1
|
Vautier A, Lebreton AL, Codron P, Awada Z, Gohier P, Cassereau J. Retinal vessels as a window on amyotrophic lateral sclerosis pathophysiology: A systematic review. Rev Neurol (Paris) 2023; 179:548-562. [PMID: 36842953 DOI: 10.1016/j.neurol.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 02/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare fatal motor neuron disease. Although many potential mechanisms have been proposed, the pathophysiology of the disease remains unknown. Currently available treatments can only delay the progression of the disease and prolong life expectancy by a few months. There is still no definitive cure for ALS, and the development of new treatments is limited by a lack of understanding of the underlying biological processes that trigger and promote neurodegeneration. Several scientific results suggest a neurovascular impairment in ALS providing perspectives for the development of new biomarkers and treatments. In this article, we performed a systematic review using PRISMA guidelines including PubMed, EmBase, GoogleScholar, and Web of Science Core Collection to analyze the scientific literature published between 2000 and 2021 discussing the neurocardiovascular involvement and ophthalmologic abnormalities in ALS. In total, 122 articles were included to establish this systematic review. Indeed, microvascular pathology seems to be involved in ALS, affecting all the neurovascular unit components. Retinal changes have also been recently highlighted without significant alteration of the visual pathways. Despite the peripheral location of the retina, it is considered as an extension of the central nervous system (CNS) as it displays similarities to the brain, the inner blood-retinal barrier, and the blood-brain barrier. This suggests that the eye could be considered as a 'window' into the brain in many CNS disorders. Thus, studying ocular manifestations of brain pathologies seems very promising in understanding neurodegenerative disorders, mainly ALS. Optical coherence tomography angiography (OCT-A) could therefore be a powerful approach for exploration of retinal microvascularization allowing to obtain new diagnostic and prognostic biomarkers of ALS.
Collapse
Affiliation(s)
- A Vautier
- Department of Ophthalmology, University Hospital, Angers, France.
| | - A L Lebreton
- Department of Ophthalmology, University Hospital, Angers, France
| | - P Codron
- Amyotrophic Lateral Sclerosis (ALS) Center, Department of Neurology, University Hospital, Angers, France; Department of Neurobiology and Neuropathology, University Hospital, Angers, France; University of Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Z Awada
- Department of neuroscience, LHH-SIUH, New York, USA
| | - P Gohier
- Department of Ophthalmology, University Hospital, Angers, France
| | - J Cassereau
- Amyotrophic Lateral Sclerosis (ALS) Center, Department of Neurology, University Hospital, Angers, France; University of Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France.
| |
Collapse
|
2
|
Coyoy-Salgado A, Orozco-Barrios C, Sánchez-Torres S, Olayo MG, Cruz GJ, Morales-Corona J, Olayo R, Diaz-Ruiz A, Ríos C, Alvarez-Mejia L, Mondragón-Lozano R, Morales-Guadarrama A, Alonso-García AL, Fabela-Sánchez O, Salgado-Ceballos H. Gene expression and locomotor recovery in adult rats with spinal cord injury and plasma-synthesized polypyrrole/iodine application combined with a mixed rehabilitation scheme. Front Neurol 2023; 14:1124245. [PMID: 37288064 PMCID: PMC10243140 DOI: 10.3389/fneur.2023.1124245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/14/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Spinal cord injury (SCI) can cause paralysis, for which effective therapeutic strategies have not been developed yet. The only accepted strategy for patients is rehabilitation (RB), although this does not allow complete recovery of lost functions, which makes it necessary to combine it with strategies such as plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical properties than PPy synthesized by conventional methods. After SCI in rats, PPy/I promotes functional recovery. Therefore, the purpose of this study was to increase the beneficial effects of both strategies and identify which genes activate PPy/I when applied alone or in combination with a mixed scheme of RB by swimming and enriched environment (SW/EE) in rats with SCI. Methods Microarray analysis was performed to identify mechanisms of action underlying the effects of PPy/I and PPy/I+SW/EE on motor function recovery as evaluated by the BBB scale. Results Results showed robust upregulation by PPy/I in genes related to the developmental process, biogenesis, synapse, and synaptic vesicle trafficking. In addition, PPy/I+SW/EE increased the expression of genes related to proliferation, biogenesis, cell development, morphogenesis, cell differentiation, neurogenesis, neuron development, and synapse formation processes. Immunofluorescence analysis showed the expression of β-III tubulin in all groups, a decreased expression of caspase-3 in the PPy/I group and GFAP in the PPy/I+SW/EE group (p < 0.05). Better preservation of nerve tissue was observed in PPy/I and PPy/SW/EE groups (p < 0.05). In the BBB scale, the control group scored 1.72 ± 0.41, animals with PPy/I treatment scored 4.23 ± 0.33, and those with PPy/I+SW/EE scored 9.13 ± 0.43 1 month after follow-up. Conclusion Thus, PPy/I+SW/EE could represent a therapeutic alternative for motor function recovery after SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Carlos Orozco-Barrios
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - María Guadalupe Olayo
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Guillermo Jesus Cruz
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Juan Morales-Corona
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Roberto Olayo
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Araceli Diaz-Ruiz
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Camilo Ríos
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Laura Alvarez-Mejia
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Rodrigo Mondragón-Lozano
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Electrical Engineering Department, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- National Center for Research in Imaging and Medical Instrumentation, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | | | - Omar Fabela-Sánchez
- Researchers for Mexico CONACyT-Centro de Investigación en Química Aplicada, Department of Chemistry Macromolecules and Nanomaterials, Saltillo, Mexico
| | - Hermelinda Salgado-Ceballos
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| |
Collapse
|
3
|
Castañeda-Cabral JL, Orozco-Suárez SA, Beas-Zárate C, Fajardo-Fregoso BF, Flores-Soto ME, Ureña-Guerrero ME. Inhibition of VEGFR-2 by SU5416 increases neonatally glutamate-induced neuronal damage in the cerebral motor cortex and hippocampus. J Biochem Mol Toxicol 2023; 37:e23315. [PMID: 36732937 DOI: 10.1002/jbt.23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 07/23/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A-E), receptor types (VEGFR1-3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.
Collapse
Affiliation(s)
- José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Sandra A Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, México
| | - Carlos Beas-Zárate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Blanca F Fajardo-Fregoso
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - Mario E Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), IMSS, Guadalajara, México
| | - Mónica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| |
Collapse
|
4
|
Li M, Li J, Chen H, Zhu M. VEGF-Expressing Mesenchymal Stem Cell Therapy for Safe and Effective Treatment of Pain in Parkinson's Disease. Cell Transplant 2023; 32:9636897221149130. [PMID: 36635947 PMCID: PMC9841873 DOI: 10.1177/09636897221149130] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a pro-angiogenic factor that mediates the differentiation and function of vascular endothelial cells. VEGF has been implicated in modulating various pains. However, the effects of VEGF in Parkinson's disease (PD)-related pain have not been studied. The goal of this study was to understand the effects of VEGF-expressing mesenchymal stem cells (MSCs) on PD-related pain and the involved mechanisms. We used two types of MSCs: hAMSC-Vector-GFP and hAMSC-VEGF189-GFP in PD mice. Then, the expression of VEGF and the viability have been compared between two types of MSCs. To demonstrate the therapeutic effect of hAMSC-VEGF189-GFP, we transplanted each cell line in a PD mouse model. Head mechanical withdrawal thresholds were examined. hAMSC-VEGF189-GFP was associated with significantly increased VEGF expression and slightly increased viability, compared with hAMSC-Vector-GFP. The transplanted hAMSC-VEGF189-GFP significantly improved mechanical allodynia and inhibited transient receptor potential vanilloid 1 (TRPV1) expression in site. And such pain relief effects could be partially blocked by TRPV1 agonist. However, we did not observe tumor generation or neuron degeneration in hAMSC-VEGF189-GFP-transplanted animals. Taken together, our data suggest that hAMSC-VEGF189-GFP is safely therapeutically appropriate for treating PD-related pain. VEGF inhibits TRPV1 expression, which may contribute to its analgesic properties.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ji Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hong Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Mingxin Zhu, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China.
