1
|
Warner BR, Fredrick K. Contribution of an alternative 16S rRNA helix to biogenesis of the 30S subunit of the ribosome. RNA (NEW YORK, N.Y.) 2024; 30:770-778. [PMID: 38570183 PMCID: PMC11182017 DOI: 10.1261/rna.079960.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
30S subunits become inactive upon exposure to low Mg2+ concentration, because of a reversible conformational change that entails nucleotides (nt) in the neck helix (h28) and 3' tail of 16S rRNA. This active-to-inactive transition involves partial unwinding of h28 and repairing of nt 921-923 with nt 1532-1534, which requires flipping of the 3' tail by ∼180°. Growing evidence suggests that immature 30S particles adopt the inactive conformation in the cell, and transition to the active state occurs at a late stage of maturation. Here, we target nucleotides that form the alternative helix (hALT) of the inactive state. Using an orthogonal ribosome system, we find that disruption of hALT decreases translation activity in the cell modestly, by approximately twofold, without compromising ribosome fidelity. Ribosomes carrying substitutions at positions 1532-1533 support the growth of Escherichia coli strain Δ7 prrn (which carries a single rRNA operon), albeit at rates 10%-20% slower than wild-type ribosomes. These mutant Δ7 prrn strains accumulate free 30S particles and precursor 17S rRNA, indicative of biogenesis defects. Analysis of purified control and mutant subunits suggests that hALT stabilizes the inactive state by 1.2 kcal/mol with little-to-no impact on the active state or the transition state of conversion.
Collapse
Affiliation(s)
- Benjamin R Warner
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Son Y, Min J, Shin Y, Park W. Morphological and physiological adaptations of psychrophilic Pseudarthrobacter psychrotolerans YJ56 under temperature stress. Sci Rep 2023; 13:14970. [PMID: 37697016 PMCID: PMC10495460 DOI: 10.1038/s41598-023-42179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Both culture-independent and culture-dependent analyses using Nanopore-based 16S rRNA sequencing showed that short-term exposure of Antarctic soils to low temperature increased biomass with lower bacterial diversity and maintained high numbers of the phylum Proteobacteria, Firmicute, and Actinobacteria including Pseudarthrobacter species. The psychrophilic Pseudarthrobacter psychrotolerans YJ56 had superior growth at 13 °C, but could not grow at 30 °C, compared to other bacteria isolated from the same Antarctic soil. Unlike a single rod-shaped cell at 13 °C, strain YJ56 at 25 °C was morphologically shifted into a filamentous bacterium with several branches. Comparative genomics of strain YJ56 with other genera in the phylum Actinobacteria indicate remarkable copy numbers of rimJ genes that are possibly involved in dual functions, acetylation of ribosomal proteins, and stabilization of ribosomes by direct binding. Our proteomic data suggested that Actinobacteria cells experienced physiological stresses at 25 °C, showing the upregulation of chaperone proteins, GroEL and catalase, KatE. Level of proteins involved in the assembly of 50S ribosomal proteins and L29 in 50S ribosomal proteins increased at 13 °C, which suggested distinct roles of many ribosomal proteins under different conditions. Taken together, our data highlights the cellular filamentation and protein homeostasis of a psychrophilic YJ56 strain in coping with high-temperature stress.
Collapse
Affiliation(s)
- Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonjae Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Warner BR, Bundschuh R, Fredrick K. Roles of the leader-trailer helix and antitermination complex in biogenesis of the 30S ribosomal subunit. Nucleic Acids Res 2023; 51:5242-5254. [PMID: 37102690 PMCID: PMC10250234 DOI: 10.1093/nar/gkad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Ribosome biogenesis occurs co-transcriptionally and entails rRNA folding, ribosomal protein binding, rRNA processing, and rRNA modification. In most bacteria, the 16S, 23S and 5S rRNAs are co-transcribed, often with one or more tRNAs. Transcription involves a modified RNA polymerase, called the antitermination complex, which forms in response to cis-acting elements (boxB, boxA and boxC) in the nascent pre-rRNA. Sequences flanking the rRNAs are complementary and form long helices known as leader-trailer helices. Here, we employed an orthogonal translation system to interrogate the functional roles of these RNA elements in 30S subunit biogenesis in Escherichia coli. Mutations that disrupt the leader-trailer helix caused complete loss of translation activity, indicating that this helix is absolutely essential for active subunit formation in the cell. Mutations of boxA also reduced translation activity, but by only 2- to 3-fold, suggesting a smaller role for the antitermination complex. Similarly modest drops in activity were seen upon deletion of either or both of two leader helices, termed here hA and hB. Interestingly, subunits formed in the absence of these leader features exhibited defects in translational fidelity. These data suggest that the antitermination complex and precursor RNA elements help to ensure quality control during ribosome biogenesis.
