1
|
Abeyrathna SS, Abeyrathna NS, Basak P, Irvine GW, Zhang L, Meloni G. Plastic recognition and electrogenic uniport translocation of 1 st-, 2 nd-, and 3 rd-row transition and post-transition metals by primary-active transmembrane P 1B-2-type ATPase pumps. Chem Sci 2023; 14:6059-6078. [PMID: 37293658 PMCID: PMC10246665 DOI: 10.1039/d3sc00347g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Transmembrane P1B-type ATPase pumps catalyze the extrusion of transition metal ions across cellular lipid membranes to maintain essential cellular metal homeostasis and detoxify toxic metals. Zn(ii)-pumps of the P1B-2-type subclass, in addition to Zn2+, select diverse metals (Pb2+, Cd2+ and Hg2+) at their transmembrane binding site and feature promiscuous metal-dependent ATP hydrolysis in the presence of these metals. Yet, a comprehensive understanding of the transport of these metals, their relative translocation rates, and transport mechanism remain elusive. We developed a platform for the characterization of primary-active Zn(ii)-pumps in proteoliposomes to study metal selectivity, translocation events and transport mechanism in real-time, employing a "multi-probe" approach with fluorescent sensors responsive to diverse stimuli (metals, pH and membrane potential). Together with atomic-resolution investigation of cargo selection by X-ray absorption spectroscopy (XAS), we demonstrate that Zn(ii)-pumps are electrogenic uniporters that preserve the transport mechanism with 1st-, 2nd- and 3rd-row transition metal substrates. Promiscuous coordination plasticity, guarantees diverse, yet defined, cargo selectivity coupled to their translocation.
Collapse
Affiliation(s)
- Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Priyanka Basak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Gordon W Irvine
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Limei Zhang
- Department of Biochemistry and Redox Biology Center and the Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
2
|
Dziurzynski M, Gorecki A, Pawlowska J, Istel L, Decewicz P, Golec P, Styczynski M, Poszytek K, Rokowska A, Gorniak D, Dziewit L. Revealing the diversity of bacteria and fungi in the active layer of permafrost at Spitsbergen island (Arctic) - Combining classical microbiology and metabarcoding for ecological and bioprospecting exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159072. [PMID: 36179845 DOI: 10.1016/j.scitotenv.2022.159072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Arctic soils are constantly subjected to extreme environmental conditions such as low humidity, strong winds, high salinity, freeze-thaw cycles, UV exposition, and low nutrient availability, therefore, they have developed unique microbial ecosystems. These environments provide excellent opportunities to study microbial ecology and evolution within pristine (i.e. with limited anthropogenic influence) regions since the High Arctic is still considered one of the wildest and least explored environments on the planet. This environment is also of interest for the screening and recovery of unique microbial strains suitable for various biotechnological applications. In this study, a combination of culture-depended and culture-independent approaches was used to determine the cultivation bias in studies of the diversity of cold-active microorganisms. Cultivation bias is a reduction in recovered diversity, introduced when applying a classical culturing technique. Six different soil types, collected in the vicinity of the Polish Polar Station Hornsund (Spitsbergen, Norway), were tested. It was revealed that the used media allowed recovery of only 6.37 % of bacterial and 20 % of fungal genera when compared with a culture-independent approach. Moreover, it was shown that a combination of R2A and Marine Broth media recovered as much as 93.6 % of all cultivable bacterial genera detected in this study. Based on these results, a novel protocol for genome-guided bioprospecting, combining a culture-dependent approach, metabarcoding, next-generation sequencing, and genomic data reuse was developed. With this methodology, 14 psychrotolerant, multi-metal-resistant strains, including the highly promising Rhodococcus spp., were obtained. These strains, besides increased metal tolerance, have a petroleum hydrocarbon utilization capacity, and thus may be good candidates for future bioremediation technologies, also suited to permanently cold regions.
Collapse
Affiliation(s)
- Mikolaj Dziurzynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adrian Gorecki
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Julia Pawlowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-89 Warsaw, Poland
| | - Lukasz Istel
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-89 Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Piotr Golec
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Styczynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Krzysztof Poszytek
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Rokowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Dorota Gorniak
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
3
|
Zhao Y, Kong M, Yang J, Zhao X, Shi Y, Zhai Y, Qiu J, Zheng C. The DmeRF System Is Involved in Maintaining Cobalt Homeostasis in Vibrio parahaemolyticus. Int J Mol Sci 2022; 24:ijms24010414. [PMID: 36613858 PMCID: PMC9820535 DOI: 10.3390/ijms24010414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Although cobalt (Co) is indispensable for life, it is toxic to cells when accumulated in excess. The DmeRF system is a well-characterized metal-response system that contributes to Co and nickel resistance in certain bacterial species. The Vibrio parahaemolyticus RIMD 2210633 genome also harbors a dmeRF operon that encodes a multiple antibiotic resistance regulator family transcriptional regulator and a cation diffusion facilitator family protein. Quantitative real-time PCR, growth curves analysis, inductively coupled plasma-mass spectrometry, β-galactosidase activity assays, electrophoretic mobility shift assays, and a mouse infection experiment were performed to characterize the function of the DmeRF system in V. parahaemolyticus. Zinc, copper, and Co significantly increase dmeF expression, with Co inducing the greatest increase. DmeF promotes V. parahaemolyticus growth under high-Co conditions. Additionally, increased accumulation of cellular Co in the ΔdmeF mutant indicates that DmeF is potentially involved in Co efflux. Moreover, DmeR represses the dmeRF operon by binding directly to its promoter in the absence of Co. Finally, the DmeRF system was not required for V. parahaemolyticus virulence in mice. Collectively, our data indicate that the DmeRF system is involved in maintaining Co homeostasis in V. parahaemolyticus and DmeR functioning as a repressor of the operon.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Mengyao Kong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Jiaxue Yang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxian Zhao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Yiran Shi
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Yimeng Zhai
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Jun Qiu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
| | - Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of MOE, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
4
|
Khan Z, Elahi A, Bukhari DA, Rehman A. Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun 2022; 13:4731. [PMID: 35961955 PMCID: PMC9374683 DOI: 10.1038/s41467-022-32085-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis requires a P1B-ATPase metal exporter, CtpC (Rv3270), for resistance to zinc poisoning. Here, we show that zinc resistance also depends on a chaperone-like protein, PacL1 (Rv3269). PacL1 contains a transmembrane domain, a cytoplasmic region with glutamine/alanine repeats and a C-terminal metal-binding motif (MBM). PacL1 binds Zn2+, but the MBM is required only at high zinc concentrations. PacL1 co-localizes with CtpC in dynamic foci in the mycobacterial plasma membrane, and the two proteins form high molecular weight complexes. Foci formation does not require flotillin nor the PacL1 MBM. However, deletion of the PacL1 Glu/Ala repeats leads to loss of CtpC and sensitivity to zinc. Genes pacL1 and ctpC appear to be in the same operon, and homologous gene pairs are found in the genomes of other bacteria. Furthermore, PacL1 colocalizes and functions redundantly with other PacL orthologs in M. tuberculosis. Overall, our results indicate that PacL proteins may act as scaffolds that assemble P-ATPase-containing metal efflux platforms mediating bacterial resistance to metal poisoning. The human pathogen Mycobacterium tuberculosis requires a metal exporter, CtpC, for resistance to zinc poisoning. Here, the authors show that zinc resistance also depends on a chaperone-like protein that binds zinc ions, forms high-molecular-weight complexes with CtpC in the cytoplasmic membrane, and is required for CtpC function.
