1
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2025; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Stakheev AA, Kutukov RR, Taliansky ME, Zavriev SK. Investigating the Structure of the Components of the PolyADP-Ribosylation System in Fusarium Fungi and Evaluating the Expression Dynamics of Its Key Genes. Acta Naturae 2024; 16:83-92. [PMID: 39555176 PMCID: PMC11569842 DOI: 10.32607/actanaturae.27450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 11/19/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is the key enzyme in polyADP-ribosylation, one of the main post-translational modifications. This enzyme is abundant in eukaryotic organisms. However, information on the PARP structure and its functions in members of the Fungi kingdom is very limited. In this study, we performed a bioinformatic search for homologs of PARP and its antagonist, PARG, in the genomes of four Fusarium strains using their whole-genome sequences annotated and deposited in databases. The F. graminearum PH-1, F. proliferatum ET-1, and F. oxysporum Fo47 strains were shown to possess a single homolog of both PARP and PARG. In addition, the F. oxysporum f. sp. lycopersici strain 4287 contained four additional proteins comprising PARP catalytic domains whose structure was different from that of the remaining identified homologs. Partial nucleotide sequences encoding the catalytic domains of the PARP and PARG homologs were determined in 11 strains of 9 Fusarium species deposited in all-Russian collections, and the phylogenetic properties of the analyzed genes were evaluated. In the toxigenic F. graminearum strain, we demonstrated up-regulation of the gene encoding the PARP homolog upon culturing under conditions stimulating the production of the DON mycotoxin, as well as up-regulation of the gene encoding PARG at later stages of growth. These findings indirectly indicate involvement of the polyADP-ribosylation system in the regulation of the genes responsible for DON biosynthesis.
Collapse
Affiliation(s)
- A. A. Stakheev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - R. R. Kutukov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - M. E. Taliansky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - S. K. Zavriev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| |
Collapse
|
4
|
Karahoda B, Pfannenstiel BT, Sarikaya-Bayram Ö, Dong Z, Ho Wong K, Fleming AB, Keller NP, Bayram Ö. The KdmB-EcoA-RpdA-SntB (KERS) chromatin regulatory complex controls development, secondary metabolism and pathogenicity in Aspergillus flavus. Fungal Genet Biol 2023; 169:103836. [PMID: 37666447 PMCID: PMC10841535 DOI: 10.1016/j.fgb.2023.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.
Collapse
Affiliation(s)
- Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Brandon T Pfannenstiel
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | | | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau; Institute of Translational Medicine, University of Macau, Macau; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
5
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
6
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
7
|
Zhang J, Shao Y, Chen F. Overexpression of MrEsa1 accelerated growth, increased ascospores yield, and the polyketide production in Monascus ruber. J Basic Microbiol 2023. [PMID: 36760018 DOI: 10.1002/jobm.202200664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Esa1 has been proven to be an important histone acetyltransferase involved in the regulation of growth and metabolism. Monascus spp. with nearly 2000 years of edible history in East Asian countries can produce a variety of polyketides. It is unknown whether Esa1 plays a regulatory role in Monascus spp. In this study, we isolated the homology of histone acetyltransferase Esa1 (named MrEsa1) and constructed a mresa1-overexpressed strain. Western blot experiments showed that MrEsa1 hyperacetylated at K4 and K9 of the H3 subunit in Monascus ruber. Overexpression of mresa1 led to the larger colony diameter and increased dry cell mass; meanwhile, the conidia germination rate was significantly accelerated in the mresa1-overexpressed strain before 4 h, and the number of ascospores in the mresa1-overexpressed strain was significantly higher than that in WT. In addition, the Monascus azaphilone pigments (MonAzPs) and citrinin production of the mresa1-overexpressed strain were 1.7 and 2.4 times more than those of WT, respectively. Reverse transcription-quantitative polymerase chain reaction experiment suggested that mrpigB, mrpigH, mrpigJ, and mrpigK, involved in MonAzPs synthesis, and pksCT, mrl3, and mrl7, involved in citrinin synthesis, were upregulated in mresa1-overexpressed strain. This study provides important insights into the effect of MrEsa1 on the developmental process and the production of secondary metabolites in Monascus spp.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Food and Pharmaceutical Science College, Huaian, People's Republic of China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Karahoda B, Pardeshi L, Ulas M, Dong Z, Shirgaonkar N, Guo S, Wang F, Tan K, Sarikaya-Bayram Ö, Bauer I, Dowling P, Fleming AB, Pfannenstiel B, Luciano-Rosario D, Berger H, Graessle S, Alhussain MM, Strauss J, Keller NP, Wong KH, Bayram Ö. The KdmB-EcoA-RpdA-SntB chromatin complex binds regulatory genes and coordinates fungal development with mycotoxin synthesis. Nucleic Acids Res 2022; 50:9797-9813. [PMID: 36095118 PMCID: PMC9508808 DOI: 10.1093/nar/gkac744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.
Collapse
Affiliation(s)
- Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Mevlut Ulas
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Niranjan Shirgaonkar
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Shuhui Guo
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | | | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Dowling
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Brandon T Pfannenstiel
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | | | - Harald Berger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohamed M Alhussain
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Zehetbauer F, Seidl A, Berger H, Sulyok M, Kastner F, Strauss J. RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans. Fungal Genet Biol 2022; 162:103726. [PMID: 35843417 DOI: 10.1016/j.fgb.2022.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
Depending on the prevailing environmental, developmental and nutritional conditions, fungi activate biosynthetic gene clusters (BGCs) to produce condition-specific secondary metabolites (SMs). For activation, global chromatin-based de-repression must be integrated with pathway-specific induction signals. Here we describe a new global regulator needed to activate starvation-induced SMs. In our transcriptome dataset, we found locus AN7572 strongly transcribed solely under conditions of starvation-induced SM production. The predicted AN7572 protein is most similar to the stress and nutritional regulator Rim15 of Saccharomyces cerevisiae, and to STK-12 of Neurospora crassa. Based on this similarity and on stress and nutritional response phenotypes of A. nidulans knock-out and overexpression strains, AN7572 is designated rimO. In relation to SM production, we found that RimO is required for the activation of starvation-induced BGCs, including the sterigmatocystin (ST) gene cluster. Here, RimO regulates the pathway-specific transcription factor AflR both at the transcriptional and post-translational level. At the transcriptional level, RimO mediates aflR induction following carbon starvation and at the post-translational level, RimO is required for nuclear accumulation of the AflR protein. Genome-wide transcriptional profiling showed that cells lacking rimO fail to adapt to carbon starvation that, in the wild type, leads to down-regulation of genes involved in basic metabolism, membrane biogenesis and growth. Consistently, strains overexpressing rimO are more resistant to oxidative and osmotic stress, largely insensitive to glucose repression and strongly overproduce several SMs. Our data indicate that RimO is a positive regulator within the SM and stress response network, but this requires nutrient depletion that triggers both, rimO gene transcription and activation of the RimO protein.