Collapse
Affiliation(s)
- Benjamin R Warner
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus,OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Duan X, Luo J, Su Y, Liu C, Feng L, Chen Y. Proteomic profiling of robust acetoclastic methanogen in chrysene-altered anaerobic digestion: Global dissection of enzymes. WATER RESEARCH 2023; 233:119817. [PMID: 36871384 DOI: 10.1016/j.watres.2023.119817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Methanogen is a pivotal player in pollution treatment and energy recovery, and emerging pollutants (EPs) frequently occur in methanogen-applied biotechnology such as anaerobic digestion (AD). However, the direct effect and underlying mechanism of EPs on crucial methanogen involved in its application still remain unclear. The positive effect of chrysene (CH) on semi-continuous AD of sludge and the robust methanogen was dissected in this study. The methane yield in the digester with CH (100 mg/kg dry sludge) was 62.1 mL/g VS substrate, much higher than that in the control (46.1 mL/g VS substrate). Both methane production from acetoclastic methanogenesis (AM) and the AM proportion in the methanogenic pathway were improved in CH-shaped AD. Acetoclastic consortia, especially Methanosarcina and functional profiles of AM were enriched by CH in favor of the corresponding methanogenesis. Further, based on pure cultivation exposed to CH, the methanogenic performance, biomass, survivability and activity of typical Methanosarcina (M. barkeri) were boosted. Notably, iTRAQ proteomics revealed that the manufacturing (transcription and translation), expression and biocatalytic activity of acetoclastic metalloenzymes, particularly tetrahydromethanopterin S-methyltransferase and methyl-coenzyme M reductase with cobalt/nickel-cofactor (F430 and cobalamin), and acetyl-CoA decarbonylase/synthase with cobalt/nickel-active site, of M. barkeri were upregulated significantly with fold changes in the range of 1.21-3.20 due to the CH presence. This study shed light on EPs-affecting industrially crucial methanogen at the molecular biology level during AD and had implications in the technical relevance of methanogens.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jingyang Luo
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yu Su
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
6
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
7
|
Ribosomal protein S18 acetyltransferase RimI is responsible for the acetylation of elongation factor Tu. J Biol Chem 2022; 298:101914. [PMID: 35398352 PMCID: PMC9079301 DOI: 10.1016/j.jbc.2022.101914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.
Collapse
|
8
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
9
|
Parks AR, Escalante-Semerena JC. Protein N-terminal acylation: An emerging field in bacterial cell physiology. CURRENT TRENDS IN MICROBIOLOGY 2022; 16:1-18. [PMID: 37009250 PMCID: PMC10062008 DOI: 10.31300/ctmb.16.2022.1-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
N-terminal (Nt)-acylation is the irreversible addition of an acyl moiety to the terminal alpha amino group of a peptide chain. This type of modification alters the nature of the N terminus, which can interfere with the function of the modified protein by disrupting protein interactions, function, localization, degradation, hydrophobicity, or charge. Nt acylation is found in all domains of life and is a highly common occurrence in eukaryotic cells. However, in prokaryotes very few cases of Nt acylation have been reported. It was once thought that Nt acylation of proteins, other than ribosomal proteins, was uncommon in prokaryotes, but recent evidence suggests that this modification may be more common than once realized. In this review, we discuss what is known about prokaryotic Nt acetylation and the acetyltransferases that are responsible, as well as recent advancements in this field and currently used methods to study Nt acetylation.
Collapse
Affiliation(s)
- Anastacia R. Parks
- Department of Microbiology, University of Georgia, Athens, GA 30606, USA
| | | |
Collapse
|
10
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Ngoc LNT, Park SJ, Cai J, Huong TT, Lee K, Kang H. RsmD, a Chloroplast rRNA m2G Methyltransferase, Plays a Role in Cold Stress Tolerance by Possibly Affecting Chloroplast Translation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:948-958. [PMID: 34015128 DOI: 10.1093/pcp/pcab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Ribosomal RNA (rRNA) methylation is a pivotal process in the assembly and activity of ribosomes, which in turn play vital roles in the growth, development and stress responses of plants. Although few methyltransferases responsible for rRNA methylation have been identified in plant chloroplasts, the nature and function of these enzymes in chloroplasts remain largely unknown. In this study, we characterized ArabidopsisRsmD (At3g28460), an ortholog of the methyltransferase responsible for N2-methylguanosine (m2G) modification of 16S rRNA in Escherichia coli. Confocal microscopic analysis of an RsmD- green fluorescent protein fusion protein revealed that RsmD is localized to chloroplasts. Primer extension analysis indicated that RsmD is responsible for m2G methylation at position 915 in the 16S rRNA of Arabidopsis chloroplasts. Under cold stress, rsmd mutant plants exhibited retarded growth, i.e. had shorter roots, lower fresh weight and pale-green leaves, compared with wild-type (WT) plants. However, these phenotypes were not detected in response to drought or salt stress. Notably, the rsmd mutant was hypersensitive to erythromycin or lincomycin and accumulated fewer chloroplast proteins compared with the WT, suggesting that RsmD influences translation in chloroplasts. Complementation lines expressing RsmD in the rsmd mutant background recovered WT phenotypes. Importantly, RsmD harbored RNA methyltransferase activity. Collectively, the findings of this study indicate that RsmD is a chloroplast 16S rRNA methyltransferase responsible for m2G915 modification that plays a role in the adaptation of Arabidopsisto cold stress.
Collapse
Affiliation(s)
- Le Nguyen Tieu Ngoc
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
- Faculty of Forestry Agriculture, Tay Nguyen University, Buon Ma Thuot, Daklak 63000, Vietnam
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Trinh Thi Huong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
- The Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, Daklak 63000, Vietnam
| | - Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
12
|
GeZi G, Liu R, Du D, Wu N, Bao N, Fan L, Morigen M. YfiF, an unknown protein, affects initiation timing of chromosome replication in Escherichia coli. J Basic Microbiol 2021; 61:883-899. [PMID: 34486756 DOI: 10.1002/jobm.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 11/09/2022]
Abstract
The Escherichia coli YfiF protein is functionally unknown, being predicted as a transfer RNA/ribosomal RNA (tRNA/rRNA) methyltransferase. We find that absence of the yfiF gene delays initiation of chromosome replication and the delay is reversed by ectopic expression of YfiF, whereas excess YfiF causes an early initiation. A slight decrease in both cell size and number of origin per mass is observed in ΔyfiF cells. YfiF does not genetically interact with replication proteins such as DnaA, DnaB, and DnaC. Interestingly, YfiF is associated with ribosome modulation factor (RMF), hibernation promotion factor (HPF), and the tRNA methyltransferase TrmL. Defects in replication initiation of Δrmf, Δhpf, and ΔtrmL can be rescued by overexpression of YfiF, indicating that YfiF is functionally identical to RMF, HPF, and TrmL in terms of replication initiation. Also, YfiF interacts with the rRNA methyltransferase RsmC. Moreover, the total amount of proteins and DnaA content per cell decreases or increases in the absence of YfiF or the presence of excess YfiF. These facts suggest that YfiF is a ribosomal dormancy-like factor, affecting ribosome function. Thus, we propose that YfiF is involved in the correct timing of chromosome replication by changing the DnaA content per cell as a result of affecting ribosome function.
