1
|
Gao SC, Fan XX, Zhang Z, Li RT, Zhang Y, Gao TP, Liu Y. A dual-function mixed-culture biofilm for sulfadiazine removal and electricity production using bio-electrochemical system. Biosens Bioelectron 2024; 263:116552. [PMID: 39038400 DOI: 10.1016/j.bios.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 μA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.
Collapse
Affiliation(s)
- Sheng-Chao Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Xin-Xin Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Zhen Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Rui-Tao Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Yue Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Tian-Peng Gao
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, 730070, China; College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
2
|
Schmid N, Brandt D, Walasek C, Rolland C, Wittmann J, Fischer D, Müsken M, Kalinowski J, Thormann K. An autonomous plasmid as an inovirus phage satellite. Appl Environ Microbiol 2024; 90:e0024624. [PMID: 38597658 PMCID: PMC11107163 DOI: 10.1128/aem.00246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.
Collapse
Affiliation(s)
- Nicole Schmid
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - David Brandt
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Claudia Walasek
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Clara Rolland
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Dorian Fischer
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kai Thormann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
3
|
Cialek CA. On the path to generate electricity from wastewater through genetic engineering of Escherichia coli. Synth Biol (Oxf) 2024; 9:ysae002. [PMID: 38292444 PMCID: PMC10825504 DOI: 10.1093/synbio/ysae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
|
4
|
Dou Q, Yang J, Peng Y, Zhang L. Multipathway of Nitrogen Metabolism Revealed by Genome-Centered Metatranscriptomics from Pyrite-Guided Mixotrophic Partial Denitrification/Anammox Installations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21791-21800. [PMID: 38079570 DOI: 10.1021/acs.est.3c08192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Further reducing the organic requirements is essential for the sustainable development of partial denitrification/anammox technology. Here, an innovative mixotrophic partial denitrification/anammox (MPD/A) installation fed with pyrite and few organics was realized, and the average nitrogen and phosphorus removal rates were as high as 96.24 ± 0.11% and 79.23 ± 2.06%, respectively, with a C/N ratio of 0.5. To understand the nature by which MPD/A achieves efficient nitrogen removal and organic conservation, the electron transfer-dependent nitrogen escape and energy metabolism were first elucidated using multiomics analysis. Apart from heterotrophic denitrification and anammox, the results revealed some unexpected metabolic couplings of MPD/A systems, in particular, putative nitrate-dependent organic and pyrite oxidation among nominally heterotrophic Denitratisoma (PRO3) strains, which accelerated nitrate gasification with a low-carbon supply. Additionally, Candidatus Brocadia (AMX) employed extracellular solid-state electron acceptors as terminal electron sinks for high-rate ammonium removal. AMX transported ammonium electrons to extracellular γFeO(OH) (generated from pyrite oxidation) through the transient storage of menaquinoline pools, cytoplasmic migration via multiheme cytochrome(s), and OmpA protein/nanowires-mediated electron hopping on cell surfaces. Further investigation observed that extracellular electron flux resulted in the transfer of more energy from the increased oxidation of the electron donor to the ATP, supporting nitrite-independent ammonium removal.
Collapse
Affiliation(s)
- Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
- College of Carbon Neutrality Future Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co., Ltd., Tokyo, 100-0011, Japan
- China Coal Technology & Engineering Group Co., Ltd., Beijing 100013, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
- College of Carbon Neutrality Future Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Kretz J, Israel V, McIntosh M. Design-Build-Test of Synthetic Promoters for Inducible Gene Regulation in Alphaproteobacteria. ACS Synth Biol 2023; 12:2663-2675. [PMID: 37561940 DOI: 10.1021/acssynbio.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Inducible gene expression is useful for biotechnological applications and for studying gene regulation and function in bacteria. Many inducible systems that perform in model organisms such as the Gammaproteobacterium Escherichia coli do not perform well in other bacteria that are of biotechnological interest. Typical problems include weak or leaky expression. Here, we describe an invention named ACIT (Alphaproteobacteria chromosomally integrating transcription-control cassette) that is carried on a suicide plasmid to enable insertion into the chromosome of the host. ACIT consists of multiple DNA fragments specifically arranged in a cassette that allows tight transcription control over any gene or gene cluster of interest following homologous recombination. At the heart of the invention is the ability to modify or exchange parts, e.g., promoters, to suit particular bacteria and growth conditions, allowing for customized gene expression control. Furthermore, ACIT provides a basis for a design-build-test approach for controlling gene expression in less studied bacteria. We describe examples of its control over pigment and exopolysaccharide production, growth, cell form, and social behavior in various Alphaproteobacteria.
Collapse
Affiliation(s)
- Jonas Kretz
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-Universität, 35292 Giessen, Germany
| | - Vera Israel
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-Universität, 35292 Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-Universität, 35292 Giessen, Germany
| |
Collapse
|
6
|
Molinas M, Meibom KL, Faizova R, Mazzanti M, Bernier-Latmani R. Mechanism of Reduction of Aqueous U(V)-dpaea and Solid-Phase U(VI)-dpaea Complexes: The Role of Multiheme c-Type Cytochromes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7537-7546. [PMID: 37133831 DOI: 10.1021/acs.est.3c00666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have confirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionate. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2- (dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1-one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC-and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.
Collapse
Affiliation(s)
- Margaux Molinas
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Radmila Faizova
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Myers B, Hill P, Rawson F, Kovács K. Enhancing Microbial Electron Transfer Through Synthetic Biology and Biohybrid Approaches: Part II : Combining approaches for clean energy. JOHNSON MATTHEY TECHNOLOGY REVIEW 2022. [DOI: 10.1595/205651322x16621070592195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or vice versa
by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I (1) introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron
transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.