Collapse
Affiliation(s)
- Franz Zehetbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Angelika Seidl
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Harald Berger
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria.
| | - Florian Kastner
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Joseph Strauss
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
10
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
11
|
Li Y, Song Z, Wang E, Dong L, Bai J, Wang D, Zhu J, Zhang C. Potential antifungal targets based on histones post-translational modifications against invasive aspergillosis. Front Microbiol 2022; 13:980615. [PMID: 36016791 PMCID: PMC9395700 DOI: 10.3389/fmicb.2022.980615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
As a primary cause of death in patients with hematological malignancies and transplant recipients, invasive aspergillosis (IA) is a condition that warrants attention. IA infections have been increasing, which remains a significant cause of morbidity and mortality in immunocompromised patients. During the past decade, antifungal drug resistance has emerged, which is especially concerning for management given the limited options for treating azole-resistant infections and the possibility of failure of prophylaxis in those high-risk patients. Histone posttranslational modifications (HPTMs), mainly including acetylation, methylation, ubiquitination and phosphorylation, are crucial epigenetic mechanisms regulating various biological events, which could modify the conformation of histone and influence chromatin-associated nuclear processes to regulate development, cellular responsiveness, and biological phenotype without affecting the underlying genetic sequence. In recent years, fungi have become important model organisms for studying epigenetic regulation. HPTMs involves in growth and development, secondary metabolite biosynthesis and virulence in Aspergillus. This review mainly aims at summarizing the acetylation, deacetylation, methylation, demethylation, and sumoylation of histones in IA and connect this knowledge to possible HPTMs-based antifungal drugs. We hope this research could provide a reference for exploring new drug targets and developing low-toxic and high-efficiency antifungal strategies.
Collapse
Affiliation(s)
- Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhihui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ente Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liming Dong
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jinyan Zhu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
12
|
Wei Z, Shu D, Sun Q, Chen DB, Li ZM, Luo D, Yang J, Tan H. The BcLAE1 is involved in the regulation of ABA biosynthesis in Botrytis cinerea TB-31. Front Microbiol 2022; 13:969499. [PMID: 35992717 PMCID: PMC9386520 DOI: 10.3389/fmicb.2022.969499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA), as a classic plant hormone, is a key factor in balancing the metabolism of endogenous plant hormones, and plays an important role in regulating the activation of mammalian innate immune cells and glucose homeostasis. Currently, Botrytis cinerea has been used for fermentation to produce ABA. However, the mechanism of the regulation of ABA biosynthesis in B. cinerea is still not fully understood. The putative methyltransferase LaeA/LAE1 is a global regulator involved in the biosynthesis of a variety of secondary metabolites in filamentous fungi. In this study, we demonstrated that BcLAE1 plays an important role in the regulation of ABA biosynthesis in B. cinerea TB-31 by knockout experiment. The deletion of Bclae1 caused a 95% reduction in ABA yields, accompanied by a decrease of the transcriptional level of the ABA synthesis gene cluster Bcaba1-4. Further RNA-seq analysis indicated that deletion of Bclae1 also affected the expression level of key enzymes of BOA and BOT in secondary metabolism, and accompanied by clustering regulatory features. Meanwhile, we found that BcLAE1 is involved in epigenetic regulation as a methyltransferase, with enhanced H3K9me3 modification and attenuated H3K4me2 modification in ΔBclae1 mutant, and this may be a strategy for BcLAE1 to regulate ABA synthesis.
Collapse
Affiliation(s)
- Zhao Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Shu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Dan Shu,
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dong-bo Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhe-min Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Di Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hong Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Hong Tan,
| |
Collapse
|
13
|
Yang K, Tian J, Keller NP. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review. Environ Microbiol 2022; 24:2857-2881. [PMID: 35645150 PMCID: PMC9545273 DOI: 10.1111/1462-2920.16034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022]
Abstract
Post‐translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co‐localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non‐histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| |
Collapse
|
14
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Atanasoff-Kardjalieff AK, Studt L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins (Basel) 2022; 14:96. [PMID: 35202124 PMCID: PMC8880415 DOI: 10.3390/toxins14020096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.
Collapse
Affiliation(s)
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria;
| |
Collapse
|
16
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
17
|
El-Sayed ASA, Shindia AA, AbouZeid A, Koura A, Hassanein SE, Ahmed RM. Triggering the biosynthetic machinery of Taxol by Aspergillus flavipes via cocultivation with Bacillus subtilis: proteomic analyses emphasize the chromatin remodeling upon fungal-bacterial interaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39866-39881. [PMID: 33768456 DOI: 10.1007/s11356-021-13533-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Attenuating the Taxol biosynthesis by fungi with storage and subculturing is the major challenge that limits their further industrial applications. Aspergillus flavipes has been reported as a potent Taxol producer, with plausible increasing to its Taxol yield upon coculturing with the microbiome of Podocarpus gracilior (El-Sayed et al., Process Biochemistry 76:55-67, 2019a; Scientific Reports 9, 2019b; Enzyme and Microbial Technology 131, 2019c); however, the identity of these microbial inducers remains ambiguous. Thus, this study was to assess the potency of individual microbes to trigger the Taxol biosynthesis by A. flavipes and to unravel the differentially expressed protein in response to bacterial interaction. Among the 25 bacterial endophytes of P. gracilior, Bacillus subtilis was the potent isolate enhancing the Taxol yield of A. flavipes by ~1.6-fold. Strikingly, this bacterial elicitor displayed a reliable inhibition to the growth of A. flavipes, so the released antifungal compound by B. subtilis could be the same signals for triggering the expression of A. flavipes Taxol synthesis. The highest Taxol yield by A. flavipes was obtained with the viable cells of B. subtilis, ensuring the pivotality of physical intimate bacterial-fungal interaction. Differential proteome of the cocultures A. flavipes and B. subtilis as well as the axenic A. flavipes was conducted by LC-MS/MS. From the total of 106 identified proteins, 50 proteins were significantly expressed, 47 were upregulated ones, and 59 were downregulated ones for the cocultures normalizing to the axenic one. From the Gene Ontology (GO) and KEGG enrichment analyses, the cellular process, primary metabolic process, and nitrogen compound metabolic process were significantly changed in the coculture normalizing to monoculture of A. flavipes. The molecular function terms (histones H2B, H2A, peptidyl-prolyl cis-trans isomerase, and nucleoside-diphosphate kinase (NDPK)) were the highly significantly expressed proteins of A. flavipes in response to B. subtilis, with strong correlation to triggering of Taxol biosynthesis. The intimate interaction of A. flavipes with B. subtilis strongly modulates the Taxol biosynthetic machinery of A. flavipes by modulating the chromatin remodeling.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza AbouZeid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa Koura