Collapse
Affiliation(s)
- GeZi GeZi
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Nier Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Narisu Bao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
13
|
Swain A, Gnanasekar P, Prava J, Rajeev AC, Kesarwani P, Lahiri C, Pan A. A Comparative Genomics Approach for Shortlisting Broad-Spectrum Drug Targets in Nontuberculous Mycobacteria. Microb Drug Resist 2020; 27:212-226. [PMID: 32936741 DOI: 10.1089/mdr.2020.0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many members of nontuberculous mycobacteria (NTM) are opportunistic pathogens causing several infections in animals. The incidence of NTM infections and emergence of drug-resistant NTM strains are rising worldwide, emphasizing the need to develop novel anti-NTM drugs. The present study is aimed to identify broad-spectrum drug targets in NTM using a comparative genomics approach. The study identified 537 core proteins in NTM of which 45 were pathogen specific and essential for the survival of pathogens. Furthermore, druggability analysis indicated that 15 were druggable among those 45 proteins. These 15 proteins, which were core proteins, pathogen-specific, essential, and druggable, were considered as potential broad-spectrum candidates. Based on their locations in cytoplasm and membrane, targets were classified as drug and vaccine targets. The identified 15 targets were different enzymes, carrier proteins, transcriptional regulator, two-component system protein, ribosomal, and binding proteins. The identified targets could further be utilized by researchers to design inhibitors for the discovery of antimicrobial agents.
Collapse
Affiliation(s)
- Aishwarya Swain
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Jyoti Prava
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Athira C Rajeev
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Pragya Kesarwani
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Archana Pan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
14
|
Zamora M, Ziegler CA, Freddolino PL, Wolfe AJ. A Thermosensitive, Phase-Variable Epigenetic Switch: pap Revisited. Microbiol Mol Biol Rev 2020; 84:e00030-17. [PMID: 32727743 PMCID: PMC7392537 DOI: 10.1128/mmbr.00030-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been more than a decade since the last comprehensive review of the phase-variable uropathogen-associated pyelonephritis-associated pilus (pap) genetic switch. Since then, important data have come to light, including additional factors that regulate pap expression, better characterization of H-NS regulation, the structure of the Lrp octamer in complex with pap regulatory DNA, the temperature-insensitive phenotype of a mutant lacking the acetyltransferase RimJ, evidence that key components of the regulatory machinery are acetylated, and new insights into the role of DNA binding by key regulators in shaping both the physical structure and regulatory state of the papI and papBA promoters. This review revisits pap, integrating these newer observations with older ones to produce a new model for the concerted behavior of this virulence-regulatory region.
Collapse
Affiliation(s)
- Mario Zamora
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
15
|
Abedeera SM, Hawkins CM, Abeysirigunawardena SC. RsmG forms stable complexes with premature small subunit rRNA during bacterial ribosome biogenesis. RSC Adv 2020; 10:22361-22369. [PMID: 35514586 PMCID: PMC9054591 DOI: 10.1039/d0ra02732d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
The ribosome is the ribonucleoprotein machine that carries out protein biosynthesis in all forms of life. Perfect synchronization between ribosomal RNA (rRNA) transcription, folding, post-transcriptional modification, maturation, and assembly of r-proteins is essential for the rapid formation of structurally and functionally accurate ribosomes. Many RNA nucleotide modification enzymes may function as assembly factors that oversee the accuracy of ribosome assembly. The protein RsmG is a methyltransferase enzyme that is responsible for N7 methylation in G527 of 16S rRNA. Here we illustrate the ability of RsmG to bind various premature small subunit ribosomal RNAs with contrasting affinities. Protein RsmG binds with approximately 15-times higher affinity to premature 16S rRNA with the full leader sequence compared to that of mature 16S rRNA. Various r-proteins which bind to the 5′-domain influence RsmG binding. The observed binding cooperativity between RsmG and r-proteins is sensitive to the maturation status of premature small subunit rRNA. However, neither the maturation of 16S rRNA nor the presence of various r-proteins significantly influence the methylation activity of RsmG. The capability of RsmG to bind to premature small subunit rRNA and alter its binding preference to various RNA–protein complexes based on the maturation of rRNA indicates its ability to influence ribosome assembly. RsmG is the methyltransferase responsible for the N7 methylation of G527 of 16S rRNA. Here we show that RsmG binds preferably to premature bacterial small subunit rRNA. The presence of ribosomal proteins also influences the stability of RsmG–rRNA complexes.![]()
Collapse
Affiliation(s)
- Sudeshi M Abedeera
- Department of Chemistry and Biochemistry, Kent State University Kent Ohio 44242 USA
| | - Caitlin M Hawkins
- Department of Chemistry and Biochemistry, Kent State University Kent Ohio 44242 USA
| | | |
Collapse
|
16
|
Gc K, Gyawali P, Balci H, Abeysirigunawardena S. Ribosomal RNA Methyltransferase RsmC Moonlights as an RNA Chaperone. Chembiochem 2020; 21:1885-1892. [PMID: 31972066 DOI: 10.1002/cbic.201900708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Indexed: 01/31/2023]
Abstract
Ribosomes are ribonucleoprotein particles that are essential for protein biosynthesis in all forms of life. During ribosome biogenesis, transcription, folding, modification, and processing of rRNA are coupled to the assembly of proteins. Various assembly factors are required to synchronize all different processes that occur during ribosome biogenesis. Herein, the RNA chaperone and RNA strand annealing activity of rRNA modification enzyme ribosome small subunit methyltransferase C (RsmC), which modifies guanine to 2-methylguanosine (m2 G) at position 1207 of 16S rRNA (Escherichia coli nucleotide numbering) located at helix 34 (h34), are reported. A 25-fold increase in the h34 RNA strand annealing rates is observed in the presence of RsmC. Single-molecule FRET experiments confirmed the ability of protein RsmC to denature a non-native structure formed by one of the two h34 strands and to form a native-like duplex. This observed RNA chaperone activity of protein RsmC might play a vital role in the rapid generation of functional ribosomes.
