1
|
Denecke S, Malfara MF, Hodges KR, Holmes NA, Williams AR, Gallagher-Teske JH, Pascarella JM, Daniels AM, Sterk GJ, Leurs R, Ruthel G, Hoang R, Povelones ML, Povelones M. Adhesion of Crithidia fasciculata promotes a rapid change in developmental fate driven by cAMP signaling. mSphere 2024; 9:e0061724. [PMID: 39315810 PMCID: PMC11520290 DOI: 10.1128/msphere.00617-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Trypanosomatids are single-celled parasites responsible for human and animal disease. Typically, colonization of an insect host is required for transmission. Stable attachment of parasites to insect tissues via their single flagellum coincides with differentiation and morphological changes. Although attachment is a conserved stage in trypanosomatid life cycles, the molecular mechanisms are not well understood. To study this process, we elaborate upon an in vitro model in which the swimming form of the trypanosomatid Crithidia fasciculata rapidly differentiates following adhesion to artificial substrates. Live imaging of cells transitioning from swimming to attached shows parasites undergoing a defined sequence of events, including an initial adhesion near the base of the flagellum immediately followed by flagellar shortening, cell rounding, and the formation of a hemidesmosome-like attachment plaque between the tip of the shortened flagellum and the substrate. Quantitative proteomics of swimming versus attached parasites suggests differential regulation of cyclic adenosine monophosphate (cAMP)-based signaling proteins. We have localized two of these proteins to the flagellum of swimming C. fasciculata; however, both are absent from the shortened flagellum of attached cells. Pharmacological inhibition of cAMP phosphodiesterases increased cAMP levels in the cell and prevented attachment. Further, treatment with inhibitor did not affect the growth rate of either swimming or established attached cells, indicating that its effect is limited to a critical window during the early stages of adhesion. These data suggest that cAMP signaling is required for attachment of C. fasciculata and that flagellar signaling domains may be reorganized during differentiation and attachment.IMPORTANCETrypanosomatid parasites cause significant disease burden worldwide and require insect vectors for transmission. In the insect, parasites attach to tissues, sometimes dividing as attached cells or producing motile, infectious forms. The significance and cellular mechanisms of attachment are relatively unexplored. Here, we exploit a model trypanosomatid that attaches robustly to artificial surfaces to better understand this process. This attachment recapitulates that observed in vivo and can be used to define the stages and morphological features of attachment as well as conditions that impact attachment efficiency. We have identified proteins that are enriched in either swimming or attached parasites, supporting a role for the cyclic AMP signaling pathway in the transition from swimming to attached. As this pathway has already been implicated in environmental sensing and developmental transitions in trypanosomatids, our data provide new insights into activities required for parasite survival in their insect hosts.
Collapse
Affiliation(s)
- Shane Denecke
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Kelly R. Hodges
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Andre R. Williams
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | | | - Abigail M. Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Hoang
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | - Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Augusto I, Girard-Dias W, Schoijet A, Alonso GD, Portugal RV, de Souza W, Jimenez V, Miranda K. Quantitative assessment of the nanoanatomy of the contractile vacuole complex in Trypanosoma cruzi. Life Sci Alliance 2024; 7:e202402826. [PMID: 39074903 PMCID: PMC11287019 DOI: 10.26508/lsa.202402826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Trypanosoma cruzi uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle. Using TcrPDEC2 and TcVps34 overexpressing mutants, known to have low and high efficiency for osmotic responses, we described a structural phenotype for the CVC that matches their corresponding physiological responses. Quantitative tomography provided data on the volume of the CVC and spongiome connections. Changes in the adhesion plaque during the pulsation cycle were also quantified and a dense filamentous network was observed. Together, the results suggest that the adhesion plaque mediates fluid discharge from the central vacuole, revealing new aspects of the osmoregulatory system in T. cruzi.
Collapse
Affiliation(s)
- Ingrid Augusto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wendell Girard-Dias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Plataforma de Microscopia Eletrônica Rudolf Barth, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Alejandra Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Daniel Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres", Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodrigo V Portugal
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Programa de Biotecnologia, Universidade Federal do ABC, Santo André, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Veronica Jimenez
- Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Manaus, Brazil
| |
Collapse
|
3
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
4
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Lander N. mSphere of Influence: Compartmentalized cAMP signals in American trypanosomes. mSphere 2024; 9:e0063523. [PMID: 38315033 PMCID: PMC10900897 DOI: 10.1128/msphere.00635-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Noelia Lander works on cell signaling in American trypanosomes and studies the role of cyclic adenosine monophosphate (cAMP) microdomains in environmental sensing and differentiation. In this mSphere of Influence, Dr. Lander reflects on three research articles in different eukaryotic models that had impacted on the way she thinks about the regulation of cAMP signals in Trypanosoma cruzi, the etiologic agent of Chagas disease. The articles "FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility" (N. C. Surdo, M. Berrera, A. Koschinski, M. Brescia, et al., Nat Commun 8:15031, 2017, https://doi.org/10.1038/ncomms15031), "Cyclic AMP signaling and glucose metabolism mediate pH taxis by African trypanosomes" (S. Shaw, S. Knüsel, D. Abbühl, A. Naguleswaran, et al., Nat Commun 13:603, 2022, https://doi.org/10.1038/s41467-022-28293-w), and "Encystation stimuli sensing is mediated by adenylate cyclase AC2-dependent cAMP signaling in Giardia" (H. W. Shih, G. C. M. Alas, and A. R. Paredez, Nat Commun 14:7245, 2023, https://doi.org/10.1038/s41467-023-43028-1) influenced her current hypothesis that cAMP signals are generated in response to environmental cues leading to changes in membrane fluidity at the flagellar tip and the contractile vacuole complex of T. cruzi, structures where cAMP mediates key cellular processes for developmental progression.
Collapse
Affiliation(s)
- Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog 2023; 19:e1011854. [PMID: 38128049 PMCID: PMC10734937 DOI: 10.1371/journal.ppat.1011854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.