Collapse
|
6
|
Grønberg C, Hu Q, Mahato DR, Longhin E, Salustros N, Duelli A, Lyu P, Bågenholm V, Eriksson J, Rao KU, Henderson DI, Meloni G, Andersson M, Croll T, Godaly G, Wang K, Gourdon P. Structure and ion-release mechanism of P IB-4-type ATPases. eLife 2021; 10:73124. [PMID: 34951590 PMCID: PMC8880997 DOI: 10.7554/elife.73124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here we present structures and complementary functional analyses of an archetypal PIB‑4‑ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy metal binding domains, and provides fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turn-over of PIB‑ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in e.g. drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.
Collapse
Affiliation(s)
- Christina Grønberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Qiaoxia Hu
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Elena Longhin
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Salustros
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Pin Lyu
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, United States
| | | | - Tristan Croll
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Gabriela Godaly
- Department of Laboratory Medicine, Umeå University, Umeå, Sweden
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
7
|
Molecular mechanisms of heavy metals resistance of Stenotrophomonas rhizophila JC1 by whole genome sequencing. Arch Microbiol 2021; 203:2699-2709. [PMID: 33715030 DOI: 10.1007/s00203-021-02271-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
In this study, a higher metal ions-resistant bacterium, Stenotrophomonas rhizophila JC1 was isolated from contaminated soil in Jinchang city, Gansu Province, China. The Pb2+ (120 mg/L) and Cu2+ (80 mg/L) removal rate of the strain reached at 76.9% and 83.4%, respectively. The genome comprises 4268161 bp in a circular chromosome with 67.52% G + C content and encodes 3719 proteins. The genome function analysis showed czc operon, mer operon, cop operon, arsenic detoxification system in strain JC1 were contributed to the removal of heavy metals. Three efflux systems (i.e., RND, CDF, and P-ATPase) on strain JC1 genome could trigger the removal of divalent cations from cells. cAMP pathway and ABC transporter pathway might be involved in the transport and metabolism of heavy metals. The homology analysis exhibited multi-gene families such as ABC transporters, heavy metal-associated domain, copper resistance protein, carbohydrate-binding domain were distributed across 410 orthologous groups. In addition, heavy metal-responsive transcription regulator, thioredoxin, heavy metal transport/detoxification protein, divalent-cation resistance protein CutA, arsenate reductase also played important roles in the heavy metals adsorption and detoxification process. The complete genome data provides insight into the exploration of the interaction mechanism between microorganisms and heavy metals.
Collapse
|
8
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
9
|
Meng D, Wu J, Xu Z, Xu Y, Li H, Jin W, Zhang J. Effect of passive ventilation on the performance of unplanted sludge treatment wetlands: heavy metal removal and microbial community variation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31665-31676. [PMID: 32500490 DOI: 10.1007/s11356-020-09288-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Sludge treatment wetlands (STWs) have been applied worldwide to treat excess sludge; however, the performance of STWs is generally limited by weather partly due to the plants vegetated on the STWs. In this study, ventilation is suggested to assist unvegetated STWs. Solid samples from different depths were analysed. Additionally, the variation of microbial community in STW unit was analysed and the fate of heavy metals in the sludge was determined. Results indicate that the STW unit with suitable parameters has better performance in stabilising and maturing the sludge than planted STW, which may contribute to the variation of the microbial community; additionally, ventilation exerts a positive influence on these bacteria during the variation of microbial community and on heavy metal removal through the substrate and positively impacts the Cd and Pb in reduction state. Furthermore, ventilation decreases the bioavailability of Cr. With ventilation in STWs, Bacillus and Streptomyces play a necessary role in enhancing the possibility of sludge to be used as microbial inoculants.
Collapse
Affiliation(s)
- Daizong Meng
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jun Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yixiao Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huaizheng Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Wei Jin
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jin Zhang
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
10
|
Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics 2020; 11:735-755. [PMID: 30734808 DOI: 10.1039/c8mt00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.
Collapse
Affiliation(s)
- Isidro Abreu
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
11
|
Abstract
Zinc homeostasis is crucial for bacterial cells, since imbalances affect viability. However, in mycobacteria, knowledge of zinc metabolism is incomplete. Mycobacterium smegmatis (MSMEG) is an environmental, nonpathogenic Mycobacterium that is widely used as a model organism to study mycobacterial metabolism and pathogenicity. How MSMEG maintains zinc homeostasis is largely unknown. SmtB and Zur are important regulators of bacterial zinc metabolism. In mycobacteria, these regulators are encoded by an operon, whereas in other bacterial species, SmtB and Zur are encoded on separate loci. Here, we show that the smtB-zur operon is consistently present within the genus Mycobacterium but otherwise found only in Nocardia, Saccharothrix, and Corynebacterium diphtheriae By RNA deep sequencing, we determined the Zur and SmtB regulons of MSMEG and compared them with transcriptional responses after zinc starvation or excess. We found an exceptional genomic clustering of genes whose expression was strongly induced by zur deletion and zinc starvation. These genes encoded zinc importers such as ZnuABC and three additional putative zinc transporters, including the porin MspD, as well as alternative ribosomal proteins. In contrast, only a few genes were affected by deletion of smtB and zinc excess. The zinc exporter ZitA was most prominently regulated by SmtB. Moreover, transcriptional analyses in combination with promoter and chromatin immunoprecipitation assays revealed a special regulation of the smtB-zur operon itself: an apparently zinc-independent, constitutive expression of smtB-zur resulted from sensitive coregulation by both SmtB and Zur. Overall, our data revealed yet unknown peculiarities of mycobacterial zinc homeostasis.IMPORTANCE Zinc is crucial for many biological processes, as it is an essential cofactor of enzymes and a structural component of regulatory and DNA binding proteins. Hence, all living cells require zinc to maintain constant intracellular levels. However, in excess, zinc is toxic. Therefore, cellular zinc homeostasis needs to be tightly controlled. In bacteria, this is achieved by transcriptional regulators whose activity is mediated via zinc-dependent conformational changes promoting or preventing their binding to DNA. SmtB and Zur are important antagonistically acting bacterial regulators in mycobacteria. They sense changes in zinc concentrations in the femtomolar range and regulate transcription of genes for zinc acquisition, storage, and export. Here, we analyzed the role of SmtB and Zur in zinc homeostasis in Mycobacterium smegmatis Our results revealed novel insights into the transcriptional processes of zinc homeostasis in mycobacteria and their regulation.