Collapse
Affiliation(s)
- Keshav Gc
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
| | - Prabesh Gyawali
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | | |
Collapse
|
17
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
18
|
Zhang S, Wunier W, Yao Y, Morigen M. Defects in ribosome function delay the initiation of chromosome replication in Escherichia coli. J Basic Microbiol 2018; 58:1091-1099. [PMID: 30211949 DOI: 10.1002/jobm.201800295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 01/14/2023]
Abstract
The Sra protein is a component of the 30S ribosomal subunit while RimJ is a ribosome-associated protein that plays a role in the maturation of the 30S ribosomal subunit. Here we found that Δsra and ΔrimJ cells showed a delayed initiation of DNA replication, prolonged doubling time, decreased cell size, and decreased amounts of total protein and DnaA per cell compared with these observed for wild-type cells. A temperature sensitivity test demonstrated that absence of the Sra or RimJ protein did not change the temperature sensitivity of the dnaA46, dnaB252, or dnaC2 mutants. Moreover, ectopic expression of Sra reversed the mutant phenotype while cells carrying the pACYC177-rimJ plasmid did not reverse the rimJ mutant phenotype. The results indicate that deletion of sra or rimJ cause defects in ribosomal function and affect the translation process, leading to a decrease in synthesis of proteins including DnaA. Therefore, we conclude that Sra- and RimJ-mediated ribosomal function is required for precise timing of initiation of chromosome replication.
Collapse
Affiliation(s)
- Shujun Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wunier Wunier
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
19
|
Fiedoruk K, Drewnowska JM, Daniluk T, Leszczynska K, Iwaniuk P, Swiecicka I. Ribosomal background of the Bacillus cereus group thermotypes. Sci Rep 2017; 7:46430. [PMID: 28406161 PMCID: PMC5390287 DOI: 10.1038/srep46430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 11/09/2022] Open
Abstract
In this study we reconstructed the architecture of Bacillus cereus sensu lato population based on ribosomal proteins, and identified a link between the ribosomal proteins’ variants and thermal groups (thermotypes) of the bacilli. The in silico phyloproteomic analysis of 55 ribosomal proteins (34 large and 21 small subunit r-proteins) of 421 strains, representing 14 well-established or plausible B. cereus sensu lato species, revealed several ribosomal clusters (r-clusters), which in general were well correlated with the strains’ affiliation to phylogenetic/thermal groups I–VII. However, a conformity and possibly a thermal characteristic of certain phylogenetic groups, e.g. the group IV, were not supported by a distribution of the corresponding r-clusters, and consequently neither by the analysis of cold-shock proteins (CSPs) nor by a content of heat shock proteins (HSPs). Furthermore, a preference for isoleucine and serine over valine and alanine in r-proteins along with a lack of HSP16.4 were recognized in non-mesophilic thermotypes. In conclusion, we suggest that the observed divergence in ribosomal proteins may be connected with an adaptation of B. cereus sensu lato members to various thermal niches.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Justyna M Drewnowska
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Iwaniuk
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland.,Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
The Loop 2 Region of Ribosomal Protein uS5 Influences Spectinomycin Sensitivity, Translational Fidelity, and Ribosome Biogenesis. Antimicrob Agents Chemother 2017; 61:AAC.01186-16. [PMID: 27855073 DOI: 10.1128/aac.01186-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Ribosomal protein uS5 is an essential component of the small ribosomal subunit that is involved in subunit assembly, maintenance of translational fidelity, and the ribosome's response to the antibiotic spectinomycin. While many of the characterized uS5 mutations that affect decoding map to its interface with uS4, more recent work has shown that residues distant from the uS4-uS5 interface can also affect the decoding process. We targeted one such interface-remote area, the loop 2 region (residues 20 to 31), for mutagenesis in Escherichia. coli and generated 21 unique mutants. A majority of the loop 2 alterations confer resistance to spectinomycin and affect the fidelity of translation. However, only a minority show altered rRNA processing or ribosome biogenesis defects.
Collapse
|
21
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
22
|
Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae. mSphere 2016; 1:mSphere00109-15. [PMID: 27303706 PMCID: PMC4863615 DOI: 10.1128/msphere.00109-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62–K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5′ untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62–K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast. The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5′ untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62–K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62–K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62–K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62–K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single-site substitutions within the Y62–K70 peptide did not affect the growth of engineered yeast strains, arguing against its having a critical role during translation initiation via specific interactions with the 5′ untranslated region of mRNA molecules. Only the simultaneous replacement of five conserved residues within the Y62–K70 fragment or the replacement of the yeast protein with the human homolog resulted in growth defects and caused significant changes in polysome profiles. The results expand our knowledge of ribosomal protein function and suggest a role of Rps26 during ribosome assembly in yeast.