Collapse
Affiliation(s)
- Benjamin Myers
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Biodiscovery Institute, University of Nottingham University Park, Clifton Boulevard, Nottingham, NG7 2RD UK
| | - Phil Hill
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD UK
| | - Frankie Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Biodiscovery Institute, University of Nottingham University Park, Clifton Boulevard, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- School of Pharmacy, Boots Science Building, University of Nottingham, University Park Clifton Boulevard, Nottingham, NG7 2RD UK
| |
Collapse
|
9
|
Zhu TT, Cheng ZH, Yu SS, Li WW, Liu DF, Yu HQ. Unexpected role of electron-transfer hub in direct degradation of pollutants by exoelectrogenic bacteria. Environ Microbiol 2022; 24:1838-1848. [PMID: 35170205 DOI: 10.1111/1462-2920.15939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g., 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologs might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,Anhui Key Laboratory of Sewage Purification and Ecological Rehabilitation Materials, Hefei, 230601, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
From iron to bacterial electroconductive filaments: Exploring cytochrome diversity using Geobacter bacteria. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Bennett MR, Jain A, Kovacs K, Hill PJ, Alexander C, Rawson FJ. Engineering bacteria to control electron transport altering the synthesis of non-native polymer. RSC Adv 2021; 12:451-457. [PMID: 35424487 PMCID: PMC8978702 DOI: 10.1039/d1ra06403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The use of bacteria as catalysts for radical polymerisations of synthetic monomers has recently been established. However, the role of trans Plasma Membrane Electron Transport (tPMET) in modulating these processes is not well understood. We sort to study this by genetic engineering a part of the tPMET system NapC in E. coli. We show that this engineering altered the rate of extracellular electron transfer coincided with an effect on cell-mediated polymerisation using a model monomer. A plasmid with arabinose inducible PBAD promoters were shown to upregulate NapC protein upon induction at total arabinose concentrations of 0.0018% and 0.18%. These clones (E. coli (IP_0.0018%) and E. coli (IP_0.18%), respectively) were used in iron-mediated atom transfer radical polymerisation (Fe ATRP), affecting the nature of the polymerisation, than cultures containing suppressed or empty plasmids (E. coli (IP_S) and E. coli (E), respectively). These results lead to the hypothesis that EET (Extracellular Electron Transfer) in part modulates cell instructed polymerisations.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Katalin Kovacs
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Bioscience, University of Nottingham Sutton Bonington Campus Nottingham LE15 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, Boots Science Building, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
12
|
Dong F, Simoska O, Gaffney E, Minteer SD. Applying synthetic biology strategies to bioelectrochemical systems. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fangyuan Dong
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | - Olja Simoska
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | - Erin Gaffney
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | | |
Collapse
|
13
|
Dang Z, Guan Y, Wu Z, Tao XY, Xiong Y, Bai HB, Shao CS, Liu G, Huang Q, Tian LJ, Tian YC. Regulating the synthesis rate and yield of bio-assembled FeS nanoparticles for efficient cancer therapy. NANOSCALE 2021; 13:18977-18986. [PMID: 34705921 DOI: 10.1039/d1nr03591f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosynthesis has gained growing interest due to its energy efficiency and environmentally benign nature. Recently, biogenic iron sulfide nanoparticles (FeS NPs) have exhibited excellent performance in environmental remediation and energy recovery applications. However, their biosynthesis regulation strategy and application prospects in the biomedical field remain to be explored. Herein, biogenic FeS NPs are controllably synthesized by Shewanella oneidensis MR-1 and applied for cancer therapy. Tuning the synthesis rate and yield of biogenic FeS NPs is realized by altering the initial iron precursor dosage. Notably, increasing the precursor concentration decreases and delays FeS NP biosynthesis. The biogenic FeS NPs (30 nm) are homogeneously anchored on the cell surface of S. oneidensis MR-1. Moreover, the good hydrophilic nature and outstanding Fenton properties of the as-prepared FeS NPs endow them with good cancer therapy performance. The intracellular location of the FeS NPs taken up is visualized with a soft X-ray microscope (SXM). Highly efficient cancer cell killing can be achieved at extremely low concentrations (<12 μg mL-1), lower than those in reported works. Such good performance is attributed to the Fe2+ release, elevated ROS, reduced glutathione (GSH) consumption, and lipid hydroperoxide (LPO) generation. The resulting FeS NPs show excellent in vivo therapeutic performance. This work provides a facile, eco-friendly, and scalable approach to produce nanomedicine, demonstrating the potential of biogenic nanoparticles for use in cancer therapy.
Collapse
Affiliation(s)
- Zheng Dang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Xia-Yu Tao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Ying Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Hao-Bo Bai
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| | - Yang-Chao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
14
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
15
|
Beblawy S, Philipp LA, Gescher J. Accelerated Electro-Fermentation of Acetoin in Escherichia coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism. Microorganisms 2020; 8:microorganisms8111843. [PMID: 33238546 PMCID: PMC7700339 DOI: 10.3390/microorganisms8111843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 11/16/2022] Open
Abstract
Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold. Overall, these measures and a medium optimization increased the space-time yield in an electrode-assisted fermentation by 3.6-fold.
Collapse
Affiliation(s)
- Sebastian Beblawy
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
| | - Laura-Alina Philipp
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| |
Collapse
|
16
|
Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nat Rev Chem 2020; 4:638-656. [PMID: 37127973 DOI: 10.1038/s41570-020-00221-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Inorganic nanomaterials are widely used in chemical, electronics, photonics, energy and medical industries. Preparing a nanomaterial (NM) typically requires physical and/or chemical methods that involve harsh and environmentally hazardous conditions. Recently, wild-type and genetically engineered microorganisms have been harnessed for the biosynthesis of inorganic NMs under mild and environmentally friendly conditions. Microorganisms such as microalgae, fungi and bacteria, as well as bacteriophages, can be used as biofactories to produce single-element and multi-element inorganic NMs. This Review describes the emerging area of inorganic NM biosynthesis, emphasizing the mechanisms of inorganic-ion reduction and detoxification, while also highlighting the proteins and peptides involved. We show how analysing a Pourbaix diagram can help us devise strategies for the predictive biosynthesis of NMs with high producibility and crystallinity and also describe how to control the size and morphology of the product. Here, we survey biosynthetic inorganic NMs of 55 elements and their applications in catalysis, energy harvesting and storage, electronics, antimicrobials and biomedical therapy. Furthermore, a step-by-step flow chart is presented to aid the design and biosynthesis of inorganic NMs employing microbial cells. Future research in this area will add to the diversity of available inorganic NMs but should also address scalability and purity.