Collapse
Affiliation(s)
- Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Chiurillo MA, Carlson J, Bertolini MS, Raja A, Lander N. Dual localization of receptor-type adenylate cyclases and cAMP response protein 3 unveils the presence of two putative signaling microdomains in Trypanosoma cruzi. mBio 2023; 14:e0106423. [PMID: 37477489 PMCID: PMC10470820 DOI: 10.1128/mbio.01064-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a leading cause of disability and premature death in the Americas. This parasite spends its life between a triatomine insect and a mammalian host, transitioning between developmental stages in response to microenvironmental changes. Among the second messengers driving differentiation in T. cruzi, cAMP has been shown to mediate metacyclogenesis and response to osmotic stress, but this signaling pathway remains largely unexplored in this parasite. Adenylate cyclases (ACs) catalyze the conversion of ATP to cAMP. They comprise a multigene family encoding putative receptor-type ACs in T. cruzi. Using protein sequence alignment, we classified them into five groups and chose a representative member from each group to study their localization (TcAC1-TcAC5). We expressed an HA-tagged version of each protein in T. cruzi and performed immunofluorescence analysis. A peculiar dual localization of TcAC1 and TcAC2 was observed in the flagellar distal domain and in the contractile vacuole complex (CVC), and their enzymatic activity was confirmed by gene complementation in yeast. Furthermore, TcAC1 overexpressing parasites showed an increased metacyclogenesis, a defect in host cell invasion, and a reduced intracellular replication, highlighting the importance of this protein throughout T. cruzi life cycle. These mutants were more tolerant to hypoosmotic stress and showed a higher adhesion capacity during in vitro metacyclogenesis, whereas the wild-type phenotype was restored after disrupting TcAC1 localization. Finally, TcAC1 was found to interact with cAMP response protein 3 (TcCARP3), co-localizing with this protein in the flagellar tip and CVC. IMPORTANCE We identified three components of the cAMP signaling pathway (TcAC1, TcAC2, and TcCARP3) with dual localization in Trypanosoma cruzi: the flagellar distal domain and the CVC, structures involved in cell adhesion and osmoregulation, respectively. We found evidence on the role of TcAC1 in both cellular processes, as well as in metacyclogenesis. Our data suggest that TcACs act as signal sensors and transducers through cAMP synthesis in membrane microdomains. We propose a model in which TcACs sense the harsh conditions in the triatomine hindgut (nutrient deprivation, acidic pH, osmotic stress, ionic composition, hydrophobic interactions) and become active. Synthesis of cAMP then triggers cell adhesion prior completion of metacyclogenesis, while mediating a response to osmotic stress in the parasite. These results shed light into the mechanisms driving cAMP-mediated cell differentiation in T. cruzi, while raising new questions on the activation of TcACs and the role of downstream components of this pathway.
Collapse
Affiliation(s)
- Miguel A. Chiurillo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joshua Carlson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mayara S. Bertolini
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Aqsa Raja
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Chiurillo MA, Ahmed M, González C, Raja A, Lander N. Gene editing of putative cAMP and Ca 2+ -regulated proteins using an efficient cloning-free CRISPR/Cas9 system in Trypanosoma cruzi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548290. [PMID: 37502958 PMCID: PMC10369910 DOI: 10.1101/2023.07.09.548290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Trypanosoma cruzi , the agent of Chagas disease, must adapt to a diversity of environmental conditions that it faces during its life cycle. The adaptation to these changes is mediated by signaling pathways that coordinate the cellular responses to the new environmental settings. Cyclic AMP (cAMP) and Calcium (Ca 2+ ) signaling pathways regulate critical cellular processes in this parasite, such as differentiation, osmoregulation, host cell invasion and cell bioenergetics. Although the use of CRISPR/Cas9 technology prompted reverse genetics approaches for functional analysis in T. cruzi , it is still necessary to expand the toolbox for genome editing in this parasite, as for example to perform multigene analysis. Here we used an efficient T7RNAP/Cas9 strategy to tag and delete three genes predicted to be involved in cAMP and Ca 2+ signaling pathways: a putative Ca 2+ /calmodulin-dependent protein kinase ( CAMK ), Flagellar Member 6 ( FLAM6 ) and Cyclic nucleotide-binding domain/C2 domain-containing protein ( CC2CP ). We endogenously tagged these three genes and determined the subcellular localization of the tagged proteins. Furthermore, the strategy used to knockout these genes allow us to presume that TcCC2CP is an essential gene in T. cruzi epimastigotes. Our results will open new venues for future research on the role of these proteins in T. cruzi .
Collapse
|
9
|
Abstract
Acidocalcisomes are electron-dense organelles rich in polyphosphate and inorganic and organic cations that are acidified by proton pumps, and possess several channels, pumps, and transporters. They are present in bacteria and eukaryotes and have been studied in greater detail in trypanosomatids. Biogenesis studies of trypanosomatid acidocalcisomes found that they share properties with lysosome-related organelles of animal cells. In addition to their described roles in autophagy, cation and phosphorus storage, osmoregulation, pH homeostasis, and pathogenesis, recent studies have defined the role of these organelles in phosphate utilization, calcium ion (Ca2+ ) signaling, and bioenergetics, and will be the main subject of this review.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Xanthine Analogs Suppress Trypanosoma cruzi Infection In Vitro Using PDEs as Targets. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi), the causative agent of Chagas disease, has infected 6 million people, putting 70 million people at risk worldwide. Presently, very limited drugs are available, and these have severe side effects. Hence, there is an urgency to delve into other pathways and targets for novel drugs. Trypanosoma cruzi (T. cruzi) expresses a number of different cyclic AMP (cAMP)-specific phosphodiesterases (PDEs). cAMP is one of the key regulators of mammalian cell proliferation and differentiation, and it also plays an important role in T. cruzi growth. Very few studies have demonstrated the important role of cyclic nucleotide-specific PDEs in T. cruzi’s survival. T. cruzi phosphodiesterase C (TcrPDEC) has been proposed as a potential new drug target for treating Chagas disease. In the current study, we screen several analogs of xanthine for potency against trypomastigote and amastigote growth in vitro using three different strains of T. cruzi (Tulahuen, Y and CA-1/CL72). One of the potent analogs, GVK14, has been shown to inhibit all three strains of amastigotes in host cells as well as axenic cultures. In conclusion, xanthine analogs that inhibit T. cruzi PDE may provide novel alternative therapeutic options for Chagas disease.