Collapse
|
23
|
Favrot L, Blanchard JS, Vergnolle O. Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation. Biochemistry 2016; 55:989-1002. [PMID: 26818562 DOI: 10.1021/acs.biochem.5b01269] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The GCN5-related N-acetyltransferases family (GNAT) is an important family of proteins that includes more than 100000 members among eukaryotes and prokaryotes. Acetylation appears as a major regulatory post-translational modification and is as widespread as phosphorylation. N-Acetyltransferases transfer an acetyl group from acetyl-CoA to a large array of substrates, from small molecules such as aminoglycoside antibiotics to macromolecules. Acetylation of proteins can occur at two different positions, either at the amino-terminal end (αN-acetylation) or at the ε-amino group (εN-acetylation) of an internal lysine residue. GNAT members have been classified into different groups on the basis of their substrate specificity, and in spite of a very low primary sequence identity, GNAT proteins display a common and conserved fold. This Current Topic reviews the different classes of bacterial GNAT proteins, their functions, their structural characteristics, and their mechanism of action.
Collapse
Affiliation(s)
- Lorenza Favrot
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
24
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
25
|
Naganathan A, Wood MP, Moore SD. The large ribosomal subunit protein L9 enables the growth of EF-P deficient cells and enhances small subunit maturation. PLoS One 2015; 10:e0120060. [PMID: 25879934 PMCID: PMC4399890 DOI: 10.1371/journal.pone.0120060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023] Open
Abstract
The loss of the large ribosomal protein L9 causes a reduction in translation fidelity by an unknown mechanism. To identify pathways affected by L9, we identified mutants of E. coli that require L9 for fitness. In a prior study, we characterized L9-dependent mutations in the essential GTPase Der (EngA). Here, we describe a second class of L9-dependent mutations that either compromise or inactivate elongation factor P (EF-P, eIF5A in eukaryotes). Without L9, Δefp cells are practically inviable. Cell fractionation studies revealed that, in both the Der and EF-P mutant cases, L9's activity reduces immature 16S rRNA in 30S particles and partially restores the abundance of monosomes. Inspired by these findings, we discovered that L9 also enhances 16S maturation in wild-type cells. Surprisingly, although the amount of immature 16S in 30S particles was found to be elevated in ΔrplI cells, the amount in polysomes was low and inversely correlated with the immature 16S abundance. These findings provide an explanation for the observed fitness increases afforded by L9 in these mutants and reveal particular physiological conditions in which L9 becomes critical. Additionally, L9 may affect the partitioning of small subunits containing immature 16S rRNA.
Collapse
Affiliation(s)
- Anusha Naganathan
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
| | - Matthew P. Wood
- Seattle Biomed, 307 Westlake Ave N, Suite 500, Seattle, WA, 98109, United States of America
- Department of Global Health, University of Washington, 1510 N.E. San Juan Road, Seattle, WA, 98195, United States of America
| | - Sean D. Moore
- The Burnett School of Biomedical Sciences, College of Medicine, The University of Central Florida, Orlando, FL, 32816, United States of America
- * E-mail:
| |
Collapse
|
26
|
Craney A, Romesberg FE. A putative cro-like repressor contributes to arylomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:3066-74. [PMID: 25753642 PMCID: PMC4432125 DOI: 10.1128/aac.04597-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/05/2015] [Indexed: 01/26/2023] Open
Abstract
Antibiotic-resistant bacteria are a significant public health concern and motivate efforts to develop new classes of antibiotics. One such class of antibiotics is the arylomycins, which target type I signal peptidase (SPase), the enzyme responsible for the release of secreted proteins from their N-terminal leader sequences. Despite the essentiality, conservation, and relative accessibility of SPase, the activity of the arylomycins is limited against some bacteria, including the important human pathogen Staphylococcus aureus. To understand the origins of the limited activity against S. aureus, we characterized the susceptibility of a panel of strains to two arylomycin derivatives, arylomycin A-C16 and its more potent analog arylomycin M131. We observed a wide range of susceptibilities to the two arylomycins and found that resistant strains were sensitized by cotreatment with tunicamycin, which inhibits the first step of wall teichoic acid synthesis. To further understand how S. aureus responds to the arylomycins, we profiled the transcriptional response of S. aureus NCTC 8325 to growth-inhibitory concentrations of arylomycin M131 and found that it upregulates the cell wall stress stimulon (CWSS) and an operon consisting of a putative transcriptional regulator and three hypothetical proteins. Interestingly, we found that mutations in the putative transcriptional regulator are correlated with resistance, and selection for resistance ex vivo demonstrated that mutations in this gene are sufficient for resistance. The results begin to elucidate how S. aureus copes with secretion stress and how it evolves resistance to the inhibition of SPase.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
27
|
Investigating Bacterial Protein Synthesis Using Systems Biology Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:21-40. [PMID: 26621460 DOI: 10.1007/978-3-319-23603-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein synthesis is essential for bacterial growth and survival. Its study in Escherichia coli helped uncover features conserved among bacteria as well as universally. The pattern of discovery and the identification of some of the longest-known components of the protein synthesis machinery, including the ribosome itself, tRNAs, and translation factors proceeded through many stages of successively more refined biochemical purifications, finally culminating in the isolation to homogeneity, identification, and mapping of the smallest unit required for performing the given function. These early studies produced a wealth of information. However, many unknowns remained. Systems biology approaches provide an opportunity to investigate protein synthesis from a global perspective, overcoming the limitations of earlier ad hoc methods to gain unprecedented insights. This chapter reviews innovative systems biology approaches, with an emphasis on those designed specifically for investigating the protein synthesis machinery in E. coli.