| |
Collapse
|
5
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wasik A, Ratajczak-Wielgomas K, Badzinski A, Dziegiel P, Podhorska-Okolow M. The Role of Periostin in Angiogenesis and Lymphangiogenesis in Tumors. Cancers (Basel) 2022; 14:cancers14174225. [PMID: 36077762 PMCID: PMC9454705 DOI: 10.3390/cancers14174225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancers are common diseases that affect people of all ages worldwide. For this reason, continuous attempts are being made to improve current therapeutic options. The formation of metastases significantly decreases patient survival. Therefore, understanding the mechanisms that are involved in this process seems to be crucial for effective cancer therapy. Cancer dissemination occurs mainly through blood and lymphatic vessels. As a result, many scientists have conducted a number of studies on the formation of new vessels. Many studies have shown that proangiogenic factors and the extracellular matrix protein, i.e., periostin, may be important in tumor angio- and lymphangiogenesis, thus contributing to metastasis formation and worsening of the prognosis. Abstract Periostin (POSTN) is a protein that is part of the extracellular matrix (ECM) and which significantly affects the control of intracellular signaling pathways (PI3K-AKT, FAK) through binding integrin receptors (αvβ3, αvβ5, α6β4). In addition, increased POSTN expression enhances the expression of VEGF family growth factors and promotes Erk phosphorylation. As a result, this glycoprotein controls the Erk/VEGF pathway. Therefore, it plays a crucial role in the formation of new blood and lymphatic vessels, which may be significant in the process of metastasis. Moreover, POSTN is involved in the proliferation, progression, migration and epithelial-mesenchymal transition (EMT) of tumor cells. Its increased expression has been detected in many cancers, including breast cancer, ovarian cancer, non-small cell lung carcinoma and glioblastoma. Many studies have shown that this protein may be an independent prognostic and predictive factor in many cancers, which may influence the choice of optimal therapy.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Arkadiusz Badzinski
- Silesian Nanomicroscopy Center, Silesia LabMed: Research and Implementation Center, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Marzenna Podhorska-Okolow
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
7
|
Alavi SNR, Neishaboori AM, Yousefifard M. Extracorporeal shockwave therapy in spinal cord injury, early to advance to clinical trials? A systematic review and meta-analysis on animal studies. Neuroradiol J 2021; 34:552-561. [PMID: 34224252 DOI: 10.1177/19714009211026899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND As there is no consensus over the efficacy of extracorporeal shockwave therapy in the management of spinal cord injury complications, the current meta-analysis aims to investigate preclinical evidence on the matter. METHODS The search strategy was developed based on keywords related to 'spinal cord injury' and 'extracorporeal shockwave therapy'. A primary search was conducted in Medline, Embase, Scopus and Web of Science until the end of 2020. Studies which administered extracorporeal shockwave therapy on spinal cord injury animal models and evaluated motor function and/or histological findings were included. The standardised mean difference with a 95% confidence interval (CI) were calculated. RESULTS Seven articles were included. Locomotion was significantly improved in the extracorporeal shockwave therapy treated group (standardised mean difference 1.68, 95% CI 1.05-2.31, P=0.032). It seems that the efficacy of extracorporeal shockwave therapy with an energy flux density of 0.1 mJ/mm2 is higher than 0.04 mJ/mm2 (P=0.044). Shockwave therapy was found to increase axonal sprouting (standardised mean difference 1.31, 95% CI 0.65, 1.96), vascular endothelial growth factor tissue levels (standardised mean difference 1.36, 95% CI 0.54, 2.18) and cell survival (standardised mean difference 2.49, 95% CI 0.93, 4.04). It also significantly prevents axonal degeneration (standardised mean difference 2.25, 95% CI 1.47, 3.02). CONCLUSION Extracorporeal shockwave therapy significantly improves locomotor recovery in spinal cord injury animal models through neural tissue regeneration. Nonetheless, in spite of the promising results and clinical application of extracorporeal shockwave therapy in various conditions, current evidence implies that designing clinical trials on extracorporeal shockwave therapy in the management of spinal cord injury may not be soon. Hence, further preclinical studies with the effort to reach the safest and the most efficient treatment protocol are needed.
Collapse
Affiliation(s)
| | | | - Mahmoud Yousefifard
- Physiology Research Center, 440827Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Şimşek F, Işık Ü, Aktepe E, Kılıç F, Şirin FB, Bozkurt M. Comparison of Serum VEGF, IGF-1, and HIF-1α Levels in Children with Autism Spectrum Disorder and Healthy Controls. J Autism Dev Disord 2021; 51:3564-3574. [PMID: 33389301 DOI: 10.1007/s10803-020-04820-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 01/13/2023]
Abstract
The aim of this study was to determine whether serum VEGF, IGF-1, and HIF-1α levels differed between Autism Spectrum Disorder (ASD) patients and healthy controls. A total of 40 children with ASD and 40 healthy controls aged 4-12 years were included. Serum levels of VEGF, IGF-1, and HIF-1α were measured using commercial enzyme-linked immunosorbent assay kits. Serum IGF-1 levels were found to be statistically significantly higher in the ASD group than in the control group. Serum HIF-1α levels were borderline significantly lower in the ASD group. There was no statistically significant difference in serum VEGF levels between the two groups. IGF-1 and HIF-1α may play a potential role in the etiopathogenesis of ASD.
Collapse
Affiliation(s)
- Fulya Şimşek
- Department of Child and Adolescent Psychiatry, Suleyman Demirel University Medicine Faculty, Çünür, East Campus, Isparta, 32260, Turkey
| | - Ümit Işık
- Department of Child and Adolescent Psychiatry, Suleyman Demirel University Medicine Faculty, Çünür, East Campus, Isparta, 32260, Turkey.
| | - Evrim Aktepe
- Department of Child and Adolescent Psychiatry, Suleyman Demirel University Medicine Faculty, Çünür, East Campus, Isparta, 32260, Turkey
| | - Faruk Kılıç
- Department of Psychiatry, Suleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Fevziye Burcu Şirin
- Department of Biochemistry, Suleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Mustafa Bozkurt
- Department of Biochemistry, Suleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
9
|
Ying X, Xie Q, Li S, Yu X, Zhou K, Yue J, Chen X, Tu W, Yang G, Jiang S. Water treadmill training attenuates blood-spinal cord barrier disruption in rats by promoting angiogenesis and inhibiting matrix metalloproteinase-2/9 expression following spinal cord injury. Fluids Barriers CNS 2020; 17:70. [PMID: 33292360 PMCID: PMC7722327 DOI: 10.1186/s12987-020-00232-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/17/2020] [Indexed: 01/05/2023] Open
Abstract
Background The permeability of the blood-spinal cord barrier (BSCB) is mainly determined by junction complexes between adjacent endothelial cells (ECs), including tight junctions (TJs) and adherens junctions (AJs), which can be severely damaged after spinal cord injury (SCI). Exercise training is a recognized method for the treatment of SCI. The destruction of the BSCB mediated by matrix metalloproteinases (MMPs) leads to inflammation, neurotoxin production, and neuronal apoptosis. The failure of new blood vessels to effectively regenerate is also an important cause of delayed recovery after SCI. For the first time, we introduced water treadmill training (TT) to help SCI rats successfully exercise and measured the effects of TT in promoting recovery after SCI and the possible mechanisms involved. Methods Sprague-Dawley (200–250 g) rats were randomly divided into the following three groups: sham operated, SCI, and SCI + TT. Animals were sacrificed at 7 or 14 days post-surgery. The degree of neurological deficit, tissue morphology and BSCB permeability were assessed by the Basso-Beattie-Bresnahan (BBB) motor function scale and appropriate staining protocols, and apoptosis, protein expression and vascular EC ultrastructure were assessed by TUNEL staining, Western blotting, immunofluorescence and transmission electron microscopy (TEM). Results Our experiments showed that TT reduced permeability of the BSCB and decreased structural tissue damage. TT significantly improved functional recovery when compared with that in the SCI group; TJ and AJ proteins expression increased significantly after TT, and training reduced apoptosis induced by SCI. TT could promote angiogenesis, and MMP-2 and MMP-9 expression was significantly inhibited by TT. Conclusions The results of this study indicate that TT promotes functional recovery for the following reasons: TT (1) protects residual BSCB structure from further damage, (2) promotes vascular regeneration, and (3) inhibits MMP-2/9 expression to mitigate BSCB damage.
Collapse
Affiliation(s)
- Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Qingfeng Xie
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Xiaolan Yu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Xiaolong Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China. .,Department of Intelligent Rehabilitation International (Cross-Strait), Alliance of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Shah Mohammadi M, Buchen JT, Pasquina PF, Niklason LE, Alvarez LM, Jariwala SH. Critical Considerations for Regeneration of Vascularized Composite Tissues. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:366-381. [PMID: 33115331 DOI: 10.1089/ten.teb.2020.0223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Effective vascularization is vital for survival and functionality of complex tissue-engineered organs. The formation of the microvasculature, composed of endothelial cells (ECs) alone, has been mostly used to restore the vascular networks in organs. However, recent heterocellular studies demonstrate that co-culturing is a more effective approach in revascularization of engineered organs. This review presents key considerations for manufacturing of artificial vascularized composite tissues. We summarize the importance of co-cultures and the multicellular interactions with ECs, as well as design and use of bioreactors, as critical considerations for tissue vascularization. In addition, as an emerging scaffolding technique, this review also highlights the current caveats and hurdles associated with three-dimensional bioprinting and discusses recent developments in bioprinting strategies such as four-dimensional bioprinting and its future outlook for manufacturing of vascularized tissue constructs. Finally, the review concludes with addressing the critical challenges in the regulatory pathway and clinical translation of artificial composite tissue grafts. Impact statement Regeneration of composite tissues is critical as biophysical and biochemical characteristics differ between various types of tissues. Engineering a vascularized composite tissue has remained unresolved and requires additional evaluations along with optimization of methodologies and standard operating procedures. To this end, the main hurdle is creating a viable vascular endothelium that remains functional for a longer duration postimplantation, and can be manufactured using clinically appropriate source of cell lines that are scalable in vitro for the fabrication of human-scale organs. This review presents key considerations for regeneration and manufacturing of vascularized composite tissues as the field advances.
