiator-associating protein (DiaA), the DnaA-reactivating sequence (DARS) loci and Soj. Here, we describe the regulation of DnaA, one of the central proteins involved in bacterial DNA replication, by these factors in Escherichia coli, Bacillus subtilis and Caulobacter crescentus.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
22
|
Terradot L, Zawilak-Pawlik A. Structural insight into Helicobacter pylori DNA replication initiation. Gut Microbes 2010; 1:330-334. [PMID: 21327042 PMCID: PMC3023618 DOI: 10.4161/gmic.1.5.13115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 02/03/2023] Open
Abstract
While increasing knowledge is accumulating about the molecular mechanisms allowing the human pathogen Helicobacter pylori to survive and to subvert host defenses, much less is known about fundamental aspects of its biology, including DNA replication. We have studied the initiation step of chromosome replication of H. pylori and particularly the interaction between the initiator protein DnaA and its recently identified regulator HobA. This work has recently culminated in the determination of the crystal structure of the domains I and II of DnaA (DnaA(I-II)) in complex with HobA. By combining the structure with a variety of biochemical experiments we show that a tetramer of HobA can accommodate up to four DnaA molecules organized in a particular conformation within the complex. Mutations of the HobA interface that impaired the binding with DnaA were designed and proved to be lethal once introduced into H. pylori. These features suggest that HobA provides a molecular scaffold onto which regular oligomers of DnaA can assemble. The HobA-promoted oligomerization of DnaA could have a determinant role in the formation of the open complex. We propose a speculative model of HobA-dependent DnaA oligomerization leading to DNA unwinding. More generally, the parallel we draw with Escherichia coli DnaA and DiaA (HobA-like E. coli protein) will direct new studies that will contribute to the understanding of bacterial DNA replication.
Collapse
Affiliation(s)
- Laurent Terradot
- Macromolecular Crystallography Group ESRF; Grenoble Cedex, France,Institut de Biologie et Chimie des Protéines; UMR 5086 CNRS Université de Lyon; IFR128; Biologie Structurale des Complexes Macromoléculaires Bactériens; Lyon, France
| | - Anna Zawilak-Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Microbiology Department; Wroclaw, Poland
| |
Collapse
|
23
|
The structure of a DnaA/HobA complex from Helicobacter pylori provides insight into regulation of DNA replication in bacteria. Proc Natl Acad Sci U S A 2009; 106:21115-20. [PMID: 19940251 DOI: 10.1073/pnas.0908966106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial DNA replication requires DnaA, an AAA+ ATPase that initiates replication at a specific chromosome region, oriC, and is regulated by species-specific regulators that directly bind DnaA. HobA is a DnaA binding protein, recently identified as an essential regulator of DNA replication in Helicobacter pylori. We report the crystal structure of HobA in complex with domains I and II of DnaA (DnaA(I-II)) from H. pylori, the first structure of DnaA bound to one of its regulators. Biochemical characterization of the complex formed shows that a tetramer of HobA binds four DnaA(I-II) molecules, and that DnaA(I-II) is unable to oligomerize by itself. Mutagenesis and protein-protein interaction studies demonstrate that some of the residues located at the HobA-DnaA(I-II) interface in the structure are necessary for complex formation. Introduction of selected mutations into H. pylori shows that the disruption of the interaction between HobA and DnaA is lethal for the bacteria. Remarkably, the DnaA binding site of HobA is conserved in DiaA from Escherichia coli, suggesting that the structure of the HobA/DnaA complex represents a model for DnaA regulation in other Gram-negative bacteria. Our data, together with those from other studies, indicate that HobA could play a crucial scaffolding role during the initiation of replication in H. pylori by organizing the first step of DnaA oligomerization and attachment to oriC.
