1
|
Bulvas O, Knejzlík Z, Sýs J, Filimoněnko A, Čížková M, Clarová K, Rejman D, Kouba T, Pichová I. Deciphering the allosteric regulation of mycobacterial inosine-5'-monophosphate dehydrogenase. Nat Commun 2024; 15:6673. [PMID: 39107302 PMCID: PMC11303537 DOI: 10.1038/s41467-024-50933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.
Collapse
Affiliation(s)
- Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Sýs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anatolij Filimoněnko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Čížková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kamila Clarová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Jiang S, Lin Y, Zheng S. Development of the IMP biosensor for rapid and stable analysis of IMP concentrations in fermentation broth. Biotechnol J 2024; 19:e2400040. [PMID: 38863123 DOI: 10.1002/biot.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
IMP (inosinic acid) is a crucial intermediate in the purine metabolic pathway and is continuously synthesized in all cells. Besides its role as a precursor for DNA and RNA, IMP also plays a critical or essential role in cell growth, energy storage, conversion, and metabolism. In our study, we utilized the circularly permuted fluorescent protein (cpFP) and IMP dehydrogenase to screen and develop the IMP biosensor, IMPCP1. By introducing a mutation in the catalytically active site of IMPCP1, from Cys to Ala, we disrupted its ability to catalyze IMP while retaining its capability to bind to IMP without affecting the IMP concentration in the sample. To immobilize IMPCP1, we employed the SpyCatcher/SpyTag system and securely attached it to Magarose-Epoxy, resulting in the development of the IMP rapid test kit, referred to as IMPTK. The biosensor integrated into IMPTK offers enhanced stability, resistance to degradation activity, and specific recognition of IMP. It is also resistant to peroxides and temperature changes. IMPTK serves as a rapid and stable assay for analyzing IMP concentrations in fermentation broth. Within the linear range of IMP concentrations, it can be utilized as a substitute for HPLC. The IMPTK biosensor provides a reliable and efficient alternative for monitoring IMP levels, offering advantages such as speed, stability, and resistance to environmental factors.
Collapse
Affiliation(s)
- Shibo Jiang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P.R. China
| |
Collapse
|
3
|
Shen W, Downs DM. Tetrahydrofolate levels influence 2-aminoacrylate stress in Salmonella enterica. J Bacteriol 2024; 206:e0004224. [PMID: 38563759 PMCID: PMC11025330 DOI: 10.1128/jb.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
In Salmonella enterica, the absence of the RidA deaminase results in the accumulation of the reactive enamine 2-aminoacrylate (2AA). The resulting 2AA stress impacts metabolism and prevents growth in some conditions by inactivating a specific target pyridoxal 5'-phosphate (PLP)-dependent enzyme(s). The detrimental effects of 2AA stress can be overcome by changing the sensitivity of a critical target enzyme or modifying flux in one or more nodes in the metabolic network. The catabolic L-alanine racemase DadX is a target of 2AA, which explains the inability of an alr ridA strain to use L-alanine as the sole nitrogen source. Spontaneous mutations that suppressed the growth defect of the alr ridA strain were identified as lesions in folE, which encodes GTP cyclohydrolase and catalyzes the first step of tetrahydrofolate (THF) synthesis. The data here show that THF limitation resulting from a folE lesion, or inhibition of dihydrofolate reductase (FolA) by trimethoprim, decreases the 2AA generated from endogenous serine. The data are consistent with an increased level of threonine, resulting from low folate levels, decreasing 2AA stress.IMPORTANCERidA is an enamine deaminase that has been characterized as preventing the 2-aminoacrylate (2AA) stress. In the absence of RidA, 2AA accumulates and damages various cellular enzymes. Much of the work describing the 2AA stress system has depended on the exogenous addition of serine to increase the production of the enamine stressor. The work herein focuses on understanding the effect of 2AA stress generated from endogenous serine pools. As such, this work describes the consequences of a subtle level of stress that nonetheless compromises growth in at least two conditions. Describing mechanisms that alter the physiological consequences of 2AA stress increases our understanding of endogenous metabolic stress and how the robustness of the metabolic network allows perturbations to be modulated.
Collapse
Affiliation(s)
- Wangchen Shen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
5
|
Hernández-Gómez A, Irisarri I, Fernández-Justel D, Peláez R, Jiménez A, Revuelta JL, Balsera M, Buey RM. GuaB3, an overlooked enzyme in cyanobacteria's toolbox that sheds light on IMP dehydrogenase evolution. Structure 2023; 31:1526-1534.e4. [PMID: 37875114 DOI: 10.1016/j.str.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
IMP dehydrogenase and GMP reductase are enzymes from the same protein family with analogous structures and catalytic mechanisms that have gained attention because of their essential roles in nucleotide metabolism and as potential drug targets. This study focusses on GuaB3, a less-explored enzyme within this family. Phylogenetic analysis uncovers GuaB3's independent evolution from other members of the family and it predominantly occurs in Cyanobacteria. Within this group, GuaB3 functions as a unique IMP dehydrogenase, while its counterpart in Actinobacteria has a yet unknown function. Synechocystis sp. PCC6803 GuaB3 structures demonstrate differences in the active site compared to canonical IMP dehydrogenases, despite shared catalytic mechanisms. These findings highlight the essential role of GuaB3 in Cyanobacteria, provide insights into the diversity and evolution of the IMP dehydrogenase protein family, and reveal a distinctive characteristic in nucleotide metabolism, potentially aiding in combating harmful cyanobacterial blooms-a growing concern for humans and wildlife.
Collapse
Affiliation(s)
- Alejandro Hernández-Gómez
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - David Fernández-Justel
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Dpto. Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mónica Balsera
- Department Abiotic Stress, Instituto de Recursos Naturales y Agrobiología (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Gedeon A, Ayoub N, Brûlé S, Raynal B, Karimova G, Gelin M, Mechaly A, Haouz A, Labesse G, Munier‐Lehmann H. Insight into the role of the Bateman domain at the molecular and physiological levels through engineered IMP dehydrogenases. Protein Sci 2023; 32:e4703. [PMID: 37338125 PMCID: PMC10357500 DOI: 10.1002/pro.4703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) is an ubiquitous enzyme that catalyzes the NAD+ -dependent oxidation of inosine 5'-monophosphate into xanthosine 5'-monophosphate. This enzyme is formed of two distinct domains, a core domain where the catalytic reaction occurs, and a less-conserved Bateman domain. Our previous studies gave rise to the classification of bacterial IMPDHs into two classes, according to their oligomeric and kinetic properties. MgATP is a common effector but cause to different effects when it binds within the Bateman domain: it is either an allosteric activator for Class I IMPDHs or a modulator of the oligomeric state for Class II IMPDHs. To get insight into the role of the Bateman domain in the dissimilar properties of the two classes, deleted variants of the Bateman domain and chimeras issued from the interchange of the Bateman domain between the three selected IMPDHs have been generated and characterized using an integrative structural biology approach. Biochemical, biophysical, structural, and physiological studies of these variants unveil the Bateman domain as being the carrier of the molecular behaviors of both classes.