Collapse
|
12
|
Koebke KJ, Batelu S, Kandegedara A, Smith SR, Stemmler TL. Refinement of protein Fe(II) binding characteristics utilizing a competition assay exploiting small molecule ferrous chelators. J Inorg Biochem 2020; 203:110882. [PMID: 31683123 DOI: 10.1016/j.jinorgbio.2019.110882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Iron is the most prevalent metal in biology. Its chemical and redox versatility allows it to direct activity of many Fe binding proteins. While iron's biological applications are diverse, challenges inherent in having Fe(II) present at high abundance means cells must ensure delivery to the correct recipient, while also ensuring its chemistry is regulated. Having a detailed understanding of the biophysical characteristics of a protein's iron binding characteristics allows us to understand general cellular metal homeostasis events. Unfortunately, most spectroscopic techniques available to measure metal binding affinity require protein be in a homogeneous state. Homogeneity creates an artificial environment when measuring metal binding since within cells numerous additional metal binding biomolecules compete with the target. Here we investigate commercially available Fe(II) chelators with spectral markers coupled to metal binding and release. Our goal was to determine their utility as competitors while measuring aspects of metal binding by apoproteins during a metal binding competition assay. Adding chelators during apoprotein metal binding mimics heterogeneous metal binding environments present in vivo, and provides a more realistic metal binding affinity measurement. Ferrous chelators explored within this report include: Rhod-5N, Magfura-2, Fura-4F, Fura-2, and TPA (Tris-(2-byridyl-methyl)amine; each forms a 1:1 complex with Fe(II) and combined cover a binding range of 5 orders of magnitude (micromolar to nanomolar Kd). These chelators were used to calibrate binding affinities for yeast and fly frataxin (Yfh1 and Dfh, respectively), involved in mitochondrial FeS cluster bioassembly.
Collapse
Affiliation(s)
- Karl J Koebke
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Ashoka Kandegedara
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sheila R Smith
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48101, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Singh S, Goswami N, Tyagi AK, Khare G. Unraveling the role of the transcriptional regulator VirS in low pH-induced responses of Mycobacterium tuberculosis and identification of VirS inhibitors. J Biol Chem 2019; 294:10055-10075. [PMID: 31126988 DOI: 10.1074/jbc.ra118.005312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/11/2019] [Indexed: 11/06/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to respond and adapt to various stresses such as oxygen/nitrogen radicals and low pH inside macrophages is critical for the persistence of this human pathogen inside its host. We have previously shown that an AraC/XylS-type transcriptional regulator, VirS, which is induced in low pH, is involved in remodeling the architecture of the bacterial cell envelope. However, how VirS influences gene expression to coordinate these pH responses remains unclear. Here, using a genetic biosensor of cytoplasmic pH, we demonstrate that VirS is required for the intracellular pH maintenance in response to acidic stress and inside acidified macrophages. Furthermore, we observed that VirS plays an important role in blocking phagosomal-lysosomal fusions. Transcriptomics experiments revealed that VirS affects the expression of genes encoding metabolic enzymes, cell-wall envelope proteins, efflux pumps, ion transporters, detoxification enzymes, and transcriptional regulators expressed under low-pH stress. Employing electrophoretic mobility-shift assays, DNA footprinting, and in silico analysis, we identified a DNA sequence to which VirS binds and key residues in VirS required for its interaction with DNA. A significant role of VirS in M. tuberculosis survival in adverse conditions suggested it as a potential anti-mycobacterial drug target. To that end, we identified VirS inhibitors in a virtual screen; the top hit compounds inhibited its DNA-binding activity and also M. tuberculosis growth in vitro and inside macrophages. Our findings establish that VirS mediates M. tuberculosis responses to acidic stress and identify VirS-inhibiting compounds that may form the basis for developing more effective anti-mycobacterial agents.
Collapse
Affiliation(s)
- Swati Singh
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and
| | - Nikita Goswami
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and
| | - Anil K Tyagi
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and .,Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India
| | - Garima Khare
- From the Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India and
| |
Collapse
|
14
|
López M, Quitian LV, Calderón MN, Soto CY. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch Microbiol 2017; 200:483-492. [DOI: 10.1007/s00203-017-1465-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
15
|
Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 2017; 15:338-350. [PMID: 28344348 DOI: 10.1038/nrmicro.2017.15] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal ions are essential for many reactions, but excess metals can be toxic. In bacteria, metal limitation activates pathways that are involved in the import and mobilization of metals, whereas excess metals induce efflux and storage. In this Review, we highlight recent insights into metal homeostasis, including protein-based and RNA-based sensors that interact directly with metals or metal-containing cofactors. The resulting transcriptional response to metal stress takes place in a stepwise manner and is reinforced by post-transcriptional regulatory systems. Metal limitation and intoxication by the host are evolutionarily ancient strategies for limiting bacterial growth. The details of the resulting growth restriction are beginning to be understood and seem to be organism-specific.