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sameh E Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Cairo, Egypt
| | - Rania M Ahmed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
18
|
Lin C, Cao X, Qu Z, Zhang S, Naqvi NI, Deng YZ. The Histone Deacetylases MoRpd3 and MoHst4 Regulate Growth, Conidiation, and Pathogenicity in the Rice Blast Fungus Magnaporthe oryzae. mSphere 2021; 6:e0011821. [PMID: 34190584 PMCID: PMC8265625 DOI: 10.1128/msphere.00118-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
As the causal agent of the blast disease, Magnaporthe oryzae is one of the most destructive fungal pathogens of rice. Histone acetylation/deacetylation is important for remodeling of chromatin superstructure and thus altering gene expression. In this study, two genes encoding histone deacetylases, namely, MoRPD3 and MoHST4, were identified and functionally characterized in M. oryzae. MoHst4 was required for proper mycelial growth and pathogenicity, whereas overproduction of MoRpd3 led to loss of pathogenicity, likely due to a block in conidial cell death and restricted invasive growth within the host plants. Green fluorescent protein (GFP)-MoRpd3 localized to the nucleus and cytoplasm in vegetative hyphae and developing conidia. By comparative transcriptomics analysis, we identified potential target genes epigenetically regulated by histone deacetylases (HDACs) containing MoRpd3 or MoHst4, which may contribute to conidia formation and/or conidial cell death, which is a prerequisite for successful appressorium-mediated host invasion. Taken together, our results suggest that histone deacetylases MoRpd3 and MoHst4 differentially regulate mycelial growth, asexual development, and pathogenesis in M. oryzae. IMPORTANCE HDACs (histone deacetylases) regulate various aspects of growth, development, and pathogenesis in plant-pathogenic fungi. Most members of HDAC classes I to III have been functionally characterized, except for orthologous Rpd3 and Hst4, in the rice blast fungus Magnaporthe oryzae. In this study, we assessed the function of MoRpd3 and MoHst4 by reverse genetics and found that they differentially regulate M. oryzae vegetative growth, asexual development, and infection. Particularly, MoRpd3 negatively regulates M. oryzae pathogenicity, likely through suppression of conidial cell death, which we recently reported as being critical for appressorium maturation and functioning. Overall, this study broadens our understanding of fungal pathobiology and its critical regulation by histone modification(s) during cell death and in planta differentiation.
Collapse
Affiliation(s)
- Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xue Cao
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ziwei Qu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Shulin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Kim W, Jeong MH, Yun SH, Hur JS. Transcriptome Analysis Identifies a Gene Cluster for the Biosynthesis of Biruloquinone, a Rare Phenanthraquinone, in a Lichen-Forming Fungus Cladonia macilenta. J Fungi (Basel) 2021; 7:398. [PMID: 34065383 PMCID: PMC8161216 DOI: 10.3390/jof7050398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Lichens are prolific producers of natural products of polyketide origin. We previously described a culture of lichen-forming fungus (LFF) Cladonia macilenta that produces biruloquinone, a purple pigment that is a phenanthraquinone rarely found in nature. However, there was no genetic information on the biosynthesis of biruloquinone. To identify a biosynthetic gene cluster for biruloquinone, we mined polyketide synthase (PKS) genes from the genome sequence of a LFF isolated from thalli of C. macilenta. The 38 PKS in C. macilenta are highly diverse, many of which form phylogenetic clades with PKS previously characterized in non-lichenized fungi. We compared transcriptional profiles of the 38 PKS genes in two chemotypic variants, one producing biruloquinone and the other producing no appreciable metabolite in vitro. We identified a PKS gene (hereafter PKS21) that was highly upregulated in the LFF that produces biruloquinone. The boundaries of a putative biruloquinone gene cluster were demarcated by co-expression patterns of six clustered genes, including the PKS21. Biruloquinone gene clusters exhibited a high degree of synteny between related species. In this study we identified a novel PKS family responsible for the biosynthesis of biruloquinone through whole-transcriptome analysis.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| |
Collapse
|
20
|
Sun R, Wen M, Wu L, Lan H, Yuan J, Wang S. The Fungi-specific histone Acetyltransferase Rtt109 mediates morphogenesis, Aflatoxin synthesis and pathogenicity in Aspergillus flavus by acetylating H3K9. IMA Fungus 2021; 12:9. [PMID: 33823938 PMCID: PMC8025522 DOI: 10.1186/s43008-021-00060-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 03/21/2021] [Indexed: 11/26/2022] Open
Abstract
Aspergillus flavus is a common saprophytic filamentous fungus that produces the highly toxic natural compound aflatoxin during its growth process. Synthesis of the aflatoxins, which can contaminate food crops causing huge losses to the agricultural economy, is often regulated by epigenetic modification, such as the histone acetyltransferase. In this study, we used Aspergillus flavus as an experimental model to construct the acetyltransferase gene rtt109 knockout strain (△rtt109) and its complementary strain (△rtt109·com) by homologous recombination. The growth of △rtt109 was significantly suppressed compared to the wild type (WT) strain and the △rtt109·com strain. The sclerotium of △rtt109 grew smaller, and the amount of sclerotia generated by △rtt109 was significantly reduced. The number of conidiums of △rtt109 was significantly reduced, especially on the yeast extract sucrose (YES) solid medium. The amount of aflatoxins synthesized by △rtt109 in the PDB liquid medium was significantly decreased We also found that the △rtt109 strain was extremely sensitive to DNA damage stress. Through the maize seed infection experiment, we found that the growth of △rtt109 on the surface of affected corn was largely reduced, and the amount of aerial mycelium decreased significantly, which was consistent with the results on the artificial medium. We further found that H3K9 was the acetylated target of Rtt109 in A. flavus. In conclusion, Rtt109 participated in the growth, conidium formation, sclerotia generation, aflatoxin synthesis, environmental stress response, regulation of infection of A. flavus. The results from this study of rtt109 showed data for acetylation in the regulation of life processes and provided a new thought regarding the prevention and control of A. flavus hazards.
