1
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2024:1-24. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
2
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
3
|
Bertin L, Zanconato M, Crepaldi M, Marasco G, Cremon C, Barbara G, Barberio B, Zingone F, Savarino EV. The Role of the FODMAP Diet in IBS. Nutrients 2024; 16:370. [PMID: 38337655 PMCID: PMC10857121 DOI: 10.3390/nu16030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The low FODMAP (fermentable oligosaccharide, disaccharide, monosaccharide, and polyol) diet is a beneficial therapeutic approach for patients with irritable bowel syndrome (IBS). However, how the low FODMAP diet works is still not completely understood. These mechanisms encompass not only traditionally known factors such as luminal distension induced by gas and water but also recent evidence on the role of FOMAPs in the modulation of visceral hypersensitivity, increases in intestinal permeability, the induction of microbiota changes, and the production of short-chain fatty acids (SCFAs), as well as metabolomics and alterations in motility. Although most of the supporting evidence is of low quality, recent trials have confirmed its effectiveness, even though the majority of the evidence pertains only to the restriction phase and its effectiveness in relieving abdominal bloating and pain. This review examines potential pathophysiological mechanisms and provides an overview of the existing evidence on the effectiveness of the low FODMAP diet across various IBS subtypes. Key considerations for its use include the challenges and disadvantages associated with its practical implementation, including the need for professional guidance, variations in individual responses, concerns related to microbiota, nutritional deficiencies, the development of constipation, the necessity of excluding an eating disorder before commencing the diet, and the scarcity of long-term data. Despite its recognized efficacy in symptom management, acknowledging these limitations becomes imperative for a nuanced comprehension of the role of a low FODMAP diet in managing IBS. By investigating its potential mechanisms and evidence across IBS subtypes and addressing emerging modulations alongside limitations, this review aims to serve as a valuable resource for healthcare practitioners, researchers, and patients navigating the intricate landscape of IBS.
Collapse
Affiliation(s)
- Luisa Bertin
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Miriana Zanconato
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Martina Crepaldi
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Brigida Barberio
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| |
Collapse
|
4
|
Dothel G, Barbaro MR, Di Vito A, Ravegnini G, Gorini F, Monesmith S, Coschina E, Benuzzi E, Fuschi D, Palombo M, Bonomini F, Morroni F, Hrelia P, Barbara G, Angelini S. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol 2023; 58:605-621. [PMID: 37160449 PMCID: PMC10307698 DOI: 10.1007/s00535-023-01997-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Irritable bowel syndrome (IBS) is a complex multifactorial condition including alterations of the gut-brain axis, intestinal permeability, mucosal neuro-immune interactions, and microbiota imbalance. Recent advances proposed epigenetic factors as possible regulators of several mechanisms involved in IBS pathophysiology. These epigenetic factors include biomolecular mechanisms inducing chromosome-related and heritable changes in gene expression regardless of DNA coding sequence. Accordingly, altered gut microbiota may increase the production of metabolites such as sodium butyrate, a prominent inhibitor of histone deacetylases. Patients with IBS showed an increased amount of butyrate-producing microbial phila as well as an altered profile of methylated genes and micro-RNAs (miRNAs). Importantly, gene acetylation as well as specific miRNA profiles are involved in different IBS mechanisms and may be applied for future diagnostic purposes, especially to detect increased gut permeability and visceromotor dysfunctions. In this review, we summarize current knowledge of the role of epigenetics in IBS pathophysiology.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Connect By Circular Lab SRL, Madrid, Spain
| | | | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Vezza T, Molina-Tijeras JA, González-Cano R, Rodríguez-Nogales A, García F, Gálvez J, Cobos EJ. Minocycline Prevents the Development of Key Features of Inflammation and Pain in DSS-induced Colitis in Mice. THE JOURNAL OF PAIN 2023; 24:304-319. [PMID: 36183969 DOI: 10.1016/j.jpain.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
Abdominal pain is a common feature in inflammatory bowel disease (IBD) patients, and greatly compromises their quality of life. Therefore, the identification of new therapeutic tools to reduce visceral pain is one of the main goals for IBD therapy. Minocycline, a broad-spectrum tetracycline antibiotic, has gained attention in the scientific community because of its immunomodulatory and anti-inflammatory properties. The aim of this study was to evaluate the potential of this antibiotic as a therapy for the management of visceral pain in dextran sodium sulfate (DSS)-induced colitis in mice. Preemptive treatment with minocycline markedly reduced histological features of intestinal inflammation and the expression of inflammatory markers (Tlr4, Tnfα, Il1ß, Ptgs2, Inos, Cxcl2, and Icam1), and attenuated the decrease of markers of epithelial integrity (Tjp1, Ocln, Muc2, and Muc3). In fact, minocycline restored normal epithelial permeability in colitic mice. Treatment with the antibiotic also reversed the changes in the gut microbiota profile induced by colitis. All these ameliorative effects of minocycline on both inflammation and dysbiosis correlated with a decrease in ongoing pain and referred hyperalgesia, and with the improvement of physical activity induced by the antibiotic in colitic mice. Minocycline might constitute a new therapeutic approach for the treatment of IBD-induced pain. PERSPECTIVE: This study found that the intestinal anti-inflammatory effects of minocycline ameliorate DSS-associated pain in mice. Therefore, minocycline might constitute a novel therapeutic strategy for the treatment of IBD-induced pain.