Collapse
|
28
|
The RimL transacetylase provides resistance to translation inhibitor microcin C. J Bacteriol 2014; 196:3377-85. [PMID: 25002546 DOI: 10.1128/jb.01584-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide-nucleotide antibiotic microcin C (McC) is produced by some Escherichia coli strains. Inside a sensitive cell, McC is processed, releasing a nonhydrolyzable analog of aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. The product of mccE, a gene from the plasmid-borne McC biosynthetic cluster, acetylates processed McC, converting it into a nontoxic compound. MccE is homologous to chromosomally encoded acetyltransferases RimI, RimJ, and RimL, which acetylate, correspondingly, the N termini of ribosomal proteins S18, S5, and L12. Here, we show that E. coli RimL, but not other Rim acetyltransferases, provides a basal level of resistance to McC and various toxic nonhydrolyzable aminoacyl adenylates. RimL acts by acetylating processed McC, which along with ribosomal protein L12 should be considered a natural RimL substrate. When overproduced, RimL also makes cells resistant to albomycin, an antibiotic that upon intracellular processing gives rise to a seryl-thioribosyl pyrimidine that targets seryl-tRNA synthetase. We further show that E. coli YhhY, a protein related to Rim acetyltransferases but without a known function, is also able to detoxify several nonhydrolyzable aminoacyl adenylates but not processed McC. We propose that RimL and YhhY protect bacteria from various toxic aminoacyl nucleotides, either exogenous or those generated inside the cell during normal metabolism.
Collapse
|
29
|
Yang Z, Guo Q, Goto S, Chen Y, Li N, Yan K, Zhang Y, Muto A, Deng H, Himeno H, Lei J, Gao N. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence. Protein Cell 2014; 5:394-407. [PMID: 24671761 PMCID: PMC3996153 DOI: 10.1007/s13238-014-0044-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022] Open
Abstract
The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.
Collapse
Affiliation(s)
- Zhixiu Yang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol Cell 2013; 52:506-16. [PMID: 24207057 DOI: 10.1016/j.molcel.2013.09.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/20/2013] [Accepted: 09/19/2013] [Indexed: 12/27/2022]
Abstract
Assembly of 30S ribosomal subunits from their protein and RNA components requires extensive refolding of the 16S rRNA and is assisted by 10-20 assembly factors in bacteria. We probed the structures of 30S assembly intermediates in E. coli cells, using a synchrotron X-ray beam to generate hydroxyl radical in the cytoplasm. Widespread differences between mature and pre-30S complexes in the absence of assembly factors RbfA and RimM revealed global reorganization of RNA-protein interactions prior to maturation of the 16S rRNA and showed how RimM reduces misfolding of the 16S 3' domain during transcription in vivo. Quantitative (14)N/(15)N mass spectrometry of affinity-purified pre-30S complexes confirmed the absence of tertiary assembly proteins and showed that N-terminal acetylation of proteins S18 and S5 correlates with correct folding of the platform and central pseudoknot. Our results indicate that cellular factors delay specific RNA folding steps to ensure the quality of assembly.
Collapse
Affiliation(s)
- Sarah F Clatterbuck Soper
- Cell, Molecular, and Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
31
|
Burakovsky DE, Prokhorova IV, Sergiev PV, Milón P, Sergeeva OV, Bogdanov AA, Rodnina MV, Dontsova OA. Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation. Nucleic Acids Res 2012; 40:7885-95. [PMID: 22649054 PMCID: PMC3439901 DOI: 10.1093/nar/gks508] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The functional centers of the ribosome in all organisms contain ribosomal RNA (rRNA) modifications, which are introduced by specialized enzymes and come at an energy cost for the cell. Surprisingly, none of the modifications tested so far was essential for growth and hence the functional role of modifications is largely unknown. Here, we show that the methyl groups of nucleosides m2G966 and m5C967 of 16S rRNA in Escherichia coli are important for bacterial fitness. In vitro analysis of all phases of translation suggests that the m2G966/m5C967 modifications are dispensable for elongation, termination and ribosome recycling. Rather, the modifications modulate the early stages of initiation by stabilizing the binding of fMet-tRNAfMet to the 30S pre-initiation complex prior to start-codon recognition. We propose that the m2G966 and m5C967 modifications help shaping the bacterial proteome, most likely by fine-tuning the rates that determine the fate of a given messenger RNA (mRNA) at early checkpoints of mRNA selection.
Collapse
|
32
|
Abstract
The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.
Collapse
Affiliation(s)
- Zahra Shajani
- Departments of Molecular Biology and Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
33
|
Nesterchuk M, Sergiev P, Dontsova O. Posttranslational Modifications of Ribosomal Proteins in Escherichia coli. Acta Naturae 2011; 3:22-33. [PMID: 22649682 PMCID: PMC3347575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
А number of ribosomal proteins inEscherichia coliundergo posttranslational modifications. Six ribosomal proteins are methylated (S11, L3, L11, L7/L12, L16, and L33), three proteins are acetylated (S5, S18, and L7), and protein S12 is methylthiolated. Extra amino acid residues are added to protein S6. С-terminal amino acid residues are partially removed from protein L31. The functional significance of these modifications has remained unclear. These modifications are not vital to the cells, and it is likely that they have regulatory functions. This paper reviews all the known posttranslational modifications of ribosomal proteins inEscherichia coli. Certain enzymes responsible for the modifications and mechanisms of enzymatic reactions are also discussed.