Collapse
Affiliation(s)
- Antoine Gedeon
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Unité de Microbiologie Structurale, CNRS UMR3525ParisFrance
| | - Nour Ayoub
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Plate‐Forme de Criblage Chémogénomique et Biologique, CNRS UMR3523ParisFrance
| | - Sébastien Brûlé
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Biophysique Moléculaire, C2RT, CNRS UMR3528ParisFrance
| | - Bertrand Raynal
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Biophysique Moléculaire, C2RT, CNRS UMR3528ParisFrance
| | - Gouzel Karimova
- Institut Pasteur, Université Paris Cité, Unité de Biochimie des Interactions Macromoléculaires, CNRS UMR3528ParisFrance
| | - Muriel Gelin
- Centre de Biologie StructuraleUniversité Montpellier, INSERM, CNRSMontpellierFrance
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Cristallographie, C2RT, CNRS UMR3528ParisFrance
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Cristallographie, C2RT, CNRS UMR3528ParisFrance
| | - Gilles Labesse
- Centre de Biologie StructuraleUniversité Montpellier, INSERM, CNRSMontpellierFrance
| | - Hélène Munier‐Lehmann
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Plate‐Forme de Criblage Chémogénomique et Biologique, CNRS UMR3523ParisFrance
| |
Collapse
|
7
|
Knejzlík Z, Doležal M, Herkommerová K, Clarova K, Klíma M, Dedola M, Zborníková E, Rejman D, Pichová I. The mycobacterial guaB1 gene encodes a guanosine 5'-monophosphate reductase with a cystathionine-β-synthase domain. FEBS J 2022; 289:5571-5598. [PMID: 35338694 PMCID: PMC9790621 DOI: 10.1111/febs.16448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
Mycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis. This study shows that guaB1, annotated in databases as a putative IMPDH, encodes a guanosine 5'-monophosphate reductase (GMPR), which recycles guanosine monophosphate to inosine monophosphate within the purine-salvage pathway and contains a cystathionine-β-synthase domain (CBS), which is essential for enzyme activity. GMPR activity is allosterically regulated by the ATP/GTP ratio in a pH-dependent manner. Bioinformatic analysis has indicated the presence of GMPRs containing CBS domains across the entire Actinobacteria phylum.
Collapse
Affiliation(s)
- Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Michal Doležal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Herkommerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Kamila Clarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Matteo Dedola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Eva Zborníková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
8
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
9
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Modi G, Marqus GM, Vippila MR, Gollapalli DR, Kim Y, Manna AC, Chacko S, Maltseva N, Wang X, Cullinane RT, Zhang Y, Kotler JLM, Kuzmic P, Zhang M, Lawson AP, Joachimiak A, Cheung A, Snider BB, Rothstein DM, Cuny GD, Hedstrom L. The Enzymatic Activity of Inosine 5'-Monophosphate Dehydrogenase May Not Be a Vulnerable Target for Staphylococcus aureus Infections. ACS Infect Dis 2021; 7:3062-3076. [PMID: 34590817 DOI: 10.1021/acsinfecdis.1c00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many bacterial pathogens, including Staphylococcus aureus, require inosine 5'-monophosphate dehydrogenase (IMPDH) for infection, making this enzyme a promising new target for antibiotics. Although potent selective inhibitors of bacterial IMPDHs have been reported, relatively few have displayed antibacterial activity. Here we use structure-informed design to obtain inhibitors of S. aureus IMPDH (SaIMPDH) that have potent antibacterial activity (minimal inhibitory concentrations less than 2 μM) and low cytotoxicity in mammalian cells. The physicochemical properties of the most active compounds were within typical Lipinski/Veber space, suggesting that polarity is not a general requirement for achieving antibacterial activity. Five compounds failed to display activity in mouse models of septicemia and abscess infection. Inhibitor-resistant S. aureus strains readily emerged in vitro. Resistance resulted from substitutions in the cofactor/inhibitor binding site of SaIMPDH, confirming on-target antibacterial activity. These mutations decreased the binding of all inhibitors tested, but also decreased catalytic activity. Nonetheless, the resistant strains had comparable virulence to wild-type bacteria. Surprisingly, strains expressing catalytically inactive SaIMPDH displayed only a mild virulence defect. Collectively these observations question the vulnerability of the enzymatic activity of SaIMPDH as a target for the treatment of S. aureus infections, suggesting other functions of this protein may be responsible for its role in infection.
Collapse
Affiliation(s)
- Gyan Modi
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Gary M. Marqus
- Graduate Program in Chemistry, Brandeis University, Waltham Massachusetts 02453, United States
| | - Mohana Rao Vippila
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health Building 2, 4849 Calhoun Rd., Houston, Texas 77204, United States
| | | | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60667, United States
- The Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Adhar C. Manna
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Shibin Chacko
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60667, United States
- The Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xingyou Wang
- Graduate Program in Chemistry, Brandeis University, Waltham Massachusetts 02453, United States
| | - Ryan T. Cullinane
- Department of Biochemistry, Brandeis University, Massachusetts 02453, United States
| | - Yubo Zhang
- Department of Biochemistry, Brandeis University, Massachusetts 02453, United States
| | - Judy L. M. Kotler
- Graduate Program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Petr Kuzmic
- BioKin Ltd., Watertown, Massachusetts 02472, United States
| | - Minjia Zhang
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Ann P. Lawson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60667, United States
- The Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60367, United States
| | - Ambrose Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Barry B. Snider
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - David M. Rothstein
- David Rothstein Consulting, LLC, Lexington, Massachusetts 02421, United States
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health Building 2, 4849 Calhoun Rd., Houston, Texas 77204, United States
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
11
|
Jaiswal D, Wangikar PP. Dynamic Inventory of Intermediate Metabolites of Cyanobacteria in a Diurnal Cycle. iScience 2020; 23:101704. [PMID: 33196027 PMCID: PMC7644974 DOI: 10.1016/j.isci.2020.101704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are gaining importance both as hosts for photoautotrophic production of chemicals and as model systems for studies of diurnal lifestyle. The proteome and transcriptome of cyanobacteria have been closely examined under diurnal growth, whereas the downstream effects on the intermediary metabolism have not received sufficient attention. The present study focuses on identifying the cellular metabolites whose inventories undergo dramatic changes in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. We identified and quantified 67 polar metabolites, whose inventory changes significantly during diurnal growth, with some metabolites changing by 100-fold. The Calvin-Benson-Bassham cycle intermediates peak at midday to support fast growth. The hitherto unexplored γ-glutamyl peptides act as reservoirs of amino acids. Interestingly, several storage molecules or their precursors accumulate during the dark phase, dispelling the notion that all biosynthetic activity takes place in the light phase. Our results will guide metabolic modeling and strain engineering of cyanobacteria. We identify and quantify 67 polar intermediate metabolites in cyanobacteria via LC-MS A number of metabolites show large variations during the diurnal cycle Intermediates of the CBB cycle peak at midday, coinciding with peak in growth rate Gamma-glutamyl dipeptides identified as new storage compounds that peak at dawn
Collapse
Affiliation(s)
- Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
12
|
Wang B, Grant RA, Laub MT. ppGpp Coordinates Nucleotide and Amino-Acid Synthesis in E. coli During Starvation. Mol Cell 2020; 80:29-42.e10. [PMID: 32857952 DOI: 10.1016/j.molcel.2020.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.