Collapse
Affiliation(s)
- Teresa Vezza
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas (CIBER-EHD)
| | - Enrique J Cobos
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Mao M, Zhou Y, Jiao Y, Yin S, Cheung C, Yu W, Gao P, Yang L. Bibliometric and visual analysis of research on the links between the gut microbiota and pain from 2002 to 2021. Front Med (Lausanne) 2022; 9:975376. [PMID: 36457577 PMCID: PMC9705792 DOI: 10.3389/fmed.2022.975376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/25/2022] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND AND AIMS The gut microbiota is involved in the regulation of pain, which is proved by plenty of evidence. Although a substantial quantity of research on the link between the gut microbiota and pain has emerged, no study has focused on the bibliometric analysis of this topic. We aim to present a bibliometric review of publications over the past 20 years and predict research hot spots. METHODS Relevant publications between 2002 and 2021 were extracted from the Science Citation Index-Expanded (SCI-EXPANDED) of the Web of Science Core Collection (WoSCC) database on April 22, 2022. CiteSpace (version 5.8 R3c), VOSviewer, the Online Analysis Platform of Literature Metrology, and the R package bibliometrix were used to analyze and visualize. RESULTS A total of 233 articles have been published between 2002 and 2021. The number of publication outputs increased rapidly since 2016. The collaboration network revealed that the USA, Baylor College of Medicine, and Vassilia Theodorou were the most influential country, institute, and scholar, respectively. Alimentary pharmacology and therapeutics and Gut were the most co-cited journal and Neurogastroenterology and Motility was the most productive journal. Visceral sensitivity, fibromyalgia, gastrointestinal, chronic pain, stress, gut microbiome, LGG, brain-gut axis, SLAB51, and sequencing were the top 10 clusters in co-occurrence cluster analysis. Keyword burst detection indicated that the brain-gut axis and short-chain fatty acid were the current research hot spots. CONCLUSION Research on the links between the gut microbiota and pain has increased rapidly since 2016. The current research focused on the brain-gut axis and short-chain fatty acid. Accordingly, the SCFAs-mediated mechanism of pain regulation will be a research direction of great importance on the links between the gut microbiota and pain. This study provided instructive assistance to direct future research efforts on the links between the gut microbiota and pain.
Collapse
Affiliation(s)
- Menghan Mao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyu Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqing Yin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiwai Cheung
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Lucarini E, Di Pilato V, Parisio C, Micheli L, Toti A, Pacini A, Bartolucci G, Baldi S, Niccolai E, Amedei A, Rossolini GM, Nicoletti C, Cryan JF, O'Mahony SM, Ghelardini C, Di Cesare Mannelli L. Visceral sensitivity modulation by faecal microbiota transplantation: the active role of gut bacteria in pain persistence. Pain 2022; 163:861-877. [PMID: 34393197 PMCID: PMC9009324 DOI: 10.1097/j.pain.0000000000002438] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Recent findings linked gastrointestinal disorders characterized by abdominal pain to gut microbiota composition. The present work aimed to evaluate the power of gut microbiota as a visceral pain modulator and, consequently, the relevance of its manipulation as a therapeutic option in reversing postinflammatory visceral pain persistence. Colitis was induced in mice by intrarectally injecting 2,4-dinitrobenzenesulfonic acid (DNBS). The effect of faecal microbiota transplantation from viscerally hypersensitive DNBS-treated and naive donors was evaluated in control rats after an antibiotic-mediated microbiota depletion. Faecal microbiota transplantation from DNBS donors induced a long-lasting visceral hypersensitivity in control rats. Pain threshold trend correlated with major modifications in the composition of gut microbiota and short chain fatty acids. By contrast, no significant alterations of colon histology, permeability, and monoamines levels were detected. Finally, by manipulating the gut microbiota of DNBS-treated animals, a counteraction of persistent visceral pain was achieved. The present results provide novel insights into the relationship between intestinal microbiota and visceral hypersensitivity, highlighting the therapeutic potential of microbiota-targeted interventions.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M. O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Ferrier L, Eutamène H, Siegwald L, Marquard AM, Tondereau V, Chevalier J, Jacot GE, Favre L, Theodorou V, Vicario M, Rytz A, Bergonzelli G, Garcia-Rodenas CL. Human milk oligosaccharides alleviate stress-induced visceral hypersensitivity and associated microbiota dysbiosis. J Nutr Biochem 2021; 99:108865. [PMID: 34582967 DOI: 10.1016/j.jnutbio.2021.108865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Pain-related functional gastrointestinal disorders (FGIDs) are characterized by visceral hypersensitivity (VHS) associated with alterations in the microbiota-gut-brain axis. Since human milk oligosaccharides (HMOs) modulate microbiota, gut and brain, we investigated whether HMOs impact VHS, and explored the role of gut microbiota. To induce VHS, C57BL/6JRj mice received hourly water avoidance stress (WAS) sessions for 10 d, or antibiotics (ATB) for 12 d. Challenged and unchallenged (Sham) animals were fed AIN93M diet (Cont) or AIN93M containing 1% of a 6-HMO mix (HMO6). VHS was assessed by monitoring the visceromotor response to colorectal distension. Fecal microbiome was analyzed by shotgun metagenomics. The effect of HMO6 sub-blends on VHS and nociceptive pathways was further tested using the WAS model. In mice fed Cont, WAS and ATB increased the visceromotor response to distension. HMO6 decreased WAS-mediated electromyographic rise at most distension volumes and overall Area Under Curve (AUC=6.12±0.50 in WAS/HMO6 vs. 9.46±0.50 in WAS/Cont; P<.0001). In contrast, VHS in ATB animals was not improved by HMO6. In WAS, HMO6 promoted most microbiota taxa and several functional pathways associated with low VHS and decreased those associated with high VHS. Among the sub-blends, 2'FL+DFL and LNT+6'SL reduced visceromotor response close to Sham/Cont values and modulated serotoninergic and CGRPα-related pathways. This research further substantiates the capacity of HMOs to modulate the microbiota-gut-brain communication and identifies mitigation of abdominal pain as a new HMO benefit. Ultimately, our findings suggest the value of specific HMO blends to alleviate pain associated FGIDs such as infantile colic or Irritable Bowel Syndrome.
Collapse
Affiliation(s)
- Laurent Ferrier
- Nestlé Institute of Health Sciences, Nestle Research, Lausanne, Switzerland
| | - Hélène Eutamène
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Léa Siegwald
- Nestlé Institute of Health Sciences, Nestle Research, Lausanne, Switzerland
| | | | - Valerie Tondereau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Julien Chevalier
- Nestlé Institute of Health Sciences, Nestle Research, Lausanne, Switzerland
| | - Guillaume E Jacot
- Nestlé Institute of Health Sciences, Nestle Research, Lausanne, Switzerland
| | - Laurent Favre
- Project Management, Nestle Research, Lausanne, Switzerland
| | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Maria Vicario
- Nestlé Institute of Health Sciences, Nestle Research, Lausanne, Switzerland
| | - Andreas Rytz
- Clinical Research Unit, Nestle Research, Lausanne, Switzerland
| | | | | |
Collapse
|
11
|
Brenner D, Shorten GD, O'Mahony SM. Postoperative pain and the gut microbiome. NEUROBIOLOGY OF PAIN 2021; 10:100070. [PMID: 34409198 PMCID: PMC8361255 DOI: 10.1016/j.ynpai.2021.100070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Poorly controlled postoperative pain remains a major unresolved challenge globally. The gut microbiome impacts on inflammatory pain and neuropathic pain. Microbiota metabolites can regulate peripheral and central sensitisation. Stress is linked to both postoperative pain and an altered gut microbiome.