Collapse
Affiliation(s)
- Maziar Shah Mohammadi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jack T Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Paul F Pasquina
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Laura E Niklason
- Department of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Luis M Alvarez
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Lung Biotechnology PBC, Silver Spring, Maryland, USA
| | - Shailly H Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
11
|
VEGF/VEGFR-2 system exerts neuroprotection against Phoneutria nigriventer spider envenomation through PI3K-AKT-dependent pathway. Toxicon 2020; 185:76-90. [PMID: 32649934 DOI: 10.1016/j.toxicon.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, β-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, β-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.
Collapse
|
12
|
The Effects of Maternal and Postnatal Dietary Methyl Nutrients on Epigenetic Changes that Lead to Non-Communicable Diseases in Adulthood. Int J Mol Sci 2020; 21:ijms21093290. [PMID: 32384688 PMCID: PMC7246552 DOI: 10.3390/ijms21093290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The risk for non-communicable diseases in adulthood can be programmed by early nutrition. This programming is mediated by changes in expression of key genes in various metabolic pathways during development, which persist into adulthood. These developmental modifications of genes are due to epigenetic alterations in DNA methylation patterns. Recent studies have demonstrated that DNA methylation can be affected by maternal or early postnatal diets. Because methyl groups for methylation reactions come from methionine cycle nutrients (i.e., methionine, choline, betaine, folate), deficiency or supplementation of these methyl nutrients can directly change epigenetic regulation of genes permanently. Although many studies have described the early programming of adult diseases by maternal and infant nutrition, this review discusses studies that have associated early dietary methyl nutrient manipulation with direct effects on epigenetic patterns that could lead to chronic diseases in adulthood. The maternal supply of methyl nutrients during gestation and lactation can alter epigenetics, but programming effects vary depending on the timing of dietary intervention, the type of methyl nutrient manipulated, and the tissue responsible for the phenotype. Moreover, the postnatal manipulation of methyl nutrients can program epigenetics, but more research is needed on whether this approach can rescue maternally programmed offspring.
Collapse
|
13
|
Combined Method of Neuronal Cell-Inducible Vector and Valproic Acid for Enhanced Gene Expression under Hypoxic Conditions. Tissue Eng Regen Med 2020; 17:55-66. [PMID: 32002843 DOI: 10.1007/s13770-019-00223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Gene therapy shows the ability to restore neuronal dysfunction via therapeutic gene expression. The efficiency of gene expression and delivery to hypoxic injury sites is important for successful gene therapy. Therefore, we established a gene/stem cell therapy system using neuron-specific enolase promoter and induced neural stem cells in combination with valproic acid to increase therapeutic gene expression in hypoxic spinal cord injury. METHODS To examine the effect of combined method on enhancing gene expression, we compared neuronal cell-inducible luciferase levels under normoxia or hypoxia conditions in induced neural stem cells with valproic acid. Therapeutic gene, vascular endothelial growth factor, expression with combined method was investigated in hypoxic spinal cord injury model. We verified gene expression levels and the effect of different methods of valproic acid administration in vivo. RESULTS The results showed that neuron-specific enolase promoter enhanced gene expression levels in induced neural stem cells compared to Simian Virus 40 promoter under hypoxic conditions. Valproic acid treatment showed higher gene expression of neuron-specific enolase promoter than without treatment. In addition, gene expression levels and cell viability were different depending on the various concentration of valproic acid. The gene expression levels were increased significantly when valproic acid was directly injected with induced neural stem cells in vivo. CONCLUSION In this study, we demonstrated that the combination of neuron-specific enolase promoter and valproic acid induced gene overexpression in induced neural stem cells under hypoxic conditions and also in spinal cord injury depending on valproic acid administration in vivo. Combination of valproic acid and neuron-specific enolase promoter in induced neural stem cells could be an effective gene therapy system for hypoxic spinal cord injury.
Collapse
|
14
|
Kemilew J, Sobczyńska-Rak A, Żylińska B, Szponder T, Nowicka B, Urban B. The Use of Allogenic Stromal Vascular Fraction (SVF) Cells in Degenerative Joint Disease of the Spine in Dogs. In Vivo 2019; 33:1109-1117. [PMID: 31280199 DOI: 10.21873/invivo.11580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Stem cells are widely used in regenerative medicine and in clinical practice for the treatment of damaged nerve tissue, myocytes, tendons, and ligaments. The aim of the study was to monitor VEGF levels after the administration of allogenic cellular material (SVF) in the course of treatment of dogs suffering from degenerative joint disease in the spinal region. MATERIALS AND METHODS The study was conducted on 10 dogs of both genders, aged between 6 and 13 years in which allogenic stromal vascular fraction of stem cells (SVF) was administered intravenously. The control group was composed of 10 clinically healthy dogs. Before treatment and after 2- and 8-week intervals blood samples were obtained from the study group dogs in order to determine VEGF levels via immunoenzymatic test. RESULTS in a few days after the therapy, alleviation of pain symptoms and reduction of lameness were noticed. The VEGF level in 2 weeks after the therapy was significantly elevated (median: 38.77 pg/ml), while in 8 weeks a decrease was observed (median: 18.37 pg/ml). Conlusion: Administration of allogenic stem cells has a positive influence on elevation of the VEGF levels in the blood serum of affected animals as well as their regeneration capacity.
Collapse
Affiliation(s)
- Jerzy Kemilew
- "Kemilew Stem Cells for Animals" Company, Warsaw, Poland
| | - Aleksandra Sobczyńska-Rak
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Żylińska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Tomasz Szponder
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Nowicka
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | | |
Collapse
|
15
|
Muratori L, Gnavi S, Fregnan F, Mancardi A, Raimondo S, Perroteau I, Geuna S. Evaluation of Vascular Endothelial Growth Factor (VEGF) and Its Family Member Expression After Peripheral Nerve Regeneration and Denervation. Anat Rec (Hoboken) 2018; 301:1646-1656. [DOI: 10.1002/ar.23842] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Sara Gnavi
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - F. Fregnan
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Anabella Mancardi
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; University of Turin; Orbassano To, 10043 Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO); Orbassano To 10043 Italy
| |
Collapse
|
16
|
The impact of ALDH2 activation by Alda-1 on the expression of VEGF in the hippocampus of a rat model of post-MI depression. Neurosci Lett 2018; 674:156-161. [DOI: 10.1016/j.neulet.2018.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
|
17
|
Synaptic loss and firing alterations in Axotomized Motoneurons are restored by vascular endothelial growth factor (VEGF) and VEGF-B. Exp Neurol 2018. [PMID: 29522757 DOI: 10.1016/j.expneurol.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factor (VEGF), also known as VEGF-A, was discovered due to its vasculogenic and angiogenic activity, but a neuroprotective role for VEGF was later proven for lesions and disorders. In different models of motoneuronal degeneration, VEGF administration leads to a significant reduction of motoneuronal death. However, there is no information about the physiological state of spared motoneurons. We examined the trophic role of VEGF on axotomized motoneurons with recordings in alert animals using the oculomotor system as the experimental model, complemented with a synaptic study at the confocal microscopy level. Axotomy leads to drastic alterations in the discharge characteristics of abducens motoneurons, as well as to a substantial loss of their synaptic inputs. Retrograde delivery of VEGF completely restored the discharge activity and synaptically-driven signals in injured motoneurons, as demonstrated by correlating motoneuronal firing rate with motor performance. Moreover, VEGF-treated motoneurons recovered a normal density of synaptic boutons around motoneuronal somata and in the neuropil, in contrast to the low levels of synaptic terminals found after axotomy. VEGF also reduced the astrogliosis induced by axotomy in the abducens nucleus to control values. The administration of VEGF-B produced results similar to those of VEGF. This is the first work demonstrating that VEGF and VEGF-B restore the normal operating mode and synaptic inputs on injured motoneurons. Altogether these data indicate that these molecules are relevant synaptotrophic factors for motoneurons and support their clinical potential for the treatment of motoneuronal disorders.
Collapse
|
18
|
Characterization of neural stem cells modified with hypoxia/neuron-specific VEGF expression system for spinal cord injury. Gene Ther 2017; 25:27-38. [PMID: 29155421 DOI: 10.1038/gt.2017.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 02/01/2023]
Abstract
Spinal cord injury (SCI) is an incurable disease causing an ischemic environment and functional defect, thus a new therapeutic approach is needed for SCI treatment. Vascular endothelial growth factor (VEGF) is a potent therapeutic gene to treat SCI via angiogenesis and neuroprotection, and both tissue-specific gene expression and high gene delivery efficiency are important for successful gene therapy. Here we design the hypoxia/neuron dual-specific gene expression system (pEpo-NSE) and efficient gene delivery platform can be achieved by the combination ex vivo gene therapy with erythropoietin (Epo) enhancer, neuron-specific enolase (NSE) promoter and neural stem cells (NSCs). An in vitro model, NSCs transfected with pEpo-NSE were consistently and selectively overexpressing therapeutic genes in response to neural differentiation and hypoxic conditions. Also, in SCI model, ex vivo gene therapy using pEpo-NSE system with NSCs significantly enhanced gene delivery efficiency compared with pEpo-NSE system gene therapy alone. However, microarray analysis reveals that introducing exogenous pEpo-NSE and VEGF triggers biological pathways in NSCs such as glycolysis and signaling pathways such as Ras and mitogen-activated protein kinase, leading to cell proliferation, differentiation and apoptosis. Collectively, it indicates that the pEpo-NSE gene expression system works stably in NSCs and ex vivo gene therapy using pEpo-NSE system with NSCs improves gene expression efficiency. However, exogenously introduced pEpo-NSE system has an influence on gene expression profiles in NSCs. Therefore, when we consider ex vivo gene therapy for SCI, the effects of changes in gene expression profiles in NSCs on safety should be investigated.