Collapse
|
17
|
A Hybrid Extracellular Electron Transfer Pathway Enhances the Survival of Vibrio natriegens. Appl Environ Microbiol 2020; 86:AEM.01253-20. [PMID: 32737131 DOI: 10.1128/aem.01253-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio natriegens is the fastest-growing microorganism discovered to date, making it a useful model for biotechnology and basic research. While it is recognized for its rapid aerobic metabolism, less is known about anaerobic adaptations in V. natriegens or how the organism survives when oxygen is limited. Here, we describe and characterize extracellular electron transfer (EET) in V. natriegens, a metabolism that requires movement of electrons across protective cellular barriers to reach the extracellular space. V. natriegens performs extracellular electron transfer under fermentative conditions with gluconate, glucosamine, and pyruvate. We characterized a pathway in V. natriegens that requires CymA, PdsA, and MtrCAB for Fe(III) citrate and Fe(III) oxide reduction, which represents a hybrid of strategies previously discovered in Shewanella and Aeromonas Expression of these V. natriegens genes functionally complemented Shewanella oneidensis mutants. Phylogenetic analysis of the inner membrane quinol dehydrogenases CymA and NapC in gammaproteobacteria suggests that CymA from Shewanella diverged from Vibrionaceae CymA and NapC. Analysis of sequenced Vibrionaceae revealed that the genetic potential to perform EET is conserved in some members of the Harveyi and Vulnificus clades but is more variable in other clades. We provide evidence that EET enhances anaerobic survival of V. natriegens, which may be the primary physiological function for EET in Vibrionaceae IMPORTANCE Bacteria from the genus Vibrio occupy a variety of marine and brackish niches with fluctuating nutrient and energy sources. When oxygen is limited, fermentation or alternative respiration pathways must be used to conserve energy. In sedimentary environments, insoluble oxide minerals (primarily iron and manganese) are able to serve as electron acceptors for anaerobic respiration by microorganisms capable of extracellular electron transfer, a metabolism that enables the use of these insoluble substrates. Here, we identify the mechanism for extracellular electron transfer in Vibrio natriegens, which uses a combination of strategies previously identified in Shewanella and Aeromonas We show that extracellular electron transfer enhanced survival of V. natriegens under fermentative conditions, which may be a generalized strategy among Vibrio spp. predicted to have this metabolism.
Collapse
|
18
|
Feng J, Jiang M, Li K, Lu Q, Xu S, Wang X, Chen K, Ouyang P. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli. Bioelectrochemistry 2020; 134:107498. [DOI: 10.1016/j.bioelechem.2020.107498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
19
|
Hu Y, Rehnlund D, Klein E, Gescher J, Niemeyer CM. Cultivation of Exoelectrogenic Bacteria in Conductive DNA Nanocomposite Hydrogels Yields a Programmable Biohybrid Materials System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14806-14813. [PMID: 32191028 DOI: 10.1021/acsami.9b22116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of living microorganisms integrated within electrochemical devices is an expanding field of research, with applications in microbial fuel cells, microbial biosensors or bioreactors. We describe the use of porous nanocomposite materials prepared by DNA polymerization of carbon nanotubes (CNTs) and silica nanoparticles (SiNPs) for the construction of a programmable biohybrid system containing the exoelectrogenic bacterium Shewanella oneidensis. We initially demonstrate the electrical conductivity of the CNT-containing DNA composite by employment of chronopotentiometry, electrochemical impedance spectroscopy, and cyclic voltammetry. Cultivation of Shewanella oneidensis in the conductive materials shows that the exoelectrogenic bacteria populate the matrix of the conductive composite, while nonexoelectrogenic Escherichia coli remain on its surface. Moreover, the ability to use extracellular electron transfer pathways is positively correlated with the number of cells within the conductive synthetic biofilm matrix. The Shewanella-containing composite remains stable for several days and shows electrochemical activity, indicating that the conductive backbone is capable of extracting the metabolic electrons produced by the bacteria under strictly anoxic conditions and conducting them to the anode. Programmability of this biohybrid material system is demonstrated by on-demand release and degradation induced by a short-term enzymatic stimulus. We believe that the application possibilities of such biohybrid materials could even go beyond microbial biosensors, bioreactors, and fuel cell systems.