In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications. As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.
Collapse
Affiliation(s)
- David Brenner
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - George D Shorten
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Kumar V, Khare P, Devi K, Kaur J, Kumar V, Kiran Kondepudi K, Chopra K, Bishnoi M. Short-chain fatty acids increase intracellular calcium levels and enhance gut hormone release from STC-1 cells via transient receptor potential Ankyrin1. Fundam Clin Pharmacol 2021; 35:1004-1017. [PMID: 33636045 DOI: 10.1111/fcp.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids (SCFAs), metabolites of colonic bacterial fermentation of complex carbohydrates, are closely related to the release of gut hormones. In this study, we examined the involvement of transient receptor potential ankyrin 1 (TRPA1) in SCFA-induced increase in intracellular calcium ([Ca2+ ]i ) and its impact on gut hormone secretion using naturally TRPA1 expressing intestinal secretin tumour cell-1 (STC-1) cell line. Individual SCFAs and their physiological mix enhanced calcium influx in TRPA1-dependent manner. SCFA mix also significantly increased membrane expression of TRPA1. Gene expression studies revealed that SCFA mix elevated the expression of genes involved in calcium-activated calcineurin pathway in TRPA1-dependent manner and cAMP-regulated transcriptional co-activators (CRTC) pathway independent to TRPA1. Genes representing synaptic vesicular exocytosis and gut hormone precursors were significantly elevated with SCFA mix treatment. Treatment with TRPA1 antagonist HC-030031 markedly reduced these effects. The release of gut hormones was elevated with 10 mm SCFA mix in TRPA1 dependent manner. Our in vivo prebiotic study results suggested presence of an environment conducive to increase in gut hormone secretion. Overall, our findings provide an evidence for the possible role of TRPA1 in SCFA-induced increase in gut hormone secretion, hence another mechanism of action for prebiotics.
Collapse
Affiliation(s)
- Vibhu Kumar
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Pragyanshu Khare
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Kirti Devi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Jasleen Kaur
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Vijay Kumar
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| |
Collapse
|
13
|
Fredericks E, Theunissen R, Roux S. Short chain fatty acids and monocarboxylate transporters in irritable bowel syndrome. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:840-847. [PMID: 33625995 DOI: 10.5152/tjg.2020.19856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Gut microbiota ferments indigestible food that rests in the colon to produce short-chain fatty acids (SCFAs) acetate, propionate, and butyrate. Colonic SCFA stimulate the synthesis of serotonin which is central in irritable bowel syndrome (IBS) pathophysiology. Reduced SCFA have been linked to specific IBS symptoms like colonic hyperalgesia and hypersensitivity. SCFA enter the colonocyte mainly via 2 energy-dependent monocarboxylate transporters, MCT1 (SLC16A1) and SMCT1 (SLC5A8). We investigated specific gut microbiota, SCFA concentrations, and monocarboxylate transporter mRNA expression in patients with IBS. MATERIAL AND METHODS A total of 30 IBS patients-15 constipation-predominant (C-IBS) and 15 diarrhoea-predominant (D-IBS)-and 15 healthy controls were recruited. Bacteroidetes and Bifidobacterium species were analyzed using quantitative polymerase chain reaction (qPCR) on stool samples. SCFA concentrations were determined by gas chromatography/mass spectroscopy of stool samples. Monocarboxylate transporter mRNA was quantified by qPCR on colon biopsy specimens. RESULTS Bacteroides was significantly increased in the D-IBS group compared with the C-IBS group and healthy controls. Bifidobacterium was significantly reduced in both IBS groups. SCFA ratios were altered in both IBS groups with a reduction of all 3 measured SCFA in C-IBS and acetic acid in D-IBS. MCT1 and SMCT1 were significantly reduced in C-IBS and D-IBS. CONCLUSION In agreement with findings of previous studies, the microbiota assessed were significantly altered inferring dysbiosis in IBS. SCFA and their ratios were significantly altered in both IBS groups. SCFA transporters, MCT1 and SMCT1 were significantly reduced in both IBS groups, suggesting reduced colonocyte SCFA transfer. SCFA availability and transfer into the colonocytes may be important in IBS pathogenesis and should be prospectively studied.
Collapse
Affiliation(s)
- Ernst Fredericks
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Reza Theunissen
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| |
Collapse
|
14
|
Altered Gut Microbiota in Irritable Bowel Syndrome and Its Association with Food Components. J Pers Med 2021; 11:jpm11010035. [PMID: 33429936 PMCID: PMC7827153 DOI: 10.3390/jpm11010035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The interplay between diet and gut microbiota has gained interest as a potential contributor in pathophysiology of irritable bowel syndrome (IBS). The purpose of this study was to compare food components and gut microbiota patterns between IBS patients and healthy controls (HC) as well as to explore the associations of food components and microbiota profiles. A cross-sectional study was conducted with 80 young adults with IBS and 21 HC recruited. The food frequency questionnaire was used to measure food components. Fecal samples were collected and profiled by 16S rRNA Illumina sequencing. Food components were similar in both IBS and HC groups, except in caffeine consumption. Higher alpha diversity indices and altered gut microbiota were observed in IBS compared to the HC. A negative correlation existed between total observed species and caffeine intake in the HC, and a positive correlation between alpha diversity indices and dietary fiber in the IBS group. Higher alpha diversity and gut microbiota alteration were found in IBS people who consumed caffeine more than 400 mg/d. Moreover, high microbial diversity and alteration of gut microbiota composition in IBS people with high caffeine consumption may be a clue toward the effects of caffeine on the gut microbiome pattern, which warrants further study.