Collapse
|
19
|
Castañeda-Cabral JL, Beas-Zarate C, Gudiño-Cabrera G, Ureña-Guerrero ME. Glutamate Neonatal Excitotoxicity Modifies VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 Protein Expression Profiles During Postnatal Development of the Cerebral Cortex and Hippocampus of Male Rats. J Mol Neurosci 2017; 63:17-27. [PMID: 28755050 DOI: 10.1007/s12031-017-0952-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) exerts both neuroprotective and proinflammatory effects in the brain, depending on the VEGF (A-E) and VEGF receptor (VEGFR1-3) types involved. Neonatal monosodium glutamate (MSG) treatment triggers an excitotoxic degenerative process associated with several neuropathological conditions, and VEGF messenger RNA (mRNA) expression is increased at postnatal day (PD) 14 in rat hippocampus (Hp) following the treatment. The aim of this work was to establish the changes in immunoreactivity to VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 proteins induced by neonatal MSG treatment (4 g/kg, subcutaneous, at PD1, 3, 5 and 7) in the cerebral motor cortex (CMC) and Hp. Samples collected from PD2 to PD60 from control and MSG-treated male Wistar rats were assessed by western blotting for each protein. Considering that immunoreactivity measured by western blotting is related to the protein expression level, we found that each protein in each cerebral region has a specific expression profile throughout the studied ages, and all profiles were differentially modified by MSG. Specifically, neonatal MSG treatment significantly increased the immunoreactivity to the following: (1) VEGF-A at PD8-PD10 in the CMC and at PD6-PD8 in the Hp; (2) VEGF-B at PD2, PD6 and PD10 in the CMC and at PD8-PD9 in the Hp; and (3) VEGFR-2 at PD6-PD8 in the CMC and at PD21-PD60 in the Hp. Also, MSG significantly reduced the immunoreactivity to the following: (1) VEGF-B at PD8-PD9 and PD45-PD60 in the CMC; and (2) VEGFR-1 at PD4-PD6 and PD14-PD21 in the CMC and at PD4, PD9-PD10 and PD60 in the Hp. Our results indicate that VEGF-mediated signalling is involved in the excitotoxic process triggered by neonatal MSG treatment and should be further characterized.
Collapse
Affiliation(s)
- Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico. .,Laboratorio de Regeneración y Desarrollo Neural, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, 45221, Zapopan, Jalisco, Mexico.
| | - Graciela Gudiño-Cabrera
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Monica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico. .,Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, 45221, Zapopan, Jalisco, Mexico.
| |
Collapse
|
20
|
Gadomska G, Stankowska K, Boinska J, Ślusarz R, Tylicka M, Michalska M, Jachalska A, Rość D. VEGF-A, sVEGFR-1, and sVEGFR-2 in BCR-ABL negative myeloproliferative neoplasms. MEDICINA-LITHUANIA 2017; 53:34-39. [PMID: 28237691 DOI: 10.1016/j.medici.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/13/2016] [Accepted: 01/09/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVE Data from the literature indicate the relationship between the bone marrow microvessel density and the blood parameters of angiogenesis. The aim of this study was to evaluate selected parameters of angiogenesis (VEGF-A, sVEGFR-1, and sVEGFR-2) and their correlations with white blood cells, platelets, and red blood cells. MATERIALS AND METHODS The study included 72 patients (mean age, 61.84 years) with myeloproliferative neoplasms (MPNs): essential thrombocythemia (ET) (n=46), polycythemia vera (PV) (n=19), and primary myelofibrosis (PMF) (n=7). Serum VEGF-A, sVEGFR-1, and sVEGFR-2 were determined using the ELISA assay. RESULTS We observed a significantly higher level of VEGF-A and reduced concentrations of sVEGFR-1 and sVEGFR-2 in the whole group of patients with MPNs as compared to controls. Detailed analysis confirmed significantly higher level of VEGF-A and lower concentration of sVEGFR-2 in each subgroups of MPNs patients. However, sVEGFR-1 concentrations were significantly lower only in PV and ET patients. CONCLUSIONS The study showed an increased level of VEGF-A, which may indicate the intensity of neoangiogenesis in the bone marrow. Decreased sVEGFR-1 and sVEGFR-2 in the blood of patients with MPNs may reflect consumption of these soluble receptors.
Collapse
Affiliation(s)
- Grażyna Gadomska
- Department of Hematology and Malignant Diseases of Hematopoietic System, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Katarzyna Stankowska
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland.
| | - Joanna Boinska
- Department of Neurological and Neurosurgical Nursing, Faculty of Health Sciences, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Robert Ślusarz
- Department of Neurological and Neurosurgical Nursing, Faculty of Health Sciences, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Marzena Tylicka
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Małgorzata Michalska
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Anna Jachalska
- Department of Hematology and Malignant Diseases of Hematopoietic System, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| | - Danuta Rość
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
21
|
Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, Bungert AD, Acker G, Schorr A, Hippe A, Miller K, Heppner FL, Homey B, Vajkoczy P. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol 2016; 131:365-78. [PMID: 26718201 DOI: 10.1007/s00401-015-1529-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/03/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
Myeloid cells are an essential part of the glioblastoma microenvironment. However, in brain tumors the function of these immune cells is not sufficiently clarified. In our study, we investigated differential pro-angiogenic activities of resident microglia and peripheral macrophages and their impact on glioma vascularization and progression. Our data demonstrate stable accumulation of microglia/macrophages during tumor growth. These cells often interact with tumor blood vessels correlating with vascular remodeling. Here, we identified resident microglia as well as peripheral macrophages as part of the perivascular niche, primarily contacting endothelial cells. We found overexpression of a variety of pro-angiogenic molecules within freshly isolated microglia/macrophages from glioma. CXCL2, until now a poorly described chemokine, was strongly up-regulated and showed better angiogenic activity than VEGF in vitro. Blocking the CXCL2-CXCR2 signaling pathway resulted in considerably diminished glioma sizes. Additionally, the importance of microglia/macrophages in tumor angiogenesis was confirmed by depletion of these cells in vivo. Vessel density decreased by 50% leading to significantly smaller tumor volumes. Remarkably, selective reduction of resident microglia affected tumoral vessel count comparable to ablation of the whole myeloid cell fraction. These results provide evidence that resident microglia are the crucial modulatory cell population playing a central role in regulation of vascular homeostasis and angiogenesis in brain tumors. Thus, resident microglia represent an alternative source of pro-angiogenic growth factors and cytokines.
Collapse
|
22
|
Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain. J Control Release 2016; 226:21-34. [PMID: 26826306 DOI: 10.1016/j.jconrel.2016.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that stimulates the differentiation and function of vascular endothelial cells. VEGF has been implicated in improving nervous system function after injury. However, uncontrolled overexpression of VEGF increases the risk of tumor formation at the site of gene delivery. For this reason, VEGF expression needs to be strictly controlled. The goal of the present study was to understand the effects of hypoxia-induced gene expression system to control VEGF gene expression in neural stem cells (NSCs) on the regeneration of neural tissue after sciatic nerve injury. In this study, we used the erythropoietin (Epo) enhancer-SV40 promoter system (EpoSV-VEGF-NSCs) for hypoxia-specific VEGF expression. We used three types of NSCs: DsRed-NSCs as controls, SV-VEGF-NSCs as uncontrolled VEGF overexpressing NSCs, and EpoSV-VEGF-NSCs. For comparison of VEGF expression at normoxia and hypoxia, we measured the amount of VEGF secreted. VEGF expression decreased at normoxia and increased at hypoxia for EpoSV-VEGF-NSCs; thus, EpoSV-VEGF-NSCs controlled VEGF expression, dependent upon oxygenation condition. To demonstrate the therapeutic effect of EpoSV-VEGF-NSCs, we transplanted each cell line in a neuropathic pain sciatic nerve injury rat model. The transplanted EpoSV-VEGF-NSCs improved sciatic nerve functional index (SFI), mechanical allodynia, and re-myelination similar to the SV-VEGF-NSCs. Additionally, the number of blood vessels increased to a level similar to that of the SV-VEGF-NSCs. However, we did not observe tumor generation in the EpoSV-VEGF-NSC animals that were unlikely to have tumor formation in the SV-VEGF-NSCs. From our results, we determined that EpoSV-VEGF-NSCs safely regulate VEGF gene expression which is dependent upon oxygenation status. In addition, we found that they are therapeutically appropriate for treating sciatic nerve injury.