Collapse
Affiliation(s)
- Pete Chandrangsu
- Department of Microbiology, Cornell University, Wing Hall, 123 Wing Drive, Ithaca, New York 14853, USA
| | - Christopher Rensing
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.,Department of Agricultural Resource and Environment, College of Resources and the Environment, Fujian Agriculture &Forestry University, Boxbue Building, 15 Shangxiadian Road, Cangshan District, Fuzhou, Fujian 350002, China.,J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Wing Hall, 123 Wing Drive, Ithaca, New York 14853, USA
| |
Collapse
|
16
|
Salusso A, Raimunda D. Defining the Roles of the Cation Diffusion Facilitators in Fe 2+/Zn 2+ Homeostasis and Establishment of Their Participation in Virulence in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7:84. [PMID: 28373967 PMCID: PMC5357649 DOI: 10.3389/fcimb.2017.00084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Transporters of the cation diffusion facilitator (CDF) family form dimers that export transition metals from the cytosol. The opportunistic pathogen Pseudomonas aeruginosa encodes three homologous CDF genes, czcD (PA0397), aitP (PA1297), and yiiP (PA3963). The three proteins are required for virulence in a plant host model. Disruption of the aitP gene leads to higher Fe2+ and Co2+ sensitivity together with an intracellular accumulation of these ions and to a decreased survival in presence of H2O2. Strains lacking czcD and yiiP showed low Zn2+ sensitivity. However, in iron-rich media and in the presence of Zn2+ these strains secreted higher levels of the iron chelator pyoverdine. Disruption of czcD and yiiP in a non-pyoverdine producer strain and lacking the Zn2+-transporting ATPase, increased the Zn2+ sensitivity and the accumulation of this ion. Most importantly, independent of the pyoverdine production strains lacking CzcD or YiiP, presented lower resistance to imipenem, ciprofloxacin, chloramphenicol, and gentamicin. These observations correlated with a lower survival rate upon EDTA-lysozyme treatment and overexpression of OprN and OprD porins. We hypothesize that while AitP is an Fe2+/Co2+ efflux transporter required for Fe2+ homeostasis, and ultimately redox stress handling, CzcD, and YiiP export Zn2+ to the periplasm for proper Zn2+-dependent signaling regulating outer membrane stability and therefore antibiotic tolerance.
Collapse
Affiliation(s)
- Agostina Salusso
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Universidad Nacional de Córdoba Córdoba, Argentina
| | - Daniel Raimunda
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Universidad Nacional de Córdoba Córdoba, Argentina
| |
Collapse
|
17
|
Santos P, López-Vallejo F, Soto CY. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem Biol Drug Des 2017; 90:175-187. [PMID: 28111912 DOI: 10.1111/cbdd.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB) is one of the most important public health problems around the world. The emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains has driven the finding of alternative anti-TB targets. In this context, P-type ATPases are interesting therapeutic targets due to their key role in ion homeostasis across the plasma membrane and the mycobacterial survival inside macrophages. In this review, in silico and experimental strategies used for the rational design of new anti-TB drugs are presented; in addition, the chemical space distribution based on the structure and molecular properties of compounds with anti-TB and anti-P-type ATPase activity is discussed. The chemical space distribution compared to public compound libraries demonstrates that natural product libraries are a source of novel chemical scaffolds with potential anti-P-type ATPase activity. Furthermore, compounds that experimentally display anti-P-type ATPase activity belong to a chemical space of molecular properties comparable to that occupied by those approved for oral use, suggesting that these kinds of molecules have a good pharmacokinetic profile (drug-like) for evaluation as potential anti-TB drugs.
Collapse
Affiliation(s)
- Paola Santos
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Fabian López-Vallejo
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos-Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
18
|
Li Q, Li C, Xie L, Zhang C, Feng Y, Xie J. Characterization of a putative ArsR transcriptional regulator encoded by Rv2642 from Mycobacterium tuberculosis. J Biomol Struct Dyn 2016; 35:2031-2039. [DOI: 10.1080/07391102.2016.1206037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiming Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunyan Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Longxiang Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenhui Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yonghong Feng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Regulation of the Cobalt/Nickel Efflux Operon dmeRF in Agrobacterium tumefaciens and a Link between the Iron-Sensing Regulator RirA and Cobalt/Nickel Resistance. Appl Environ Microbiol 2016; 82:4732-4742. [PMID: 27235438 DOI: 10.1128/aem.01262-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Agrobacterium tumefaciens C58 genome harbors an operon containing the dmeR (Atu0890) and dmeF (Atu0891) genes, which encode a transcriptional regulatory protein belonging to the RcnR/CsoR family and a metal efflux protein belonging to the cation diffusion facilitator (CDF) family, respectively. The dmeRF operon is specifically induced by cobalt and nickel, with cobalt being the more potent inducer. Promoter-lacZ transcriptional fusion, an electrophoretic mobility shift assay, and DNase I footprinting assays revealed that DmeR represses dmeRF transcription through direct binding to the promoter region upstream of dmeR A strain lacking dmeF showed increased accumulation of intracellular cobalt and nickel and exhibited hypersensitivity to these metals; however, this strain displayed full virulence, comparable to that of the wild-type strain, when infecting a Nicotiana benthamiana plant model under the tested conditions. Cobalt, but not nickel, increased the expression of many iron-responsive genes and reduced the induction of the SoxR-regulated gene sodBII Furthermore, control of iron homeostasis via RirA is important for the ability of A. tumefaciens to cope with cobalt and nickel toxicity. IMPORTANCE The molecular mechanism of the regulation of dmeRF transcription by DmeR was demonstrated. This work provides evidence of a direct interaction of apo-DmeR with the corresponding DNA operator site in vitro The recognition site for apo-DmeR consists of 10-bp AT-rich inverted repeats separated by six C bases (5'-ATATAGTATACCCCCCTATAGTATAT-3'). Cobalt and nickel cause DmeR to dissociate from the dmeRF promoter, which leads to expression of the metal efflux gene dmeF This work also revealed a connection between iron homeostasis and cobalt/nickel resistance in A. tumefaciens.
Collapse
|
20
|
Lu M, Li Z, Liang J, Wei Y, Rensing C, Wei G. Zinc Resistance Mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020. Sci Rep 2016; 6:29355. [PMID: 27378600 PMCID: PMC4932525 DOI: 10.1038/srep29355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
The Sinorhizobium meliloti (S. meliloti) strain CCNWSX0020 displayed tolerance to high levels exposures of multiple metals and growth promotion of legume plants grown in metal-contaminated soil. However, the mechanism of metal-resistant strain remains unknown. We used five P1B-ATPases deletions by designating as ∆copA1b, ∆fixI1, ∆copA3, ∆zntA and ∆nia, respectively to investigate the role of P1B-ATPases in heavy metal resistance of S. meliloti. The ∆copA1b and ∆zntA mutants were sensitive to zinc (Zn), cadmium (Cd) and lead (Pb) in different degree, whereas the other mutants had no significant influence on the metal resistance. Moreover, the expression of zntA was induced by Zn, Cd and Pb whereas copA1b was induced by copper (Cu) and silver (Ag). This two deletions could led to the increased intracellular concentrations of Zn, Pb and Cd, but not of Cu. Complementation of ∆copA1b and ∆zntA mutants showed a restoration of tolerance to Zn, Cd and Pb to a certain extent. Taken together, the results suggest an important role of copA1b and zntA in Zn homeostasis and Cd and Pb detoxification in S. meliloti CCNWSX0020.