Collapse
Affiliation(s)
- Ruilin Sun
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
21
|
Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. PLoS Genet 2020; 16:e1009185. [PMID: 33137093 PMCID: PMC7660929 DOI: 10.1371/journal.pgen.1009185] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum. Fusarium graminearum is the major causal agent of Fusarium Head Blight, a devastating disease of wheat and barley worldwide. Epigenetic regulation related to histone acetylation is involved in fungal development and invasive growth. Here, we functionally characterized the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and revealed its role in histone acetylation. By interacting with the FgEsa1 HAT of the NuA4 complex, Fng1 mediated H4 acetylation and was important for growth, conidiation, sexual development and pathogenicity. The fng1 mutant was unstable and a total of 34 spontaneous suppressors were isolated. Suppressor mutations were identified in four genes. While three of them, FgRPD3, FgSIN3, and FgSDS3, are key components of the Rpd3 HDAC complex, the other one encodes a glutamine-rich protein appeared to be a novel component of the Rpd3 HDAC complex in filamentous ascomycetes. Nevertheless, none of the mutation occurred in components of other HDAC complexes. Most of spontaneous suppressors were still defective in sexual reproduction and plant infection, indicating a stage-specific relationship between Fng1 and the Rpd3 HDAC complex. FgRpd3 and FgSds3 likely co-localized with Fng1 in euchromatin and played a critical role in vegetative growth. Approximately half of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3. Most of these genes had no homologs in yeast, suggesting Fng1 and Rpd3 HDAC complex likely regulates genes unique to F. graminearum and filamentous fungi and with high genetic variations. Taken together, our data showed the functional relationship between Fng1 and the Rpd3 HDAC complex in H4 acetylation and hyphal growth, which has not been reported in other fungi.
Collapse
|
22
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Zhang L, Fasoyin OE, Molnár I, Xu Y. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Nat Prod Rep 2020; 37:1181-1206. [PMID: 32211639 PMCID: PMC7529686 DOI: 10.1039/c9np00065h] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2014 up to the third quarter of 2019 Entomopathogens constitute a unique, specialized trophic subgroup of fungi, most of whose members belong to the order Hypocreales (class Sordariomycetes, phylum Ascomycota). These Hypocrealean Entomopathogenic Fungi (HEF) produce a large variety of secondary metabolites (SMs) and their genomes rank highly for the number of predicted, unique SM biosynthetic gene clusters. SMs from HEF have diverse roles in insect pathogenicity as virulence factors by modulating various interactions between the producer fungus and its insect host. In addition, these SMs also defend the carcass of the prey against opportunistic microbial invaders, mediate intra- and interspecies communication, and mitigate abiotic and biotic stresses. Thus, these SMs contribute to the role of HEF as commercial biopesticides in the context of integrated pest management systems, and provide lead compounds for the development of chemical pesticides for crop protection. These bioactive SMs also underpin the widespread use of certain HEF as nutraceuticals and traditional remedies, and allowed the modern pharmaceutical industry to repurpose some of these molecules as life-saving human medications. Herein, we survey the structures and biological activities of SMs described from HEF, and summarize new information on the roles of these metabolites in fungal virulence.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - Opemipo Esther Fasoyin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| |
Collapse
|
24
|
Guo Z, Zou ZM. Discovery of New Secondary Metabolites by Epigenetic Regulation and NMR Comparison from the Plant Endophytic Fungus Monosporascus eutypoides. Molecules 2020; 25:molecules25184192. [PMID: 32932749 PMCID: PMC7570479 DOI: 10.3390/molecules25184192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/29/2023] Open
Abstract
Overexpression of the histone acetyltransferase and the 1H NMR spectroscopic experiments of the endophytic fungus Monosporascus eutypoides resulted in the isolation of two new compounds, monosporasols A (1) and B (2), and two known compounds, pestaloficin C (3) and arthrinone (4). Their planar structures and absolute configurations were determined by spectroscopic analysis including high resolution electrospray ionization mass spectroscopy (HRESIMS), one-dimensional (1D) and two-dimensional (2D) NMR, and calculated electronic circular dichroism data. Compounds 1–2 were screened in cytotoxic bioassays against HeLa, HCT-8, A549 and MCF-7 cells. Our work highlights the enormous potential of epigenetic manipulation along with the NMR comparison as an effective strategy for unlocking the chemical diversity encoded by fungal genomes.
Collapse
|
25
|
Wassano NS, Leite AB, Reichert-Lima F, Schreiber AZ, Moretti NS, Damasio A. Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp. Braz J Microbiol 2020; 51:673-683. [PMID: 32170592 DOI: 10.1007/s42770-020-00253-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism, translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, demonstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms and the role of lysine acetylation in the control of biological processes in fungi. We also want to discuss the lysine acetylation as a potential target for fungal infection treatment and drug target discovery.
Collapse
Affiliation(s)
- Natália Sayuri Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariely Barbosa Leite
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Franqueline Reichert-Lima
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Angelica Zaninelli Schreiber
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
26
|
Lyu HN, Liu HW, Keller NP, Yin WB. Harnessing diverse transcriptional regulators for natural product discovery in fungi. Nat Prod Rep 2020; 37:6-16. [DOI: 10.1039/c8np00027a] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers diverse transcriptional regulators for the activation of secondary metabolism and novel natural product discovery in fungi.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology and Bacteriology
- University of Wisconsin–Madison
- Madison
- USA
| | - Wen-Bing Yin
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|
27
|
Zhou YR, Song XY, Li Y, Shi JC, Shi WL, Chen XL, Liu WF, Liu XM, Zhang WX, Zhang YZ. Enhancing peptaibols production in the biocontrol fungus Trichoderma longibrachiatum SMF2 by elimination of a putative glucose sensor. Biotechnol Bioeng 2019; 116:3030-3040. [PMID: 31403179 DOI: 10.1002/bit.27138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022]
Abstract
Trichoderma spp. are main producers of peptide antibiotics known as peptaibols. While peptaibols have been shown to possess a range of biological activities, molecular understanding of the regulation of their production is largely unclear, which hampers the production improvement through genetic engineering. Here, we demonstrated that the orthologue of glucose sensors in the outstanding biocontrol fungus Trichoderma longibrachiatum SMF2, TlSTP1, participates in the regulation of peptaibols production. Deletion of Tlstp1 markedly impaired hyphal growth and conidiation, but significantly increased peptaibols yield by 5-fold for Trichokonins A and 2.6-fold for Trichokonins B. Quantitative real-time polymerase chain reaction analyses showed that the increased peptaibols production occurs at the transcriptional levels of the two nonribosomal peptide synthetase encoding genes, tlx1 and tlx2. Transcriptome analyses of the wild type and the Tlstp1 mutant strains indicated that TlSTP1 exerts a regulatory effect on a set of genes that are involved in a number of metabolic and cellular processes, including synthesis of several other secondary metabolites. These results suggest an important role of TlSTP1 in the regulation of vegetative growth and peptaibols production in T. longibrachiatum SMF2 and provide insights into construction of peptaibol-hyperproducing strains through genetic engineering.