Collapse
|
23
|
Vascular endothelial growth factor-expressing neural stem cell for the treatment of neuropathic pain. Neuroreport 2015; 26:399-404. [PMID: 25793634 DOI: 10.1097/wnr.0000000000000359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previously, we determined that vascular endothelial growth factor (VEGF) improves the survival of neural stem cells (NSCs) transplanted into an ischemic environment and effectively enhances angiogenesis. Here, we applied NSCs expressing VEGF (SV-VEGF-NSCs) to treat neuropathic pain. In this study, our goal was to verify the therapeutic effect of SV-VEGF-NSCs by transplanting the cells in a sciatic nerve injury model. We compared the amount of VEGF secreted from DsRed-NSCs (control) or SV-VEGF-NSCs and observed that SV-VEGF-NSCs have a much higher expression level of VEGF. We next investigated whether transplantation with SV-VEGF-NSCs aids functional recovery and pain reduction. We confirmed that transplantation with SV-VEGF-NSCs enhances functional recovery, pain reduction, and remyelination as well as the number of blood vessels compared with the control groups. Our results show that VEGF aids functional recovery and pain reduction in a sciatic nerve injury model.
Collapse
|
24
|
Fan N, Zhang M, Xu K, Ke X, Ding Y, Wang D, Liu Y, Ning Y, Deng X, He H. Serum level of vascular endothelial growth factor decreased in chronic ketamine abusers. Drug Alcohol Depend 2015; 152:57-61. [PMID: 26003336 PMCID: PMC4888963 DOI: 10.1016/j.drugalcdep.2015.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
AIMS To evaluate the serum level of vascular endothelial growth factor (VEGF) in a group of chronic ketamine abusers in comparison to healthy controls. METHODS Eighty-one ketamine abusers who were hospitalized for the treatment of ketamine dependence and 39 healthy controls were recruited. Serum VEGF level was measured by enzyme linked immunosorbent assay (ELISA). Psychopathological symptoms were assessed using Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). RESULTS Serum level of VEGF was significantly lower in chronic ketamine abusers compared to healthy controls (64.6±42.1 vs. 92.4±59.4pg/ml, F=7.243, p=0.008). CONCLUSIONS Serum level of VEGF decreased in chronic ketamine abusers compared to healthy controls.
Collapse
Affiliation(s)
- Ni Fan
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Minling Zhang
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Xiaoyin Ke
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China,Shenzhen Mental Health Center, 1080 Cuizhu Rd., Luohu District, Shenzhen, Guangdong 518020, China
| | - Yi Ding
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Daping Wang
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yuping Liu
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yuping Ning
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xuefeng Deng
- Guangzhou Baiyun Voluntary Drug Rehabilitation Hospital, 586 North of Baiyun Road, Baiyun District, Guangzhou, Guangdong 510440, China
| | - Hongbo He
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
25
|
Lopes R, Soares R, Coelho R, Figueiredo-Braga M. Angiogenesis in the pathophysiology of schizophrenia — A comprehensive review and a conceptual hypothesis. Life Sci 2015; 128:79-93. [DOI: 10.1016/j.lfs.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/27/2015] [Accepted: 02/12/2015] [Indexed: 01/11/2023]
|
26
|
Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, Yahata K, Ito K, Shimokawa H, Itoi E. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. J Neurosurg 2014; 121:1514-25. [DOI: 10.3171/2014.8.jns132562] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Object
Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether lowenergy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI.
Methods
Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord.
Results
In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p < 0.05). The number of NeuN-positive cells in the SCI-SW group was significantly higher than that in the SCI group at 42 days after injury (p < 0.05). In addition, mRNA expressions of VEGF and Flt-1 were significantly increased in the SCI-SW group compared with the SCI group at 7 days after injury (p < 0.05). The expression of VEGF protein in the SCI-SW group was significantly higher than that in the SCI group at 7 days (p < 0.01).
Conclusions
The present study showed that low-energy ESWT significantly increased expressions of VEGF and Flt-1 in the spinal cord without any detrimental effect. Furthermore, it significantly reduced neuronal loss in damaged neural tissue and improved locomotor function after SCI. These results suggested that low-energy ESWT enhances the neuroprotective effect of VEGF in reducing secondary injury and leads to better locomotor recovery following SCI. This study provides the first evidence that low-energy ESWT can be a safe and promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenta Ito
- 2Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- 2Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- 1Departments of Orthopaedic Surgery and
| |
Collapse
|
27
|
Yuan Q, Li JJ, An CH, Sun L. Biological characteristics of rat dorsal root ganglion cell and human vascular endothelial cell in mono- and co-culture. Mol Biol Rep 2014; 41:6949-56. [PMID: 25028268 DOI: 10.1007/s11033-014-3581-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the biological activity of rat dorsal root ganglion cell (DRGC) and human vascular endothelial cell (HMVEC) in mono- and co-culture. Expression levels of vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) mRNA were measured by quantitative real-time RT-PCR (qRT-PCR). Western blot analysis was used to identify VEGF and NGF protein expressions. Cell injury was assessed by measuring cell viability with methylthiazol tetrazolium (MTT) assay. The results showed that VEGF and NGF mRNA levels in the HMVEC+DRGC group were significantly higher than those in the DRGC and HMVEC groups (all p < 0.05). There were also greater increases in both VEGF and NGF protein expressions in the HMVEC+DRGC group than those in the DRGC and HMVEC groups (all p < 0.05). The results of MTT analysis revealed significant differences in cell viability among the HMVEC+DRGC group and the DRGC and HMVEC groups (all p < 0.05). In summary, our findings provide evidence that DRGC and HMVEC in co-culture may exhibit greater biological activity than DRGC in mono-culture.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Orthopedics, Shengjing Hospital, China Medical University, San Hao Street No. 36, Heping District, Shenyang, 110004, People's Republic of China,
| | | | | | | |
Collapse
|
28
|
Nagata K, Itaka K, Baba M, Uchida S, Ishii T, Kataoka K. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury. J Control Release 2014; 183:27-34. [DOI: 10.1016/j.jconrel.2014.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
29
|
VEGF-A Promotes Both Pro-angiogenic and Neurotrophic Capacities for Nerve Recovery After Compressive Neuropathy in Rats. Mol Neurobiol 2014; 51:240-51. [DOI: 10.1007/s12035-014-8754-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
30
|
Christensen T, Jensen L, Bouzinova EV, Wiborg O. Molecular profiling of the lateral habenula in a rat model of depression. PLoS One 2013; 8:e80666. [PMID: 24339877 PMCID: PMC3855087 DOI: 10.1371/journal.pone.0080666] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/04/2013] [Indexed: 11/24/2022] Open
Abstract
Objective This study systematically investigated the effect of chronic mild stress and response to antidepressant treatment in the lateral habenula at the whole genome level. Methods Rat whole genome expression chips (Affymetrix) were used to detect gene expression regulations in the lateral habenula of rats subjected to chronic mild stress (mild stressors exchanged twice a day for 8 weeks). Some rats received antidepressant treatment during fifth to eights week of CMS. The lateral habenula gene expression profile was studied through the gene ontology and signal pathway analyses using bioinformatics. Real-time quantitative polymerase chain reaction (RT-PCR) was used to verify the microarray results and determine the expression of the Fcrla, Eif3k, Sec3l1, Ubr5, Abca8a, Ankrd49, Cyp2j10, Frs3, Syn2, and Znf503 genes in the lateral habenula tissue. Results In particular we found that stress and antidepressant treatment affected intracellular cascades like growth factor receptor signaling, G-protein-coupled receptor signaling, and Wnt signaling – processes involved in the neuroplastic changes observed during the progression of depression and antidepressant treatment. Conclusion The present study suggests an important role of the lateral habenula in the development of depression-like conditions and correlates to previous studies demonstrating a significant role of the lateral habenula in depressive-like conditions and antidepressant treatment.