Collapse
Affiliation(s)
- Boyuan Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Calise SJ, Chan EKL. Anti-rods/rings autoantibody and IMPDH filaments: an update after fifteen years of discovery. Autoimmun Rev 2020; 19:102643. [PMID: 32805424 DOI: 10.1016/j.autrev.2020.102643] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Autoantibodies to unknown subcellular rod and ring-shaped structures were first discovered in sera from hepatitis C patients in 2005. Early studies showed a strong association between these anti-rods/rings antibodies (anti-RR) and the standard of care interferon-α plus ribavirin combination therapy (IFN/RBV), suggesting that anti-RR are drug-induced autoantibodies. In the context of hepatitis C, anti-RR have been linked with relapse from or lack of response to IFN/RBV in some patient cohorts. However, examples of anti-RR in other diseases and healthy individuals have also been reported over the years, although anti-RR remains a rare autoantibody response in general. The advent of new direct-acting antiviral drugs for chronic hepatitis C and studies of anti-RR from different parts of the world are also beginning to change the perception of anti-RR. The nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) has been identified as the major autoantigen recognized by anti-RR. Coincidentally, the assembly of IMPDH into micron-scale rod and ring-shaped structures was discovered around the same time as anti-RR. Knowledge of the fundamental biological properties and cellular functions of these structures, referred to as "IMPDH filaments" by cell biologists, has advanced in parallel to anti-RR antibodies. Recent studies have revealed that IMPDH filament assembly is a mechanism to prevent feedback inhibition of IMPDH and is therefore important for the increased nucleotide production required in hyperproliferating cells, like activated T cells. Fifteen years later, we review the history and current knowledge in both the anti-RR autoantibody and IMPDH filament fields. TAKE-HOME MESSAGE: Anti-rods/rings are recognized as an example of a drug-induced autoantibody in hepatitis C patients treated with interferon and ribavirin, although new studies suggest anti-rods/rings may be detected in other contexts and may depend on unknown environmental or genetic factors in different populations. Recent data suggest that the assembly of IMPDH into rod and ring structures, the targets of anti-rods/rings autoantibody, is a mechanism for hyperproliferating cells, like activated T cells, to maintain increased guanine nucleotide levels to support rapid cell division.
Collapse
Affiliation(s)
- S John Calise
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610-0424, USA.
| |
Collapse
|
14
|
Nan J, Zhang S, Zhan P, Jiang L. Evaluation of Bronopol and Disulfiram as Potential Candidatus Liberibacter asiaticus Inosine 5'-Monophosphate Dehydrogenase Inhibitors by Using Molecular Docking and Enzyme Kinetic. Molecules 2020; 25:E2313. [PMID: 32423116 PMCID: PMC7287799 DOI: 10.3390/molecules25102313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Citrus huanglongbing (HLB) is a destructive disease that causes significant damage to many citrus producing areas worldwide. To date, no strategy against this disease has been established. Inosine 5'-monophosphate dehydrogenase (IMPDH) plays crucial roles in the de novo synthesis of guanine nucleotides. This enzyme is used as a potential target to treat bacterial infection. In this study, the crystal structure of a deletion mutant of CLas IMPDHΔ98-201 in the apo form was determined. Eight known bioactive compounds were used as ligands for molecular docking. The results showed that bronopol and disulfiram bound to CLas IMPDHΔ98-201 with high affinity. These compounds were tested for their inhibition against CLas IMPDHΔ98-201 activity. Bronopol and disulfiram showed high inhibition at nanomolar concentrations, and bronopol was found to be the most potent molecule (Ki = 234 nM). The Ki value of disulfiram was 616 nM. These results suggest that bronopol and disulfiram can be considered potential candidate agents for the development of CLas inhibitors.
Collapse
Affiliation(s)
- Jing Nan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ping Zhan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Ling Jiang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| |
Collapse
|
15
|
Osaka N, Kanesaki Y, Watanabe M, Watanabe S, Chibazakura T, Takada H, Yoshikawa H, Asai K. Novel (p)ppGpp 0 suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis in Bacillus subtilis. Mol Microbiol 2020; 113:1155-1169. [PMID: 32052499 DOI: 10.1111/mmi.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.
Collapse
Affiliation(s)
- Natsuki Osaka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Megumi Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
16
|
Yang L, Ru Y, Cai X, Yin Z, Liu X, Xiao Y, Zhang H, Zheng X, Wang P, Zhang Z. MoImd4 mediates crosstalk between MoPdeH-cAMP signalling and purine metabolism to govern growth and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:500-518. [PMID: 30426699 PMCID: PMC6422694 DOI: 10.1111/mpp.12770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we identified MoImd4 as an inosine-5'-monophosphate dehydrogenase (IMPDH) homologue that interacts with MoPdeH. Targeted deletion of MoIMD4 resulted in reduced de novo purine biosynthesis and growth, as well as attenuated pathogenicity, which were suppressed by exogenous xanthosine monophosphate (XMP). Treatment with mycophenolic acid (MPA), which specifically inhibits MoImd4 activity, resulted in reduced growth and virulence attenuation. Intriguingly, further analysis showed that MoImd4 promotes the phosphodiesterase activity of MoPdeH, thereby decreasing intracellular cAMP levels, and MoPdeH also promotes the IMPDH activity of MoImd4. Our studies revealed the presence of a novel crosstalk between cAMP regulation and purine biosynthesis in M. oryzae, and indicated that such a link is also important in the pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Lina Yang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xingjia Cai
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yuhan Xiao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
17
|
He Q, Tang QY, Sun YF, Zhou M, Gärtner W, Zhao KH. Chromophorylation of cyanobacteriochrome Slr1393 from Synechocystis sp. PCC 6803 is regulated by protein Slr2111 through allosteric interaction. J Biol Chem 2018; 293:17705-17715. [PMID: 30242127 DOI: 10.1074/jbc.ra118.003830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/13/2018] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteriochromes (CBCRs) are photochromic proteins in cyanobacteria that act as photosensors. CBCRs bind bilins as chromophores and sense nearly the entire visible spectrum of light, but the regulation of the chromophorylation of CBCRs is unknown. Slr1393 from Synechocystis sp. PCC 6803 is a CBCR containing three consecutive GAF (cGMP phosphodiesterase, adenylyl cyclase, and FhlA protein) domains, of which only the third one (Slr1393g3) can be phycocyanobilin-chromophorylated. The protein Slr2111 from Synechocystis sp. PCC 6803 includes a cystathionine β-synthase (CBS) domain pair of an as yet unknown function at its N terminus. CBS domains are often characterized as sensors of cellular energy status by binding nucleotides. In this work, we demonstrate that Slr2111 strongly interacts with Slr1393 in vivo and in vitro, which generates a complex in a 1:1 molar ratio. This tight interaction inhibits the chromophorylation of Slr1393g3, even if the chromophore is present. Instead, the complex stability and thereby the chromophorylation of Slr1393 are regulated by the binding of nucleotides (ATP, ADP, AMP) to the CBS domains of Slr2111 with varying affinities. It is demonstrated that residues Asp-53 and Arg-97 of Slr2111 are involved in nucleotide binding. While ATP binds to Slr2111, the association between the two proteins gets weaker and chromophorylation of Slr1393 are enabled. In contrast, AMP binding to Slr2111 leads to a stronger association, thereby inhibiting the chromophorylation. It is concluded that Slr2111 acts as a sensor of the cellular energy status that regulates the chromophorylation of Slr1393 and thereby its function as a light-driven histidine kinase.