Collapse
Affiliation(s)
- Yan-Rong Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yue Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jin-Chao Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Feng Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
28
|
Hautbergue T, Jamin EL, Debrauwer L, Puel O, Oswald IP. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep 2019; 35:147-173. [PMID: 29384544 DOI: 10.1039/c7np00032d] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fungal secondary metabolites are defined by bioactive properties that ensure adaptation of the fungus to its environment. Although some of these natural products are promising sources of new lead compounds especially for the pharmaceutical industry, others pose risks to human and animal health. The identification of secondary metabolites is critical to assessing both the utility and risks of these compounds. Since fungi present biological specificities different from other microorganisms, this review covers the different strategies specifically used in fungal studies to perform this critical identification. Strategies focused on the direct detection of the secondary metabolites are firstly reported. Particularly, advances in high-throughput untargeted metabolomics have led to the generation of large datasets whose exploitation and interpretation generally require bioinformatics tools. Then, the genome-based methods used to study the entire fungal metabolic potential are reported. Transcriptomic and proteomic tools used in the discovery of fungal secondary metabolites are presented as links between genomic methods and metabolomic experiments. Finally, the influence of the culture environment on the synthesis of secondary metabolites by fungi is highlighted as a major factor to consider in research on fungal secondary metabolites. Through this review, we seek to emphasize that the discovery of natural products should integrate all of these valuable tools. Attention is also drawn to emerging technologies that will certainly revolutionize fungal research and to the use of computational tools that are necessary but whose results should be interpreted carefully.
Collapse
Affiliation(s)
- T Hautbergue
- Toxalim (Research Centre in Food Toxicology) Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027 Toulouse, France.
| | | | | | | | | |
Collapse
|
29
|
Adpressa DA, Connolly LR, Konkel ZM, Neuhaus GF, Chang XL, Pierce BR, Smith KM, Freitag M, Loesgen S. A metabolomics-guided approach to discover Fusarium graminearum metabolites after removal of a repressive histone modification. Fungal Genet Biol 2019; 132:103256. [PMID: 31344458 DOI: 10.1016/j.fgb.2019.103256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Abstract
Many secondary metabolites are produced by biosynthetic gene clusters (BGCs) that are repressed during standard growth conditions, which complicates the discovery of novel bioactive compounds. In the genus Fusarium, many BGCs reside in chromatin enriched for trimethylated histone 3 lysine 27 (H3K27me3), a modification correlated with transcriptional gene silencing. Here we report on our progress in assigning metabolites to genes by using a strain lacking the H3K27 methyltransferase, Kmt6. To guide isolation efforts, we coupled genetics to multivariate analysis of liquid chromatography-mass spectrometry (LCMS) data from both wild type and kmt6, which allowed identification of compounds previously unknown from F. graminearum. We found low molecular weight, amino acid-derived metabolites (N-ethyl anthranilic acid, N-phenethylacetamide, N-acetyltryptamine). We identified one new compound, protofusarin, as derived from fusarin biosynthesis. Similarly, we isolated large amounts of fusaristatin A, gibepyrone A, and fusarpyrones A and B, simply by using the kmt6 mutant, instead of having to optimize growth media. To increase the abundance of metabolites underrepresented in wild type, we generated kmt6 fus1 double mutants and discovered tricinolone and tricinolonoic acid, two new sesquiterpenes belonging to the tricindiol class. Our approach allows rapid visualization and analyses of the genetically induced changes in metabolite production, and discovery of new molecules by a combination of chemical and genetic dereplication. Of 22 fungal metabolites identified here, 10 compounds had not been reported from F. graminearum before. We show that activating silent metabolic pathways by mutation of a repressive chromatin modification enzyme can result in the discovery of new chemistry even in a well-studied organism, and helps to connect new or known small molecules to the BGCs responsible for their production.
Collapse
Affiliation(s)
| | - Lanelle R Connolly
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Zachary M Konkel
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - George F Neuhaus
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Xiao L Chang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Brett R Pierce
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Kristina M Smith
- Department of Biology, Oregon State University - Cascades, Bend, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
30
|
Collemare J, Seidl MF. Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete? FEMS Microbiol Rev 2019; 43:591-607. [PMID: 31301226 PMCID: PMC8038932 DOI: 10.1093/femsre/fuz018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolites are small molecules that exhibit diverse biological activities exploited in medicine, industry and agriculture. Their biosynthesis is governed by co-expressed genes that often co-localize in gene clusters. Most of these secondary metabolite gene clusters are inactive under laboratory conditions, which is due to a tight transcriptional regulation. Modifications of chromatin, the complex of DNA and histone proteins influencing DNA accessibility, play an important role in this regulation. However, tinkering with well-characterised chemical and genetic modifications that affect chromatin alters the expression of only few biosynthetic gene clusters, and thus the regulation of the vast majority of biosynthetic pathways remains enigmatic. In the past, attempts to activate silent gene clusters in fungi mainly focused on histone acetylation and methylation, while in other eukaryotes many other post-translational modifications are involved in transcription regulation. Thus, how chromatin regulates the expression of gene clusters remains a largely unexplored research field. In this review, we argue that focusing on only few well-characterised chromatin modifications is significantly hampering our understanding of the chromatin-based regulation of biosynthetic gene clusters. Research on underexplored chromatin modifications and on the interplay between different modifications is timely to fully explore the largely untapped reservoir of fungal secondary metabolites.
Collapse
Affiliation(s)
| | - Michael F Seidl
- Corresponding author: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands. E-mail: ; Present address: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
31
|
Abstract
One of the exciting movements in microbial sciences has been a refocusing and revitalization of efforts to mine the fungal secondary metabolome. The magnitude of biosynthetic gene clusters (BGCs) in a single filamentous fungal genome combined with the historic number of sequenced genomes suggests that the secondary metabolite wealth of filamentous fungi is largely untapped. Mining algorithms and scalable expression platforms have greatly expanded access to the chemical repertoire of fungal-derived secondary metabolites. In this Review, I discuss new insights into the transcriptional and epigenetic regulation of BGCs and the ecological roles of fungal secondary metabolites in warfare, defence and development. I also explore avenues for the identification of new fungal metabolites and the challenges in harvesting fungal-derived secondary metabolites.