Collapse
Affiliation(s)
- M.V. Nesterchuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
| | - P.V. Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
| | - O.A. Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
| |
Collapse
|
34
|
Li J, Liu CH, Wang FS. Thymosin alpha 1: biological activities, applications and genetic engineering production. Peptides 2010; 31:2151-8. [PMID: 20699109 PMCID: PMC7115394 DOI: 10.1016/j.peptides.2010.07.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 12/16/2022]
Abstract
Thymosin alpha 1 (Tα1), a 28-amino acid peptide, was first described and characterized from calf thymuses in 1977. This peptide can enhance T-cell, dendritic cell (DC) and antibody responses, modulate cytokines and chemokines production and block steroid-induced apoptosis of thymocytes. Due to its pleiotropic biological activities, Tα1 has gained increasing interest in recent years and has been used for the treatment of various diseases in clinic. Accordingly, there is an increasing need for the production of this peptide. So far, Tα1 used in clinic is synthesized using solid phase peptide synthesis. Here, we summarize the genetic engineering methods to produce Tα1 using prokaryotic or eukaryotic expression systems. The effectiveness of these biological products in increasing the secretion of cytokines and in promoting lymphocyte proliferation were investigated in vitro studies. This opens the possibility for biotechnological production of Tα1 for the research and clinical applications.
Collapse
Affiliation(s)
- Juan Li
- Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Chun Hui Liu
- Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Feng Shan Wang
- Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
- Corresponding author at: Institute of Biochemical and Biotechnological Drug, National Glycoengineering Research Center, Shandong University, Jinan, Shandong, China. Tel.: +86 531 88382589; fax: +86 531 88382548.
| |
Collapse
|
35
|
Protein acetylation in archaea, bacteria, and eukaryotes. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20885971 PMCID: PMC2946573 DOI: 10.1155/2010/820681] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/22/2010] [Indexed: 12/05/2022]
Abstract
Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal) or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which—Alba—was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.
Collapse
|
36
|
Jewett MC, Forster AC. Update on designing and building minimal cells. Curr Opin Biotechnol 2010; 21:697-703. [PMID: 20638265 DOI: 10.1016/j.copbio.2010.06.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/18/2010] [Indexed: 12/11/2022]
Abstract
Minimal cells comprise only the genes and biomolecular machinery necessary for basic life. Synthesizing minimal and minimized cells will improve understanding of core biology, enhance development of biotechnology strains of bacteria, and enable evolutionary optimization of natural and unnatural biopolymers. Design and construction of minimal cells is proceeding in two different directions: 'top-down' reduction of bacterial genomes in vivo and 'bottom-up' integration of DNA/RNA/protein/membrane syntheses in vitro. Major progress in the past 5 years has occurred in synthetic genomics, minimization of the Escherichia coli genome, sequencing of minimal bacterial endosymbionts, identification of essential genes, and integration of biochemical systems.
Collapse
Affiliation(s)
- Michael C Jewett
- Department of Chemical and Biological Engineering and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | | |
Collapse
|
37
|
Appropriate maturation and folding of 16S rRNA during 30S subunit biogenesis are critical for translational fidelity. Proc Natl Acad Sci U S A 2010; 107:4567-72. [PMID: 20176963 DOI: 10.1073/pnas.0912305107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal protein S5 is critical for small ribosomal subunit (SSU) assembly and is indispensable for SSU function. Previously, we identified a point mutation in S5, (G28D) that alters both SSU formation and translational fidelity in vivo, which is unprecedented for other characterized S5 mutations. Surprisingly, additional copies of an extraribosomal assembly factor, RimJ, rescued all the phenotypes associated with S5(G28D), including fidelity defects, suggesting that the effect of RimJ on rescuing the miscoding of S5(G28D) is indirect. To understand the underlying mechanism, we focused on the biogenesis cascade and observed defects in processing of precursor 16S (p16S) rRNA in the S5(G28D) strain, which were rescued by RimJ. Analyses of p16S rRNA-containing ribosomes from other strains further supported a correspondence between the extent of 5(') end maturation of 16S rRNA and translational miscoding. Chemical probing of mutant ribosomes with additional leader sequences at the 5(') end of 16S rRNA compared to WT ribosomes revealed structural differences in the region of helix 1. Thus, the presence of additional nucleotides at the 5(') end of 16S rRNA could alter fidelity by changing the architecture of 16S rRNA in translating ribosomes and suggests that fidelity is governed by accuracy and completeness of the SSU biogenesis cascade.
Collapse
|
38
|
Babu M, Musso G, Díaz-Mejía JJ, Butland G, Greenblatt JF, Emili A. Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. MOLECULAR BIOSYSTEMS 2009; 5:1439-55. [PMID: 19763343 DOI: 10.1039/b907407d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular interactions define the functional organization of the cell. Epistatic (genetic, or gene-gene) interactions, one of the most informative and commonly encountered forms of functional relationships, are increasingly being used to map process architecture in model eukaryotic organisms. In particular, 'systems-level' screens in yeast and worm aimed at elucidating genetic interaction networks have led to the generation of models describing the global modular organization of gene products and protein complexes within a cell. However, comparable data for prokaryotic organisms have not been available. Given its ease of growth and genetic manipulation, the Gram-negative bacterium Escherichia coli appears to be an ideal model system for performing comprehensive genome-scale examinations of genetic redundancy in bacteria. In this review, we highlight emerging experimental and computational techniques that have been developed recently to examine functional relationships and redundancy in E. coli at a systems-level, and their potential application to prokaryotes in general. Additionally, we have scanned PubMed abstracts and full-text published articles to manually curate a list of approximately 200 previously reported synthetic sick or lethal genetic interactions in E. coli derived from small-scale experimental studies.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | | | | | | | | |
Collapse
|
39
|
Connolly K, Culver G. Deconstructing ribosome construction. Trends Biochem Sci 2009; 34:256-63. [PMID: 19376708 DOI: 10.1016/j.tibs.2009.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 12/30/2022]
Abstract
The ribosome is an essential ribonucleoprotein enzyme, and its biogenesis is a fundamental process in all living cells. Recent X-ray crystal structures of the bacterial ribosome and new technologies have allowed a greater interrogation of in vitro ribosome assembly; however, substantially less is known about ribosome biogenesis in vivo. Ongoing investigations are focused on elucidating the cellular processes that facilitate biogenesis of the ribosomal subunits, and many extraribosomal factors, including modification enzymes, remodeling enzymes and GTPases, are being uncovered. Moreover, specific roles for ribosome biogenesis factors in subunit maturation are now being elaborated. Ultimately, such studies will reveal a more complete understanding of processes at work in in vivo ribosome biogenesis.