Collapse
Affiliation(s)
- Qi He
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qi-Ying Tang
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ya-Fang Sun
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming Zhou
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Kai-Hong Zhao
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
18
|
Keppeke GD, Chang CC, Peng M, Chen LY, Lin WC, Pai LM, Andrade LEC, Sung LY, Liu JL. IMP/GTP balance modulates cytoophidium assembly and IMPDH activity. Cell Div 2018; 13:5. [PMID: 29946345 PMCID: PMC6004095 DOI: 10.1186/s13008-018-0038-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in de novo GTP biosynthesis, plays an important role in cell metabolism and proliferation. It has been demonstrated that IMPDH can aggregate into a macrostructure, termed the cytoophidium, in mammalian cells under a variety of conditions. However, the regulation and function of the cytoophidium are still elusive. Results In this study, we report that spontaneous filamentation of IMPDH is correlated with rapid cell proliferation. Intracellular IMP accumulation promoted cytoophidium assembly, whereas elevated GTP level triggered disassociation of aggregates. By using IMPDH2 CBS domain mutant cell models, which are unable to form the cytoophidium, we have determined that the cytoophidium is of the utmost importance for maintaining the GTP pool and normal cell proliferation in the condition that higher IMPDH activity is required. Conclusions Together, our results suggest a novel mechanism whereby cytoophidium assembly upregulates IMPDH activity and mediates guanine nucleotide homeostasis. Electronic supplementary material The online version of this article (10.1186/s13008-018-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Chia Chun Chang
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Min Peng
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Li-Yu Chen
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK
| | - Wei-Cheng Lin
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Li-Mei Pai
- 3Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,4Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC.,5Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan, 333 Taiwan, ROC
| | - Luis Eduardo Coelho Andrade
- 6Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP 04023-062 Brazil
| | - Li-Ying Sung
- 2Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC.,7Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan, ROC
| | - Ji-Long Liu
- 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT UK.,8School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
19
|
Chacko S, Boshoff HIM, Singh V, Ferraris DM, Gollapalli DR, Zhang M, Lawson AP, Pepi MJ, Joachimiak A, Rizzi M, Mizrahi V, Cuny GD, Hedstrom L. Expanding Benzoxazole-Based Inosine 5'-Monophosphate Dehydrogenase (IMPDH) Inhibitor Structure-Activity As Potential Antituberculosis Agents. J Med Chem 2018; 61:4739-4756. [PMID: 29746130 DOI: 10.1021/acs.jmedchem.7b01839] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New drugs and molecular targets are urgently needed to address the emergence and spread of drug-resistant tuberculosis. Mycobacterium tuberculosis ( Mtb) inosine 5'-monophosphate dehydrogenase 2 ( MtbIMPDH2) is a promising yet controversial potential target. The inhibition of MtbIMPDH2 blocks the biosynthesis of guanine nucleotides, but high concentrations of guanine can potentially rescue the bacteria. Herein we describe an expansion of the structure-activity relationship (SAR) for the benzoxazole series of MtbIMPDH2 inhibitors and demonstrate that minimum inhibitory concentrations (MIC) of ≤1 μM can be achieved. The antibacterial activity of the most promising compound, 17b (Q151), is derived from the inhibition of MtbIMPDH2 as demonstrated by conditional knockdown and resistant strains. Importantly, guanine does not change the MIC of 17b, alleviating the concern that guanine salvage can protect Mtb in vivo. These findings suggest that MtbIMPDH2 is a vulnerable target for tuberculosis.
Collapse
Affiliation(s)
| | - Helena I M Boshoff
- Tuberculosis Research Section , National Institute of Allergy and Infectious Diseases , Bethesda , Maryland 20892 , United States
| | - Vinayak Singh
- Department of Drug Discovery and Development & Institute of Infectious Disease and Molecular Medicine , H3D Drug Discovery and Development Centre, University of Cape Town , Rondebosch , Cape Town 7701 , South Africa
| | - Davide M Ferraris
- Dipartimento di Scienze del Farmaco , Universitá del Piemonte Orientale , Via Bovio 6 , 28100 Novara , Italy
| | | | | | | | | | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Biology , University of Chicago , Chicago , Illinois 60557 , United States.,Structural Biology Center, Biosciences , Argonne National Laboratory , 9700 S. Cass Avenue, Argonne , Illinois 60439 , United States
| | - Menico Rizzi
- Dipartimento di Scienze del Farmaco , Universitá del Piemonte Orientale , Via Bovio 6 , 28100 Novara , Italy
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology , University of Cape Town , Anzio Road , Observatory 7925 , South Africa
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy , University of Houston , Health Building 2, 4849 Calhoun Road , Houston , Texas 77204 , United States
| | | |
Collapse
|
20
|
Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep 2018; 8:2520. [PMID: 29410524 PMCID: PMC5802734 DOI: 10.1038/s41598-018-20738-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/29/2022] Open
Abstract
While fatty acids are known to be toxic to dermatophytes, key physiological aspects of the Trichophyton rubrum response to undecanoic acid (UDA), a medium chain saturated fatty acid (C11:0), are not well understood. Thus, we analysed RNA-seq data from T. rubrum exposed to sub-lethal doses of UDA for 3 and 12 h. Three putative pathways were primarily involved in UDA detoxification: lipid metabolism and cellular membrane composition, oxidative stress, and pathogenesis. Biochemical assays showed cell membrane impairment, reductions in ergosterol content, and an increase in keratinolytic activity following UDA exposure. Moreover, we assessed differential exon usage and intron retention following UDA exposure. A key enzyme supplying guanine nucleotides to cells, inosine monophosphate dehydrogenase (IMPDH), showed high levels of intron 2 retention. Additionally, phosphoglucomutase (PGM), which is involved in the glycogen synthesis and degradation as well as cell wall biosynthesis, exhibited a significant difference in exon 4 usage following UDA exposure. Owing to the roles of these enzymes in fungal cells, both have emerged as promising antifungal targets. We showed that intron 2 retention in impdh and exon 4 skipping in pgm might be related to an adaptive strategy to combat fatty acid toxicity. Thus, the general effect of UDA fungal toxicity involves changes to fungal metabolism and mechanisms for regulating pre-mRNA processing events.
Collapse
|
21
|
Pua KH, Stiles DT, Sowa ME, Verdine GL. IMPDH2 Is an Intracellular Target of the Cyclophilin A and Sanglifehrin A Complex. Cell Rep 2017; 18:432-442. [PMID: 28076787 DOI: 10.1016/j.celrep.2016.12.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 12/10/2016] [Indexed: 11/16/2022] Open
Abstract
Natural products have demonstrated utility in the clinic and can also act as probes to understand complex cellular pathways. Sanglifehrin A (SFA) is a mixed polyketide and non-ribosomal peptide synthase natural product with sub-nano-molar affinity for its receptor cyclophilin A (PPIA). It has been shown to behave in vitro as an immune suppressant. Here, we identify inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) as an intracellular target of the PPIA-SFA binary complex. The formation of this ternary complex does not inhibit the enzymatic activity of IMPDH2. Rather, ternary complex formation modulates cell growth through interaction with the cystathionine-β-synthase (CBS) domain of IMPDH2. We further demonstrate that the SFA complex is highly isoform selective for IMPDH2 (versus IMPDH1). This work reveals a role for the CBS domains of IMPDH2 in cellular proliferation, suggesting a more complex role than previously suspected for IMPDH2 in T cell activation and proliferation.