Collapse
|
15
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Facchin S, Vitulo N, Calgaro M, Buda A, Romualdi C, Pohl D, Perini B, Lorenzon G, Marinelli C, D’Incà R, Sturniolo GC, Savarino EV. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol Motil 2020; 32:e13914. [PMID: 32476236 PMCID: PMC7583468 DOI: 10.1111/nmo.13914] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Butyrate has shown anti-inflammatory and regenerative properties, providing symptomatic relief when orally supplemented in patients suffering from various colonic diseases. We investigated the effect of a colonic-delivery formulation of butyrate on the fecal microbiota of patients with inflammatory bowel diseases (IBDs). METHODS In this double-blind, placebo-controlled, pilot study, 49 IBD patients (n = 19 Crohn's disease, CD and n = 30 ulcerative colitis, UC) were randomized to oral administration of microencapsulated-sodium-butyrate (BLM) or placebo for 2 months, in addition to conventional therapy. Eighteen healthy volunteers (HVs) were recruited to provide a healthy microbiota model of the local people. Fecal microbiota from stool samples was assessed by 16S sequencing. Clinical disease activity and quality of life (QoL) were evaluated before and after treatment. KEY RESULTS At baseline, HVs showed a different microbiota composition compared with IBD patients. Sodium-butyrate altered the gut microbiota of IBD patients by increasing bacteria able to produce SCFA in UC patients (Lachnospiraceae spp.) and the butyrogenic colonic bacteria in CD patients (Butyricicoccus). In UC patients, QoL was positively affected by treatment. CONCLUSIONS AND INFERENCES Sodium-butyrate supplementation increases the growth of bacteria able to produce SCFA with potentially anti-inflammatory action. The clinical impact of this finding requires further investigation.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Nicola Vitulo
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Matteo Calgaro
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | - Andrea Buda
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | | | - Daniel Pohl
- Department of GastroenterologyUniversity Hospital ZurichZurichSwitzerland
| | - Barbara Perini
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Carla Marinelli
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology (DISCOG)University Hospital of PaduaPaduaItaly
| | | |
Collapse
|
17
|
De Filippis A, Ullah H, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M. Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for their Treatment. Int J Mol Sci 2020; 21:E4929. [PMID: 32668581 PMCID: PMC7404341 DOI: 10.3390/ijms21144929] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) diseases, which include gastrointestinal reflux disease, gastric ulceration, inflammatory bowel disease, and other functional GI disorders, have become prevalent in a large part of the world population. Metabolic syndrome (MS) is cluster of disorders including obesity, hyperglycemia, hyperlipidemia, and hypertension, and is associated with high rate of morbidity and mortality. Gut dysbiosis is one of the contributing factors to the pathogenesis of both GI disorder and MS, and restoration of normal flora can provide a potential protective approach in both these conditions. Bioactive dietary components are known to play a significant role in the maintenance of health and wellness, as they have the potential to modify risk factors for a large number of serious disorders. Different classes of functional dietary components, such as dietary fibers, probiotics, prebiotics, polyunsaturated fatty acids, polyphenols, and spices, possess positive impacts on human health and can be useful as alternative treatments for GI disorders and metabolic dysregulation, as they can modify the risk factors associated with these pathologies. Their regular intake in sufficient amounts also aids in the restoration of normal intestinal flora, resulting in positive regulation of insulin signaling, metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. This review is designed to focus on the health benefits of bioactive dietary components, with the aim of preventing the development or halting the progression of GI disorders and MS through an improvement of the most important risk factors including gut dysbiosis.
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Alessandra Baldi
- TefarcoInnova, National Inter-University Consortium of Innovative Pharmaceutical Technologies—Parma, 43124 Parma, Italy;
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Ariyawan Tantipongpiradet
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Liu T, Gu X, Li LX, Li M, Li B, Cui X, Zuo XL. Microbial and metabolomic profiles in correlation with depression and anxiety co-morbidities in diarrhoea-predominant IBS patients. BMC Microbiol 2020; 20:168. [PMID: 32552668 PMCID: PMC7302156 DOI: 10.1186/s12866-020-01841-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Psychological co-morbidities in irritable bowel syndrome (IBS) have been widely recognized, whereas less is known regarding the role of gut microbial and host metabolic changes in clinical and psychological symptoms in IBS. RESULTS A total of 70 diarrhoea-predominant IBS (IBS-D) patients and 46 healthy controls were enrolled in this study. Stool and urine samples were collected from both groups for 16S rRNA gene sequencing and metabolomic analysis. The results showed that fecal microbiota in IBS-D featured depleted Faecalibacterium (adjusted P = 0.034), Eubacterium rectale group (adjusted P = 0.048), Subdoligranulum (adjusted P = 0.041) and increased Prevotella (adjusted P = 0.041). O-ureido-L-serine, 3,4-dihydroxybenzenesulfonic acid and (R)-2-Hydroxyglutarate demonstrated lower urinary concentrations in IBS-D patients. We further built correlation matrices between gut microbe abundance, differentiated metabolite quantities and clinical parameters. Dialister manifested negative association with IBS severity (r = - 0.285, P = 0.017), anxiety (r = - 0.347, P = 0.003) and depression level (r = - 0.308, P = 0.010). Roseburia was negatively associated with IBS severity (r = - 0.298, P = 0.012). Twenty metabolites correlated with anxiety or depression levels, including 3,4-dihydroxymandelaldehyde with SAS (r = - 0.383, P = 0.001), 1-methylxanthine with SDS (r = - 0.347, P = 0.004) and 1D-chiro-inositol with SAS (r = - 0.336, P = 0.005). In analysis of microbe-metabolite relationship, 3,4-dihydroxymandelaldehyde and 1-methylxanthine were negatively correlated with relative abundance of Clostridiumsensu stricto. CONCLUSIONS Our findings demonstrated altered microbial and metabolomic profiles associated with clinically and psychological symptoms in IBS-D patients, which may provide insights for further investigations.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Bing Li
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Cui
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.
- Robot engineering laboratory for precise diagnosis and therapy of GI tumour, Qilu Hospital, Cheloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
19
|
van Thiel IAM, de Jonge WJ, Chiu IM, van den Wijngaard RM. Microbiota-neuroimmune cross talk in stress-induced visceral hypersensitivity of the bowel. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1034-G1041. [PMID: 32308040 PMCID: PMC7642838 DOI: 10.1152/ajpgi.00196.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity of the lower gastrointestinal tract, defined as an increased response to colorectal distension, frequently prompts episodes of debilitating abdominal pain in irritable bowel syndrome (IBS). Although the pathophysiology of IBS is not yet fully elucidated, it is well known that stress is a major risk factor for development and acts as a trigger of pain sensation. Stress modulates both immune responses as well as the gut microbiota and vice versa. Additionally, either microbes themselves or through involvement of the immune system, activate or sensitize afferent nociceptors. In this paper, we review current knowledge on the influence of stress along the gut-brain-microbiota axis and exemplify relevant neuroimmune cross talk mechanisms in visceral hypersensitivity, working toward understanding how gut microbiota-neuroimmune cross talk contributes to visceral pain sensation in IBS patients.