Collapse
|
11
|
Soeiro MDNC. Perspectives for a new drug candidate for Chagas disease therapy. Mem Inst Oswaldo Cruz 2022; 117:e220004. [PMID: 35293439 PMCID: PMC8923671 DOI: 10.1590/0074-02760220004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chagas disease (CD), a neglected tropical illness caused by the protozoan Trypanosoma cruzi, affects more than 6 million people mostly in poor areas of Latin America. CD has two phases: an acute, short phase mainly oligosymptomatic followed to the chronic phase, a long-lasting stage that may trigger cardiac and/or digestive disorders and death. Only two old drugs are available and both present low efficacy in the chronic stage, display side effects and are inactive against parasite strains naturally resistant to these nitroderivatives. These shortcomings justify the search for novel therapeutic options considering the target product profile for CD that will be presently reviewed besides briefly revisiting the data on phosphodiesterase inhibitors upon T. cruzi.
Collapse
|
12
|
De Araújo JS, da Silva PB, Batista MM, Peres RB, Cardoso-Santos C, Kalejaiye TD, Munday JC, De Heuvel E, Sterk GJ, Augustyns K, Salado IG, Matheeussen A, De Esch I, De Koning HP, Leurs R, Maes L, Soeiro MDNC. Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. J Antimicrob Chemother 2021; 75:958-967. [PMID: 31860098 DOI: 10.1093/jac/dkz516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity. OBJECTIVES As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection. METHODS In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR. RESULTS Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu. CONCLUSIONS The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates.
Collapse
Affiliation(s)
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Camila Cardoso-Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Erik De Heuvel
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Irene G Salado
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Iwan De Esch
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry P De Koning
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Rob Leurs
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
13
|
Lander N, Chiurillo MA, Docampo R. Signaling pathways involved in environmental sensing in Trypanosoma cruzi. Mol Microbiol 2021; 115:819-828. [PMID: 33034088 PMCID: PMC8032824 DOI: 10.1111/mmi.14621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a unicellular parasite and the etiologic agent of Chagas disease. The parasite has a digenetic life cycle alternating between mammalian and insect hosts, where it faces a variety of environmental conditions to which it must adapt in order to survive. The adaptation to these changes is mediated by signaling pathways that coordinate the cellular responses to the new environmental settings. Major environmental changes include temperature, nutrient availability, ionic composition, pH, osmolarity, oxidative stress, contact with host cells and tissues, host immune response, and intracellular life. Some of the signaling pathways and second messengers potentially involved in the response to these changes have been elucidated in recent years and will be the subject of this review.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Miguel A. Chiurillo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
14
|
Tetrahydrophthalazinone Inhibitor of Phosphodiesterase with In Vitro Activity against Intracellular Trypanosomatids. Antimicrob Agents Chemother 2021; 65:AAC.00960-20. [PMID: 33361300 DOI: 10.1128/aac.00960-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
The phosphodiesterase inhibitor tetrahydrophthalazinone NPD-008 was explored by phenotypic in vitro screening, target validation, and ultrastructural approaches against Trypanosoma cruzi NPD-008 displayed activity against different forms and strains of T. cruzi (50% effective concentration [EC50], 6.6 to 39.5 μM). NPD-008 increased cAMP levels of T. cruzi and its combination with benznidazole gave synergistic interaction. It was also moderately active against intracellular amastigotes of Leishmania amazonensis and Leishmania infantum, confirming a potential activity profile as an antitrypanosomatid drug candidate.
Collapse
|
15
|
Schoijet AC, Sternlieb T, Alonso GD. Methods to Investigate Signal Transduction Pathways in Trypanosoma cruzi: Cyclic Nucleotide Phosphodiesterases Assay Protocols. Methods Mol Biol 2021; 2116:523-534. [PMID: 32221940 DOI: 10.1007/978-1-0716-0294-2_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Intracellular levels of cyclic nucleotide second messengers are regulated predominantly by a large superfamily of phosphodiesterases (PDEs). Most of the different PDE variants play specific physiological functions; in fact, PDEs can associate with other proteins allowing them to be strategically anchored throughout the cell. In this regard, precise cellular expression and compartmentalization of these enzymes produce the specific control of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) gradients in cells and enable their integration with other signaling pathways.In trypanosomatids, some PDEs are essential for their survival and play fundamental roles in the adaptation of these parasites to different environmental stresses, as well as in the differentiation between their different life cycle forms. Given that these enzymes not only are similar to human PDEs but also have differential biochemical properties, and due to the great knowledge of drugs that target human PDEs, trypanosomatid PDEs could be postulated as important therapeutic targets through the repositioning of drugs.In this chapter, we describe a simple and sensitive radioisotope-based method to measure cyclic 3',5'-nucleotide phosphodiesterase using [3H]cAMP.