Collapse
Affiliation(s)
- Khian Hong Pua
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA
| | - Dylan T Stiles
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA
| | - Mathew E Sowa
- Warp Drive Bio, Cambridge, MA 02139, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory L Verdine
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Warp Drive Bio, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Zhu M, Fan W, Cha Y, Yang X, Lai Z, Li S, Wang X. Dynamic cell responses in Thermoanaerobacterium sp. under hyperosmotic stress. Sci Rep 2017; 7:10088. [PMID: 28855699 PMCID: PMC5577258 DOI: 10.1038/s41598-017-10514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
As a nongenetic engineering technique, adaptive evolution is an effective and easy-to-operate approach to strain improvement. In this work, a commercial Thermoanaerobacterium aotearoense SCUT27/Δldh-G58 was successfully isolated via sequential batch fermentation with step-increased carbon concentrations. Mutants were isolated under selective high osmotic pressures for 58 passages. The evolved isolate rapidly catabolized sugars at high concentrations and subsequently produced ethanol with good yield. A 1.6-fold improvement of ethanol production was achieved in a medium containing 120 g/L of carbon substrate using the evolved strain, compared to the start strain. The analysis of transcriptome and intracellular solute pools suggested that the adaptive evolution altered the synthesis of some compatible solutes and activated the DNA repair system in the two Thermoanaerobacterium sp. evolved strains. Overall, the results indicated the potential of adaptive evolution as a simple and effective tool for the modification and optimization of industrial microorganisms.
Collapse
Affiliation(s)
- Muzi Zhu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wudi Fan
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Cha
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaofeng Yang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhicheng Lai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Xiaoning Wang
- State Key Laboratory of Kidney, the Institute of Life Sciences, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Anthony SA, Burrell AL, Johnson MC, Duong-Ly KC, Kuo YM, Simonet JC, Michener P, Andrews A, Kollman JM, Peterson JR. Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Mol Biol Cell 2017; 28:mbc.E17-04-0263. [PMID: 28794265 PMCID: PMC5620369 DOI: 10.1091/mbc.e17-04-0263] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas GTP promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and non-assembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.
Collapse
Affiliation(s)
- Sajitha A Anthony
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Matthew C Johnson
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Krisna C Duong-Ly
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yin-Ming Kuo
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jacqueline C Simonet
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Peter Michener
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102
| | - Andrew Andrews
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195
| | - Jeffrey R Peterson
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
24
|
Despotović D, Brandis A, Savidor A, Levin Y, Fumagalli L, Tawfik DS. Diadenosine tetraphosphate (Ap4A) - an E. coli alarmone or a damage metabolite? FEBS J 2017; 284:2194-2215. [PMID: 28516732 DOI: 10.1111/febs.14113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
Under stress, metabolism is changing: specific up- or down-regulation of proteins and metabolites occurs as well as side effects. Distinguishing specific stress-signaling metabolites (alarmones) from side products (damage metabolites) is not trivial. One example is diadenosine tetraphosphate (Ap4A) - a side product of aminoacyl-tRNA synthetases found in all domains of life. The earliest observations suggested that Ap4A serves as an alarmone for heat stress in Escherichia coli. However, despite 50 years of research, the signaling mechanisms associated with Ap4A remain unknown. We defined a set of criteria for distinguishing alarmones from damage metabolites to systematically classify Ap4A. In a nutshell, no indications for a signaling cascade that is triggered by Ap4A were found; rather, we found that Ap4A is efficiently removed in a constitutive, nonregulated manner. Several fold perturbations in Ap4A concentrations have no effect, yet accumulation at very high levels is toxic due to disturbance of zinc homeostasis, and also because Ap4A's structural overlap with ATP can result in spurious binding and inactivation of ATP-binding proteins. Overall, Ap4A met all criteria for a damage metabolite. While we do not exclude any role in signaling, our results indicate that the damage metabolite option should be considered as the null hypothesis when examining Ap4A and other metabolites whose levels change upon stress.
Collapse
Affiliation(s)
- Dragana Despotović
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Sci Rep 2017; 7:2648. [PMID: 28572600 PMCID: PMC5454003 DOI: 10.1038/s41598-017-02805-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) is an essential enzyme for nucleotide metabolism and cell proliferation. Despite IMPDH is the target of drugs with antiviral, immunosuppressive and antitumor activities, its physiological mechanisms of regulation remain largely unknown. Using the enzyme from the industrial fungus Ashbya gossypii, we demonstrate that the binding of adenine and guanine nucleotides to the canonical nucleotide binding sites of the regulatory Bateman domain induces different enzyme conformations with significantly distinct catalytic activities. Thereby, the comparison of their high-resolution structures defines the mechanistic and structural details of a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity of eukaryotic IMPDHs. Remarkably, retinopathy-associated mutations lie within the mechanical hinges of the conformational change, highlighting its physiological relevance. Our results expand the mechanistic repertoire of Bateman domains and pave the road to new approaches targeting IMPDHs.
Collapse
|
26
|
Abstract
The convergence of competitive fitness experiments and phenotypic screening would seem to be an auspicious beginning for validation of an antibacterial target. IMPDH was already identified an essential protein in Mycobacterium tuberculosis when not one, but two, groups discovered inhibitors with promising antitubercular activity. A new target appeared to be born. Surprisingly, the two groups came to completely different conclusions about the vulnerability of IMPDH and its future as a drug target. This viewpoint discusses these papers and how to resolve this conundrum.
Collapse
Affiliation(s)
- Lizbeth Hedstrom
- Departments of Biology and
Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453-9110, United States
| |
Collapse
|
27
|
Turab Naqvi AA, Rahman S, Rubi, Zeya F, Kumar K, Choudhary H, Jamal MS, Kim J, Hassan MI. Genome analysis of Chlamydia trachomatis for functional characterization of hypothetical proteins to discover novel drug targets. Int J Biol Macromol 2016; 96:234-240. [PMID: 27993657 DOI: 10.1016/j.ijbiomac.2016.12.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/28/2023]
Abstract
C. trachomatis is a Gram-negative bacterium that causes trachoma and sexually transmitted disease (STD) Chlamydia in humans. Chlamydial genital infections are the most frequent among all communicable diseases. The D/UW-3/Cx strain of C. trachomatis contains 935 genes and three pseudogenes. Out of these genes, 887 genes code for proteins while six for rRNA, 37 tRNA, and three genes translate into other RNAs. The proteome of C. trachomatis made of 887 proteins contains 269 Hypothetical proteins (HPs) that are subjected to functional characterization. This study suggests some known methods of functional characterization of such HPs. All of these methods are explicitly used to assign functions to the HPs with the accuracy of more than 90%. After extensive analysis of all the HPs, we have successfully assigned functions to 89 HPs with high precision. In the newly assigned HPs, there are enzymes, transporters, binding proteins, proteins involved in biosynthesis and regulatory processes and proteins with miscellaneous functions. The study suggests that the functionally annotated HPs may play a vital role in the growth and pathogenesis of this organism. Therefore, they can be considered potential drug targets.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Rubi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Firdaus Zeya
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Kundan Kumar
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Hani Choudhary
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box: 80216, Jeddah 21589, Saudi Arabia
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea.
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
28
|
Smith S, Boitz J, Chidambaram ES, Chatterjee A, Ait-Tihyaty M, Ullman B, Jardim A. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels. Mol Microbiol 2016; 100:824-40. [PMID: 26853689 DOI: 10.1111/mmi.13352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2016] [Indexed: 01/24/2023]
Abstract
The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.
