1
|
Menšíková K, Steele JC, Rosales R, Colosimo C, Spencer P, Lannuzel A, Ugawa Y, Sasaki R, Giménez-Roldán S, Matej R, Tuckova L, Hrabos D, Kolarikova K, Vodicka R, Vrtel R, Strnad M, Hlustik P, Otruba P, Prochazka M, Bares M, Boluda S, Buee L, Ransmayr G, Kaňovský P. Endemic parkinsonism: clusters, biology and clinical features. Nat Rev Neurol 2023; 19:599-616. [PMID: 37684518 DOI: 10.1038/s41582-023-00866-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The term 'endemic parkinsonism' refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.
Collapse
Affiliation(s)
- Katerina Menšíková
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | | | - Raymond Rosales
- Research Center for Health Sciences, Faculty of Medicine and Surgery, University of Santo Tomás, Manila, The Philippines
- St Luke's Institute of Neuroscience, Metro, Manila, The Philippines
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Annie Lannuzel
- Départment de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-á-Pitre, France
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Ryogen Sasaki
- Department of Neurology, Kuwana City Medical Center, Kuwana, Japan
| | | | - Radoslav Matej
- Department of Pathology, 3rd Medical Faculty, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Medical Faculty, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Lucie Tuckova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Dominik Hrabos
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kristyna Kolarikova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vodicka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vrtel
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Hlustik
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Martin Prochazka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Bares
- First Department of Neurology, Masaryk University Medical School, Brno, Czech Republic
- St Anne University Hospital, Brno, Czech Republic
| | - Susana Boluda
- Département de Neuropathologie, Hôpital La Pitié - Salpêtrière, Paris, France
| | - Luc Buee
- Lille Neuroscience & Cognition Research Centre, INSERM U1172, Lille, France
| | - Gerhard Ransmayr
- Department of Neurology, Faculty of Medicine, Johannes Kepler University, Linz, Austria
| | - Petr Kaňovský
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Bigelow LJ, Perry MA, Ogilvie SL, Tasker RA. Longitudinal Assessment of Behaviour and Associated Bio-Markers Following Chronic Consumption of β-Sitosterol β-D-Glucoside in Rats: A Putative Model of Parkinson’s Disease. Front Neurosci 2022; 16:810148. [PMID: 35281495 PMCID: PMC8907918 DOI: 10.3389/fnins.2022.810148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
The consumption of cycad (Cycas circinalis) seeds has been linked to the development of Amyotrophic Lateral Sclerosis-Parkinsonism Dementia Complex (ALS-PDC) in humans. ALS-PDC is a clinically variable disease presenting as a combination of symptoms typical of PD and/or ALS. Chronic consumption of β-sitosterol β-D-glucoside (BSSG), a component of the cycad seed, by rats (Rattus norvegicus) has been previously reported to initiate a progressive pathology that develops over several months and manifests as behavioural and histopathological changes that resemble characteristic features of Parkinson’s disease. As part of an independent multi-site validation study, we have tried to replicate and further characterize the BSSG model with a focus on motor function, and associated immunohistochemical markers. Beginning at 3 months of age, male CD® (Sprague Dawley) rats (N = 80) were dosed orally with either a flour pellet or a flour pellet containing BSSG (3 mg) daily (5×/week) for 16 weeks consistent with previous reports of the model. Following BSSG intoxication, separate cohorts of animals (n = 10/treatment) were exposed to a behavioural test battery at 16, 24, 32, or 40 weeks post-initial BSSG feeding. The test battery consisted of the open field test, cylinder test, and ultrasonic vocalization (USV) assessment. No changes in behaviour were observed at any time point. Following behavioural testing, animals were processed for immunohistochemical markers of substantia nigra integrity. Immunohistochemistry of brain tissue revealed no differences in the microglial marker, Iba1, or the dopaminergic integrity marker, tyrosine hydroxylase (TH), in the substantia nigra at any assessment point. The absence of any group differences in behaviour and immunhistochemistry indicates an inability to replicate previous reports. Further investigation into the sources of variability in the model is necessary prior to further utilization of the BSSG model in preclinical studies.