Collapse
Affiliation(s)
- Mingmei Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| | - Jianqiang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| | - Yibing Wei
- College of Life Sciences, Nankai University, Tianjin, China
| | | | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A and F University, Yangling, Shaanxi, China
| |
Collapse
|
21
|
Pi H, Patel SJ, Argüello JM, Helmann JD. The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. Mol Microbiol 2016; 100:1066-79. [PMID: 26946370 DOI: 10.1111/mmi.13368] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 01/07/2023]
Abstract
Listeria monocytogenes FrvA (Lmo0641) is critical for virulence in the mouse model and is an ortholog of the Bacillus subtilis Fur- and PerR-regulated Fe(II) efflux P1B4 -type ATPase PfeT. Previously, FrvA was suggested to protect against heme toxicity. Here, we demonstrate that an frvA mutant is sensitive to iron intoxication, but not to other metals. Expression of frvA is induced by high iron and this induction requires Fur. FrvA functions in vitro as a divalent cation specific ATPase most strongly activated by ferrous iron. When expressed in B. subtilis, FrvA increases resistance to iron both in wild-type and in a pfeT null strain. FrvA is a high affinity Fe(II) exporter and its induction imposes severe iron limitation in B. subtilis resulting in derepression of both Fur- and PerR-regulated genes. FrvA also recognizes Co(II) and Zn(II) as substrates and can complement B. subtilis strains defective in the endogenous export systems for these cations. Building on these results, we conclude that FrvA functions in the efflux of Fe(II), and not heme during listerial infection.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Sarju J Patel
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Patel SJ, Lewis BE, Long JE, Nambi S, Sassetti CM, Stemmler TL, Argüello JM. Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases. J Biol Chem 2016; 291:11529-39. [PMID: 27022029 DOI: 10.1074/jbc.m116.718239] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
Little is known about iron efflux transporters within bacterial systems. Recently, the participation of Bacillus subtilis PfeT, a P1B4-ATPase, in cytoplasmic Fe(2+) efflux has been proposed. We report here the distinct roles of mycobacterial P1B4-ATPases in the homeostasis of Co(2+) and Fe(2+) Mutation of Mycobacterium smegmatis ctpJ affects the homeostasis of both ions. Alternatively, an M. tuberculosis ctpJ mutant is more sensitive to Co(2+) than Fe(2+), whereas mutation of the homologous M. tuberculosis ctpD leads to Fe(2+) sensitivity but no alterations in Co(2+) homeostasis. In vitro, the three enzymes are activated by both Fe(2+) and Co(2+) and bind 1 eq of either ion at their transport site. However, equilibrium binding affinities and activity kinetics show that M. tuberculosis CtpD has higher affinity for Fe(2+) and twice the Fe(2+)-stimulated activity than the CtpJs. These parameters are paralleled by a lower activation and affinity for Co(2+) Analysis of Fe(2+) and Co(2+) binding to CtpD by x-ray absorption spectroscopy shows that both ions are five- to six-coordinate, constrained within oxygen/nitrogen environments with similar geometries. Mutagenesis studies suggest the involvement of invariant Ser, His, and Glu residues in metal coordination. Interestingly, replacement of the conserved Cys at the metal binding pocket leads to a large reduction in Fe(2+) but not Co(2+) binding affinity. We propose that CtpJ ATPases participate in the control of steady state Fe(2+) levels. CtpD, required for M. tuberculosis virulence, is a high affinity Fe(2+) transporter involved in the rapid response to iron dyshomeostasis generated upon redox stress.
Collapse
Affiliation(s)
- Sarju J Patel
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Brianne E Lewis
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Jarukit E Long
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, and Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - José M Argüello
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609,
| |
Collapse
|
23
|
Neyrolles O, Wolschendorf F, Mitra A, Niederweis M. Mycobacteria, metals, and the macrophage. Immunol Rev 2015; 264:249-63. [PMID: 25703564 DOI: 10.1111/imr.12265] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here, we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies.
Collapse
Affiliation(s)
- Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, Univer-sité Paul Sabatier, Université de Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
24
|
Guan G, Pinochet-Barros A, Gaballa A, Patel SJ, Argüello JM, Helmann JD. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication. Mol Microbiol 2015; 98:787-803. [PMID: 26261021 DOI: 10.1111/mmi.13158] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4 -type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild-type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini-ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4 -type ATPases previously implicated in bacterial pathogenesis.
Collapse
Affiliation(s)
- Guohua Guan
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.,State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | - Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Sarju J Patel
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes. Sci Rep 2015; 5:13258. [PMID: 26286020 PMCID: PMC4541151 DOI: 10.1038/srep13258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022] Open
Abstract
Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses.
Collapse
|
26
|
Smith AT, Barupala D, Stemmler TL, Rosenzweig AC. A new metal binding domain involved in cadmium, cobalt and zinc transport. Nat Chem Biol 2015; 11:678-84. [PMID: 26192600 PMCID: PMC4543396 DOI: 10.1038/nchembio.1863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/28/2015] [Indexed: 11/26/2022]
Abstract
The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural, and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+, or Zn2+ ions in distinct and unique sites, and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full length CzcP, truncated CzcP, and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.
Collapse
Affiliation(s)
- Aaron T Smith
- 1] Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA. [2] Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Dulmini Barupala
- Department of Pharmaceutical Sciences and Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences and Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Amy C Rosenzweig
- 1] Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA. [2] Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
27
|
CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. Biometals 2015; 28:713-24. [PMID: 25967101 DOI: 10.1007/s10534-015-9860-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
The transport of heavy-metal ions across the plasma membrane is essential for mycobacterial intracellular survival; in this context, P-type ATPases are pivotal for maintenance of ionic gradients and the plasma membrane homeostasis of mycobacteria. To date, the copper ion transport that is mediated by P-type ATPases in mycobacteria is poorly understood. In this work, the ion-specific activation of CtpA, a putative plasma membrane Mycobacterium tuberculosis P-type ATPase, with different heavy-metal cations was assessed. Mycobacterium smegmatis mc(2)155 cells heterologously expressing the M. tuberculosis ctpA gene displayed an increased tolerance to toxic levels of the Cu(2+) ion (4 mM) compared to control cells, suggesting that CtpA is possibly involved in the copper detoxification of mycobacterial cells. In contrast, the tolerance of M. smegmatis recombinant cells against other heavy-metal divalent cations, such as Co(2+), Mn(2+), Ni(2+) and Zn(2+), was not detected. In addition, the ATPase activity of plasma membrane vesicles that were obtained from M. smegmatis cells expressing CtpA was stimulated by Cu(+) (4.9 nmol of Pi released/mg of protein.min) but not by Cu(2+) ions; therefore, Cu(2+) reduction to Cu(+) inside mycobacterial cells is suggested. Finally, the plasma membrane vesicles of M. smegmatis that were enriched with CtpA exhibited an optimal activity at 37 °C and pH 7.9; the apparent kinetic parameters of the enzyme were a K(1/2) of 4.68 × 10(-2) µM for Cu(+), a Vmax of 10.3 U/mg of protein, and an h value of 1.91.