Collapse
Affiliation(s)
- Trine Christensen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Line Jensen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Elena V. Bouzinova
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- * E-mail:
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|
31
|
Nowacka M, Obuchowicz E. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: An insight from experimental studies. Pharmacol Rep 2013; 65:535-46. [DOI: 10.1016/s1734-1140(13)71031-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Indexed: 02/08/2023]
|
32
|
Ara J, Shukla P, Frank M. Enhanced expression of the Flt-1 and Flk-1 receptor tyrosine kinases in a newborn piglet model of ischemic tolerance. J Neurochem 2013. [DOI: 10.1111/jnc.12110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jahan Ara
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| | - Panchanan Shukla
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| | - Melissa Frank
- Department of Pediatrics; Drexel University College of Medicine and Saint Christopher's Hospital for Children; Philadelphia PA USA
| |
Collapse
|
33
|
Pereira Lopes FR, Martin PKM, Frattini F, Biancalana A, Almeida FM, Tomaz MA, Melo PA, Borojevic R, Han SW, Martinez AMB. Double gene therapy with granulocyte colony-stimulating factor and vascular endothelial growth factor acts synergistically to improve nerve regeneration and functional outcome after sciatic nerve injury in mice. Neuroscience 2012; 230:184-97. [PMID: 23103791 DOI: 10.1016/j.neuroscience.2012.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/17/2022]
Abstract
Peripheral-nerve injuries are a common clinical problem and often result in long-term functional deficits. Reconstruction of peripheral-nerve defects is currently undertaken with nerve autografts. However, there is a limited availability of nerves that can be sacrificed and the functional recovery is never 100% satisfactory. We have previously shown that gene therapy with vascular endothelial growth factor (VEGF) significantly improved nerve regeneration, neuronal survival, and muscle activity. Our hypothesis is that granulocyte colony-stimulating factor (G-CSF) synergizes with VEGF to improve the functional outcome after sciatic nerve transection. The left sciatic nerves and the adjacent muscle groups of adult mice were exposed, and 50 or 100 μg (in 50 μl PBS) of VEGF and/or G-CSF genes was injected locally, just below the sciatic nerve, and transferred by electroporation. The sciatic nerves were transected and placed in an empty polycaprolactone (PCL) nerve guide, leaving a 3-mm gap to challenge nerve regeneration. After 6 weeks, the mice were perfused and the sciatic nerve, the dorsal root ganglion (DRG), the spinal cord and the gastrocnemius muscle were processed for light and transmission electron microscopy. Treated animals showed significant improvement in functional and histological analyses compared with the control group. However, the best results were obtained with the G-CSF+VEGF-treated animals: quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers and blood vessels, and the number of neurons in the DRG and motoneurons in the spinal cord was significantly higher. Motor function also showed that functional recovery occurred earlier in animals receiving G-CSF+VEGF-treatment. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase, suggesting an improvement of reinnervation and muscle activity. These results suggest that these two factors acted synergistically and optimized the nerve repair potential, improving regeneration after a transection lesion.
Collapse
Affiliation(s)
- F R Pereira Lopes
- Programa de Neurociência Básica e Clínica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Olbrich L, Foehring D, Happel P, Brand-Saberi B, Theiss C. Fast rearrangement of the neuronal growth cone's actin cytoskeleton following VEGF stimulation. Histochem Cell Biol 2012; 139:431-45. [PMID: 23052841 DOI: 10.1007/s00418-012-1036-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
The neuronal growth cone plays a crucial role in the development of the nervous system. This highly motile structure leads the axon to its final destination by translating guidance cues into cytoskeletal rearrangements. Recently, vascular endothelial growth factor (VEGF), which is essential for angiogenesis and vascular sprouting, has been found to exert a trophic activity also on neurons, leading to an increased axonal outgrowth, similar to the well-known nerve growth factor (NGF). The neurotrophic properties of VEGF are likely to be promoted via the VEGF receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1). In the long term, VEGF attracts and influences the growth cone velocity and leads to growth cone enlargement. The present study focuses on immediate VEGF effects using RFP-actin and GFP-NF-M microinjected chicken dorsal root ganglia for live cell imaging of the neuronal growth cone. We analyzed actin and neurofilament dynamics following VEGF and NGF treatment and compared the effects. Furthermore, key signaling pathways of VEGF were investigated by specific blocking of VEGFR-2 or NRP-1. With the aid of confocal laser scanning microscopy and stimulated emission depletion microscopy, we show for the first time that VEGF has a quick effect on the actin-cytoskeleton, since actin rearrangements were identifiable within a few minutes, leading to a dramatically increased motion. Moreover, these effects were strongly enhanced by adding both VEGF and NGF. Most notably, the effects were inhibited by blocking VEGFR-2, therefore we propose that the immediate effects of VEGF on the actin-cytoskeleton are mediated through VEGFR-2.
Collapse
Affiliation(s)
- Laura Olbrich
- Institute of Anatomy and Molecular Embryology, Faculty of Medicine, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
35
|
Haninec P, Kaiser R, Bobek V, Dubový P. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF) gene therapy. BMC Neurosci 2012; 13:57. [PMID: 22672575 PMCID: PMC3441459 DOI: 10.1186/1471-2202-13-57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/06/2012] [Indexed: 01/28/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is not only a potent angiogenic factor but it also promotes axonal outgrowth and proliferation of Schwann cells. The aim of the present study was to quantitatively assess reinnervation of musculocutaneous nerve (MCN) stumps using motor and primary sensory neurons after plasmid phVEGF transfection and end-to-end (ETE) or end-to-side (ETS) neurorrhaphy. The distal stump of rat transected MCN, was transfected with plasmid phVEGF, plasmid alone or treated with vehiculum and reinnervated following ETE or ETS neurorrhaphy for 2 months. The number of motor and dorsal root ganglia neurons reinnervating the MCN stump was estimated following their retrograde labeling with Fluoro-Ruby and Fluoro-Emerald. Reinnervation of the MCN stumps was assessed based on density, diameter and myelin sheath thickness of regenerated axons, grooming test and the wet weight index of the biceps brachii muscles. Results Immunohistochemical detection under the same conditions revealed increased VEGF in the Schwann cells of the MCN stumps transfected with the plasmid phVEGF, as opposed to control stumps transfected with only the plasmid or treated with vehiculum. The MCN stumps transfected with the plasmid phVEGF were reinnervated by moderately higher numbers of motor and sensory neurons after ETE neurorrhaphy compared with control stumps. However, morphometric quality of myelinated axons, grooming test and the wet weight index were significantly better in the MCN plasmid phVEGF transfected stumps. The ETS neurorrhaphy of the MCN plasmid phVEGF transfected stumps in comparison with control stumps resulted in significant elevation of motor and sensory neurons that reinnervated the MCN. Especially noteworthy was the increased numbers of neurons that sent out collateral sprouts into the MCN stumps. Similarly to ETE neurorrhaphy, phVEGF transfection resulted in significantly higher morphometric quality of myelinated axons, behavioral test and the wet weight index of the biceps brachii muscles. Conclusion Our results showed that plasmid phVEGF transfection of MCN stumps could induce an increase in VEGF protein in Schwann cells, which resulted in higher quality axon reinnervation after both ETE and ETS neurorrhaphy. This was also associated with a better wet weight biceps brachii muscle index and functional tests than in control rats.
Collapse
Affiliation(s)
- Pavel Haninec
- Department of Neurosurgery, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
36
|
Upregulation of the vascular endothelial growth factor, Flt-1, in rat hippocampal neurons after envenoming by Phoneutria nigriventer; age-related modulation. Toxicon 2012; 60:656-64. [PMID: 22659541 DOI: 10.1016/j.toxicon.2012.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 11/30/2022]
Abstract
This study characterizes the distribution and quantifies the expression of the tyrosine kinase receptor for the vascular endothelial growth factor (VEGF), Flt-1, in the rat hippocampus following intra-peritoneal injection of Phoneutria nigriventer venom (PNV). Post-natal day 14 (P14) and 8-10 weeks (adult) old rats were used and analyses were done at 1, 2, 5 and 24 h after venom exposure and compared with saline-injected counterparts. PNV-injected animals showed hippocampal venules with perivascular edema indicating blood-brain barrier (BBB) dysfunction. This was accompanied by significant overexpression of Flt-1 which though was not the same for CA1, CA2, CA3 and dentate gyrus (DG) hippocampal regions, neither for P14 and adult rats. Regional analysis using GIMP methodology showed that Flt-1 was constitutively distributed more densely in neurons of DG, followed by CA1/CA2 and CA3 of both control P14 and adult animals, without variation over time, but significantly more expressed in P14 than in adults. A time-course analysis showed that Flt-1 upregulation was progressive and that neurons VEGFR1/Flt-1+ of PNV-exposed animals are timely and regionally modulated depending on the hippocampal region, being CA2 the least responsive region regardless animal's age, whilst DG was the most susceptible with adult animals having higher upregulation than neonates. Since VEGF has been reported to confer protection in several pathological processes we suggest that VEGF may be involved in hippocampal neurons response via Flt-1 mediation following PNV envenoming; its higher upregulation in adult envenomed rats may be an indication that Flt-1 neuroprotective mediation is more efficient with age. The Flt-1 upregulation and the incidence of perivascular edema in young animals may indicate a pro-inflammatory role of the receptor.
Collapse
|
37
|
Long HQ, Li GS, Hu Y, Wen CY, Xie WH. HIF-1α/VEGF signaling pathway may play a dual role in secondary pathogenesis of cervical myelopathy. Med Hypotheses 2012; 79:82-4. [PMID: 22546754 DOI: 10.1016/j.mehy.2012.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is one of the most common spinal cord disorders affecting the elderly. Yet the exact pathophysiology of CSM remains unclear. Vascular response to initial mechanical compression and associated ischemia may involve in secondary pathophysiology. Chronic compressive lesions to cervical cord resulting in lack of perfusion have established considerable evidences to support ischemia as an important pathogenesis both in patients and animal models, a similarity as that of acute spinal cord injury (SCI). In hypoxic condition following SCI, the up-regulation of vascular endothelial growth factor (VEGF), is consistent with increasing hypoxia induced factor-1α (HIF-1α) in acute periods. HIF-1α/VEGF signaling pathway is thought to play a dual role following SCI. In one hand, VEGF was demonstrated to be correlated with angiogenesis (protecting vascular endothelial cells, increasing blood vessel density and improving regional blood flow), neurogenesis (antiapoptotic, neurotrophic, attenuate axonal degradation), and locomotor ability improvement. In other hand, some studies revealed that VEGF have limited therapeutic effect, even exacerbate the secondary damage following SCI. VEGF administrations in acute or subacute periods result in elevation of blood-spinal cord barrier (BSCB) permeability even last for chronic course. BSCB permeability elevation initiates a secondary cascade of events involving excitotoxicity, infiltration of leukocytes and tissue edema. With comprehensive understanding of temporal and spatial of HIF-1α/VEGF signaling pathway, development of therapeutic strategies to promote new vessel growth while minimize the deleterious effects of VEGF-induced microvascular permeability, and thereby improve neurologic function, seems to be feasible and promising.