Collapse
|
32
|
Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol 2019; 23:5-22. [DOI: 10.1007/s10123-019-00064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
33
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
34
|
Grau MF, Entwistle R, Chiang YM, Ahuja M, Oakley CE, Akashi T, Wang CCC, Todd RB, Oakley BR. Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in Aspergillus nidulans. ACS Chem Biol 2018; 13:3193-3205. [PMID: 30339758 DOI: 10.1021/acschembio.8b00679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fungi are a major source of valuable bioactive secondary metabolites (SMs). These compounds are synthesized by enzymes encoded by genes that are clustered in the genome. The vast majority of SM biosynthetic gene clusters are not expressed under normal growth conditions, and their products are unknown. Developing methods for activation of these silent gene clusters offers the potential for discovering many valuable new fungal SMs. While a number of useful approaches have been developed, they each have limitations, and additional tools are needed. One approach, upregulation of SM gene cluster-specific transcription factors that are associated with many SM gene clusters, has worked extremely well in some cases, but it has failed more often than it has succeeded. Taking advantage of transcription factor domain modularity, we developed a new approach. We fused the DNA-binding domain of a transcription factor associated with a silent SM gene cluster with the activation domain of a robust SM transcription factor, AfoA. Expression of this hybrid transcription factor activated transcription of the genes in the target cluster and production of the antibiotic (+)-asperlin. Deletion of cluster genes confirmed that the cluster is responsible for (+)-asperlin production, and we designate it the aln cluster. Separately, coinduction of expression of two aln cluster genes revealed the pathway intermediate (2 Z,4 Z,6 E)-octa-2,4,6-trienoic acid, a compound with photoprotectant properties. Our findings demonstrate the potential of our novel synthetic hybrid transcription factor strategy to discover the products of other silent fungal SM gene clusters.
Collapse
Affiliation(s)
- Michelle F. Grau
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tomohiro Akashi
- Division of OMICS Analysis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Richard B. Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, Kansas 66506, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
35
|
Lv Y, Lv A, Zhai H, Zhang S, Li L, Cai J, Hu Y. Insight into the global regulation of laeA in Aspergillus flavus based on proteomic profiling. Int J Food Microbiol 2018; 284:11-21. [DOI: 10.1016/j.ijfoodmicro.2018.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
|
36
|
Pfannenstiel BT, Greco C, Sukowaty AT, Keller NP. The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus. Fungal Genet Biol 2018; 120:9-18. [PMID: 30130575 PMCID: PMC6215504 DOI: 10.1016/j.fgb.2018.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
Due to the role, both beneficial and harmful, that fungal secondary metabolites play in society, the study of their regulation is of great importance. Genes for any one secondary metabolite are contiguously arranged in a biosynthetic gene cluster (BGC) and subject to regulation through the remodeling of chromatin. Histone modifying enzymes can place or remove post translational modifications (PTM) on histone tails which influences how tight or relaxed the chromatin is, impacting transcription of BGCs. In a recent forward genetic screen, the epigenetic reader SntB was identified as a transcriptional regulator of the sterigmatocystin BGC in A. nidulans, and regulated the related metabolite aflatoxin in A. flavus. In this study we investigate the role of SntB in the plant pathogen A. flavus by analyzing both ΔsntB and overexpression sntB genetic mutants. Deletion of sntB increased global levels of H3K9K14 acetylation and impaired several developmental processes including sclerotia formation, heterokaryon compatibility, secondary metabolite synthesis, and ability to colonize host seeds; in contrast the overexpression strain displayed fewer phenotypes. ΔsntB developmental phenotypes were linked with SntB regulation of NosA, a transcription factor regulating the A. flavus cell fusion cascade.
Collapse
Affiliation(s)
| | - Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew T Sukowaty
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
37
|
Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins. Appl Microbiol Biotechnol 2018; 102:9881-9891. [PMID: 30255232 DOI: 10.1007/s00253-018-9382-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
Fungal diseases are a global public health problem. Invasive fungal infections pose a serious threat to patients with compromised immune systems, such as those undergoing organ or bone marrow transplants, cancer, or HIV/AIDS. Pneumocandins are antifungal lipohexapeptides of the echinocandin family that noncompetitively inhibit of 1,3-β-glucan synthase of fungal cell wall and provide the precursor for the semisynthesis of caspofungin, which is widely used as first-line therapy for invasive fungal infections. Recently, the biosynthetic steps leading to formation of pneumocandin B0 and echinocandin B have been elucidated, and thus, provide a framework and attractive model for further design new antifungal therapeutics around natural variations in echinocandin structural diversities via genetic and chemical tools. In this article, we analyze the biosynthetic pathway of pneumocandins and other echinocandins, provide an update on the array of pneumocandin analogues generated by genetic manipulation, and summarize advances in the enhancement of pneumocandin B0 production by random mutagenesis and fermentation optimization. We also give offer advice on the development of improved pneumocandin drug candidates and more efficient production of pneumocandin B0.
Collapse
|
38
|
Pidroni A, Faber B, Brosch G, Bauer I, Graessle S. A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in Aspergillus nidulans. Front Microbiol 2018; 9:2212. [PMID: 30283426 PMCID: PMC6156440 DOI: 10.3389/fmicb.2018.02212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
An outstanding feature of filamentous fungi is their ability to produce a wide variety of small bioactive molecules that contribute to their survival, fitness, and pathogenicity. The vast collection of these so-called secondary metabolites (SMs) includes molecules that play a role in virulence, protect fungi from environmental damage, act as toxins or antibiotics that harm host tissues, or hinder microbial competitors for food sources. Many of these compounds are used in medical treatment; however, biosynthetic genes for the production of these natural products are arranged in compact clusters that are commonly silent under growth conditions routinely used in laboratories. Consequently, a wide arsenal of yet unknown fungal metabolites is waiting to be discovered. Here, we describe the effects of deletion of hosA, one of four classical histone deacetylase (HDAC) genes in Aspergillus nidulans; we show that HosA acts as a major regulator of SMs in Aspergillus with converse regulatory effects depending on the metabolite gene cluster examined. Co-inhibition of all classical enzymes by the pan HDAC inhibitor trichostatin A and the analysis of HDAC double mutants indicate that HosA is able to override known regulatory effects of other HDACs such as the class 2 type enzyme HdaA. Chromatin immunoprecipitation analysis revealed a direct correlation between hosA deletion, the acetylation status of H4 and the regulation of SM cluster genes, whereas H3 hyper-acetylation could not be detected in all the upregulated SM clusters examined. Our data suggest that HosA has inductive effects on SM production in addition to its classical role as a repressor via deacetylation of histones. Moreover, a genome wide transcriptome analysis revealed that in addition to SMs, expression of several other important protein categories such as enzymes of the carbohydrate metabolism or proteins involved in disease, virulence, and defense are significantly affected by the deletion of HosA.