Collapse
|
28
|
Ayala-Torres C, Novoa-Aponte L, Soto CY. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane. Microbiol Res 2015; 176:1-6. [PMID: 26070686 DOI: 10.1016/j.micres.2015.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022]
Abstract
Mycobacterium smegmatis Pma1 is the orthologue of M. tuberculosis P-type ATPase cation transporter CtpF, which is activated under stress conditions, such as hypoxia, starvation and response to antituberculous and toxic substances. The function of Pma1 in the mycobacterial processes across the plasma membrane has not been characterised. In this work, bioinformatic analyses revealed that Pma1 likely contains potential sites for, Na(+), K(+) and Ca(2+) binding and transport. Accordingly, RT-qPCR experiments showed that M. smegmatis pma1 transcription is stimulated by sub-lethal doses of Na(+), K(+) and Ca(2+); in addition, the ATPase activity of plasma membrane vesicles in recombinant Pma1-expressing M. smegmatis cells is stimulated by treatment with these cations. In contrast, M. smegmatis cells homologously expressing Pma1 displayed tolerance to high doses of Na(+) and K(+) but not to Ca(2+) ions. Consistently, the recombinant protein Km embedded in plasma membrane demonstrated that Ca(2+) has more affinity for Pma1 than Na(+) and K(+) ions; furthermore, the estimation of Vmax/Km suggests that Na(+) and K(+) ions are more efficiently translocated than Ca(2+). Thus, these results strongly suggest that Pma1 is a promiscuous alkali/alkaline earth cation ATPase that preferentially transports Na(+) and/or K(+) across the mycobacterial plasma membrane.
Collapse
Affiliation(s)
- Carlos Ayala-Torres
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Lorena Novoa-Aponte
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
29
|
Sautron E, Mayerhofer H, Giustini C, Pro D, Crouzy S, Ravaud S, Pebay-Peyroula E, Rolland N, Catty P, Seigneurin-Berny D. HMA6 and HMA8 are two chloroplast Cu+-ATPases with different enzymatic properties. Biosci Rep 2015; 35:e00201. [PMID: 26182363 PMCID: PMC4613667 DOI: 10.1042/bsr20150065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/01/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
Copper (Cu) plays a key role in the photosynthetic process as cofactor of the plastocyanin (PC), an essential component of the chloroplast photosynthetic electron transfer chain. Encoded by the nuclear genome, PC is translocated in its apo-form into the chloroplast and the lumen of thylakoids where it is processed to its mature form and acquires Cu. In Arabidopsis, Cu delivery into the thylakoids involves two transporters of the PIB-1 ATPases family, heavy metal associated protein 6 (HMA6) located at the chloroplast envelope and HMA8 at the thylakoid membrane. To gain further insight into the way Cu is delivered to PC, we analysed the enzymatic properties of HMA8 and compared them with HMA6 ones using in vitro phosphorylation assays and phenotypic tests in yeast. These experiments reveal that HMA6 and HMA8 display different enzymatic properties: HMA8 has a higher apparent affinity for Cu(+) but a slower dephosphorylation kinetics than HMA6. Modelling experiments suggest that these differences could be explained by the electrostatic properties of the Cu(+) releasing cavities of the two transporters and/or by the different nature of their cognate Cu(+) acceptors (metallochaperone/PC).
Collapse
Affiliation(s)
- Emeline Sautron
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Hubert Mayerhofer
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, UMR5075, 71, avenue des Martyrs, F-38044 Grenoble, France
| | - Cécile Giustini
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Danièle Pro
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Serge Crouzy
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- *CNRS, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Stéphanie Ravaud
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, UMR5075, 71, avenue des Martyrs, F-38044 Grenoble, France
| | - Eva Pebay-Peyroula
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, UMR5075, 71, avenue des Martyrs, F-38044 Grenoble, France
| | - Norbert Rolland
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Patrice Catty
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- *CNRS, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, F-38054 Grenoble, France
| | - Daphné Seigneurin-Berny
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
- Univ. Grenoble Alpes, F-38054 Grenoble, France
- CEA, DSV, iRTSV, F-38054 Grenoble, France
- INRA, LPCV, USC1359, 17 rue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
30
|
Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis. Proc Natl Acad Sci U S A 2014; 111:E5480-7. [PMID: 25468978 DOI: 10.1073/pnas.1421545111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metallochaperones traffic copper (Cu(+)) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. We present a previously unidentified Cu(+) chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu(+) chaperone delivers Cu(+) with specificity for PAA1, which is flipped in the envelope relative to prototypical bacterial ATPases, compatible with a role in Cu(+) import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu(+)-delivery mechanism and provides a unique snapshot into the evolution of a Cu(+) distribution pathway. We also provide evidence for an interaction between PAA2, the Cu(+)-ATPase in thylakoids, and the Cu(+)-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu(+) network that has evolved to fine-tune Cu(+) distribution.
Collapse
|
31
|
Smith AT, Smith KP, Rosenzweig AC. Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 2014; 19:947-60. [PMID: 24729073 PMCID: PMC4119550 DOI: 10.1007/s00775-014-1129-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/21/2014] [Indexed: 01/23/2023]
Abstract
The P1B-ATPases are integral membrane proteins that couple ATP hydrolysis to metal cation transport. Widely distributed across all domains of life, these enzymes have been previously shown to transport copper, zinc, cobalt, and other thiophilic heavy metals. Recent data suggest that these enzymes may also be involved in nickel and/or iron transport. Here we have exploited large amounts of genomic data to examine and classify the various P1B-ATPase subfamilies. Specifically, we have combined new methods of data partitioning and network visualization known as Transitivity Clustering and Protein Similarity Networks with existing biochemical data to examine properties such as length, speciation, and metal-binding motifs of the P1B-ATPase subfamily sequences. These data reveal interesting relationships among the enzyme sequences of previously established subfamilies, indicate the presence of two new subfamilies, and suggest the existence of new regulatory elements in certain subfamilies. Taken together, these findings underscore the importance of P1B-ATPases in homeostasis of nearly every biologically relevant transition metal and provide an updated framework for future studies.