Collapse
Affiliation(s)
- Isabelle A. M. van Thiel
- 1Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,2Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J. de Jonge
- 1Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,2Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands,3Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,4Department of General, Visceral, Thoracic, and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Isaac M. Chiu
- 5Department of Immunology, Harvard Medical School. Boston, Massachusetts
| | - Rene M. van den Wijngaard
- 1Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,2Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands,3Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci Rep 2019; 9:19603. [PMID: 31862976 PMCID: PMC6925246 DOI: 10.1038/s41598-019-56132-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and gut hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is a rat irritable bowel syndrome (IBS) model. As butyrate is known to suppress the release of proinflammatory cytokine, we hypothesized that butyrate alleviates these colonic changes in IBS models. The visceral pain was assessed by electrophysiologically measuring the threshold of abdominal muscle contractions in response to colonic distention. Colonic permeability was determined by measuring the absorbance of Evans blue in colonic tissue. Colonic instillation of sodium butyrate (SB; 0.37-2.9 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral allodynia and colonic hyperpermeability dose-dependently. Additionally, the visceral changes induced by repeated WAS (1 h for 3 days) or CRF (50 µg/kg) were also blocked by SB. These effects of SB in the LPS model were eliminated by compound C, an AMPK inhibitor, or GW9662, a PPAR-γ antagonist, NG-nitro-L-arginine methyl ester, a NO synthesis inhibitor, naloxone or sulpiride. SB attenuated visceral allodynia and colonic hyperpermeability in animal IBS models. These actions may be AMPK and PPAR-γ dependent and also mediated by the NO, opioid and central dopamine D2 pathways. Butyrate may be effective for the treatment of IBS.
Collapse
|
21
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Does diet play a role in reducing nociception related to inflammation and chronic pain? Nutrition 2019; 66:153-165. [DOI: 10.1016/j.nut.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
23
|
Microbiota: a novel regulator of pain. J Neural Transm (Vienna) 2019; 127:445-465. [PMID: 31552496 DOI: 10.1007/s00702-019-02083-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Among the various regulators of the nervous system, the gut microbiota has been recently described to have the potential to modulate neuronal cells activation. While bacteria-derived products can induce aversive responses and influence pain perception, recent work suggests that "abnormal" microbiota is associated with neurological diseases such as Alzheimer's, Parkinson's disease or autism spectrum disorder (ASD). Here we review how the gut microbiota modulates afferent sensory neurons function and pain, highlighting the role of the microbiota/gut/brain axis in the control of behaviors and neurological diseases. We outline the changes in gut microbiota, known as dysbiosis, and their influence on painful gastrointestinal disorders. Furthermore, both direct host/microbiota interaction that implicates activation of "pain-sensing" neurons by metabolites, or indirect communication via immune activation is discussed. Finally, treatment options targeting the gut microbiota, including pre- or probiotics, will be proposed. Further studies on microbiota/nervous system interaction should lead to the identification of novel microbial ligands and host receptor-targeted drugs, which could ultimately improve chronic pain management and well-being.
Collapse
|
24
|
Zhang J, Song L, Wang Y, Liu C, Zhang L, Zhu S, Liu S, Duan L. Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced visceral hypersensitivity in rats. J Gastroenterol Hepatol 2019; 34:1368-1376. [PMID: 30402954 PMCID: PMC7379616 DOI: 10.1111/jgh.14536] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Emerging evidence indicates that psychological stress is involved in the pathogenesis of irritable bowel syndrome, which is characterized by visceral hypersensitivity and may be accompanied by gut dysbiosis. However, how such stress contributes to the development of visceral hypersensitivity is incompletely understood. Here, we aimed to investigate the influence that stress-induced microbial changes exert on visceral sensitivity, as well as the possible underlying mechanisms associated with this effect. METHODS Male Sprague-Dawley rats underwent chronic water avoidance stress (WAS) to induce visceral hypersensitivity. Visceral sensitivity, colonic tight junction protein expression, and short-chain fatty acids of cecal contents were measured. Fecal samples were collected to characterize microbiota profiles. In a separate study, oral gavage of Roseburia in WAS rats was conducted to verify its potential role in the effectiveness on visceral hypersensitivity. RESULTS Repeated WAS caused visceral hypersensitivity, altered fecal microbiota composition and function, and decreased occludin expression in the colon. Stressed rats exhibited reduced representation of pathways involved in the metabolism of butyrate and reduced abundance of several operational taxonomic units associated with butyrate-producing bacteria, such as Lachnospiraceae. Consistently, supplementation with Roseburia hominis, a species belonging to Lachnospiraceae, significantly increased cecal butyrate content. Moreover, Roseburia supplementation alleviated visceral hypersensitivity and prevented the decreased expression of occludin. CONCLUSIONS Reduction in the abundance of butyrate-producing Lachnospiraceae, which is beneficial for the intestinal barrier, was involved in the formation of visceral hypersensitivity. R. hominis is a potential probiotic for treating stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- Jindong Zhang
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Lijin Song
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Yujing Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Lu Zhang
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Shiwei Zhu
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Liping Duan
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| |
Collapse
|
25
|
Farup PG, Valeur J. Faecal Microbial Markers and Psychobiological Disorders in Subjects with Morbid Obesity. A Cross-Sectional Study. Behav Sci (Basel) 2018; 8:bs8100089. [PMID: 30262766 PMCID: PMC6210697 DOI: 10.3390/bs8100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 01/14/2023] Open
Abstract
Morbidly obese subjects have a high prevalence of comorbidity and gut microbial dysbiosis, and are thus suitable for the study of gut-brain interactions. The aim was to study the associations between the faecal microbiota’s composition and function and psychobiological comorbidity in subjects with BMI > 40 kg/m2 or >35 kg/m2 with obesity-related complications. The faecal microbiota was assessed with GA-Map dysbiosis test ™ (Genetic Analysis, Oslo Norway) and reported as dysbiosis (yes/no) and degree of dysbiosis, and the relative abundance of 39 bacteria. The microbiota’s function was assessed by measuring the absolute and relative amount of faecal short chain fatty acids. Associations were made with well-being, mental distress, fatigue, food intolerance, musculoskeletal pain, irritable bowel syndrome, and degree of abdominal complaints. One hundred and two subjects were included. The results confirmed the high prevalence of comorbidity and dysbiosis (62/102; 61%) and showed a high prevalence of significant associations (41/427; 10%) between the microbiota’s composition and function and the psychobiological disorders. The abundant, but in part divergent, associations supported the close gut-brain interaction but revealed no clear-cut and straightforward communication pathways. On the contrary, the study illustrates the complexity of gut-brain interactions.