Collapse
Affiliation(s)
- Alejandra C Schoijet
- Laboratorio de Señalización y Mecanismos Adaptativos en Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| | - Tamara Sternlieb
- Laboratorio de Señalización y Mecanismos Adaptativos en Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| | - Guillermo D Alonso
- Laboratorio de Señalización y Mecanismos Adaptativos en Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina.
| |
Collapse
|
16
|
de Araújo JS, França da Silva C, Batista DDGJ, Nefertiti A, Fiuza LFDA, Fonseca-Berzal CR, Bernardino da Silva P, Batista MM, Sijm M, Kalejaiye TD, de Koning HP, Maes L, Sterk GJ, Leurs R, Soeiro MDNC. Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrob Agents Chemother 2020; 64:e00414-20. [PMID: 32601163 PMCID: PMC7449165 DOI: 10.1128/aac.00414-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
Pyrazolones are heterocyclic compounds with interesting biological properties. Some derivatives inhibit phosphodiesterases (PDEs) and thereby increase the cellular concentration of cyclic AMP (cAMP), which plays a vital role in the control of metabolism in eukaryotic cells, including the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease (CD), a major neglected tropical disease. In vitro phenotypic screening identified a 4-bromophenyl-dihydropyrazole dimer as an anti-T. cruzi hit and 17 novel pyrazolone analogues with variations on the phenyl ring were investigated in a panel of phenotypic laboratory models. Potent activity against the intracellular forms (Tulahuen and Y strains) was obtained with 50% effective concentration (EC50) values within the 0.17 to 3.3 μM range. Although most were not active against bloodstream trypomastigotes, an altered morphology and loss of infectivity were observed. Pretreatment of the mammalian host cells with pyrazolones did not interfere with infection and proliferation, showing that the drug activity was not the result of changes to host cell metabolism. The pyrazolone NPD-227 increased the intracellular cAMP levels and was able to sterilize T. cruzi-infected cell cultures. Thus, due to its high potency and selectivity in vitro, and its additive interaction with benznidazole (Bz), NPD-227 was next assessed in the acute mouse model. Oral dosing for 5 days of NPD-227 at 10 mg/kg + Bz at 10 mg/kg not only reduced parasitemia (>87%) but also protected against mortality (>83% survival), hence demonstrating superiority to the monotherapy schemes. These data support these pyrazolone molecules as potential novel therapeutic alternatives for Chagas disease.
Collapse
Affiliation(s)
- Julianna Siciliano de Araújo
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane França da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Nefertiti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cristina Rosa Fonseca-Berzal
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Patrícia Bernardino da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maarten Sijm
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Sternlieb T, Schoijet AC, Alonso GD. Intracellular cyclic AMP levels modulate differential adaptive responses on epimastigotes and cell culture trypomastigotes of Trypanosoma cruzi. Acta Trop 2020; 202:105273. [PMID: 31734265 DOI: 10.1016/j.actatropica.2019.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Among the many environmental challenges the parasite Trypanosoma cruzi has to overcome to complete its life cycle through different hosts, oxidative stress plays a central role. Different stages of this parasite encounter distinct sources of oxidative stress, such as the oxidative burst of the immune system, or the Heme released from hemoglobin degradation in the triatomine's midgut. Also, the redox status of the surroundings functions as a signal to the parasite, triggering processes coupled to differentiation or proliferation. Intracellular second messengers, like cAMP, are responsible for the transduction of environmental queues and initiating cellular processes accordingly. In trypanosomatids cAMP is involved in a variety of processes, including proliferation, differentiation, osmoregulation and quorum sensing. Trypanosomatid phosphodiesterases (PDE) show atypical pharmacological properties and some have been involved in key processes for the survival of the parasites, which validates them as attractive therapeutic targets. Our work here shows that cAMP modulates different processes according to parasite stage. Epimastigotes become more resistant to oxidative stress when pre-treated with cAMP analogs, while in trypomastigotes an increase in intracellular cAMP doesn't seem to aid in this response, although it does increase the number of amastigotes obtained 48 h after infection, compared to the control group. Also, we show that TcrPDEA1, a functionally enigmatic phosphodiesterase with very high Km, is involved in the epimastigotes response to oxidative stress.
Collapse
Affiliation(s)
- Tamara Sternlieb
- Laboratorio de señalización y mecanismos adaptativos en tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Alejandra C Schoijet
- Laboratorio de señalización y mecanismos adaptativos en tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo D Alonso
- Laboratorio de señalización y mecanismos adaptativos en tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Schoijet AC, Sternlieb T, Alonso GD. Signal Transduction Pathways as Therapeutic Target for Chagas Disease. Curr Med Chem 2019; 26:6572-6589. [PMID: 31218950 DOI: 10.2174/0929867326666190620093029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/26/2018] [Accepted: 02/20/2019] [Indexed: 01/23/2023]
Abstract
Trypanosomatids are a group of flagellated unicellular eukaryotes, causing serious human diseases including Chagas disease (Trypanosoma cruzi), sleeping sickness (Trypanosoma brucei spp.) and Leishmaniasis (Leishmania spp.). The second messenger cAMP is involved in numerous and fundamental processes in these parasites including differentiation between stages, proliferation, osmoregulation, oxidative stress and quorum sensing. Interestingly, its signaling pathway is quite different from that of mammals, including structurally different adenylyl cyclases, the shortage of orthologous effector proteins and the absence of G-protein-coupled-receptors, among others. These characteristics make the proteins involved in these transduction pathways good candidates for therapeutic targets. However, the identification of new unknown druggable targets involves extensive research time and is economically very expensive, making difficult the transition from basic research to the clinical phase. Trypanosomatid PDEs have characteristic binding pockets that allow for a differential inhibition from their human orthologs. Modification in the approved drugs for human to convert them into trypanocidal treatments could lead to more effective therapies, shorter lab time and lower costs. In view of the fact that kinetoplastid PDEs are highly conserved with their mammalian counterparts, and since there are already numerous drugs on the market against human PDEs, the drug repositioning approach is highly promising. The development of new technologies, higher government and industrial involvement and more scientists committed to basic investigation, are the key to ultimately find an effective treatment and cure for the neglected tropical diseases.