Collapse
Affiliation(s)
- Sabrina Smith
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ehzilan Subramanian Chidambaram
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Abhishek Chatterjee
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Maria Ait-Tihyaty
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
29
|
Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun 2015; 6:8923. [PMID: 26558346 PMCID: PMC4660370 DOI: 10.1038/ncomms9923] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022] Open
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. IMP dehydrogenase (IMPDH) plays essential roles in purine metabolism and cell proliferation. Here Buey et al. describe a guanine nucleotides regulated molecular mechanism for allosteric communication between the regulatory and catalytic domains of IMPDH.
Collapse
|
30
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
31
|
Labesse G, Alexandre T, Gelin M, Haouz A, Munier-Lehmann H. Crystallographic studies of two variants ofPseudomonas aeruginosaIMPDH with impaired allosteric regulation. ACTA ACUST UNITED AC 2015; 71:1890-9. [DOI: 10.1107/s1399004715013115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Inosine-5′-monophosphate dehydrogenases (IMPDHs), which are the rate-limiting enzymes in guanosine-nucleotide biosynthesis, are important therapeutic targets. Despite in-depth functional and structural characterizations of various IMPDHs, the role of the Bateman domain containing two CBS motifs remains controversial. Their involvement in the allosteric regulation ofPseudomonas aeruginosaIMPDH by Mg-ATP has recently been reported. To better understand the function of IMPDH and the importance of the CBS motifs, the structure of a variant devoid of these modules (ΔCBS) was solved at high resolution in the apo form and in complex with IMP. In addition, a single amino-acid substitution variant, D199N, was also structurally characterized: the mutation corresponds to the autosomal dominant mutant D226N of human IMPDH1, which is responsible for the onset of the retinopathy adRP10. These new structures shed light onto the possible mechanism of regulation of the IMPDH enzymatic activity. In particular, three conserved loops seem to be key players in this regulation as they connect the tetramer–tetramer interface with the active site and show significant modification upon substrate binding.
Collapse
|
32
|
Buey RM, Ledesma-Amaro R, Balsera M, de Pereda JM, Revuelta JL. Increased riboflavin production by manipulation of inosine 5'-monophosphate dehydrogenase in Ashbya gossypii. Appl Microbiol Biotechnol 2015; 99:9577-89. [PMID: 26150243 DOI: 10.1007/s00253-015-6710-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
Guanine nucleotides are the precursors of essential biomolecules including nucleic acids and vitamins such as riboflavin. The enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the ratelimiting step in the guanine nucleotide de novo biosynthetic pathway and plays a key role in controlling the cellular nucleotide pools. Thus, IMPDH is an important metabolic bottleneck in the guanine nucleotide synthesis, susceptible of manipulation by means of metabolic engineering approaches. Herein, we report the functional and structural characterization of the IMPDH enzyme from the industrial fungus Ashbya gossypii. Our data show that the overexpression of the IMPDH gene increases the metabolic flux through the guanine pathway and ultimately enhances 40 % riboflavin production with respect to the wild type. Also, IMPDH disruption results in a 100-fold increase of inosine excretion to the culture media. Our results contribute to the developing metabolic engineering toolbox aiming at improving the production of metabolites with biotechnological interest in A. gossypii.
Collapse
Affiliation(s)
- Rubén M Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | | | - Mónica Balsera
- Department Abiotic Stress, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - José María de Pereda
- Instituto de Biología Celular y Molecular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
33
|
Alexandre T, Rayna B, Munier-Lehmann H. Two classes of bacterial IMPDHs according to their quaternary structures and catalytic properties. PLoS One 2015; 10:e0116578. [PMID: 25706619 PMCID: PMC4338043 DOI: 10.1371/journal.pone.0116578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/10/2014] [Indexed: 11/19/2022] Open
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) occupies a key position in purine nucleotide metabolism. In this study, we have performed the biochemical and physico-chemical characterization of eight bacterial IMPDHs, among which six were totally unexplored. This study led to a classification of bacterial IMPDHs according to the regulation of their catalytic properties and their quaternary structures. Class I IMPDHs are cooperative enzymes for IMP, which are activated by MgATP and are octameric in all tested conditions. On the other hand, class II IMPDHs behave as Michaelis-Menten enzymes for both substrates and are tetramers in their apo state or in the presence of IMP, which are shifted to octamers in the presence of NAD or MgATP. Our work provides new insights into the IMPDH functional regulation and a model for the quaternary structure modulation is proposed.
Collapse
Affiliation(s)
- Thomas Alexandre
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Bertrand Rayna
- Institut Pasteur, Proteopole, Plateforme de biophysique des macromolecules et de leurs interactions, 25 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3528, F-75015, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
| |
Collapse
|
34
|
Makowska-Grzyska M, Kim Y, Maltseva N, Osipiuk J, Gu M, Zhang M, Mandapati K, Gollapalli DR, Gorla SK, Hedstrom L, Joachimiak A. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity. J Biol Chem 2015; 290:5893-911. [PMID: 25572472 PMCID: PMC4342496 DOI: 10.1074/jbc.m114.619767] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- From the Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Youngchang Kim
- From the Center for Structural Genomics of Infectious Diseases, the Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, and Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Natalia Maltseva
- From the Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Jerzy Osipiuk
- From the Center for Structural Genomics of Infectious Diseases, the Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, and Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Minyi Gu
- From the Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60637
| | | | | | | | | | - Lizbeth Hedstrom
- the Departments of Biology and Chemistry, Brandeis University, Waltham, Massachusetts 024549110
| | - Andrzej Joachimiak
- From the Center for Structural Genomics of Infectious Diseases, the Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, and Computational Institute, University of Chicago, Chicago, Illinois 60637,
| |
Collapse
|
35
|
Simultaneous quantification of IMPDH activity and purine bases in lymphocytes using LC-MS/MS: assessment of biomarker responses to mycophenolic acid. Ther Drug Monit 2014; 36:108-18. [PMID: 24061448 DOI: 10.1097/ftd.0b013e3182a13900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The development of biomarkers describing the individual responses to the immunosuppressant mycophenolic acid (MPA) has focused on the target enzyme activity [inosine 5'-monophosphate dehydrogenase (IMPDH)]. An extended strategy is to quantify the metabolic consequences of IMPDH inhibition. The aim of this study was to develop an assay for quantification of IMPDH activity and related purine bases and to provide preliminary data on the behavior of these biomarkers during clinical exposure to MPA. METHODS Liquid chromatography-mass spectrometry was used to determine xanthine (IMPDH activity in incubated cell lysate), hypoxanthine, guanine, and adenine derived from free nucleotides in lymphocytes. Analytical performance was assessed, and the biomarkers were examined in CD4⁺ cells from 2 groups: Healthy individuals in a single-dose MPA study (n = 5) and liver transplant recipients on MPA therapy (n = 15). RESULTS Coefficients of variation between series were below 10% and 15% for measurement of the purines and IMPDH activity, respectively. Although IMPDH was inhibited, the purine levels increased in response to MPA in 3 of the 5 healthy individuals, and this positive response seemed to be associated with IMPDH1 c.579 + 119 G/G and c.580 - 106 G/G. In the liver transplant study, guanine was not reduced in response to the transient drop in IMPDH activity after MPA dosing. However, there were trends toward decrease in guanine and elevation of hypoxanthine during prolonged MPA therapy. The guanine/hypoxanthine ratio (median) was 37% lower and the adenine level was 21% lower at day 17 compared with day 4 after transplantation. CONCLUSIONS The assay allows precise quantification of IMPDH activity, hypoxanthine, guanine, and adenine in lymphocytes. Some individuals may possess a counteracting purine response to the MPA-mediated inhibition of IMPDH. Reduction of the guanine/hypoxanthine ratio may be related to prolonged inhibition of IMPDH and seems as an intriguing pharmacodynamic biomarker for MPA.