Collapse
Affiliation(s)
- Yong Hu
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - David Rehnlund
- Institute for Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Edina Klein
- Institute for Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron-Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020; 59:4750-4755. [PMID: 31894618 DOI: 10.1002/anie.201915084] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 11/08/2022]
Abstract
The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria-mediated iron-catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal-chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation. Parameters including cell and catalyst concentration, initiator species, and monomer type were investigated. Water-soluble synthetic polymers were produced in the presence of the bacteria with full preservation of cell viability. This method provides a means by which bacterial redox systems can be exploited to generate "unnatural" polymers in the presence of "host" cells, thus setting up the possibility of making natural-synthetic hybrid structures and conjugates.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG72RD, UK
| |
Collapse
|
21
|
Bennett MR, Gurnani P, Hill PJ, Alexander C, Rawson FJ. Iron‐Catalysed Radical Polymerisation by Living Bacteria. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mechelle R. Bennett
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Phil J. Hill
- Division of Microbiology, Brewing and BiotechnologySchool of BiosciencesUniversity of Nottingham Sutton Bonington Campus Nottingham LE12 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and FormulationSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG7 2RD UK
| | - Frankie J. Rawson
- Division of Regenerative Medicine and Cellular TherapiesSchool of PharmacyUniversity of Nottingham University Park Campus Nottingham NG72RD UK
| |
Collapse
|
22
|
Su L, Fukushima T, Prior A, Baruch M, Zajdel TJ, Ajo-Franklin CM. Modifying Cytochrome c Maturation Can Increase the Bioelectronic Performance of Engineered Escherichia coli. ACS Synth Biol 2020; 9:115-124. [PMID: 31880923 DOI: 10.1021/acssynbio.9b00379] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic circuits that encode extracellular electron transfer (EET) pathways allow the intracellular state of Escherichia coli to be electronically monitored and controlled. However, relatively low electron flux flows through these pathways, limiting the degree of control by these circuits. Since the EET pathway is composed of multiple multiheme cytochromes c (cyts c) from Shewanella oneidensis MR-1, we hypothesized that lower expression levels of cyt c may explain this low EET flux and may be caused by the differences in the cyt c maturation (ccm) machinery between these two species. Here, we constructed random mutations within ccmH by error-prone PCR and screened for increased cyt c production. We identified two ccmH mutants, ccmH-132 and ccmH-195, that exhibited increased heterologous cyt c expression, but had different effects on EET. The ccmH-132 strain reduced WO3 nanoparticles faster than the parental control, whereas the ccmH-195 strain reduced more slowly. The same trend is reflected in electrical current generation: ccmH-132, which has only a single mutation from WT, drastically increased current production by 77%. The percentage of different cyt c proteins in these two mutants suggests that the stoichiometry of the S. oneidensis cyts c is a key determinant of current production by Mtr-expressing E. coli. Thus, we conclude that modulating cyt c maturation effectively improves genetic circuits governing EET in engineered biological systems, enabling better bioelectronic control of E. coli.
Collapse
Affiliation(s)
- Lin Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210018, China
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tatsuya Fukushima
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew Prior
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Moshe Baruch
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tom J. Zajdel
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Caroline M. Ajo-Franklin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Hirose A, Kouzuma A, Watanabe K. Towards development of electrogenetics using electrochemically active bacteria. Biotechnol Adv 2019; 37:107351. [DOI: 10.1016/j.biotechadv.2019.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
|
24
|
Dissimilatory reduction of Fe(III) by a novel Serratia marcescens strain with special insight into the influence of prodigiosin. Int Microbiol 2019; 23:201-214. [DOI: 10.1007/s10123-019-00088-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
|
25
|
Ouyang B, Lu X, Li J, Liu H. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1008-1018. [PMID: 31018416 DOI: 10.1016/j.scitotenv.2019.03.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The evolution of iron minerals under buried conditions is one of the most important processes controlling the mineral composition and heavy metal transportation in sediments. Microbial-mediated reduction plays a critical role in iron mineral transformation in natural environment. This study examined the transformation pathways of iron minerals mediated by bacteria and the changes of associated arsenic species in iron-rich mine tailings. Static and column reactions were designed to monitor variations of minerals and released iron and arsenic, a reactive transport model was simulated to support laboratory results. Laboratory experiments showed that major ferric minerals were preferentially dissolved and reduced by dissimilatory iron-reducing bacteria. The released Fe3+ in fluid promoted oxidative dissolution of pyrite and arsenopyrite, and precipitation of oxides and carbonates. The arsenic released to fluid was inferred to be immobilized by both pristine ferrihydrite and newly formed hydrous ferric oxides via surface complexation. The reaction system maintained a steady-state of iron mineral transformation and arsenic (im)mobilization. In the latter stage of column reactor experiments, continuous reaction and removal of dissolved Fe3+ and Fe2+ destabilized the state, leading to arsenic re-location and eventually rising concentration in fluid. The findings implicate that microbial-mediated iron mineral evolution remarkably influence the natural mineral assemblages and the fate of contaminant transport in the environment, and that deposition of iron oxides is essential in environmental protection and pollution recovery.
Collapse
Affiliation(s)
- Bingjie Ouyang
- Earth Sciences Department, Dartmouth College, HB6105 Fairchild Hall, Hanover, NH 03755, United States; Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Xiancai Lu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China.
| | - Juan Li
- State Key Laboratory for Deposits research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Huan Liu
- State Key Laboratory for Deposits research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
26
|
Microbial Electrosynthesis I: Pure and Defined Mixed Culture Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 167:181-202. [PMID: 29071400 DOI: 10.1007/10_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past 6 years, microbial bioelectrochemistry has strongly increased in attraction and audience when expanding from mainly environmental technology applications to biotechnology. In particular, the promise to combine electrosynthesis with microbial catalysis opens attractive approaches for new sustainable redox-cofactor recycling, redox-balancing, or even biosynthesis processes. Much of this promise is still not fulfilled, but it has opened and fueled entirely new research areas in this discipline. Activities in designing, tailoring, and applying specific microbial catalysts as pure or defined co-cultures for defined target bioproductions are greatly accelerating. This chapter gives an overview of the current progress as well as the emerging trends in molecular and ecological engineering of defined microbial biocatalysts to prepare them for evolving microbial electrosynthesis processes. In addition, the multitude of microbial electrosynthetic processes with complex undefined mixed cultures is covered by ter Heijne et al. (Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_15 , 2017). Graphical Abstract.