Collapse
Affiliation(s)
- Alejandra Cecilia Schoijet
- Laboratorio de Senalizacion y Mecanismos Adaptativos en Tripanosomatidos, Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Tamara Sternlieb
- Laboratorio de Senalizacion y Mecanismos Adaptativos en Tripanosomatidos, Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Guillermo Daniel Alonso
- Laboratorio de Senalizacion y Mecanismos Adaptativos en Tripanosomatidos, Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
19
|
Salas-Sarduy E, Niemirowicz GT, José Cazzulo J, Alvarez VE. Target-based Screening of the Chagas Box: Setting Up Enzymatic Assays to Discover Specific Inhibitors Across Bioactive Compounds. Curr Med Chem 2019; 26:6672-6686. [PMID: 31284853 DOI: 10.2174/0929867326666190705160637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
Chagas disease is a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. The disease is endemic in Latin America with about 6 million people infected and many more being at risk. Only two drugs are available for treatment, Nifurtimox and Benznidazole, but they have a number of side effects and are not effective in all cases. This makes urgently necessary the development of new drugs, more efficient, less toxic and affordable to the poor people, who are most of the infected population. In this review we will summarize the current strategies used for drug discovery considering drug repositioning, phenotyping screenings and target-based approaches. In addition, we will describe in detail the considerations for setting up robust enzymatic assays aimed at identifying and validating small molecule inhibitors in high throughput screenings.
Collapse
Affiliation(s)
- Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| | - Gabriela T Niemirowicz
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| | - Vanina E Alvarez
- Instituto de Investigaciones Biotecnologicas Dr. Rodolfo A. Ugalde - Instituto Tecnologico de Chascomus (IIB-INTECH), Universidad Nacional de San Martin (UNSAM) - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martin, Buenos Aires, Argentina
| |
Collapse
|
20
|
Schoijet AC, Miranda K, Sternlieb T, Barrera NM, Girard-Dias W, de Souza W, Alonso GD. TbVps15 is required for vesicular transport and cytokinesis in Trypanosoma brucei. Mol Biochem Parasitol 2017; 219:33-41. [PMID: 29155083 DOI: 10.1016/j.molbiopara.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 01/20/2023]
Abstract
The class III phosphatidylinositol 3-kinase (PI3K) Vps34 is an important regulator of key cellular functions, including cell growth, survival, intracellular trafficking, autophagy and nutrient sensing. In yeast, Vps34 is associated with the putative serine/threonine protein kinase Vps15, however, its role in signaling has not been deeply evaluated. Here, we have identified the Vps15 orthologue in Trypanosoma brucei, named TbVps15. Knockdown of TbVps15 expression by interference RNA resulted in inhibition of cell growth and blockage of cytokinesis. Scanning electron microcopy revealed a variety of morphological abnormalities, with enlarged parasites and dividing cells that often exhibited a detached flagellum. Transmission electron microscopy analysis of TbVps15 RNAi cells showed an increase in intracellular vacuoles of the endomembrane system and some cells displayed an enlargement of the flagellar pocket, a common feature of cells defective in endocytosis. Moreover, uptake of dextran, transferrin and Concanavalin A was impaired. Finally, TbVps15 downregulation affected the PI3K activity, supporting the hypothesis that TbVps15 and TbVps34 form a complex as occurs in other organisms. In summary, we propose that TbVps15 has a role in the maintenance of cytokinesis, endocytosis and intracellular trafficking in T. brucei.
Collapse
Affiliation(s)
- Alejandra C Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina
| | - Kildare Miranda
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamara Sternlieb
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Nadia M Barrera
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Wendell Girard-Dias
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Plataforma de Microscopia Eletrônica Rudolf Barth IOC, Fiocruz, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guillermo D Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Abstract
Inorganic polyphosphate (polyP) accumulates in acidocalcisomes, acidic calcium stores that have been found from bacteria to human cells. Proton pumps, such as the vacuolar proton pyrophosphatase (V-H(+)-PPase or VP1), the vacuolar proton ATPase (V-H(+)-ATPase) or both, maintain their acidity. A vacuolar transporter chaperone (VTC) complex is involved in the synthesis and translocation of polyP to these organelles in several eukaryotes, such as yeast, trypanosomatids, Apicomplexan and algae. Studies in trypanosomatids have revealed the role of polyP and acidocalcisomes in osmoregulation and calcium signalling.
Collapse
|
22
|
Docampo R. The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol 2015; 209:3-9. [PMID: 26523947 DOI: 10.1016/j.molbiopara.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/04/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
Abstract
Acidocalcisomes are acidic calcium stores that have been found from bacteria to human cells. They are rich in phosphorus compounds in the form of orthophosphate (Pi), pyrophosphate (PPi), and polyphosphate (polyP) and their acidity is maintained by proton pumps such as the vacuolar proton pyrophosphatase (V-H+-PPase, or VP1), the vacuolar proton ATPase (V-H+-ATPase), or both. Recent studies in trypanosomatids and in other species have revealed their role in phosphate metabolism, and cation and water homeostasis, as suggested by the presence of novel pumps, transporters, and channels. An important role in autophagy has also been described. The study of the biogenesis of acidocalcisomes as well as of the interactions of these lysosome-related organelles with other organelles have uncovered important roles in calcium signaling and osmoregulation. Significantly, despite conservation of acidocalcisomes across all of cellular life, there is evidence for intimate integration of these organelles with eukaryotic cellular functions, and which are directly relevant to parasites.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Global Emerging Diseases and Department of Cellular Biology, University of Georgia, Athens 30602, USA; Departamento de Patología Clínica, Universidade Estadual de Campinas, São Paulo 13083-877, Brazil.