Collapse
Affiliation(s)
- Per G Farup
- Department of Research, Innlandet Hospital Trust, PB 104, N-2381 Brumunddal, Norway.
- Unit for Applied Clinical Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, N-0440 Oslo, Norway.
| |
Collapse
|
26
|
Chen BR, Du LJ, He HQ, Kim JJ, Zhao Y, Zhang YW, Luo L, Dai N. Fructo-oligosaccharide intensifies visceral hypersensitivity and intestinal inflammation in a stress-induced irritable bowel syndrome mouse model. World J Gastroenterol 2017; 23:8321-8333. [PMID: 29307992 PMCID: PMC5743503 DOI: 10.3748/wjg.v23.i47.8321] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether fructo-oligosaccharide (FOS) affects visceral sensitivity, inflammation, and production of intestinal short-chain fatty acids (SCFA) in an irritable bowel syndrome (IBS) mouse model.
METHODS Mice were randomly assigned to daily oral gavage of saline solution with or without FOS (8 g/kg body weight) for 14 d. Mice were further assigned to receive either daily one-hour water avoidance stress (WAS) or sham-WAS for the first 10 d. After 2 wk, visceral sensitivity was measured by abdominal withdrawal reflex in response to colorectal distension and mucosal inflammation was evaluated. Gas chromatography, real-time reverse transcription PCR, and immunohistochemistry assays were used to quantify cecal concentrations of SCFA, intestinal cytokine expression, and number of intestinal mast cells per high-power field (HPF), respectively.
RESULTS Mice subjected to WAS exhibited visceral hypersensitivity and low-grade inflammation. Among mice subjected to WAS, FOS increased visceral hypersensitivity and led to higher cecal concentrations of acetic acid (2.49 ± 0.63 mmol/L vs 1.49 ± 0.72 mmol/L, P < 0.05), propionic acid (0.48 ± 0.09 mmol/L vs 0.36 ± 0.05 mmol/L, P < 0.01), butyric acid (0.28 ± 0.09 mmol/L vs 0.19 ± 0.003 mmol/L, P < 0.05), as well as total SCFA (3.62 ± 0.87 mmol/L vs 2.27 ± 0.75 mmol/L, P < 0.01) compared to saline administration. FOS also increased ileal interleukin (IL)-23 mRNA (4.71 ± 4.16 vs 1.00 ± 0.99, P < 0.05) and colonic IL-1β mRNA (2.15 ± 1.68 vs 0.88 ± 0.53, P < 0.05) expressions as well as increased mean mast cell counts in the ileum (12.3 ± 2.6 per HPF vs 8.3 ± 3.6 per HPF, P < 0.05) and colon (6.3 ± 3.2 per HPF vs 3.4 ± 1.2 per HPF, P < 0.05) compared to saline administration in mice subjected to WAS. No difference in visceral sensitivity, intestinal inflammation, or cecal SCFA levels was detected with or without FOS administration in mice subjected to sham-WAS.
CONCLUSION FOS administration intensifies visceral hypersensitivity and gut inflammation in stress-induced IBS mice, but not in the control mice, and is also associated with increased intestinal SCFA production.
Collapse
Affiliation(s)
- Bin-Rui Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Li-Jun Du
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Hui-Qin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - John J Kim
- Division of Gastroenterology, Loma Linda University Medical Center, Loma Linda, CA 92354, United States
| | - Yan Zhao
- Division of Gastroenterology, Loma Linda University Medical Center, Loma Linda, CA 92354, United States
| | - Ya-Wen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
27
|
Arya LA, Richter HE, Jelovsek E, Gantz M, Cichowski S, Zyczynski H, Dyer K, Siddiqui N, Carberry C, Broeckling C, Morrow C, Kashyap P, Meikle S. Metabolites and microbial composition of stool of women with fecal incontinence: Study design and methods. Neurourol Urodyn 2017; 37:634-641. [PMID: 28763566 DOI: 10.1002/nau.23360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 06/24/2017] [Indexed: 12/17/2022]
Abstract
AIMS This paper aims to report the rationale, design, and the specific methodology of an ongoing nested observational study that will determine the association of the metabolite and microbial composition of stool with fecal incontinence (FI). METHODS Eligible cases are participants with FI enrolled in the Controlling Anal Incontinence in women by Performing Anal Exercises with Biofeedback or Loperamide (CAPABLe) trial, a Pelvic Floor Disorders Network trial across eight clinical centers in the United States. Women of similar age without FI in the last year served as controls. All subject collected stool samples at the baseline and 24-week visit at home using a standardized collection method. Samples were shipped to and stored at centralized laboratories. RESULTS Specimen collection commenced December 2014 and was completed in May 2016. Fecal water and DNA has been extracted and is currently being analyzed by targeted metabolic profiling for stool metabolites and 16S rRNA gene sequencing for stool microbiota. CONCLUSIONS This article describes the rationale and design of a study that could provide a paradigm shift for the treatment of FI in women.