Collapse
Affiliation(s)
- Logan J. Bigelow
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
- *Correspondence: Logan J. Bigelow,
| | - Melissa A. Perry
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Sarah L. Ogilvie
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | - R. Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Chung DEC, Roemer S, Petrucelli L, Dickson DW. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021; 16:57. [PMID: 34425874 PMCID: PMC8381569 DOI: 10.1186/s13024-021-00476-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is abnormally aggregated in neuronal and glial cells in a range of neurodegenerative diseases that are collectively referred to as tauopathies. Multiple studies have suggested that pathological tau species may act as a seed that promotes aggregation of endogenous tau in naïve cells and contributes to propagation of tau pathology. While they share pathological tau aggregation as a common feature, tauopathies are distinct from one another with respect to predominant tau isoforms that accumulate and the selective vulnerability of brain regions and cell types that have tau inclusions. For instance, primary tauopathies present with glial tau pathology, while it is mostly neuronal in Alzheimer's disease (AD). Also, morphologies of tau inclusions can greatly vary even within the same cell type, suggesting distinct mechanisms or distinct tau conformers in each tauopathy. Neuropathological heterogeneity across tauopathies challenges our understanding of pathophysiology behind tau seeding and aggregation, as well as our efforts to develop effective therapeutic strategies for AD and other tauopathies. In this review, we describe diverse neuropathological features of tau inclusions in neurodegenerative tauopathies and discuss what has been learned from experimental studies with mouse models, advanced transcriptomics, and cryo-electron microscopy (cryo-EM) on the biology underlying cell type-specific tau pathology.
Collapse
Affiliation(s)
- Dah-eun Chloe Chung
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 77030 Houston, TX USA
| | - Shanu Roemer
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
| | | | | |
Collapse
|
4
|
Silva DF, Candeias E, Esteves AR, Magalhães JD, Ferreira IL, Nunes-Costa D, Rego AC, Empadinhas N, Cardoso SM. Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer's disease features in cortical neurons. J Neuroinflammation 2020; 17:332. [PMID: 33153477 PMCID: PMC7643281 DOI: 10.1186/s12974-020-02004-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND After decades of research recognizing it as a complex multifactorial disorder, sporadic Alzheimer's disease (sAD) still has no known etiology. Adding to the myriad of different pathways involved, bacterial neurotoxins are assuming greater importance in the etiology and/or progression of sAD. β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by some microorganisms namely cyanobacteria, was previously detected in the brains of AD patients. Indeed, the consumption of BMAA-enriched foods has been proposed to induce amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), which implicated this microbial metabolite in neurodegeneration mechanisms. METHODS Freshly isolated mitochondria from C57BL/6 mice were treated with BMAA and O2 consumption rates were determined. O2 consumption and glycolysis rates were also measured in mouse primary cortical neuronal cultures. Further, mitochondrial membrane potential and ROS production were evaluated by fluorimetry and the integrity of mitochondrial network was examined by immunofluorescence. Finally, the ability of BMAA to activate neuronal innate immunity was quantified by addressing TLRs (Toll-like receptors) expression, p65 NF-κB translocation into the nucleus, increased expression of NLRP3 (Nod-like receptor 3), and pro-IL-1β. Caspase-1 activity was evaluated using a colorimetric substrate and mature IL-1β levels were also determined by ELISA. RESULTS Treatment with BMAA reduced O2 consumption rates in both isolated mitochondria and in primary cortical cultures, with additional reduced glycolytic rates, decrease mitochondrial potential and increased ROS production. The mitochondrial network was found to be fragmented, which resulted in cardiolipin exposure that stimulated inflammasome NLRP3, reinforced by decreased mitochondrial turnover, as indicated by increased p62 levels. BMAA treatment also activated neuronal extracellular TLR4 and intracellular TLR3, inducing p65 NF-κB translocation into the nucleus and activating the transcription of NLRP3 and pro-IL-1β. Increased caspase-1 activity resulted in elevated levels of mature IL-1β. These alterations in mitochondrial metabolism and inflammation increased Tau phosphorylation and Aβ peptides production, two hallmarks of AD. CONCLUSIONS Here we propose a unifying mechanism for AD neurodegeneration in which a microbial toxin can induce mitochondrial dysfunction and activate neuronal innate immunity, which ultimately results in Tau and Aβ pathology. Our data show that neurons, alone, can mount inflammatory responses, a role previously attributed exclusively to glial cells.