Collapse
|
27
|
Cao Y, Song M, Li F, Li C, Lin X, Chen Y, Chen Y, Xu J, Ding Q, Song H. A Synthetic Plasmid Toolkit for Shewanella oneidensis MR-1. Front Microbiol 2019; 10:410. [PMID: 30906287 PMCID: PMC6418347 DOI: 10.3389/fmicb.2019.00410] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022] Open
Abstract
Shewanella oneidensis MR-1 is a platform microorganism for understanding extracellular electron transfer (EET) with a fully sequenced and annotated genome. In comparison to other model microorganisms such as Escherichia coli, the available plasmid parts (such as promoters and replicons) are not sufficient to conveniently and quickly fine-tune the expression of multiple genes in S. oneidensis MR-1. Here, we constructed and characterized a plasmid toolkit that contains a set of expression vectors with a combination of promoters, replicons, antibiotic resistance genes, and an RK2 origin of transfer (oriT) cassette, in which each element can be easily changed by fixed restriction enzyme sites. The expression cassette is also compatible with BioBrick synthetic biology standards. Using green fluorescent protein (GFP) as a reporter, we tested and quantified the strength of promoters. The copy number of different replicons was also measured by real-time quantitative PCR. We further transformed two compatible plasmids with different antibiotic resistance genes into the recombinant S. oneidensis MR-1, enabling control over the expression of two different fluorescent proteins. This plasmid toolkit was further used for overexpression of the MtrCAB porin-c-type cytochrome complex in the S. oneidensis ΔmtrA strain. Tungsten trioxide (WO3) reduction and microbial fuel cell (MFC) assays revealed that the EET efficiency was improved most significantly when MtrCAB was expressed at a moderate level, thus demonstrating the utility of the plasmid toolkit in the EET regulation in S. oneidensis. The plasmid toolkit developed in this study is useful for rapid and convenient fine-tuning of gene expression and enhances the ability to genetically manipulate S. oneidensis MR-1.
Collapse
Affiliation(s)
- Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengyuan Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Yaru Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jing Xu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qian Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2. Microb Cell Fact 2019; 18:15. [PMID: 30691454 PMCID: PMC6348651 DOI: 10.1186/s12934-019-1067-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/20/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Electrochemical energy is a key factor of biosynthesis, and is necessary for the reduction or assimilation of substrates such as CO2. Previous microbial electrosynthesis (MES) research mainly utilized naturally electroactive microbes to generate non-specific products. RESULTS In this research, an electroactive succinate-producing cell factory was engineered in E. coli T110(pMtrABC, pFccA-CymA) by expressing mtrABC, fccA and cymA from Shewanella oneidensis MR-1, which can utilize electricity to reduce fumarate. The electroactive T110 strain was further improved by incorporating a carbon concentration mechanism (CCM). This strain was fermented in an MES system with neutral red as the electron carrier and supplemented with HCO3+, which produced a succinate yield of 1.10 mol/mol glucose-a 1.6-fold improvement over the parent strain T110. CONCLUSIONS The strain T110(pMtrABC, pFccA-CymA, pBTCA) is to our best knowledge the first electroactive microbial cell factory engineered to directly utilize electricity for the production of a specific product. Due to the versatility of the E. coli platform, this pioneering research opens the possibility of engineering various other cell factories to utilize electricity for bioproduction.
Collapse
Affiliation(s)
- Zaiqiang Wu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Yan Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
29
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
30
|
Ferreira MR, Salgueiro CA. Biomolecular Interaction Studies Between Cytochrome PpcA From Geobacter sulfurreducens and the Electron Acceptor Ferric Nitrilotriacetate (Fe-NTA). Front Microbiol 2018; 9:2741. [PMID: 30524391 PMCID: PMC6262392 DOI: 10.3389/fmicb.2018.02741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
Geobacter sulfurreducens bacterium exhibits an enormous respiratory versatility, including the utilization of several toxic and radioactive metals as electron acceptors. This versatility is also replicated in the capability of the most abundant cytochrome in G. sulfurreducens, the periplasmic triheme cytochrome PpcA, to reduce uranium, chromium and other metal ions. From all possible electron transfer pathways in G. sulfurreducens, those involved in the iron reduction are the best characterized to date. Previously, we provided structural evidence for the complex interface established between PpcA and the electron acceptor Fe(III)-citrate. However, genetic studies suggested that this acceptor is mainly reduced by outer membrane cytochomes. In the present work, we used UV-visible measurements to demonstrate that PpcA is able to directly reduce the electron acceptor ferric nitrilotriacetate (Fe-NTA), a more outer membrane permeable iron chelated form. In addition, the molecular interactions between PpcA and Fe-NTA were probed by Nuclear Magnetic Resonance (NMR) spectroscopy. The NMR spectra obtained for PpcA samples in the absence and presence of Fe-NTA showed that the interaction is reversible and encompasses a positively charged surface region located in the vicinity of the heme IV. Overall, the study elucidates the formation of an electron transfer complex between PpcA and a readily outer-membrane permeable iron chelated form. The structural and functional relationships obtained explain how a single cytochrome is designed to effectively interact with a wide range of G. sulfurreducens electron acceptors, a feature that can be explored for optimal bioelectrochemical applications.
Collapse
Affiliation(s)
- Marisa R Ferreira
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carlos A Salgueiro
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
31
|
Lienemann M, TerAvest MA, Pitkänen J, Stuns I, Penttilä M, Ajo‐Franklin CM, Jäntti J. Towards patterned bioelectronics: facilitated immobilization of exoelectrogenic Escherichia coli with heterologous pili. Microb Biotechnol 2018; 11:1184-1194. [PMID: 30296001 PMCID: PMC6196383 DOI: 10.1111/1751-7915.13309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 12/01/2022] Open
Abstract
Biosensors detect signals using biological sensing components such as redox enzymes and biological cells. Although cellular versatility can be beneficial for different applications, limited stability and efficiency in signal transduction at electrode surfaces represent a challenge. Recent studies have shown that the Mtr electron conduit from Shewanella oneidensis MR-1 can be produced in Escherichia coli to generate an exoelectrogenic model system with well-characterized genetic tools. However, means to specifically immobilize this organism at solid substrates as electroactive biofilms have not been tested previously. Here, we show that mannose-binding Fim pili can be produced in exoelectrogenic E. coli and can be used to selectively attach cells to a mannose-coated material. Importantly, cells expressing fim genes retained current production by the heterologous Mtr electron conduit. Our results demonstrate the versatility of the exoelectrogenic E. coli system and motivate future work that aims to produce patterned biofilms for bioelectronic devices that can respond to various biochemical signals.