Collapse
Affiliation(s)
- Lily A Arya
- Division of Urogynecology and Pelvic Reconstructive Surgery, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Holly E Richter
- Division of Urogynecology and Pelvic Reconstructive Surgery, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eric Jelovsek
- Obstetrics and Gynecology and Women's Health Institute, Center for Urogynecology and Reconstructive Pelvic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Marie Gantz
- Social, Statistical and Environmental Sciences, RTI International, Research Triangle Park, North Carolina
| | - Sara Cichowski
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Halina Zyczynski
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology and Reproductive Sciences, Women's Center for Bladder and Pelvic Health, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Keisha Dyer
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Reproductive Medicine, UC San Diego Health System, San Diego, California
| | - Nazema Siddiqui
- Division of Urogynecology, Department of Obstetrics and Gynecology, Duke Medical Center, Durham, North Carolina
| | - Cassandra Carberry
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Corey Broeckling
- Colorado State University Proteomics and Metabolomics Facility, Fort Collins, Colorado
| | - Casey Morrow
- Department of Microbiome Resources, University of Alabama, Birmingham, Alabama
| | - Purna Kashyap
- Division of Gastroenterology, Department of Internal Medicine, The Mayo Clinic, Rochester, Minnesota
| | - Susie Meikle
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD for the Pelvic Floor Disorders Network, Rockville, Maryland
| |
Collapse
|
28
|
Hustoft TN, Hausken T, Ystad SO, Valeur J, Brokstad K, Hatlebakk JG, Lied GA. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol Motil 2017; 29. [PMID: 27747984 DOI: 10.1111/nmo.12969] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) is increasingly recommended for patients with irritable bowel syndrome (IBS). We aimed to investigate the effects of a blinded low-FODMAP vs high-fructo-oligosaccharides (FOS) diet on symptoms, immune activation, gut microbiota composition, and short-chain fatty acids (SCFAs). METHODS Twenty patients with diarrhea-predominant or mixed IBS were instructed to follow a low-FODMAP diet (LFD) throughout a 9-week study period. After 3 weeks, they were randomized and double-blindly assigned to receive a supplement of either FOS (FODMAP) or maltodextrin (placebo) for the next 10 days, followed by a 3-week washout period before crossover. Irritable bowel syndrome severity scoring system (IBS-SSS) was used to evaluate symptoms. Cytokines (interleukin [IL]-6, IL-8, and tumor necrosis factor alpha) were analyzed in blood samples, and gut microbiota composition (16S rRNA) and SCFAs were analyzed in fecal samples. KEY RESULTS Irritable bowel syndrome symptoms consistently improved after 3 weeks of LFD, and significantly more participants reported symptom relief in response to placebo (80%) than FOS (30%). Serum levels of proinflammatory IL-6 and IL-8, as well as levels of fecal bacteria (Actinobacteria, Bifidobacterium, and Faecalibacterium prausnitzii), total SCFAs, and n-butyric acid, decreased significantly on the LFD as compared to baseline. Ten days of FOS supplementation increased the level of these bacteria, whereas levels of cytokines and SCFAs remained unchanged. CONCLUSIONS AND INFERENCES Our findings support the efficacy of a LFD in alleviating IBS symptoms, and show changes in inflammatory cytokines, microbiota profile, and SCFAs, which may have consequences for gut health.
Collapse
Affiliation(s)
- T N Hustoft
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - T Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Section of Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| | - S O Ystad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| | - J Valeur
- Unger-Vetlesen's Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - K Brokstad
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - J G Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Section of Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| | - G A Lied
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Section of Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
Valeur J, Røseth AG, Knudsen T, Malmstrøm GH, Fiennes JT, Midtvedt T, Berstad A. Fecal Fermentation in Irritable Bowel Syndrome: Influence of Dietary Restriction of Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols. Digestion 2017; 94:50-6. [PMID: 27487397 DOI: 10.1159/000448280] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/10/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Dietary restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) may relieve symptoms in patients with irritable bowel syndrome (IBS). We investigated whether this diet alters microbial fermentation, a process that may be involved in IBS symptom generation. METHODS Patients with IBS were included consecutively to participate in a 4-week FODMAP restricted diet. IBS symptoms were evaluated by using the IBS severity scoring system (IBS-SSS). Short-chain fatty acids (SCFAs) were analyzed in fecal samples before and after the dietary intervention, both at baseline and after in vitro fermentation for 24 h. RESULTS Sixty-three patients completed the study. Following the dietary intervention, IBS-SSS scores improved significantly (p < 0.0001). Total SCFA levels were reduced in fecal samples analyzed both at baseline (p = 0.005) and after in vitro fermentation for 24 h (p = 0.013). Following diet, baseline levels of acetic (p = 0.003) and n-butyric acids (p = 0.009) decreased, whereas 24 h levels of i-butyric (p = 0.003) and i-valeric acids (p = 0.003) increased. Fecal SCFA levels and IBS symptom scores were not correlated. CONCLUSION Dietary FODMAP restriction markedly modulated fecal fermentation in patients with IBS. Saccharolytic fermentation decreased, while proteolytic fermentation increased, apparently independent of symptoms.
Collapse
Affiliation(s)
- Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
30
|
Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proc Nutr Soc 2016; 75:306-18. [PMID: 26908093 DOI: 10.1017/s0029665116000021] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder characterised by abdominal pain or discomfort with disordered defecation. This review describes the role of the gastrointestinal (GI) microbiota in the pathogenesis of IBS and how dietary strategies to manage symptoms impact on the microbial community. Evidence suggests a dysbiosis of the luminal and mucosal colonic microbiota in IBS, frequently characterised by a reduction in species of Bifidobacteria which has been associated with worse symptom profile. Probiotic supplementation trials suggest intentional modulation of the GI microbiota may be effective in treating IBS. A smaller number of prebiotic supplementation studies have also demonstrated effectiveness in IBS whilst increasing Bifidobacteria. In contrast, a novel method of managing IBS symptoms is the restriction of short-chain fermentable carbohydrates (low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet). Studies consistently demonstrate clinical effectiveness of the low FODMAP diet in patients with IBS. However, one unintentional consequence of this dietary intervention is its impact on the microbiota. This leads to an interesting paradox; namely, increasing luminal Bifidobacteria through probiotic supplementation is associated with a reduction in IBS symptoms while in direct conflict to this, the low FODMAP diet has clinical efficacy but markedly reduces luminal Bifidobacteria concentration. Given the multifactorial aetiology of IBS, the heterogeneity of symptoms and the complex and diverse nature of the microbiome, it is probable that both interventions are effective in patient subgroups. However combination treatment has never been explored and as such, presents an exciting opportunity for optimising clinical management, whilst preventing potentially deleterious effects on the GI microbiota.