Collapse
Affiliation(s)
- Hou-Qing Long
- Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
38
|
Foehring D, Brand-Saberi B, Theiss C. VEGF-induced growth cone enhancement is diminished by inhibiting tyrosine-residue 1214 of VEGFR-2. Cells Tissues Organs 2012; 196:195-205. [PMID: 22433970 DOI: 10.1159/000334600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2011] [Indexed: 01/10/2023] Open
Abstract
Axonal outgrowth is of paramount significance for establishing the intricate neuronal network both during embryogenesis and nerve regeneration. Vascular endothelial growth factor (VEGF), which is known for its essential role in vascular sprouting and its involvement in cancer, has recently been found to exert a trophic activity on neurons leading to an increased axonal outgrowth. Although two receptors, VEGFR-2 and neuropilin-1, were identified on neurons, the signaling pathways associated with them are not well understood. The aim of this study was to analyze the influence of VEGF on the growth cone morphology and motility of dorsal root ganglia (DRG) neurons. Moreover, we aimed for a deeper understanding of VEGFR-2 on growth cones that potentially mediates the stimulating and attractive effects. We cultivated chicken DRG in medium containing mouse VEGF and analyzed growth cone size. The data presented here show a positive effect of VEGF on growth cone size. Furthermore, we interrupted the activity of VEGFR-2 by either blocking the tyrosine residue 1214 (tyr1214) or by inhibiting the receptor phosphorylation with axitinib, a novel small molecule, which has recently entered phase III trials for cancer treatment. Disruption of the VEGFR-2 leads to a significantly diminished growth cone size. Based on these findings, we propose a positive effect of VEGF on peripheral nervous system growth cone size and show for the first time quantitative data to underline this hypothesis. Additionally, we propose that VEGFR-2 and especially the tyr1214-dependent pathway of VEGFR-2 are of importance in VEGF signaling in the growth cone of DRG neurons.
Collapse
Affiliation(s)
- Daniel Foehring
- Institute of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | | | | |
Collapse
|
39
|
Sentilhes L, Marret S, Leroux P, Gonzalez BJ, Laquerrière A. Vascular-endothelial growth factor and its high affinity receptor VEGFR-2 in the normal versus destructive lesions human forebrain during development: an immuno-histochemical comparative study. Brain Res 2012; 1385:77-86. [PMID: 21303671 DOI: 10.1016/j.brainres.2011.01.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 12/28/2010] [Accepted: 01/31/2011] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic inducer and neurotrophic factor both in adult and neonatal animal models. In the destructive lesions of the developing human brain, the role and expression of VEGF and of its mitogenic receptor VEGFR-2 have been hardly studied. The aim of the present work was to determine the immunohistochemical distribution of VEGF and VEGFR-2 in premature and full-term infants presenting with hypoxic/ischemic lesions, and to compare results with normal infant brains at similar developmental stages. Paraffin embedded brain tissue samples were assessed using anti-human VEGF and VEGFR-2 antibodies. In all undamaged forebrain areas, VEGF and VEGFR-2 displayed same expression patterns in control and pathologic brains, whatever the destructive lesion occurrence's time (before 25 weeks of gestation (WG), between 25 and 34WG, perinatal period and infancy). In the destructive lesions, VEGF was always expressed in neurons, astrocytes and in neovessel walls, contrary to VEGFR-2 which was only expressed in dispersed astrocytes. VEGF was expressed in oligodendrocytes of prenatally damaged brains, whereas VEGF was expressed in these cells in undamaged areas from birth only, similarly to control brains. These data suggest that VEGF plays specific roles and may not be mediated by VEGFR-2 in human forebrain structures exposed to ischemia.
Collapse
Affiliation(s)
- Loïc Sentilhes
- EA 4309 Neovasc, Rouen Institute for Medical Research and Innovation, School of Medicine, University of Rouen, Normandy, France
| | | | | | | | | |
Collapse
|
40
|
Nowacka MM, Obuchowicz E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides 2012; 46:1-10. [PMID: 21719103 DOI: 10.1016/j.npep.2011.05.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/20/2011] [Accepted: 05/20/2011] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a well-known cellular mitogen, and a vascular growth factor and permeability regulator. It participates in physiological and pathological processes of angiogenesis and in the development of lymphatic vessels. In addition to the proangiogenic activity, studies of recent years have revealed neurotrophic and neuroprotective potential of VEGF both in the peripheral and central nervous system. VEGF directly influences Schwann cells, neuronal progenitor cells, astrocytes and microglia. This factor plays an import role in developmental processes of the nervous tissue since it is implicated in neurogenesis and the regulation of neuronal development, and in the differentiation and formation of vessels in the brain. VEGF elicits its biological effect via an interaction with three VEGF receptor subtypes: VEGFR1, VEGFR2 and VEGFR3. In the nervous system, VEGFR2 signaling prevails. VEGF as a trophic factor, influencing both vascular endothelial cells and brain cells is a focus of the studies on neuropsychiatric disorders and psychotropic drug action. Antidepressant drugs were shown to induce hippocampal expression of VEGF. In addition, the experiments in animals models of depression have demonstrated that VEGFR2 signaling is indispensable for cellular and behavioral response to antidepressant drugs. Acquiring a deeper knowledge into the signaling pathways engaged in neurogenic and behavioral VEGF actions can unravel new targets for more efficient and quick acting antidepressant drugs.
Collapse
Affiliation(s)
- Marta Maria Nowacka
- Department of Pharmacology, Medical University of Silesia, Medykow 18 Street, 40-752 Katowice, Poland
| | | |
Collapse
|
41
|
Pereira Lopes FR, Lisboa BCG, Frattini F, Almeida FM, Tomaz MA, Matsumoto PK, Langone F, Lora S, Melo PA, Borojevic R, Han SW, Martinez AMB. Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy. Neuropathol Appl Neurobiol 2011; 37:600-12. [DOI: 10.1111/j.1365-2990.2011.01159.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Collombet JM. Nerve agent intoxication: Recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol Appl Pharmacol 2011; 255:229-41. [DOI: 10.1016/j.taap.2011.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/14/2023]
|
43
|
Neural stem cells modified by a hypoxia-inducible VEGF gene expression system improve cell viability under hypoxic conditions and spinal cord injury. Spine (Phila Pa 1976) 2011; 36:857-64. [PMID: 21192293 DOI: 10.1097/brs.0b013e3181e7f34b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro neural hypoxia model and rat spinal cord injury (SCI) model were used to assess the regulation of therapeutic vascular endothelial growth factor (VEGF) gene expression in mouse neural stem cells (mNSCs) by the EPO (erythropoietin) enhancer or RTP801 promoter. OBJECTIVE To increase VEGF gene expression in mNSCs under hypoxic conditions in SCI lesions but avoid unwanted overexpression of VEGF in normal sites, we developed a hypoxia-inducible gene expression system consisting of the EPO enhancer and RTP801 promoter fused to VEGF or the luciferase gene, then transfected into mNSCs. SUMMARY OF BACKGROUND DATA On the basis of the ischemic response in the injured area, poor cell survival at the transplantation site is a consistent problem with NSC transplantation after SCI. Although VEGF directly protects neurons and enhances neurite outgrowth, uncontrolled overexpression of VEGF in uninjured tissue may cause serious adverse effects. To effectively improve NSC survival in ischemic sites after transplantation, we evaluated mNSCs modified by a hypoxia-inducible VEGF gene expression system in an SCI model. METHODS Hypoxia-inducible luciferase or VEGF plasmids were constructed using the EPO enhancer or RTP801 promoter. The effect of these systems on targeted gene expression and cell viability was evaluated in mNSCs in both hypoxic in vitro injury and a rat SCI model in vivo. RESULTS The gene expression system containing the EPO enhancer or RTP801 promoter significantly increased the expression of the luciferase reporter gene and therapeutic VEGF gene under hypoxic conditions. The Epo-SV-VEGF plasmid transfection group had significantly fewer apoptotic cells in vitro. This system also augmented cell viability in the in vivo SCI model. CONCLUSION These results strongly suggest the potential utility of mNSCs modified by a hypoxia-inducible VEGF gene expression system in the development of effective stem cell transplantation protocols in SCI.