Collapse
|
36
|
Wang J, He K, Xu Q, Chen N. Mutagenetic study of a novel inosine monophosphate dehydrogenase from Bacillus amyloliquefaciens and its possible application in guanosine production. BIOTECHNOL BIOTEC EQ 2014; 28:102-106. [PMID: 26019494 PMCID: PMC4434139 DOI: 10.1080/13102818.2014.901686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In this study, the amino acid sequence of inosine monophosphate dehydrogenase (IMPDH) from a guanosine-overproducing strain Bacillus amyloliquefaciens TA208 was found to be highly conserved comparing to its analogue in B. amyloliquefaciens FZB42, only with two substitutions of serine 166 to proline and glutamic acid 481 to lysine. To speculate on the effects of these variation sites, two reverse site-directed mutants P166S and K481E, as well as one deletion mutant IMPDHΔCBS, were characterised. According to the kinetic analysis of these enzymes, site-481 is a key mutation site to affect the nicotinamide adenine dinucleotide (NAD+) affinity, which accounted for the higher catalytic efficiency of IMPDH. On the contrary, mutants P166S and IMPDHΔCBS did not show better catalytic activity compared to normal IMPDH. Moreover, the overexpression of IMPDH-encoding gene guaB in B. amyloliquefaciens TA208 could improve the total production of guanosine up to 13.5 g L-1, which was 20.02% higher than that of the original strain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Bioengineering, Jilin University , Changchun , P.R. China
| | - Kuifu He
- Department of Bioengineering, Tianjin University of Science & Technology , Tianjin , P.R. China
| | - Qingyang Xu
- Department of Bioengineering, Tianjin University of Science & Technology , Tianjin , P.R. China
| | - Ning Chen
- Department of Bioengineering, Tianjin University of Science & Technology , Tianjin , P.R. China
| |
Collapse
|
37
|
Carcamo WC, Calise SJ, von Mühlen CA, Satoh M, Chan EKL. Molecular cell biology and immunobiology of mammalian rod/ring structures. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:35-74. [PMID: 24411169 DOI: 10.1016/b978-0-12-800097-7.00002-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleotide biosynthesis is a highly regulated process necessary for cell growth and replication. Cytoplasmic structures in mammalian cells, provisionally described as rods and rings (RR), were identified by human autoantibodies and recently shown to include two key enzymes of the CTP/GTP biosynthetic pathways, cytidine triphosphate synthetase (CTPS) and inosine monophosphate dehydrogenase (IMPDH). Several studies have described CTPS filaments in mammalian cells, Drosophila, yeast, and bacteria. Other studies have identified IMPDH filaments in mammalian cells. Similarities among these studies point to a common evolutionarily conserved cytoplasmic structure composed of a subset of nucleotide biosynthetic enzymes. These structures appear to be a conserved metabolic response to decreased intracellular GTP and/or CTP pools. Antibodies to RR were found to develop in some hepatitis C patients treated with interferon-α and ribavirin. Additionally, the presence of anti-RR antibodies was correlated with poor treatment outcome.
Collapse
Affiliation(s)
- Wendy C Carcamo
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - S John Calise
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | | | - Minoru Satoh
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, Florida, USA; Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
38
|
MgATP regulates allostery and fiber formation in IMPDHs. Structure 2013; 21:975-85. [PMID: 23643948 DOI: 10.1016/j.str.2013.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/22/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in nucleotide biosynthesis studied as an important therapeutic target and its complex functioning in vivo is still puzzling and debated. Here, we highlight the structural basis for the regulation of IMPDHs by MgATP. Our results demonstrate the essential role of the CBS tandem, conserved among almost all IMPDHs. We found that Pseudomonas aeruginosa IMPDH is an octameric enzyme allosterically regulated by MgATP and showed that this octameric organization is widely conserved in the crystal structures of other IMPDHs. We also demonstrated that human IMPDH1 adopts two types of complementary octamers that can pile up into isolated fibers in the presence of MgATP. The aggregation of such fibers in the autosomal dominant mutant, D226N, could explain the onset of the retinopathy adRP10. Thus, the regulatory CBS modules in IMPDHs are functional and they can either modulate catalysis or macromolecular assembly.
Collapse
|
39
|
Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, Whitehead JP. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS One 2012; 7:e51096. [PMID: 23236438 PMCID: PMC3517587 DOI: 10.1371/journal.pone.0051096] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.
Collapse
Affiliation(s)
- Elaine C. Thomas
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| | - Jennifer H. Gunter
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Julie A. Webster
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Viola Oorschot
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Jonathan P. Whitehead
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Metabolic Medicine, Mater Medical Research Institute, South Brisbane, Queensland, Australia
- * E-mail: (ECT); (JPW)
| |
Collapse
|
40
|
Morrow CA, Valkov E, Stamp A, Chow EWL, Lee IR, Wronski A, Williams SJ, Hill JM, Djordjevic JT, Kappler U, Kobe B, Fraser JA. De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog 2012; 8:e1002957. [PMID: 23071437 PMCID: PMC3469657 DOI: 10.1371/journal.ppat.1002957] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/26/2012] [Indexed: 01/01/2023] Open
Abstract
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.
Collapse
Affiliation(s)
- Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eve W. L. Chow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Justine M. Hill
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
41
|
Hedstrom L. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)(8) barrel enzymes. Crit Rev Biochem Mol Biol 2012; 47:250-63. [PMID: 22332716 DOI: 10.3109/10409238.2012.656843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (β/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a common set of catalytic residues. Both enzymes catalyze a hydride transfer reaction involving a nicotinamide cofactor hydride, and both reactions proceed via the same covalent intermediate. In the case of IMPDH, this intermediate reacts with water, while in GMPR it reacts with ammonia. In both cases, the two chemical transformations are separated by a conformational change. In IMPDH, the conformational change involves a mobile protein flap while in GMPR, the cofactor moves. Thus reaction specificity is controlled by differences in dynamics, which in turn are controlled by residues outside the active site. These findings have some intriguing implications for the evolution of the IMPDH/GMPR family.
Collapse
Affiliation(s)
- Lizbeth Hedstrom
- Departments of Biology and Chemistry, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
42
|
McGrew DA, Hedstrom L. Towards a Pathological Mechanism for IMPDH1-Linked Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:539-45. [DOI: 10.1007/978-1-4614-0631-0_68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Hedstrom L, Liechti G, Goldberg JB, Gollapalli DR. The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Curr Med Chem 2011; 18:1909-18. [PMID: 21517780 DOI: 10.2174/092986711795590129] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/04/2011] [Indexed: 12/30/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first committed step of guanosine 5'-monophosphate (GMP) biosynthesis, and thus regulates the guanine nucleotide pool, which in turn governs proliferation. Human IMPDHs are validated targets for immunosuppressive, antiviral and anticancer drugs, but as yet microbial IMPDHs have not been exploited in antimicrobial chemotherapy. Selective inhibitors of IMPDH from Cryptosporidium parvum have recently been discovered that display anti-parasitic activity in cell culture models of infection. X-ray crystal structure and mutagenesis experiments identified the structural features that determine inhibitor susceptibility. These features are found in IMPDHs from a wide variety of pathogenic bacteria, including select agents and multiply drug resistant strains. A second generation inhibitor displays antibacterial activity against Helicobacter pylori, demonstrating the antibiotic potential of IMPDH inhibitors.