Collapse
Affiliation(s)
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
- The Molecular FoundryLawrence Berkeley National LaboratoryMolecular Biophysics and Integrated Bioimaging DivisionSynthetic Biology InstituteBerkeleyCAUSA
| | - Juha‐Pekka Pitkänen
- VTT Technical Research Centre of Finland LtdEspooFinland
- Current affiliation: Solar Foods LtdHelsinkiFinland
| | - Ingmar Stuns
- VTT Technical Research Centre of Finland LtdEspooFinland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland LtdEspooFinland
| | - Caroline M. Ajo‐Franklin
- The Molecular FoundryLawrence Berkeley National LaboratoryMolecular Biophysics and Integrated Bioimaging DivisionSynthetic Biology InstituteBerkeleyCAUSA
| | - Jussi Jäntti
- VTT Technical Research Centre of Finland LtdEspooFinland
| |
Collapse
|
32
|
Zhao J, Zhang C, Sun C, Li W, Zhang S, Li S, Zhang D. Electron transfer mechanism of biocathode in a bioelectrochemical system coupled with chemical absorption for NO removal. BIORESOURCE TECHNOLOGY 2018; 254:16-22. [PMID: 29413918 DOI: 10.1016/j.biortech.2018.01.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
A biocathode with the function of Fe(III)EDTA and Fe(II)EDTA-NO reduction was applied in a microbial electrolysis cell coupled with chemical absorption for NO removal from flue gas. As the mediated electron transfer was excluded by the same electrochemical characterizations of the biocathodes before and after a 48 h continuous operation, the profiles of reduction experiments indicated that direct electron transfer was the main mechanism of Fe(III)EDTA reduction, while Fe(III)EDTA-NO was mainly reduced via Fe(II)-assisted autotrophic denitrification. The microscopy of the biocathode confirmed the existence of pili, which was supposed to be bacterial nanowires for electron transfer. The analysis of microbial community revealed that iron-reducing bacteria, including Escherichia coli, had the possibility of electron uptake from electrode via physical contact. These results first time gave us in-depth understanding of the electron transfer in the multifunctional biocathode and mechanism for further enhancement of the bioreduction processes.
Collapse
Affiliation(s)
- Jingkai Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Chunyan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Cheng Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, China.
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | | |
Collapse
|
33
|
Zeng Z, Tice MM. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation. ASTROBIOLOGY 2018; 18:28-36. [PMID: 29265883 DOI: 10.1089/ast.2016.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.
Collapse
Affiliation(s)
- Zhirui Zeng
- Department of Geology and Geophysics, Texas A&M University , College Station, Texas
| | - Michael M Tice
- Department of Geology and Geophysics, Texas A&M University , College Station, Texas
| |
Collapse
|
34
|
Cao Y, Li X, Li F, Song H. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis. ACS Synth Biol 2017; 6:1679-1690. [PMID: 28616968 DOI: 10.1021/acssynbio.6b00374] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.
Collapse
Affiliation(s)
- Yingxiu Cao
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaofei Li
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Feng Li
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Hao Song
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
35
|
Vibrio cholerae VciB Mediates Iron Reduction. J Bacteriol 2017; 199:JB.00874-16. [PMID: 28348025 DOI: 10.1128/jb.00874-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/19/2017] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB, which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe2+) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe3+ to Fe2+, which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain.IMPORTANCEVibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe3+) to the ferrous form (Fe2+), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a functional assignment for this previously uncharacterized protein family. This study builds upon our understanding of proteins known to mediate iron reduction in bacteria.
Collapse
|
36
|
Han R, Li X, Wu Y, Li F, Liu T. In situ spectral kinetics of quinone reduction by c-type cytochromes in intact Shewanella oneidensis MR-1 cells. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Schuergers N, Werlang C, Ajo-Franklin CM, Boghossian AA. A Synthetic Biology Approach to Engineering Living Photovoltaics. ENERGY & ENVIRONMENTAL SCIENCE 2017; 10:1102-1115. [PMID: 28694844 PMCID: PMC5501249 DOI: 10.1039/c7ee00282c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to electronically interface living cells with electron accepting scaffolds is crucial for the development of next-generation biophotovoltaic technologies. Although recent studies have focused on engineering synthetic interfaces that can maximize electronic communication between the cell and scaffold, the efficiency of such devices is limited by the low conductivity of the cell membrane. This review provides a materials science perspective on applying a complementary, synthetic biology approach to engineering membrane-electrode interfaces. It focuses on the technical challenges behind the introduction of foreign extracellular electron transfer pathways in bacterial host cells and the past and future efforts to engineer photosynthetic organisms with artificial electron-export capabilities for biophotovoltaic applications. The article highlights advances in engineering protein-based, electron-exporting conduits in a model host organism, E. coli, before reviewing state-of-the-art biophotovoltaic technologies that use both unmodified and bioengineered photosynthetic bacteria with improved electron transport capabilities. A thermodynamic analysis is used to propose an energetically feasible pathway for extracellular electron transport in engineered cyanobacteria and identify metabolic bottlenecks amenable to protein engineering techniques. Based on this analysis, an engineered photosynthetic organism expressing a foreign, protein-based electron conduit yields a maximum theoretical solar conversion efficiency of 6-10% without accounting for additional bioengineering optimizations for light-harvesting.