| |
Collapse
|
23
|
Umaer K, Williams N. Kinetoplastid Specific RNA-Protein Interactions in Trypanosoma cruzi Ribosome Biogenesis. PLoS One 2015; 10:e0131323. [PMID: 26121669 PMCID: PMC4488245 DOI: 10.1371/journal.pone.0131323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022] Open
Abstract
RNA binding proteins (RBP) play essential roles in the highly conserved and coordinated process of ribosome biogenesis. Our laboratory has previously characterized two essential and abundant RBPs, P34 and P37, in Trypanosoma brucei which are required for several critical steps in ribosome biogenesis. The genes for these proteins have only been identified in kinetoplastid organisms but not in the host genome. We have identified a homolog of the TbP34 and TbP37 in a T. cruzi strain (termed TcP37/NRBD). Although the N-terminal APK-rich domain and RNA recognition motifs are conserved, the C-terminal region which contains putative nuclear and nucleolar localization signals in TbP34 and TbP37 is almost entirely missing from TcP37/NRBD. We have shown that TcP37/NRBD is expressed in T. cruzi epimastigotes at the level of mature mRNA and protein. Despite the loss of the C-terminal domain, TcP37/NRBD is present in the nucleus, including the nucleolus, and the cytoplasm. TcP37/NRBD interacts directly with Tc 5S rRNA, but does not associate with polyadenylated RNA. TcP37/NRBD also associates in vivo and in vitro with large ribosomal protein TcL5 and, unlike the case of T. brucei, this association is strongly enhanced by the presence of 5S rRNA, suggesting that the loss of the C-terminal domain of TcP37/NRBD may alter the interactions within the complex. These results indicate that the unique preribosomal complex comprised of L5, 5S rRNA, and the trypanosome-specific TcP37/NRBD or TbP34 and TbP37 is functionally conserved in trypanosomes despite the differences in the C-termini of the trypanosome-specific protein components.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology & Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Makin L, Gluenz E. cAMP signalling in trypanosomatids: role in pathogenesis and as a drug target. Trends Parasitol 2015; 31:373-9. [PMID: 26004537 PMCID: PMC4534343 DOI: 10.1016/j.pt.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
Trypanosoma brucei adenylate cyclases are implicated in modulation of host immune response and social motility. First effectors downstream of cAMP signalling were identified in Trypanosoma cruzi and T. brucei. Crystal structures reveal a unique pocket in trypanosomatid phosphodiesterases. Trypanosomatid phosphodiesterase inhibitors are promising drug candidates.
Despite recent research linking cAMP signalling to virulence in trypanosomatids and detailed studies of trypanosomatid adenylyl cyclases (ACs) and phosphodiesterases (PDEs) since their discoveries 40 years ago, downstream components of the pathway and their biological functions have remained remarkably elusive. However, in recent years, significant discoveries have been made: a role for parasite ACs has been proposed in cytokinesis, evasion of the host immune response, and social motility. cAMP phosphodiesterases PDEB1 and PDEB2 were found to be essential for survival and virulence of Trypanosoma brucei and, in Trypanosoma cruzi, PDEC2 was shown to be required for normal osmoregulation. As we discuss here, these breakthroughs have led to an ongoing surge in the development of PDE inhibitors as lead compounds for trypanocidal drugs.
Collapse
Affiliation(s)
- Laura Makin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Vij A, Biswas A, Bhattacharya A, Das PK. A soluble phosphodiesterase in Leishmania donovani negatively regulates cAMP signaling by inhibiting protein kinase A through a two way process involving catalytic as well as non-catalytic sites. Int J Biochem Cell Biol 2014; 57:197-206. [PMID: 25310904 DOI: 10.1016/j.biocel.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/09/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Intracellular cAMP level and cAMP mediated responses are elevated when Leishmania are exposed to macrophage phagolysosome conditions (37 °C and pH 5.5). Phosphodiesterases play major role in cAMP regulation and in the present study we have cloned and characterized a 2.1 kb cytosolic isoform of phosphodiesterase from Leishmania donovani (LdPDED) which plays important role in cAMP homeostasis when the promastigotes are exposed to macrophage phagolysome conditions for converting to axenic amastigotes. Domain characterization suggested the presence of two pseudo-substrate sites similar to the ones present in the regulatory subunit of cAMP-dependent protein kinase A (PKA) and a putative PKA phosphorylation site at T(708) of C-terminus of LdPDED. Deletion constructs and site directed mutagenesis revealed the ability of LdPDED to interact with L. donovani PKA catalytic subunits (LdPKAC1 and LdPKAC2) resulting in inhibition of kinase activity in one hand and increase of phosphodiesterase activity through PKA mediated phosphorylation at putative phosphorylation site on the other hand. This study therefore identifies a unique phosphodiesterase in L. donovani which appears to regulate cAMP-dependent PKA signaling through a two way process.