Collapse
|
44
|
Dwivedi Y. Evidence demonstrating role of microRNAs in the etiopathology of major depression. J Chem Neuroanat 2011; 42:142-56. [PMID: 21515361 DOI: 10.1016/j.jchemneu.2011.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/17/2023]
Abstract
Major depression is a debilitating disease. Despite a tremendous amount of research, the molecular mechanisms associated with the etiopathology of major depression are not clearly understood. Several lines of evidence indicate that depression is associated with altered neuronal and structural plasticity and neurogenesis. MicroRNAs are a newly discovered prominent class of gene expression regulators that have critical roles in neural development, are needed for survival and optimal health of postmitotic neurons, and regulate synaptic functions, particularly by regulating protein synthesis in dendritic spines. In addition, microRNAs (miRNAs) regulate both embryonic and adult neurogenesis. Given that miRNAs are involved in neural plasticity and neurogenesis, the concept that miRNAs may play an important role in psychiatric illnesses, including major depression, is rapidly advancing. Emerging evidence demonstrates that the expression of miRNAs is altered during stress, in the brain of behaviorally depressed animals, and in human postmortem brain of depressed subjects. In this review article, the possibility that dysregulation of miRNAs and/or altered miRNA response may contribute to the etiology and pathophysiology of depressive disorder is discussed.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
45
|
Sundberg LM, Herrera JJ, Narayana PA. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: in vivo longitudinal assessment. J Neurotrauma 2011; 28:565-78. [PMID: 21299336 DOI: 10.1089/neu.2010.1533] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is thought to provide neuroprotection to the traumatically injured spinal cord. We examined whether supplementing the injured environment with VEGF(165) via direct intraspinal injection into the lesion epicenter during the acute phase of spinal cord injury (SCI) results in improved outcome. The effect of treatment was investigated using longitudinal multi-modal magnetic resonance imaging (MRI), neurobehavioral assays, and end-point immunohistochemistry. We observed on MRI that rats treated with VEGF(165) after SCI had increased tissue sparing compared to vehicle-treated animals at the earlier time points. However, these favorable effects were not maintained into the chronic phase. Histology revealed that VEGF(165) treatment resulted in increased oligodendrogenesis and/or white matter sparing, and therefore may eventually lead to improved functional outcome. The increase in spared tissue as demonstrated by MRI, coupled with the possible remyelination and increased neurosensory sensitivity, suggests that VEGF(165) treatment may play a role in promoting plasticity in the sensory pathways following SCI. However, VEGF-treated animals also demonstrated an increased incidence of persistent allodynia, as indicated on the von Frey filament test.
Collapse
Affiliation(s)
- Laura M Sundberg
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
46
|
VEGF non-angiogenic functions in adult organ homeostasis: therapeutic implications. J Mol Med (Berl) 2011; 89:635-45. [DOI: 10.1007/s00109-011-0739-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 12/21/2022]
|
47
|
Hou Y, Choi JS, Shin YJ, Cha JH, Choi JY, Chun MH, Lee MY. Expression of vascular endothelial growth factor receptor-3 mRNA in the developing rat cerebellum. Cell Mol Neurobiol 2011; 31:7-16. [PMID: 21072582 DOI: 10.1007/s10571-010-9530-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/08/2010] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been suggested to play an important role during neuronal development. To characterize its potential role in CNS ontogenesis, we investigated the spatiotemporal and cellular expression of VEGFR-3 in developing and mature rat cerebellum using in situ hybridization. VEGFR-3 expression appeared as early as E15, and was restricted to the ventricular zone of the cerebellar primordium, the germinative neuroepithelium, but was absent by E20. Instead, the expression area of VEGFR-3 in the cerebellum grew in parallel with cerebellar development. From E20 on, two populations of VEGFR-3-expressing cells can be clearly distinguished in the developing cerebellum: a population of differentiating and postmitotic neurons and the Bergmann glia. VEGFR-3 expression in neurons occurred during the period of neuronal differentiation, and increased with maturation. In particular, the expression of VEGFR-3 mRNA revealed different temporal patterns in different neuronal populations. Neurons generated early, Purkinje cells, and deep nuclear neurons expressed VEGFR-3 mRNA during late embryonic stages, whereas VEGFR-3 transcription in local interneurons appeared by P14 with weaker expression. In addition, Bergmann glia expressed VEGFR-3 throughout cerebellar maturation into adulthood. However, receptor expression was absent in the progenitors in the external granular layer and during further migration. The results of this study suggest that VEGFR-3 has even broader functions than previously thought, regulating both developmental processes and adult neuronal function in the cerebellum.
Collapse
Affiliation(s)
- Yun Hou
- Department of Anatomy, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Mehedint MG, Craciunescu CN, Zeisel SH. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci U S A 2010; 107:12834-9. [PMID: 20624989 PMCID: PMC2919920 DOI: 10.1073/pnas.0914328107] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus.
Collapse
Affiliation(s)
- Mihai G. Mehedint
- University of North Carolina Nutrition Research Institute at Kannapolis, University of North Carolina at Chapel Hill, Kannapolis, NC 28081
| | - Corneliu N. Craciunescu
- University of North Carolina Nutrition Research Institute at Kannapolis, University of North Carolina at Chapel Hill, Kannapolis, NC 28081
| | - Steven H. Zeisel
- University of North Carolina Nutrition Research Institute at Kannapolis, University of North Carolina at Chapel Hill, Kannapolis, NC 28081
| |
Collapse
|
49
|
Brockington A, Heath PR, Holden H, Kasher P, Bender FLP, Claes F, Lambrechts D, Sendtner M, Carmeliet P, Shaw PJ. Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGFdelta/delta mouse model of amyotrophic lateral sclerosis. BMC Genomics 2010; 11:203. [PMID: 20346106 PMCID: PMC2861063 DOI: 10.1186/1471-2164-11-203] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/26/2010] [Indexed: 12/14/2022] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen that stimulates vasculogenesis. It has also been shown to act as a neurotrophic factor in vitro and in vivo. Deletion of the hypoxia response element of the promoter region of the gene encoding VEGF in mice causes a reduction in neural VEGF expression, and results in adult-onset motor neurone degeneration that resembles amyotrophic lateral sclerosis (ALS). Investigating the molecular pathways to neurodegeneration in the VEGFδ/δ mouse model of ALS may improve understanding of the mechanisms of motor neurone death in the human disease. Results Microarray analysis was used to determine the transcriptional profile of laser captured spinal motor neurones of transgenic and wild-type littermates at 3 time points of disease. 324 genes were significantly differentially expressed in motor neurones of presymptomatic VEGFδ/δ mice, 382 at disease onset, and 689 at late stage disease. Massive transcriptional downregulation occurred with disease progression, associated with downregulation of genes involved in RNA processing at late stage disease. VEGFδ/δ mice showed reduction in expression, from symptom onset, of the cholesterol synthesis pathway, and genes involved in nervous system development, including axonogenesis, synapse formation, growth factor signalling pathways, cell adhesion and microtubule-based processes. These changes may reflect a reduced capacity of VEGFδ/δ mice for maintenance and remodelling of neuronal processes in the face of demands of neural plasticity. The findings are supported by the demonstration that in primary motor neurone cultures from VEGFδ/δ mice, axon outgrowth is significantly reduced compared to wild-type littermates. Conclusions Downregulation of these genes involved in axon outgrowth and synapse formation in adult mice suggests a hitherto unrecognized role of VEGF in the maintenance of neuronal circuitry. Dysregulation of VEGF may lead to neurodegeneration through synaptic regression and dying-back axonopathy.
Collapse
Affiliation(s)
- Alice Brockington
- Academic Neurology Unit, University of Sheffield, E Floor, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vascular endothelial growth factor and its high-affinity receptor (VEGFR-2) are highly expressed in the human forebrain and cerebellum during development. J Neuropathol Exp Neurol 2010; 69:111-28. [PMID: 20084021 DOI: 10.1097/nen.0b013e3181ccc9a9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor in both adult and neonatal animals, but its expression and role have been incompletely studied in the developing human brain. We analyzed the distribution of VEGF and its high-affinity receptor VEGFR-2 in the human forebrain and cerebellum at developmental stages from 14 weeks' gestation (WG) to the13th postnatal month. Tissue samples free of detectable neuropathologic abnormalities were assessed by immunohistochemistry and confocal microscopy using anti-human VEGF and VEGFR-2 antibodies. The VEGFR-2 was first expressed in the whole cerebral mantle and in migrating cells in the intermediate zone, whereas VEGFwas found in superficial layers of the cortical plate, in radial glia, and in the cerebellar external germinal cell layer. From 23 WG, temporospatial VEGFR-2 expression was superimposable on that ofVEGF in the cortical plate, intermediate zone, basal ganglia, limbicstructures, and external germinal cell layer. The VEGF/VEGFR-2-positive astrocytes were observed during their generation and migration from 23 WG to the first postnatal month. The VEGF-positive mature oligodendrocytes were observed in myelinating structures in the forebrain from birth and in the cerebellum from 24WG. These data suggest that VEGF and VEGFR-2 are likely involved in several aspects of human brain development.
Collapse
|