Collapse
Affiliation(s)
- Angelo Pidroni
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Faber
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brosch
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ingo Bauer
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Graessle
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Abstract
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom; .,Current affiliation: Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London SW7 2AZ, United Kingdom; .,Institute for Integrative Biology of the Cell, 91190 Gif-sur-Yvette, France
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
40
|
Wang X, Zhu W, Chang P, Wu H, Liu H, Chen J. Merge and separation of NuA4 and SWR1 complexes control cell fate plasticity in Candida albicans. Cell Discov 2018; 4:45. [PMID: 30109121 PMCID: PMC6089883 DOI: 10.1038/s41421-018-0043-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/11/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
Phenotypic plasticity is common in development. Candida albicans, a polymorphic fungal pathogen of humans, possesses the unique ability to achieve rapid and reversible cell fate between unicellular form (yeast) and multicellular form (hypha) in response to environmental cues. The NuA4 histone acetyltransferase activity and Hda1 histone deacetylase activity have been reported to be required for hyphal initiation and maintenance. However, how Hda1 and NuA4 regulate hyphal elongation is not clear. NuA4 histone acetyltransferase and SWR1 chromatin remodeling complexes are conserved from yeast to human, which may have merged together to form a larger TIP60 complex since the origin of metazoan. In this study, we show a dynamic merge and separation of NuA4 and SWR1 complexes in C. albicans. NuA4 and SWR1 merge together in yeast state and separate into two distinct complexes in hyphal state. We demonstrate that acetylation of Eaf1 K173 controls the interaction between the two complexes. The YEATS domain of Yaf9 in C. albicans can recognize an acetyl-lysine of the Eaf1 and mediate the Yaf9-Eaf1 interaction. The reversible acetylation and deacetylation of Eaf1 by Esa1 and Hda1 control the merge and separation of NuA4 and SWR1, and this regulation is triggered by Brg1 recruitment of Hda1 to chromatin in response nutritional signals that sustain hyphal elongation. We have also observed an orchestrated promoter association of Esa1, Hda1, Swr1, and H2A.Z during the reversible yeast-hyphae transitions. This is the first discovery of a regulated merge of the NuA4 and SWR1 complexes that controls cell fate determination and this regulation may be conserved in polymorphic fungi.
Collapse
Affiliation(s)
- Xiongjun Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Peng Chang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Hongyu Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, CA 92697 USA
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| |
Collapse
|
41
|
Nie X, Li B, Wang S. Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:191-226. [PMID: 30342722 DOI: 10.1016/bs.aambs.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic and posttranslational modifications have been proved to participate in multiple cellular processes and suggested to be an important regulatory mechanism on transcription of genes in eukaryotes. However, our knowledge about epigenetic and posttranslational modifications mainly comes from the studies of yeasts, plants, and animals. Recently, epigenetic and posttranslational modifications have also raised concern for the relevance of regulating fungal biology in Aspergillus. Emerging evidence indicates that these modifications could be a connection between genetic elements and environmental factors, and their combined effects may finally lead to fungal phenotypical changes. This article describes the advances in typical DNA and protein modifications in the genus Aspergillus, focusing on methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and neddylation.
Collapse
Affiliation(s)
- Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Chandra Mohana N, Yashavantha Rao H, Rakshith D, Mithun P, Nuthan B, Satish S. Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era. J Genet Eng Biotechnol 2018; 16:1-8. [PMID: 30647697 PMCID: PMC6296576 DOI: 10.1016/j.jgeb.2018.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 01/01/2023]
Abstract
The need for a new antibiotic pipeline to confront threat imposed by resistant pathogens has become a major global concern for human health. To confront the challenge there is a need for discovery and development of new class of antibiotics. Nature which is considered treasure trove, there is re-emerged interest in exploring untapped microbial to yield novel molecules, due to their wide array of negative effects associated with synthetic drugs. Natural product researchers have developed many new techniques over the past few years for developing diverse compounds of biopotential. Taking edge in the advancement of genomics, genetic engineering, in silico drug design, surface modification, scaffolds, pharmacophores and target-based approach is necessary. These techniques have been economically sustainable and also proven efficient in natural product discovery. This review will focus on recent advances in diverse discipline approach from integrated Bioinformatics predictions, genetic engineering and medicinal chemistry for the synthesis of natural products vital for the discovery of novel antibiotics having potential application.
Collapse
Affiliation(s)
- N. Chandra Mohana
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - H.C. Yashavantha Rao
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - D. Rakshith
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - P.R. Mithun
- Department of Life Sciences, Christ University, Bengaluru 560029, Karnataka, India
| | - B.R. Nuthan
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - S. Satish
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| |
Collapse
|
43
|
A MYST Histone Acetyltransferase Modulates Conidia Development and Secondary Metabolism in Pestalotiopsis microspora, a Taxol Producer. Sci Rep 2018; 8:8199. [PMID: 29844429 PMCID: PMC5974303 DOI: 10.1038/s41598-018-25983-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Reverse genetics is a promising strategy for elucidating the regulatory mechanisms involved in secondary metabolism and development in fungi. Previous studies have demonstrated the key role of histone acetyltransferases in transcriptional regulation. Here, we identified a MYST family histone acetyltransferase encoding gene, mst2, in the filamentous fungus Pestalotiopsis microspora NK17 and revealed its role in development and secondary metabolism. The gene mst2 showed temporal expression that corresponded to the conidiation process in the wild-type strain. Deletion of mst2 resulted in serious growth retardation and impaired conidial development, e.g., a delay and reduced capacity of conidiation and aberrant conidia. Overexpression of mst2 triggered earlier conidiation and higher conidial production. Additionally, deletion of mst2 led to abnormal germination of the conidia and caused cell wall defects. Most significantly, by HPLC profiling, we found that loss of mst2 diminished the production of secondary metabolites in the fungus. Our data suggest that mst2 may function as a general mediator in growth, secondary metabolism and morphological development.
Collapse
|
44
|
Kong X, van Diepeningen AD, van der Lee TAJ, Waalwijk C, Xu J, Xu J, Zhang H, Chen W, Feng J. The Fusarium graminearum Histone Acetyltransferases Are Important for Morphogenesis, DON Biosynthesis, and Pathogenicity. Front Microbiol 2018; 9:654. [PMID: 29755419 PMCID: PMC5932188 DOI: 10.3389/fmicb.2018.00654] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a central role in the regulation of gene expression and various biological processes in eukaryotes. Although HAT genes have been studied in many fungi, few of them have been functionally characterized. In this study, we identified and characterized four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3) in the plant pathogenic ascomycete Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. We replaced the genes and all mutant strains showed reduced growth of F. graminearum. The ΔFgSAS3 and ΔFgGCN5 mutant increased sensitivity to oxidative and osmotic stresses. Additionally, ΔFgSAS3 showed reduced conidia sporulation and perithecium formation. Mutant ΔFgGCN5 was unable to generate any conidia and lost its ability to form perithecia. Our data showed also that FgSAS3 and FgGCN5 are pathogenicity factors required for infecting wheat heads as well as tomato fruits. Importantly, almost no Deoxynivalenol (DON) was produced either in ΔFgSAS3 or ΔFgGCN5 mutants, which was consistent with a significant downregulation of TRI genes expression. Furthermore, we discovered for the first time that FgSAS3 is indispensable for the acetylation of histone site H3K4, while FgGCN5 is essential for the acetylation of H3K9, H3K18, and H3K27. H3K14 can be completely acetylated when FgSAS3 and FgGCN5 were both present. The RNA-seq analyses of the two mutant strains provide insight into their functions in development and metabolism. Results from this study clarify the functional divergence of HATs in F. graminearum, and may provide novel targeted strategies to control secondary metabolite expression and infections of F. graminearum.