Collapse
Affiliation(s)
- Amit Vij
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arunima Biswas
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
26
|
Queiroz RML, Charneau S, Mandacaru SC, Schwämmle V, Lima BD, Roepstorff P, Ricart CAO. Quantitative proteomic and phosphoproteomic analysis of Trypanosoma cruzi amastigogenesis. Mol Cell Proteomics 2014; 13:3457-72. [PMID: 25225356 DOI: 10.1074/mcp.m114.040329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chagas disease is a tropical neglected disease endemic in Latin America caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote, and amastigote. The differentiation from infective trypomastigotes into replicative amastigotes, called amastigogenesis, takes place in vivo inside mammalian host cells after a period of incubation in an acidic phagolysosome. This differentiation process can be mimicked in vitro by incubating tissue-culture-derived trypomastigotes in acidic DMEM. Here we used this well-established differentiation protocol to perform a comprehensive quantitative proteomic and phosphoproteomic analysis of T. cruzi amastigogenesis. Samples from fully differentiated forms and two biologically relevant intermediate time points were Lys-C/trypsin digested, iTRAQ-labeled, and multiplexed. Subsequently, phosphopeptides were enriched using a TiO2 matrix. Non-phosphorylated peptides were fractionated via hydrophilic interaction liquid chromatography prior to LC-MS/MS analysis. LC-MS/MS and bioinformatics procedures were used for protein and phosphopeptide quantitation, identification, and phosphorylation site assignment. We were able to identify regulated proteins and pathways involved in coordinating amastigogenesis. We also observed that a significant proportion of the regulated proteins were membrane proteins. Modulated phosphorylation events coordinated by protein kinases and phosphatases that are part of the signaling cascade induced by incubation in acidic medium were also evinced. To our knowledge, this work is the most comprehensive quantitative proteomics study of T. cruzi amastigogenesis, and these data will serve as a trustworthy basis for future studies, and possibly for new potential drug targets.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil; §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sébastien Charneau
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Samuel C Mandacaru
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Veit Schwämmle
- §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Beatriz D Lima
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil
| | - Peter Roepstorff
- §Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Carlos A O Ricart
- From the ‡Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900 Brazil;
| |
Collapse
|
27
|
Woodring JL, Pollastri MP. Inhibitors of Protozoan Phosphodiesterases as Potential Therapeutic Approaches for Tropical Diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/9783527682348.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Rodrigues JCF, Godinho JLP, de Souza W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. Subcell Biochem 2014; 74:1-42. [PMID: 24264239 DOI: 10.1007/978-94-007-7305-9_1] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leishmania and Trypanosoma belong to the Trypanosomatidae family and cause important human infections such as leishmaniasis, Chagas disease, and sleeping sickness. Leishmaniasis, caused by protozoa belonging to Leishmania, affects about 12 million people worldwide and can present different clinical manifestations, i.e., visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), and post-kala-azar dermal leishmaniasis (PKDL). Chagas disease, also known as American trypanosomiasis, is caused by Trypanosoma cruzi and is mainly prevalent in Latin America but is increasingly occurring in the United States, Canada, and Europe. Sleeping sickness or human African trypanosomiasis (HAT), caused by two sub-species of Trypanosoma brucei (i.e., T. b. rhodesiense and T. b. gambiense), occurs only in sub-Saharan Africa countries. These pathogenic trypanosomatids alternate between invertebrate and vertebrate hosts throughout their lifecycles, and different developmental stages can live inside the host cells and circulate in the bloodstream or in the insect gut. Trypanosomatids have a classical eukaryotic ultrastructural organization with some of the same main organelles found in mammalian host cells, while also containing special structures and organelles that are absent in other eukaryotic organisms. For example, the mitochondrion is ramified and contains a region known as the kinetoplast, which houses the mitochondrial DNA. Also, the glycosomes are specialized peroxisomes containing glycolytic pathway enzymes. Moreover, a layer of subpellicular microtubules confers mechanic rigidity to the cell. Some of these structures have been investigated to determine their function and identify potential enzymes and metabolic pathways that may constitute targets for new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | | | | |
Collapse
|
29
|
A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses. Biochem J 2013; 449:555-66. [PMID: 22994895 DOI: 10.1042/bj20121262] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.
Collapse
|
30
|
New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:69-113. [PMID: 23890380 DOI: 10.1016/b978-0-12-407695-2.00002-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking.
Collapse
|
31
|
Wang H, Kunz S, Chen G, Seebeck T, Wan Y, Robinson H, Martinelli S, Ke H. Biological and structural characterization of Trypanosoma cruzi phosphodiesterase C and Implications for design of parasite selective inhibitors. J Biol Chem 2012; 287:11788-97. [PMID: 22356915 PMCID: PMC3320927 DOI: 10.1074/jbc.m111.326777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/06/2012] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi phosphodiesterase C (TcrPDEC) is a potential new drug target for the treatment of Chagas disease but has not been well studied. This study reports the enzymatic properties of various kinetoplastid PDECs and the crystal structures of the unliganded TcrPDEC1 catalytic domain and its complex with an inhibitor. Mutations of PDEC during the course of evolution led to inactivation of PDEC in Trypanosoma brucei/Trypanosoma evansi/Trypanosoma congolense, whereas the enzyme is active in all other kinetoplastids. The TcrPDEC1 catalytic domain hydrolyzes both cAMP and cGMP with a K(m) of 23.8 μm and a k(cat) of 31 s(-1) for cAMP and a K(m) of 99.1 μm and a k(cat) of 17 s(-1) for cGMP, thus confirming its dual specificity. The crystal structures show that the N-terminal fragment wraps around the TcrPDEC catalytic domain and may thus regulate its enzymatic activity via direct interactions with the active site residues. A PDE5 selective inhibitor that has an IC(50) of 230 nm for TcrPDEC1 binds to TcrPDEC1 in an orientation opposite to that of sildenafil. This observation, together with the screen of the inhibitory potency of human PDE inhibitors against TcrPDEC, implies that the scaffold of some human PDE inhibitors might be used as the starting model for design of parasite PDE inhibitors. The structural study also identified a unique parasite pocket that neighbors the active site and may thus be valuable for the design of parasite-specific inhibitors.