Collapse
Affiliation(s)
- Diana F Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal. .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Nunes-Costa D, Magalhães JD, G-Fernandes M, Cardoso SM, Empadinhas N. Microbial BMAA and the Pathway for Parkinson's Disease Neurodegeneration. Front Aging Neurosci 2020; 12:26. [PMID: 32317956 PMCID: PMC7019015 DOI: 10.3389/fnagi.2020.00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a natural non-proteinogenic diamino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms and dinoflagellates) microorganisms. BMAA has been shown to biomagnify through the food chain in some ecosystems, accumulating for example in seafood such as shellfish and fish, common dietary sources of BMAA whose ingestion may have possible neuronal consequences. In addition to its excitotoxic potential, BMAA has been implicated in protein misfolding and aggregation, inhibition of specific enzymes and neuroinflammation, all hallmark features of neurodegenerative diseases. However, the exact molecular mechanisms of neurotoxicity remain to be elucidated in detail. Although BMAA is commonly detected in its free form, complex BMAA-containing molecules have also been identified such as the paenilamicins, produced by an insect gut bacterial pathogen. On the other hand, production of BMAA or BMAA-containing molecules by members of the human gut microbiota, for example by non-photosynthetic cyanobacteria, the Melainabacteria, remains only hypothetical. In any case, should BMAA reach the gut it may interact with cells of the mucosal immune system and neurons of the enteric nervous system (ENS) and possibly target the mitochondria. Here, we review the available evidence and hint on possible mechanisms by which chronic exposure to dietary sources of this microbial neurotoxin may drive protein misfolding and mitochondrial dysfunction with concomitant activation of innate immune responses, chronic low-grade gut inflammation, and ultimately the neurodegenerative features observed across the gut-brain axis in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Daniela Nunes-Costa
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - João Duarte Magalhães
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - Maria G-Fernandes
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
| | - Sandra Morais Cardoso
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute of Cellular and Molecular Biology,
Faculty of Medicine, University of Coimbra,
Coimbra, Portugal
| | - Nuno Empadinhas
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute for Interdisciplinary Research
(IIIUC), University of Coimbra, Coimbra,
Portugal
| |
Collapse
|
6
|
Yap TE, Balendra SI, Almonte MT, Cordeiro MF. Retinal correlates of neurological disorders. Ther Adv Chronic Dis 2019; 10:2040622319882205. [PMID: 31832125 PMCID: PMC6887800 DOI: 10.1177/2040622319882205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Considering the retina as an extension of the brain provides a platform from which to study diseases of the nervous system. Taking advantage of the clear optical media of the eye and ever-increasing resolution of modern imaging techniques, retinal morphology can now be visualized at a cellular level in vivo. This has provided a multitude of possible biomarkers and investigative surrogates that may be used to identify, monitor and study diseases until now limited to the brain. In many neurodegenerative conditions, early diagnosis is often very challenging due to the lack of tests with high sensitivity and specificity, but, once made, opens the door to patients accessing the correct treatment that can potentially improve functional outcomes. Using retinal biomarkers in vivo as an additional diagnostic tool may help overcome the need for invasive tests and histological specimens, and offers the opportunity to longitudinally monitor individuals over time. This review aims to summarise retinal biomarkers associated with a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and prion diseases from a clinical perspective. By comparing their similarities and differences according to primary pathological processes, we hope to show how retinal correlates can aid clinical decisions, and accelerate the study of this rapidly developing area of research.