Collapse
|
31
|
Barbara G, Feinle-Bisset C, Ghoshal UC, Quigley EM, Santos J, Vanner S, Vergnolle N, Zoetendal EG. The Intestinal Microenvironment and Functional Gastrointestinal Disorders. Gastroenterology 2016; 150:S0016-5085(16)00219-5. [PMID: 27144620 DOI: 10.1053/j.gastro.2016.02.028] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 12/02/2022]
Abstract
For decades, interactions between the enteric neuromuscular apparatus and the central nervous system have served as the primary focus of pathophysiological research in the functional gastrointestinal disorders. The accumulation of patient reports, as well as clinical observations, has belatedly led to an interest in the role of various luminal factors and their interactions with each other and the host in functional gastrointestinal disorders. Most prominent among these factors has been the role of food. As a consequence, while not always evidence-based, dietary interventions are enjoying a renaissance in irritable bowel syndrome management. Not surprisingly, given its exploration in many disease states, the gut microbiota has also been studied in functional gastrointestinal disorders; data remain inconclusive. Likewise, there is also a considerable body of experimental and some clinical data to link functional gastrointestinal disorders pathogenesis to disturbances in epithelial barrier integrity, abnormal entero-endocrine signaling and immune activation. These data provide growing evidence supporting the existence of micro-organic changes, particularly in subgroups of patients with functional dyspepsia and IBS. However, their exact role in the complex pathophysiology and symptom generation of functional gastrointestinal disorders needs to be further studied and elucidated particularly with longitudinal and interventional studies.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, Italy.
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide Discipline of Medicine, Adelaide, South Australia
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Eamonn M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | - Javier Santos
- Lab Neuro-immune-gastroenterology, Digestive System Research Unit, Department of Gastroenterology, Institut de Recerca Vall d'Hebron, Hospital Vall d'Hebron, Barcelona, Spain
| | - Steve Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Nathalie Vergnolle
- Inserm, U1220, Toulouse, France; Université de Toulouse, UPS, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, the Netherlands
| |
Collapse
|
32
|
Ringel Y, Maharshak N. Intestinal microbiota and immune function in the pathogenesis of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2013; 305:G529-41. [PMID: 23886861 PMCID: PMC3798736 DOI: 10.1152/ajpgi.00207.2012] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/17/2013] [Indexed: 02/08/2023]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is believed to involve alterations in the brain-gut axis; however, the etiological triggers and mechanisms by which these changes lead to symptoms of IBS remain poorly understood. Although IBS is often considered a condition without an identified "organic" etiology, emerging evidence suggests that alterations in the gastrointestinal microbiota and altered immune function may play a role in the pathogenesis of the disorder. These recent data suggest a plausible model in which changes in the intestinal microbiota and activation of the enteric immune system may impinge upon the brain-gut axis, causing the alterations in gastrointestinal function and the clinical symptoms observed in patients with IBS. This review summarizes the current evidence for altered intestinal microbiota and immune function in IBS. It discusses the potential etiological role of these factors, suggests an updated conceptual model for the pathogenesis of the disorder, and identifies areas for future research.
Collapse
Affiliation(s)
- Yehuda Ringel
- Division of Gastroenterology and Hepatology, Univ. of North Carolina at Chapel Hill School of Medicine, 4107 BioInformatics Bldg., CB# 7080, 130 Mason Farm Rd., Chapel Hill, NC 27599-7080.
| | | |
Collapse
|
33
|
Banasiewicz T, Krokowicz Ł, Stojcev Z, Kaczmarek BF, Kaczmarek E, Maik J, Marciniak R, Krokowicz P, Walkowiak J, Drews M. Microencapsulated sodium butyrate reduces the frequency of abdominal pain in patients with irritable bowel syndrome. Colorectal Dis 2013; 15:204-9. [PMID: 22738315 DOI: 10.1111/j.1463-1318.2012.03152.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Abdominal pain, defaecation disorder and change of bowel habit are the commonest symptoms of irritable bowel syndrome (IBS). The effect of microencapsulated sodium butyrate (MSB) was assessed on the severity of symptoms in patients with IBS. METHOD Sixty-six patients treated with one of the standard pharmacological therapies for at least 3 months were included in the study. They were randomized to receive MSB as a supplemental treatment to standard therapy or to receiving a placebo. Previous pharmacological therapy was continued throughout the study in both arms. Clinical evaluation was performed at baseline, 4 and 12 weeks. Each assessment was documented by a validated visual analogue score questionnaire measuring the severity of selected clinical symptoms, a closed-end questionnaire measuring the frequency of selected clinical symptoms and a single closed-end question measuring the subjective improvement of symptoms. RESULTS After 4 weeks there was a significant decrease of pain during defaecation in the MSB group which extended to improvement of urgency and bowel habit at 12 weeks. Reduction of abdominal pain, flatulence and disordered defaecation was not statistically significant. CONCLUSIONS MSB as a supplemental therapy can reduce the frequency of selected clinical symptoms in patients with IBS, without significant influence on reducing symptom severity.
Collapse
Affiliation(s)
- T Banasiewicz
- Department of General Surgery, Oncologic Gastroenterologic Surgery and Plastic Surgery, Poznań University of Medical Sciences, Poznań, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ordog T, Syed SA, Hayashi Y, Asuzu DT. Epigenetics and chromatin dynamics: a review and a paradigm for functional disorders. Neurogastroenterol Motil 2012; 24:1054-68. [PMID: 23095056 PMCID: PMC3607505 DOI: 10.1111/nmo.12031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Motility and functional gastrointestinal disorders have high prevalence in the community, cause significant morbidity, and represent a major health care burden. Despite major advances in our understanding of the cellular and molecular basis of gastrointestinal neuromuscular functions, many of these diseases still defy mechanistic explanations. The biopsychosocial model underlying the current classification of functional gastrointestinal disorders recognizes and integrates the pathogenetic role of genetic, environmental, and psychosocial factors but has not been associated with specific molecular mechanisms. PURPOSE Here, we propose that this integrative function is encoded in the chromatin, composed of the DNA and associated histone and non-histone proteins and non-coding RNA. By establishing epigenetically heritable 'molecular memories' of past stimuli including environmental challenges, the chromatin determines an individual's responses to future insults and translates them into high-order outputs such as symptoms and illness behavior. Thus, surveying epigenetic signatures throughout the genome of affected cells in individual patients may make it possible to better understand and ultimately control the phenomena described by the biopsychosocial model. In this review, we provide a high-level but comprehensive description of the concepts and mechanisms underlying epigenetics and chromatin dynamics, describe the mechanisms whereby the environment can alter the epigenome and identify aspects of functional gastrointestinal and motility disorders where epigenetic mechanisms are most likely to play important roles.
Collapse
Affiliation(s)
- T Ordog
- Epigenomics Translational Program, Mayo Clinic Center for Individualized Medicine, Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering and Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|