Collapse
Affiliation(s)
- Xiangjiu Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Theo A J van der Lee
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Cees Waalwijk
- Biointeractions & Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Jingsheng Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
45
|
Niehaus EM, Rindermann L, Janevska S, Münsterkötter M, Güldener U, Tudzynski B. Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi. Appl Microbiol Biotechnol 2017; 102:279-295. [PMID: 29080998 DOI: 10.1007/s00253-017-8590-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
Abstract
The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), a family of plant hormones. Recent genome sequencing revealed the genetic capacity for the biosynthesis of 46 additional secondary metabolites besides the industrially produced GAs. Among them are the pigments bikaverin and fusarubins, as well as mycotoxins, such as fumonisins, fusarin C, beauvericin, and fusaric acid. However, half of the potential secondary metabolite gene clusters are silent. In recent years, it has been shown that the fungal specific velvet complex is involved in global regulation of secondary metabolism in several filamentous fungi. We have previously shown that deletion of the three components of the F. fujikuroi velvet complex, vel1, vel2, and lae1, almost totally abolished biosynthesis of GAs, fumonisins and fusarin C. Here, we present a deeper insight into the genome-wide regulatory impact of Lae1 on secondary metabolism. Over-expression of lae1 resulted in de-repression of GA biosynthetic genes under otherwise repressing high nitrogen conditions demonstrating that the nitrogen repression is overcome. In addition, over-expression of one of five tested histone acetyltransferase genes, HAT1, was capable of returning GA gene expression and GA production to the GA-deficient Δlae1 mutant. Deletion and over-expression of HAT1 in the wild type resulted in downregulation and upregulation of GA gene expression, respectively, indicating that HAT1 together with Lae1 plays an essential role in the regulation of GA biosynthesis.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms University Münster, Schlossplatz 8, 48143, Münster, Germany.,Institute of Food Chemistry, Westfälische Wilhelms University Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Lena Rindermann
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms University Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Slavica Janevska
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms University Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Ulrich Güldener
- Chair of Genome-oriented Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Bettina Tudzynski
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms University Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
46
|
Pfannenstiel BT, Zhao X, Wortman J, Wiemann P, Throckmorton K, Spraker JE, Soukup AA, Luo X, Lindner DL, Lim FY, Knox BP, Haas B, Fischer GJ, Choera T, Butchko RAE, Bok JW, Affeldt KJ, Keller NP, Palmer JM. Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus. mBio 2017; 8:e01246-17. [PMID: 28874473 PMCID: PMC5587912 DOI: 10.1128/mbio.01246-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin's carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique.IMPORTANCE In a postgenomic world, reverse genetic approaches have displaced their forward genetic counterparts. The techniques used in forward genetics to identify loci of interest were typically very cumbersome and time-consuming, relying on Mendelian traits in model organisms. The current work was pursued not only to identify alleles involved in regulation of secondary metabolism but also to demonstrate a return to forward genetics to track phenotypes and to discover genetic pathways that could not be predicted through a reverse genetics approach. While identification of mutant alleles from whole-genome sequencing has been done before, here we illustrate the possibility of coupling this strategy with a genetic screen to identify multiple alleles of interest. Sequencing of classically derived mutants revealed several uncharacterized genes, which represent novel pathways to regulate and control the biosynthesis of sterigmatocystin and of aflatoxin, a societally and medically important mycotoxin.
Collapse
Affiliation(s)
| | - Xixi Zhao
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jennifer Wortman
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kurt Throckmorton
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph E Spraker
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xingyu Luo
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, U.S. Forest Service, Madison, Wisconsin, USA
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian Haas
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert A E Butchko
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Jin-Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katharyn J Affeldt
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, U.S. Forest Service, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin WB. Deletion of a Histone Acetyltransferase Leads to the Pleiotropic Activation of Natural Products in Metarhizium robertsii. Org Lett 2017; 19:1686-1689. [DOI: 10.1021/acs.orglett.7b00476] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aili Fan
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Mi
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiguo Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Zeng
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiguo Fang
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Soukup AA, Fischer GJ, Luo J, Keller NP. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genet Biol 2017; 100:13-21. [PMID: 28089630 PMCID: PMC5337145 DOI: 10.1016/j.fgb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 01/18/2023]
Abstract
P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.
Collapse
Affiliation(s)
- Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Jerry Luo
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, WI, United States.
| |
Collapse
|
49
|
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016; 50:371-392. [DOI: 10.1146/annurev-genet-120215-035203] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Vito Valiante
- Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany;
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
50
|
Studt L, Rösler SM, Burkhardt I, Arndt B, Freitag M, Humpf HU, Dickschat JS, Tudzynski B. Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ Microbiol 2016; 18:4037-4054. [PMID: 27348741 PMCID: PMC5118082 DOI: 10.1111/1462-2920.13427] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023]
Abstract
Filamentous fungi produce a vast array of secondary metabolites (SMs) and some play a role in agriculture or pharmacology. Sequencing of the rice pathogen Fusarium fujikuroi revealed the presence of far more SM-encoding genes than known products. SM production is energy-consuming and thus tightly regulated, leaving the majority of SM gene clusters silent under laboratory conditions. One important regulatory layer in SM biosynthesis involves histone modifications that render the underlying genes either silent or poised for transcription. Here, we show that the majority of the putative SM gene clusters in F. fujikuroi are located within facultative heterochromatin marked by trimethylated lysine 27 on histone 3 (H3K27me3). Kmt6, the methyltransferase responsible for establishing this histone mark, appears to be essential in this fungus, and knock-down of Kmt6 in the KMT6kd strain shows a drastic phenotype affecting fungal growth and development. Transcription of four so far cryptic and otherwise silent putative SM gene clusters was induced in the KMT6kd strain, in which decreased expression of KMT6 is accompanied by reduced H3K27me3 levels at the respective gene loci and accumulation of novel metabolites. One of the four putative SM gene clusters, named STC5, was analysed in more detail thereby revealing a novel sesquiterpene.
Collapse
Affiliation(s)
- Lena Studt
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Corresponding author: L. Studt, Division of Microbial Genetics and Pathogen Interaction, Department of Applied Genetics and Cell Biology, Campus-Tulln, BOKU-University of Natural Resources and Life Science, Vienna, Austria, , phone: (+43) 1 / 47654-6722
| | - Sarah M. Rösler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Immo Burkhardt
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, 97331 Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Jeroen S. Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany
| |
Collapse
|