Collapse
Affiliation(s)
- Aaron T. Smith
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Kyle P. Smith
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
32
|
Novoa-Aponte L, Soto Ospina CY. Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:296986. [PMID: 25110669 PMCID: PMC4119724 DOI: 10.1155/2014/296986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) has been the biggest killer in the human history; currently, Mycobacterium tuberculosis (Mtb) kills nearly 2 million people each year worldwide. The high prevalence of TB obligates the identification of new therapeutic targets and the development of anti-TB vaccines that can control multidrug resistance and latent TB infections. Membrane proteins have recently been suggested as key targets for bacterial viability. Current studies have shown that mycobacteria P-type ATPases may play critical roles in ion homeostasis and in the response of mycobacteria to toxic substances in the intraphagosomal environment. In this review, we bring together the genomic, transcriptomic, and structural aspects of the P-type ATPases that are relevant during active and latent Mtb infections, which can be useful in determining the potential of these ATPases as drug targets and in uncovering their possible roles in the development of new anti-TB attenuated vaccines.
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Cundinamarca 111321, Colombia
| | - Carlos Yesid Soto Ospina
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Cundinamarca 111321, Colombia
| |
Collapse
|
33
|
Pulido PA, Novoa-Aponte L, Villamil N, Soto CY. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na+/K+ and Ca2+ ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr Microbiol 2014; 69:604-10. [DOI: 10.1007/s00284-014-0632-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 01/14/2023]
|
34
|
Padilla-Benavides T, George Thompson AM, McEvoy MM, Argüello JM. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. J Biol Chem 2014; 289:20492-501. [PMID: 24917681 DOI: 10.1074/jbc.m114.577668] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular copper homeostasis requires transmembrane transport and compartmental trafficking while maintaining the cell essentially free of uncomplexed Cu(2+/+). In bacteria, soluble cytoplasmic and periplasmic chaperones bind and deliver Cu(+) to target transporters or metalloenzymes. Transmembrane Cu(+)-ATPases couple the hydrolysis of ATP to the efflux of cytoplasmic Cu(+). Cytosolic Cu(+) chaperones (CopZ) interact with a structural platform in Cu(+)-ATPases (CopA) and deliver copper into the ion permeation path. CusF is a periplasmic Cu(+) chaperone that supplies Cu(+) to the CusCBA system for efflux to the extracellular milieu. In this report, using Escherichia coli CopA and CusF, direct Cu(+) transfer from the ATPase to the periplasmic chaperone was observed. This required the specific interaction of the Cu(+)-bound form of CopA with apo-CusF for subsequent metal transfer upon ATP hydrolysis. As expected, the reverse Cu(+) transfer from CusF to CopA was not observed. Mutation of CopA extracellular loops or the electropositive surface of CusF led to a decrease in Cu(+) transfer efficiency. On the other hand, mutation of Met and Glu residues proposed to be part of the metal exit site in the ATPase yielded enzymes with lower turnover rates, although Cu(+) transfer was minimally affected. These results show how soluble chaperones obtain Cu(+) from transmembrane transporters. Furthermore, by explaining the movement of Cu(+) from the cytoplasmic pool to the extracellular milieu, these data support a mechanism by which cytoplasmic Cu(+) can be precisely directed to periplasmic targets via specific transporter-chaperone interactions.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609 and
| | | | - Megan M McEvoy
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - José M Argüello
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609 and
| |
Collapse
|
35
|
Rodriguez GM, Neyrolles O. Metallobiology of Tuberculosis. Microbiol Spectr 2014; 2:10.1128/microbiolspec.MGM2-0012-2013. [PMID: 26103977 PMCID: PMC5180607 DOI: 10.1128/microbiolspec.mgm2-0012-2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Indexed: 11/20/2022] Open
Abstract
Transition metals are essential constituents of all living organisms, playing crucial structural and catalytic parts in many enzymes and transcription factors. However, transition metals can also be toxic when present in excess. Their uptake and efflux rates must therefore be carefully controlled by biological systems. In this chapter, we summarize the current knowledge about uptake and efflux systems in Mycobacterium tuberculosis for mainly three of these metals, namely iron, zinc, and copper. We also propose questions for future research in the field of metallobiology of host-pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- G. Marcela Rodriguez
- Public Health Research Institute Center & Department of Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| | - Olivier Neyrolles
- Centre National de la Recherche Scientifique & Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| |
Collapse
|
36
|
Boutigny S, Sautron E, Finazzi G, Rivasseau C, Frelet-Barrand A, Pilon M, Rolland N, Seigneurin-Berny D. HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1529-40. [PMID: 24510941 DOI: 10.1093/jxb/eru020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Copper is an essential micronutrient but it is also potentially toxic as copper ions can catalyse the production of free radicals, which result in various types of cell damage. Therefore, copper homeostasis in plant and animal cells must be tightly controlled. In the chloroplast, copper import is mediated by a chloroplast-envelope PIB-type ATPase, HMA6/PAA1. Copper may also be imported by HMA1, another chloroplast-envelope PIB-ATPase. To get more insights into the specific functional roles of HMA1 and PAA1 in copper homeostasis, this study analysed the phenotypes of plants affected in the expression of both HMA1 and PAA1 ATPases, as well as of plants overexpressing HMA1 in a paa1 mutant background. The results presented here provide new evidence associating HMA1 with copper homeostasis in the chloroplast. These data suggest that HMA1 and PAA1 behave as distinct pathways for copper import and targeting to the chloroplast. Finally, this work also provides evidence for an alternative route for copper import into the chloroplast mediated by an as-yet unidentified transporter that is neither HMA1 nor PAA1.