Collapse
Affiliation(s)
- N. Schuergers
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - C. Werlang
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - C. M. Ajo-Franklin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A. A. Boghossian
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Bursac T, Gralnick JA, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng 2017; 114:1283-1289. [DOI: 10.1002/bit.26243] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Thea Bursac
- Department of Applied Biology; Institute for Applied Biosciences; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Microbiology; University of Minnesota; Twin Cities St. Paul, Minnesota
| | - Johannes Gescher
- Department of Applied Biology; Institute for Applied Biosciences; Karlsruhe Institute of Technology; Karlsruhe Germany
- Department of Microbiology of Natural and Technical Interfaces; Institute of Functional Interfaces; Karlsruhe Institute of Technology; Eggenstein-Leopoldshafen Germany
| |
Collapse
|
39
|
Lin T, Bai X, Hu Y, Li B, Yuan Y, Song H, Yang Y, Wang J. Synthetic
Saccharomyces cerevisiae
‐
Shewanella oneidensis
consortium enables glucose‐fed high‐performance microbial fuel cell. AIChE J 2016. [DOI: 10.1002/aic.15611] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tong Lin
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072 China
| | - Xue Bai
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072 China
| | - Yidan Hu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072 China
| | - Bingzhi Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072 China
| | - Ying‐Jin Yuan
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072 China
| | - Hao Song
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjin300072 China
| | - Yun Yang
- School of Chemistry and EnvironmentBeihang UniversityBeijing100191 China
| | - Jingyu Wang
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis MN55455
| |
Collapse
|
40
|
Jensen HM, TerAvest MA, Kokish MG, Ajo-Franklin CM. CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing Escherichia coli. ACS Synth Biol 2016; 5:679-88. [PMID: 27000939 DOI: 10.1021/acssynbio.5b00279] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. Here we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits, the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe2O3 (s) reducing conditions. Overall, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.
Collapse
Affiliation(s)
- Heather M. Jensen
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michaela A. TerAvest
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Mark G. Kokish
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Caroline M. Ajo-Franklin
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Synthetic Biology Institute, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Wei H, Dai J, Xia M, Romine MF, Shi L, Beliav A, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J, Qiu D. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1. MICROBIOLOGY-SGM 2016; 162:930-941. [PMID: 27010745 DOI: 10.1099/mic.0.000285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.
Collapse
Affiliation(s)
- Hehong Wei
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingcheng Dai
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ming Xia
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Alex Beliav
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Plant Biology and Microbiology, University of Oklahoma, OK, Norman, OK 73019, USA
| | - Dongru Qiu
- Institute of hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
42
|
Visualization of Periplasmic and Cytoplasmic Proteins with a Self-Labeling Protein Tag. J Bacteriol 2016; 198:1035-43. [PMID: 26787765 PMCID: PMC4800872 DOI: 10.1128/jb.00864-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023] Open
Abstract
The use of fluorescent and luminescent proteins in visualizing proteins has become a powerful tool in understanding molecular and cellular processes within living organisms. This success has resulted in an ever-increasing demand for new and more versatile protein-labeling tools that permit light-based detection of proteins within living cells. In this report, we present data supporting the use of the self-labeling HaloTag protein as a light-emitting reporter for protein fusions within the model prokaryote Escherichia coli. We show that functional protein fusions of the HaloTag can be detected both in vivo and in vitro when expressed within the cytoplasmic or periplasmic compartments of E. coli. The capacity to visually detect proteins localized in various prokaryotic compartments expands today's molecular biologist toolbox and paves the path to new applications. IMPORTANCE Visualizing proteins microscopically within living cells is important for understanding both the biology of cells and the role of proteins within living cells. Currently, the most common tool is green fluorescent protein (GFP). However, fluorescent proteins such as GFP have many limitations; therefore, the field of molecular biology is always in need of new tools to visualize proteins. In this paper, we demonstrate, for the first time, the use of HaloTag to visualize proteins in two different compartments within the model prokaryote Escherichia coli. The use of HaloTag as an additional tool to visualize proteins within prokaryotes increases our capacity to ask about and understand the role of proteins within living cells.
Collapse
|
43
|
TerAvest MA, Ajo‐Franklin CM. Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol Bioeng 2015; 113:687-97. [DOI: 10.1002/bit.25723] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Michaela A. TerAvest
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCalifornia94720
| | - Caroline M. Ajo‐Franklin
- Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720
- Materials Science DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720
- Synthetic Biology InstituteLawrence Berkeley National LaboratoryBerkeleyCalifornia94720
| |
Collapse
|
44
|
Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway. ACS Synth Biol 2015; 4:815-23. [PMID: 25621739 DOI: 10.1021/sb500331x] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavins regulate the rate and direction of extracellular electron transfer (EET) in Shewanella oneidensis. However, low concentration of endogenously secreted flavins by the wild-type S. oneidensis MR-1 limits its EET efficiency in bioelectrochemical systems (BES). Herein, a synthetic flavin biosynthesis pathway from Bacillus subtilis was heterologously expressed in S. oneidensis MR-1, resulting in ∼25.7 times' increase in secreted flavin concentration. This synthetic flavin module enabled enhanced bidirectional EET rate of MR-1, in which its maximum power output in microbial fuel cells increased ∼13.2 times (from 16.4 to 233.0 mW/m(2)), and the inward current increased ∼15.5 times (from 15.5 to 255.3 μA/cm(2)).
Collapse
Affiliation(s)
- Yun Yang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yuanzhao Ding
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yidan Hu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Cao
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School
of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637798, Singapore
| | - Scott A. Rice
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Staffan Kjelleberg
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hao Song
- Key
Laboratory of Systems Bioengineering (Ministry of Education), SynBio
Research Platform, Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
45
|
Kracke F, Vassilev I, Krömer JO. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol 2015; 6:575. [PMID: 26124754 PMCID: PMC4463002 DOI: 10.3389/fmicb.2015.00575] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/25/2015] [Indexed: 12/23/2022] Open
Abstract
Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical techniques.