Collapse
Affiliation(s)
- Huanchen Wang
- From the Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Stefan Kunz
- the Institute for Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Gong Chen
- the School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Thomas Seebeck
- the Institute for Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Yiqian Wan
- the School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Howard Robinson
- the Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, and
| | - Sibylla Martinelli
- the Department of Pathology, University of Bern, CH-3012 Bern, Switzerland
| | - Hengming Ke
- From the Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| |
Collapse
|
32
|
Docampo R, Jimenez V, King-Keller S, Li ZH, Moreno SNJ. The role of acidocalcisomes in the stress response of Trypanosoma cruzi. ADVANCES IN PARASITOLOGY 2011; 75:307-24. [PMID: 21820562 DOI: 10.1016/b978-0-12-385863-4.00014-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acidocalcisomes of Trypanosoma cruzi are acidic calcium-containing organelles rich in phosphorus in the form of pyrophosphate (PP(i)) and polyphosphate (poly P). Acidification of the organelles is driven by vacuolar proton pumps, one of which, the vacuolar-type proton pyrophosphatase, is absent in mammalian cells. A calcium ATPase is involved in calcium uptake, and an aquaporin is important for water transport. Enzymes involved in the synthesis and degradation of PPi and poly P are present within the organelle. Acidocalcisomes function as storage sites for cations and phosphorus, participate in PP(i) and poly P metabolism and volume regulation and are essential for virulence. A signalling pathway involving cyclic AMP generation is important for fusion of acidocalcisomes to the contractile vacuole complex, transference of aquaporin and volume regulation. This pathway is an excellent target for chemotherapy as shown by the effects of phosphodiesterase C inhibitors on parasite survival.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
33
|
McDonough KA, Rodriguez A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 2011; 10:27-38. [PMID: 22080930 DOI: 10.1038/nrmicro2688] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All organisms must sense and respond to their external environments, and this signal transduction often involves second messengers such as cyclic nucleotides. One such nucleotide is cyclic AMP, a universal second messenger that is used by diverse forms of life, including mammals, fungi, protozoa and bacteria. In this review, we discuss the many roles of cAMP in bacterial, fungal and protozoan pathogens and its contributions to microbial pathogenesis. These roles include the coordination of intracellular processes, such as virulence gene expression, with extracellular signals from the environment, and the manipulation of host immunity by increasing cAMP levels in host cells during infection.
Collapse
Affiliation(s)
- Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, New York, New York 12201-2002, USA. kathleen.mcdonough@ wadsworth.org
| | | |
Collapse
|
34
|
Seebeck T, Sterk GJ, Ke H. Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: exploiting the benefit of enzymes that are highly conserved between host and parasite. Future Med Chem 2011; 3:1289-306. [PMID: 21859303 PMCID: PMC3164761 DOI: 10.4155/fmc.11.77] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protozoan infections remain a major unsolved medical problem in many parts of our world. A major obstacle to their treatment is the blatant lack of medication that is affordable, effective, safe and easy to administer. For some of these diseases, including human sleeping sickness, very few compounds are available, many of them old and all of them fraught with toxic side effects. We explore a new concept for developing new-generation antiprotozoan drugs that are based on phosphodiesterase (PDE) inhibitors. Such inhibitors are already used extensively in human pharmacology. Given the high degree of structural similarity between the human and the protozoan PDEs, the vast expertise available in the human field can now be applied to developing disease-specific PDE inhibitors as new antiprotozoan drugs.
Collapse
Affiliation(s)
- Thomas Seebeck
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
35
|
Bustamante JM, Park HJ, Tarleton RL. Report of the 2nd Chagas Drug Discovery Consortium meeting, held on 3 November 2010; Atlanta GA, USA. Expert Opin Drug Discov 2011; 6:965-73. [PMID: 22646217 DOI: 10.1517/17460441.2011.602063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chagas disease is an infectious disease with the highest impact in Latin America and a growing worldwide problem. Chagas disease is the result of long-term, persistent infection with the protozoan parasite Trypanosoma cruzi. The current therapies for treating T. cruzi infection and thus preventing Chagas disease often have adverse effects, unpredictable efficacy and require long courses of treatment. Development of new therapies has been very limited, in part due to lack of interest but also as a result of poor support and inappropriate models for discovering and evaluating candidate drugs. The Chagas Drug Discovery Consortium (CDDC) was created with funding from the US National Institutes of Health to help address some of these issues. The goals of the CDDC are to discover and evaluate new candidate drugs and develop rigorous assays of drug efficacy. This report summarizes the second meeting of the CDDC in November 2010.
Collapse
Affiliation(s)
- Juan M Bustamante
- University of Georgia, Center for Tropical and Emerging Global Diseases , Department of Cellular Biology , Athens, 500 D.W Brooks Dr. S310 Coverdell Center, GA 30602 , USA +1 706 542 3378 ; +1 706 542 3582 ;
| | | | | | | |
Collapse
|
36
|
Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J, Moles K, Collins D, Rohloff P, Tarleton R, Moreno SNJ, Orlando R, Docampo R. Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 2011; 6:e18013. [PMID: 21437209 PMCID: PMC3060929 DOI: 10.1371/journal.pone.0018013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Contractile vacuole complexes are critical components of cell volume regulation
and have been shown to have other functional roles in several free-living
protists. However, very little is known about the functions of the contractile
vacuole complex of the parasite Trypanosoma cruzi, the
etiologic agent of Chagas disease, other than a role in osmoregulation.
Identification of the protein composition of these organelles is important for
understanding their physiological roles. We applied a combined proteomic and
bioinfomatic approach to identify proteins localized to the contractile vacuole.
Proteomic analysis of a T. cruzi fraction enriched for
contractile vacuoles and analyzed by one-dimensional gel electrophoresis and
LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of
expressed proteins of epimastigotes. We also identified different peptides that
map to at least 39 members of the dispersed gene family 1 (DGF-1) providing
evidence that many members of this family are simultaneously expressed in
epimastigotes. Of the proteins present in the fraction we selected several
homologues with known localizations in contractile vacuoles of other organisms
and others that we expected to be present in these vacuoles on the basis of
their potential roles. We determined the localization of each by expression as
GFP-fusion proteins or with specific antibodies. Six of these putative proteins
(Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter)
predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and
calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our
results demonstrate the utility of combining subcellular fractionation,
proteomic analysis, and bioinformatic approaches for localization of organellar
proteins that are difficult to detect with whole cell methodologies. The CV
localization of the proteins investigated revealed potential novel roles of
these organelles in phosphate metabolism and provided information on the
potential participation of adaptor protein complexes in their biogenesis.
Collapse
Affiliation(s)
- Paul N. Ulrich
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Veronica Jimenez
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Miyoung Park
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Vicente P. Martins
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - James Atwood
- Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of America
| | - Kristen Moles
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Dalis Collins
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Peter Rohloff
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Rick Tarleton
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of America
| | - Roberto Docampo
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
- * E-mail:
| |
Collapse
|