Collapse
Affiliation(s)
- L Hedstrom
- Brandeis University, Departments of Biology, Waltham, MA 02454-9110, USA.
| | | | | | | |
Collapse
|
44
|
Rowland JG, Simon WJ, Prakash JSS, Slabas AR. Proteomics Reveals a Role for the RNA Helicase crhR in the Modulation of Multiple Metabolic Pathways during Cold Acclimation of Synechocystis sp. PCC6803. J Proteome Res 2011; 10:3674-89. [DOI: 10.1021/pr200299t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John G. Rowland
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - William J. Simon
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Jogadhenu S. S. Prakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Antoni R. Slabas
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
45
|
Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. Future Med Chem 2011; 2:81-92. [PMID: 21426047 DOI: 10.4155/fmc.09.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo biosynthesis of guanine nucleotides. In recent years it has become the target of multiple drugs in an attempt to cure a variety of diseases. Possible therapeutic drugs range from antiviral and anticancer to immunosuppressive targets. Research has shown that if IMPDH is effectively inhibited, cancerous growth can be slowed and virus replication can be stopped. Microbial and parasitic IMPDH differ significantly from the human isoforms and targeting those isoforms could lead to effective treatments for many diseases. Inhibiting IMPDH is an extremely promising therapy for a variety of disease states. Isoform- and species-selective inhibition is desirable and scientists are making significant progress in these areas.
Collapse
|
46
|
Jendresen CB, Kilstrup M, Martinussen J. A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography. Anal Biochem 2010; 409:249-59. [PMID: 21036136 DOI: 10.1016/j.ab.2010.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 11/25/2022]
Abstract
Quantification of nucleotides is an important part of metabolomics but has been hampered by the lack of fast, sensitive, and reliable methods. We present a less time-consuming, more sensitive, and more precise method for the quantitative determination of nucleoside triphosphates (NTPs), 5-ribosyl-1-pyrophosphate (PRPP), and inorganic pyrophosphate (PP(i)) in cell extracts. The method uses one-dimensional thin-layer chromatography (TLC) and radiolabeled biological samples. Nucleotides are resolved at the level of ionic charge in an optimized acidic ammonium formate and chloride solvent, permitting quantification of NTPs. The method is significantly simpler and faster than both current two-dimensional methods and high-performance liquid chromatography (HPLC)-based procedures, allowing a higher throughput while common sources of inaccuracies and technical problems are avoided. For determination of PP(i), treatment with inorganic pyrophosphatase (PPase) of the radiolabeled phosphate is employed for removal of contaminating pyrophosphate. Biological examples performed in triplicates showed standard deviations of approximately 10% of the mean for the determined concentrations of NTPs.
Collapse
Affiliation(s)
- Christian Bille Jendresen
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
47
|
Binding of S-methyl-5'-thioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J Mol Biol 2009; 396:800-20. [PMID: 20026078 DOI: 10.1016/j.jmb.2009.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 02/03/2023]
Abstract
Cystathionine beta-synthase (CBS) domains are small motifs that are present in proteins with completely different functions. Several genetic diseases in humans have been associated with mutations in their sequence, which has made them promising targets for rational drug design. The protein MJ0100 from Methanocaldococcus jannaschii includes a DUF39 domain of so far unknown function and a CBS domain pair (Bateman domain) at its C-terminus. This work presents the crystallographic analysis of four different states of the CBS motif pair of MJ0100 in complex with different numbers of S-adenosyl-L-methionine (SAM) and S-methyl-5'-thioadenosine (MTA) ligands, providing evidence that ligand-induced conformational reorganization of Bateman domain dimers could be an important regulatory mechanism. These observations are in contrast to what is known from most of the other Bateman domain structures but are supported by recent studies on the magnesium transporter MgtE. Our structures represent the first example of a CBS domain protein complexed with SAM and/or MTA and might provide a structural basis for understanding the molecular mechanisms regulated by SAM upon binding to the C-terminal domain of human CBS, whose structure remains unknown.
Collapse
|
48
|
Affiliation(s)
- Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
49
|
Pimkin M, Pimkina J, Markham GD. A regulatory role of the Bateman domain of IMP dehydrogenase in adenylate nucleotide biosynthesis. J Biol Chem 2009; 284:7960-9. [PMID: 19153081 DOI: 10.1074/jbc.m808541200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bateman domain (CBS subdomain) of IMP dehydrogenase (IMPDH), a rate-limiting enzyme of the de novo GMP biosynthesis, is evolutionarily conserved but has no established function. Deletion of the Bateman domain has no effect on the in vitro IMPDH activity. We report that in vivo deletion of the Bateman domain of IMPDH in Escherichia coli (guaB(DeltaCBS)) sensitizes the bacterium to growth arrest by adenosine and inosine. These nucleosides exert their growth inhibitory effect via a dramatic increase in the intracellular adenylate nucleotide pool, which results in the enhanced allosteric inhibition of PRPP synthetase and consequently a PRPP deficit. The ensuing starvation for pyrimidine nucleotides culminates in growth arrest. Thus, deletion of the Bateman domain of IMPDH derepresses the synthesis of AMP from IMP. The growth inhibitory effect of inosine can be rescued by second-site suppressor mutations in the genes responsible for the conversion of inosine to AMP (gsk, purA, and purB) as well as by the prsA1 allele, which encodes a PRPP synthetase that is insensitive to allosteric inhibition by adenylate nucleotides. Importantly, the guaB(DeltaCBS) phenotype can be complemented in trans by a mutant guaB allele, which encodes a catalytically disabled IMPDH(C305A) protein containing an intact Bateman domain. We conclude that the Bateman domain of IMPDH is a negative trans-regulator of adenylate nucleotide synthesis, and that this role is independent of the catalytic function of IMPDH in the de novo GMP biosynthesis.
Collapse
Affiliation(s)
- Maxim Pimkin
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
50
|
Mortimer SE, Xu D, McGrew D, Hamaguchi N, Lim HC, Bowne SJ, Daiger SP, Hedstrom L. IMP dehydrogenase type 1 associates with polyribosomes translating rhodopsin mRNA. J Biol Chem 2008; 283:36354-60. [PMID: 18974094 PMCID: PMC2605994 DOI: 10.1074/jbc.m806143200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/29/2008] [Indexed: 01/28/2023] Open
Abstract
IMP dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. Here we show that both IMPDH type 1 (IMPDH1) and IMPDH type 2 are associated with polyribosomes, suggesting that these housekeeping proteins have an unanticipated role in translation regulation. This interaction is mediated by the subdomain, a region of disputed function that is the site of mutations that cause retinal degeneration. The retinal isoforms of IMPDH1 also associate with polyribosomes. The most common disease-causing mutation, D226N, disrupts the polyribosome association of at least one retinal IMPDH1 isoform. Finally, we find that IMPDH1 is associated with polyribosomes containing rhodopsin mRNA. Because any perturbation of rhodopsin expression can trigger apoptosis in photoreceptor cells, these observations suggest a likely pathological mechanism for IMPDH1-mediated hereditary blindness. We propose that IMPDH coordinates the translation of a set of mRNAs, perhaps by modulating localization or degradation.
Collapse
Affiliation(s)
- Sarah E Mortimer
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|