Collapse
|
24
|
Duckworth MJ, Okoli AS, Mendz GL. Novel Helicobacter pylori therapeutic targets: the unusual suspects. Expert Rev Anti Infect Ther 2009; 7:835-67. [PMID: 19735225 DOI: 10.1586/eri.09.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the current status of the discovery and development of anti-Helicobacter therapies requires an overview of the searches for therapeutic targets performed to date. A summary is given of the very substantial body of work conducted in the quest to find Helicobacter pylori genes that could be suitable candidates for therapeutic intervention. The products of most of these genes perform metabolic functions, and others have roles in growth, cell motility and colonization. The genes identified as potential targets have been organized into three categories according to their degree of characterization. A short description and evaluation is provided of the main candidates in each category. Investigations of potential therapeutic targets have generated a wealth of information about the physiology and genetics of H. pylori, and its interactions with the host, but have yielded little by way of new therapies.
Collapse
Affiliation(s)
- Megan J Duckworth
- School of Medicine, Sydney, The University of Notre Dame Australia, 160 Oxford Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
25
|
Keyamura K, Abe Y, Higashi M, Ueda T, Katayama T. DiaA dynamics are coupled with changes in initial origin complexes leading to helicase loading. J Biol Chem 2009; 284:25038-50. [PMID: 19632993 DOI: 10.1074/jbc.m109.002717] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosomal replication initiation requires the regulated formation of dynamic higher order complexes. Escherichia coli ATP-DnaA forms a specific multimer on oriC, resulting in DNA unwinding and DnaB helicase loading. DiaA, a DnaA-binding protein, directly stimulates the formation of ATP-DnaA multimers on oriC and ensures timely replication initiation. In this study, DnaA Phe-46 was identified as the crucial DiaA-binding site required for DiaA-stimulated ATP-DnaA assembly on oriC. Moreover, we show that DiaA stimulation requires only a subgroup of DnaA molecules binding to oriC, that DnaA Phe-46 is also important in the loading of DnaB helicase onto the oriC-DnaA complexes, and that this process also requires only a subgroup of DnaA molecules. Despite the use of only a DnaA subgroup, DiaA inhibited DnaB loading on oriC-DnaA complexes, suggesting that DiaA and DnaB bind to a common DnaA subgroup. A cellular factor can relieve the DiaA inhibition, allowing DnaB loading. Consistently, DnaA F46A caused retarded initiations in vivo in a DiaA-independent manner. It is therefore likely that DiaA dynamics are crucial in the regulated sequential progress of DnaA assembly and DnaB loading. We accordingly propose a model for dynamic structural changes of initial oriC complexes loading DiaA or DnaB helicase.
Collapse
Affiliation(s)
- Kenji Keyamura
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
26
|
Ozaki S, Katayama T. DnaA structure, function, and dynamics in the initiation at the chromosomal origin. Plasmid 2009; 62:71-82. [PMID: 19527752 DOI: 10.1016/j.plasmid.2009.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/06/2009] [Accepted: 06/08/2009] [Indexed: 01/13/2023]
Abstract
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
27
|
Sharma A, Nitharwal RG, Singh B, Dar A, Dasgupta S, Dhar SK. Helicobacter pylori single-stranded DNA binding protein--functional characterization and modulation of H. pylori DnaB helicase activity. FEBS J 2008; 276:519-31. [PMID: 19087193 DOI: 10.1111/j.1742-4658.2008.06799.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori, an important bacterial pathogen, causes gastric ulcer and gastric adenocarcinoma in humans. The fundamentals of basic biology such as DNA replication are poorly understood in this pathogen. In the present study, we report the cloning and functional characterization of the single-stranded DNA (ssDNA) binding protein from H. pylori. The N-terminal DNA binding domain shows significant homology with E. coli single-stranded DNA binding protein (SSB), whereas the C-terminal domain shows less homology. The overall DNA-binding activity and tetramerization properties, however, remain unaffected. In in vitro experiments with purified proteins, H. pylori (Hp) SSB bound specifically to ssDNA and modulated the enzymatic ATPase and helicase activity of HpDnaB helicase. HpSSB and HpDnaB proteins were co-localized in sharp, distinct foci in exponentially growing H. pylori cells, whereas both were spread over large areas in its dormant coccoid form, suggesting the absence of active replication forks in the latter. These results confirm the multiple roles of SSB during DNA replication and provide evidence for altered replicative metabolism in the spiral and coccoid forms that may be central to the bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Atul Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
28
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|