Collapse
Affiliation(s)
- Keith Connolly
- Departments of Biology and of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
40
|
Perreault A, Gascon S, D'Amours A, Aletta JM, Bachand F. A methyltransferase-independent function for Rmt3 in ribosomal subunit homeostasis. J Biol Chem 2009; 284:15026-37. [PMID: 19359250 DOI: 10.1074/jbc.m109.004812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Schizosaccharomyces pombe Rmt3 is a member of the protein-arginine methyltransferase (PRMT) family and is the homolog of human PRMT3. We previously characterized Rmt3 as a ribosomal protein methyltransferase based on the identification of the 40 S Rps2 (ribosomal protein S2) as a substrate of Rmt3. RMT3-null cells produce nonmethylated Rps2 and show mis-regulation of the 40 S/60 S ribosomal subunit ratio due to a small subunit deficit. For this study, we have generated a series of RMT3 alleles that express various amino acid substitutions to characterize the functional domains of Rmt3 in Rps2 binding, Rps2 arginine methylation, and small ribosomal subunit production. Notably, catalytically inactive versions of Rmt3 restored the ribosomal subunit imbalance detected in RMT3-null cells. Consistent with a methyltransferase-independent function for Rmt3 in small ribosomal subunit production, the expression of an Rps2 variant in which the identified methylarginine residues were substituted with lysines showed normal levels of 40 S subunit. Importantly, substitutions within the zinc finger domain of Rmt3 that abolished Rps2 binding did not rescue the 40 S ribosomal subunit deficit of RMT3-null cells. Our findings suggest that the Rmt3-Rps2 interaction, rather than Rps2 methylation, is important for the function of Rmt3 in the regulation of small ribosomal subunit production.
Collapse
Affiliation(s)
- Audrey Perreault
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
41
|
RimJ is responsible for N(alpha)-acetylation of thymosin alpha1 in Escherichia coli. Appl Microbiol Biotechnol 2009; 84:99-104. [PMID: 19352641 DOI: 10.1007/s00253-009-1994-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/27/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
N(alpha)-Acetylation is one of the most common protein modifications in eukaryotes but a rare event in prokaryotes. Some endogenously N(alpha)-acetylated proteins in eukaryotes are frequently reported not to be acetylated or only very partially when expressed in recombinant Escherichia coli. Thymosin alpha1 (Talpha1), an N(alpha)-acetylated peptide of 28 amino acids, displays a powerful general immunostimulating activity. Here, we revealed that a fusion protein of thymosin alpha1 and L12 is partly N(alpha)-acetylated in E. coli. Through deletion of some N(alpha)-acetyltransferases by Red recombination, we found that, when rimJ is disrupted, the fusion protein is completely unacetylated. The relationship of rimJ and N(alpha)-acetylation of Talpha1 was further investigated by gene rescue and in vitro modification. Our results demonstrate that N(alpha)-acetylation of recombinant Talpha1-fused protein in E. coli is catalyzed by RimJ and that fully acetylated Talpha1 can be obtained by co-expressing with RimJ. This is the first description that an ectopic protein acetylation in bacterial expression systems is catalyzed by RimJ, a known prokaryotic N(alpha)-acetyltransferase.
Collapse
|
42
|
Al Refaii A, Alix JH. Ribosome biogenesis is temperature-dependent and delayed inEscherichia colilacking the chaperones DnaK or DnaJ. Mol Microbiol 2009; 71:748-62. [DOI: 10.1111/j.1365-2958.2008.06561.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob Agents Chemother 2008; 53:563-71. [PMID: 19029332 DOI: 10.1128/aac.00870-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several protein synthesis inhibitors are known to inhibit ribosome assembly. This may be a consequence of direct binding of the antibiotic to ribosome precursor particles, or it could result indirectly from loss of coordination in the production of ribosomal components due to the inhibition of protein synthesis. Here we demonstrate that erythromycin and chloramphenicol, inhibitors of the large ribosomal subunit, affect the assembly of both the large and small subunits. Expression of a small erythromycin resistance peptide acting in cis on mature ribosomes relieves the erythromycin-mediated assembly defect for both subunits. Erythromycin treatment of bacteria expressing a mixture of erythromycin-sensitive and -resistant ribosomes produced comparable effects on subunit assembly. These results argue in favor of the view that erythromycin and chloramphenicol affect the assembly of the large ribosomal subunit indirectly.
Collapse
|
44
|
Woodson SA. RNA folding and ribosome assembly. Curr Opin Chem Biol 2008; 12:667-73. [PMID: 18935976 DOI: 10.1016/j.cbpa.2008.09.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/14/2008] [Accepted: 09/20/2008] [Indexed: 01/29/2023]
Abstract
Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.
Collapse
Affiliation(s)
- Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA.
| |
Collapse
|