Collapse
Affiliation(s)
- Sylvain Boutigny
- CNRS, Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, 17 rue des Martyrs, F-38054 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Argüello JM. Differential roles for the Co(2+) /Ni(2+) transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence. Mol Microbiol 2013; 91:185-97. [PMID: 24255990 DOI: 10.1111/mmi.12454] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
The genome of Mycobacterium tuberculosis encodes two paralogous P1 B 4 -ATPases, CtpD (Rv1469) and CtpJ (Rv3743). Both proteins showed ATPase activation by Co(2+) and Ni(2+) , and both appear to be required for metal efflux from the cell. However, using a combination of biochemical and genetic studies we found that these proteins play non-redundant roles in virulence and metal efflux. CtpJ expression is induced by Co(2+) and this protein possesses a relatively high turnover rate. A ctpJ deletion mutant accumulated Co(2+) , indicating that this ATPase controls cytoplasmic metal levels. In contrast, CtpD expression is induced by redox stressors and this protein displays a relatively low turnover rate. A ctpD mutant failed to accumulate metal, suggesting an alternative cellular function. ctpD is cotranscribed with two thioredoxin genes trxA (Rv1470), trxB (Rv1471), and an enoyl-coA hydratase (Rv1472), indicating a possible role for CtpD in the metallation of these redox-active proteins. Supporting this, in vitro metal binding assays showed that TrxA binds Co(2+) and Ni(2+) . Mutation of ctpD, but not ctpJ, reduced bacterial fitness in the mouse lung, suggesting that redox maintenance, but not Co(2+) accumulation, is important for growth in vivo.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | | | | | | | | |
Collapse
|
38
|
Zielazinski EL, González-Guerrero M, Subramanian P, Stemmler TL, Argüello JM, Rosenzweig AC. Sinorhizobium meliloti Nia is a P(1B-5)-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport. Metallomics 2013; 5:1614-1623. [PMID: 24056637 DOI: 10.1039/c3mt00195d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The P1B-ATPases are a ubiquitous family of metal transporters. These transporters are classified into subfamilies on the basis of substrate specificity, which is conferred by conserved amino acids in the last three transmembrane domains. Five subfamilies have been identified to date, and representative members of four (P1B-1 to P1B-4) have been studied. The fifth family (P1B-5), of which some members contain a C-terminal hemerythrin (Hr) domain, is less well characterized. The S. meliloti Sma1163 gene encodes for a P1B-5-ATPase, denoted Nia (Nickel-iron ATPase), that is induced by exogenous Fe(2+) and Ni(2+). The nia mutant accumulates nickel and iron, suggesting a possible role in detoxification of these two elements under free-living conditions, as well as in symbiosis, when the highest expression levels are measured. This function is supported by an inhibitory effect of Fe(2+) and Ni(2+) on the pNPPase activity, and by the ability of Nia to bind Fe(2+) in the transmembrane domain. Optical and X-ray absorption spectroscopic studies of the isolated Hr domain confirm the presence of a dinuclear iron center and suggest that this domain might function as an iron sensor.
Collapse
Affiliation(s)
- Eliza L Zielazinski
- Departments of Molecular Biosciences and of Chemistry. Northwestern University, Evanston, Illinois, USA.
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Poorna Subramanian
- Department of Biochemistry and Molecular Biology and the Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Timothy L Stemmler
- Department of Biochemistry and Molecular Biology and the Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry. Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
39
|
Raimunda D, Padilla-Benavides T, Vogt S, Boutigny S, Tomkinson KN, Finney LA, Argüello JM. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics 2013; 5:144-51. [PMID: 23354150 DOI: 10.1039/c2mt20191g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, has two transmembrane Cu(+) transport ATPases, CopA1 and CopA2. Both proteins export cytoplasmic Cu(+) into the periplasm and mutation of either gene leads to attenuation of virulence. CopA1 is required for maintaining cytoplasmic copper levels, while CopA2 provides copper for cytochrome c oxidase assembly. We hypothesized that transported Cu(+) ions would be directed to their destination via specific periplasmic partners and disruption of transport should affect the periplasmic copper homeostasis. Supporting this, mutation of either ATPase gene led to large increments in periplasmic cuproprotein levels. Toward identifying the proteins participating in this cellular response the periplasmic metalloproteome was resolved in non-denaturing bidimensional gel electrophoresis, followed by X-ray fluorescence visualization and identification by mass-spectrometry. A single spot containing the electron shuttle protein azurin was responsible for the observed increments in cuproprotein contents. In agreement, lack of either Cu(+)-ATPase induced an increase in azu transcription. This is associated with an increase in the expression of anr and rpoS oxidative stress response regulators, rather than cueR, a copper sensing regulator. We propose that azurin overexpression and accumulation in the periplasm is part of the cellular response to cytoplasmic oxidative stress in P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Padilla-Benavides T, Long JE, Raimunda D, Sassetti CM, Argüello JM. A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J Biol Chem 2013; 288:11334-47. [PMID: 23482562 DOI: 10.1074/jbc.m112.448175] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transition metals are central for bacterial virulence and host defense. P(1B)-ATPases are responsible for cytoplasmic metal efflux and play roles either in limiting cytosolic metal concentrations or in the maturation of secreted metalloproteins. The P(1B)-ATPase, CtpC, is required for Mycobacterium tuberculosis survival in a mouse model (Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A. 100, 12989-12994). CtpC prevents Zn(2+) toxicity, suggesting a role in Zn(2+) export from the cytosol (Botella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charriere, G. M., Waddell, S. J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P. D., Castagnoli, P. R., Gicquel, B., de Chastellièr, C., and Neyrolles, O. (2011) Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248-259). However, key metal-coordinating residues and the overall structure of CtpC are distinct from Zn(2+)-ATPases. We found that isolated CtpC has metal-dependent ATPase activity with a strong preference for Mn(2+) over Zn(2+). In vivo, CtpC is unable to complement Escherichia coli lacking a functional Zn(2+)-ATPase. Deletion of M. tuberculosis or Mycobacterium smegmatis ctpC leads to cytosolic Mn(2+) accumulation but no alterations in other metals levels. Whereas ctpC-deficient M. tuberculosis is sensitive to extracellular Zn(2+), the M. smegmatis mutant is not. Both ctpC mutants are sensitive to oxidative stress, which might explain the Zn(2+)-sensitive phenotype of the M. tuberculosis ctpC mutant. CtpC is a high affinity/slow turnover ATPase, suggesting a role in protein metallation. Consistent with this hypothesis, mutation of CtpC leads to a decrease of Mn(2+) bound to secreted proteins and of the activity of secreted Fe/Mn-superoxide dismutase, particularly in M. smegmatis. Alterations in the assembly of metalloenzymes involved in redox stress response might explain the sensitivity of M. tuberculosis ctpC mutants to oxidative stress and growth and persistence defects in mice infection models.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Chemistry and Biochemistry Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | | | | | | | |
Collapse
|