Collapse
Affiliation(s)
- Timothy E. Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | - Shiama I. Balendra
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - Melanie T. Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, UK
| | - M. Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, NW1 5QH, UK
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College, London, NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL UK
| |
Collapse
|
7
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
8
|
Fungal Neurotoxins and Sporadic Amyotrophic Lateral Sclerosis. Neurotox Res 2018; 35:969-980. [PMID: 30515715 DOI: 10.1007/s12640-018-9980-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Abstract
We review several lines of evidence that point to a potential fungal origin of sporadic amyotrophic lateral sclerosis (ALS). ALS is the most common form of motor neuron disease (MND) in adults. It is a progressive and fatal disease. Approximately 90% cases of ALS are sporadic, and 5-10% are due to genetic mutations (familial). About 25 genes implicated in familial ALS have been identified so far, including SOD1 and TARDBP, the gene encoding 43 kDa transactive response (TAR) DNA-binding protein (TDP-43). Despite intensive research over many decades, the aetiology of sporadic ALS is still unknown. An environmental cause, including grass or soil-associated fungal infections, is suggested from a range of widely diverse lines of evidence. Clusters of ALS have been reported in soccer players, natives of Guam and farmers. Grass-associated fungi are known to produce a range of neurotoxins and, in symbiotic associations, high levels of fungal SOD1. Exposure of neurons to fungal neurotoxins elicits a significant increase in glutamate production. High levels of glutamate stimulate TDP-43 translocation and modification, providing a link between fungal infection and one of the molecular and histologic hallmarks of sporadic ALS. A recent study provided evidence of a variety of fungi in the cerebrospinal fluid and brain tissue of ALS patients. This review provides a rational explanation for this observation. If a fungal infection could be confirmed as a potential cause of ALS, this could provide a straightforward treatment strategy for this fatal and incurable disease.
Collapse
|
9
|
Nunn PB. 50 years of research on α-amino-β-methylaminopropionic acid (β-methylaminoalanine). PHYTOCHEMISTRY 2017; 144:271-281. [PMID: 29102875 DOI: 10.1016/j.phytochem.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The isolation of α-amino-β-methylaminopropionic acid from seeds of Cycas circinalis (now C. micronesica Hill) resulted from a purposeful attempt to establish the cause of the profound neurological disease, amyotrophic lateral sclerosis/parkinsonism/dementia, that existed in high frequency amongst the inhabitants of the western Pacific island of Guam (Guam ALS/PD). In the 50 years since its discovery the amino acid has been a stimulus, and sometimes a subject of mockery, for generations of scientists in a remarkably diverse range of subject areas. The number of citations of the original paper has risen in the five decades from a few to 120 within the decade 2007-2016 and continues at a high rate into the next decade. The reasons for this remarkable outcome are discussed and examples from the literature are used to illustrate the wide range of scientific interest that the original paper generated.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, Hampshire PO1 2DT, UK.
| |
Collapse
|
10
|
Nunn PB, Codd GA. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB). PHYTOCHEMISTRY 2017; 144:253-270. [PMID: 29059579 DOI: 10.1016/j.phytochem.2017.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria. The biosynthetic pathway to BMAA is unknown. This review considers possible metabolic routes, by analogy with reactions used in other species, by which these amino acids might be biosynthesised by cyanobacteria, which are a widespread potential environmental source of these neurotoxins. Where possible, the gene expression that might be implicated in these biosyntheses is discussed.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK.
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, DD1 5EH, UK; School of Natural Sciences, University of Stirling, FK9 4LA, UK.
| |
Collapse
|
11
|
Zhang PL, Chen Y, Zhang CH, Wang YX, Fernandez-Funez P. Genetics of Parkinson's disease and related disorders. J Med Genet 2017; 55:73-80. [PMID: 29151060 DOI: 10.1136/jmedgenet-2017-105047] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex and heterogeneous neurological condition characterised mainly by bradykinesia, resting tremor, rigidity and postural instability, symptoms that together comprise the parkinsonian syndrome. Non-motor symptoms preceding and following clinical onset are also helpful diagnostic markers revealing a widespread and progressive pathology. Many other neurological conditions also include parkinsonism as primary or secondary symptom, confounding their diagnosis and treatment. Although overall disease course and end-stage pathological examination single out these conditions, the significant overlaps suggest that they are part of a continuous disease spectrum. Recent genetic discoveries support this idea because mutations in a few genes (α-synuclein, LRRK2, tau) can cause partially overlapping pathologies. Additionally, mutations in causative genes and environmental toxins identify protein homeostasis and the mitochondria as key mediators of degeneration of dopaminergic circuits in the basal ganglia. The evolving mechanistic insight into the pathophysiology of PD and related conditions will contribute to the development of targeted and effective symptomatic treatments into disease-modifying therapies that will reduce the burden of these dreadful conditions.