Collapse
Affiliation(s)
- Frauke Kracke
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| | - Igor Vassilev
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| | - Jens O Krömer
- Centre for Microbial Electrochemical Systems, The University of Queensland, Brisbane QLD, Australia ; Advanced Water Management Centre, The University of Queensland, Brisbane QLD, Australia
| |
Collapse
|
46
|
Sturm-Richter K, Golitsch F, Sturm G, Kipf E, Dittrich A, Beblawy S, Kerzenmacher S, Gescher J. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. BIORESOURCE TECHNOLOGY 2015; 186:89-96. [PMID: 25812811 DOI: 10.1016/j.biortech.2015.02.116] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 05/28/2023]
Abstract
Microbial electrochemical cells are an emerging technology for achieving unbalanced fermentations. However, organisms that can serve as potential biocatalysts for this application are limited by their narrow substrate spectrum. This study describes the reprogramming of Escherichia coli for the efficient use of anodes as electron acceptors. Electron transfer into the periplasm was accelerated by 183% via heterologous expression of the c-type cytochromes CymA, MtrA and STC from Shewanella oneidensis. STC was identified as a target for heterologous expression via a two-stage screening approach. First, mass spectroscopic analysis revealed natively expressed cytochromes in S. oneidensis. Thereafter, the corresponding genes were cloned and expressed in E. coli to quantify periplasmic electron transfer activity using methylene blue. This redox dye was further used to expand electron transfer to carbon electrode surfaces. The results demonstrate that E. coli can be reprogrammed from glycerol fermentation to respiration upon production of the new electron transport chain.
Collapse
Affiliation(s)
- Katrin Sturm-Richter
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Frederik Golitsch
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Gunnar Sturm
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Elena Kipf
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany
| | - André Dittrich
- Institute of Photogrammetry and Remote Sensing, Englerstraße 7, D-76131 Karlsruhe, Germany
| | - Sebastian Beblawy
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
47
|
Ng IS, Xu F, Zhang X, Ye C. Enzymatic exploration of catalase from a nanoparticle producing and biodecolorizing algae Shewanella xiamenensis BC01. BIORESOURCE TECHNOLOGY 2015; 184:429-435. [PMID: 25306444 DOI: 10.1016/j.biortech.2014.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
Shewanella xiamenensis (SXM) was found to produce nanoparticles (NPs) under aerobic condition. The oxidoreductase enzymatic activities including of catalase, manganese peroxidase, laccase, NADH dehydrogenase, flavin reductase, azoreductase and Fe reductase are first investigated. Catalase showed the greatest enzymatic activity among all oxidoreductases in SXM, which with strong activities in multiple substrates of ABTS, guaiacol and 2,6-DMP. The optimum temperature, pH, concentrations of H2O2 and 2,6-DMP for this enzyme were found to be 65 °C, pH 4.0, 128.7 mM and 10 mM, respectively. Finally, from the kinetic parameters and structure simulation of catalase, implied that SXM would potentially apply in bioremediation, microbe fuel cells (MFCs) and nano-biotechnology based on its distinguished enzymatic system.
Collapse
Affiliation(s)
- I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Fangxin Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xia Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chiming Ye
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
48
|
Richter K, Gescher J. Accelerated glycerol fermentation in Escherichia coli using methanogenic formate consumption. BIORESOURCE TECHNOLOGY 2014; 162:389-391. [PMID: 24785787 DOI: 10.1016/j.biortech.2014.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Escherichia coli can ferment glycerol anaerobically only under very defined restrictive conditions. Hence, it was the aim of this study to overcome this limitation via a co-cultivation approach. Anaerobic glycerol fermentation by a pure E. coli culture was compared to a co-culture that also contained the formate-oxidizing methanogen Methanobacterium formicicum. Co-cultivation of the two strains led to a more than 11-fold increased glycerol consumption. Furthermore, it supported a constantly neutral pH and a shift from ethanol to succinate production. Moreover, M. formicicum was analyzed for its ability to grow on different standard media and a surprising versatility could be demonstrated.
Collapse
Affiliation(s)
- Katrin Richter
- Institut für angewandte Biowissenschaften, Angewandte Biologie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institut für angewandte Biowissenschaften, Angewandte Biologie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany.
| |
Collapse
|
49
|
Lin IWS, Lok CN, Che CM. Biosynthesis of silver nanoparticles from silver(i) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem Sci 2014. [DOI: 10.1039/c4sc00138a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The periplasmic nitrate reductase c-type cytochrome subunit NapC plays a major role in the biosynthesis of silver nanoparticles from the reduction of silver ions in a silver-resistantE. coli.
Collapse
Affiliation(s)
- Iris Wing-Shan Lin
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- HKU Shenzhen Institute of Research and Innovation
- Chemical Biology Centre
- The University of Hong Kong
| | - Chun-Nam Lok
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- HKU Shenzhen Institute of Research and Innovation
- Chemical Biology Centre
- The University of Hong Kong
| | - Chi-Ming Che
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- HKU Shenzhen Institute of Research and Innovation
- Chemical Biology Centre
- The University of Hong Kong
| |
Collapse
|
50
|
Taylor RC, Webb Robertson BJM, Markillie LM, Serres MH, Linggi BE, Aldrich JT, Hill EA, Romine MF, Lipton MS, Wiley HS. Changes in translational efficiency is a dominant regulatory mechanism in the environmental response of bacteria. Integr Biol (Camb) 2013; 5:1393-406. [PMID: 24081429 DOI: 10.1039/c3ib40120k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either 20% or 8.5% O2. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily due to differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Transcription levels were sp. significantly altered for 26% of the protein changes; translational efficiency was significantly altered for 46% and a combination of both was responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part due to altered tRNA pools, is a major determinant of regulated alterations in protein expression levels in bacteria.
Collapse
Affiliation(s)
- Ronald C Taylor
- Computational Biosciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|