Collapse
Affiliation(s)
- Pei-Lan Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Chen-Hao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yu-Xin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School-Duluth Campus, Duluth, Minnesota, USA
| |
Collapse
|
12
|
Tesauro M, Consonni M, Filippini T, Mazzini L, Pisano F, Chiò A, Esposito A, Vinceti M. Incidence of amyotrophic lateral sclerosis in the province of Novara, Italy, and possible role of environmental pollution. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:284-290. [PMID: 28152620 DOI: 10.1080/21678421.2017.1281961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE AND METHODS Based on nationwide death certificates, a cluster of amyotrophic lateral sclerosis (ALS) has been reported in the area of Briga (Novara province, northern Italy), known for its severe environmental contamination. We further investigated this finding, by following up with the collection of recent incidence ALS data in 2002-2012 of Novara province, also to assess the possible long-term effects of environmental pollution in that area. RESULTS In the whole Novara province we identified 106 ALS cases, of which 35 were from the Briga area. Incidence rates of Novara province were 3.98, 5.14 and 2.97 for the total population, males and females, respectively, compared with the Briga area where they were 4.65, 4.27 and 4.98, respectively. The ratio of observed-to-expected ALS cases in the Briga area, using incidence of the rest of Novara province as a reference, was 1.17 (95% CI 0.81-1.62), with a value of 0.83 (95% CI 0.47-1.37) in males and 1.68 (95% CI 1.03-2.60) in females. CONCLUSIONS Overall, our study did not confirm previous findings of an excess ALS incidence in an area characterised by severe environmental heavy metal pollution, and it suggests the need to interpret with caution clusters identified through mortality data.
Collapse
Affiliation(s)
- Marina Tesauro
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Italy
| | - Michela Consonni
- a Department of Biomedical, Surgical and Dental Sciences , University of Milan , Italy
| | - Tommaso Filippini
- b Environmental, Genetic, and Nutritional Epidemiology Research Center-CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Letizia Mazzini
- c Department of Neurology , ALS Center, Azienda Ospedaliero Universitaria Maggiore della Carità , Novara , Italy
| | - Fabrizio Pisano
- d ICS Maugeri , Scientific Institute of Veruno (NO) , Veruno , Italy
| | - Adriano Chiò
- e Rita Levi Montalcini Department of Neuroscience , ALS Center, University of Turin , Turin , Italy , and
| | - Aniello Esposito
- f Hygiene and Public Health Service , ASL Novara , Novara , Italy
| | - Marco Vinceti
- b Environmental, Genetic, and Nutritional Epidemiology Research Center-CREAGEN, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
13
|
Quantitative determination of the neurotoxin β-N-methylamino-L-alanine (BMAA) by capillary electrophoresis-tandem mass spectrometry. Anal Bioanal Chem 2016; 409:1481-1491. [PMID: 27909777 DOI: 10.1007/s00216-016-0091-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
Recent reports of the widespread occurrence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in cyanobacteria and particularly seafood have raised concerns for public health. LC-MS/MS is currently the analytical method of choice for BMAA determinations but incomplete separation of isomeric and isobaric compounds, matrix suppression and conjugated forms are plausible limitations. In this study, capillary electrophoresis (CE) coupled with MS/MS has been developed as an alternative method for the quantitative determination of free BMAA. Using a bare fused silica capillary, a phosphate buffer (250 mM, pH 3.0) and UV detection, it was possible to separate BMAA from four isomers, but the limit of detection (LOD) of 0.25 μg mL-1 proved insufficient for analysis of typical samples. Coupling the CE to a triple quadrupole MS was accomplished using a custom sheath-flow interface. The best separation was achieved with a 5 M formic acid in water/acetonitrile (9:1) background electrolyte. Strong acid hydrolysis of lyophilized samples was used to release BMAA from conjugated forms. Field-amplified stacking after injection was achieved by lowering sample ionic strength with a cation-exchange cleanup procedure. Quantitation was accomplished using isotope dilution with deuterium-labelled BMAA as internal standard. An LOD for BMAA in solution of 0.8 ng mL-1 was attained, which was equivalent to 16 ng g-1 dry mass in samples using the specified extraction procedure. This was comparable with LC-MS/MS methods. The method displayed excellent resolution of amino acid isomers and had no interference from matrix components. The presence of BMAA in cycad, mussel and lobster samples was confirmed by CE-MS/MS, but not in an in-house cyanobacterial reference material, with quantitative results agreeing with those from LC-MS/MS. Graphical Abstract CE-MS separation and detection of BMAA, its isomers and the internal standard BMAA-d3.
Collapse
|
14
|
Koç F, Balal M, Demir T, Alparslan ZN, Sarica Y. Adaptation to Turkish and Reliability Study of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Noro Psikiyatr Ars 2016; 53:229-233. [PMID: 28373799 DOI: 10.5152/npa.2016.11334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive degeneration of the motor neurons. It is difficult to define the severity of the clinical findings of this destructive disease owing to its rapid progression, which presents serious alterations in a short time even in the same patient. The present study was designed to evaulate the validity of the Turkish version of the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R), which has been used in various countries for measuring the functional status of ALS patients. METHODS The ALSFRS-R scores of 41 ALS patients (24 male), in any stages of illness, were simultaneously assessed by two physicians. The functional status of the patients (motor system, bulbar, and pulmonary functions) was evaluated under 12 titles. In every subtitle, the functional status was evaluated as 0 for the worst functional status and 4 for the best functional status. The mean differentials for both subtitles and global scores and the 95% confidence bounds of these means were detected. The coherence was defined as the states in which the coefficient is above 0.80 and is statistically significant. RESULTS From the data obtained, the correlation between the two physicians was found to be statistically significant (p=0.000) in terms of the means of both subtitles and total scores. CONCLUSION It was shown in the present study that in the clinical follow-up of the disease, the Turkish version of ALSFRS-R is a simple, reliable, and easily applicable.
Collapse
Affiliation(s)
- Filiz Koç
- Department of Neurology, Çukurova University School of Medicine, Adana, Turkey
| | - Mehmet Balal
- Department of Neurology, Çukurova University School of Medicine, Adana, Turkey
| | - Turgay Demir
- Department of Neurology, Çukurova University School of Medicine, Adana, Turkey
| | - Z Nazan Alparslan
- Department of Medical Biostatistics, Çukurova University School of Medicine, Adana, Turkey
| | - Yakup Sarica
- Department of Neurology, Çukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
15
|
Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci 2016; 158:121-9. [DOI: 10.1016/j.lfs.2016.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
|
16
|
Tian KW, Jiang H, Wang BB, Zhang F, Han S. Intravenous injection of l-BMAA induces a rat model with comprehensive characteristics of amyotrophic lateral sclerosis/Parkinson-dementia complex. Toxicol Res (Camb) 2015; 5:79-96. [PMID: 30090328 DOI: 10.1039/c5tx00272a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
Non-protein amino acid beta-N-methylamino-l-alanine (l-BMAA) is a neurotoxin that was associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinson-Dementia Complex (ALS/PDC) in Guam. This neurotoxin has been implicated as a potential environmental factor in amyotrophic lateral sclerosis, Alzheimer's disease and other neurodegenerative diseases, and was found to accumulate in brain tissues of ALS/PDC patients. It is extremely important to establish a reliable animal model that has the comprehensive characteristics of ALS/PDC for studying mechanisms underlying neurodegeneration, and exploring effective therapies. However, very few good animal models that mimic ALS/PDC have been established. In this study, an ideal rat model that mimicked most characteristics of ALS/PDC was established by administering continuous intravenous (i.v.) injections of neurotoxic l-BMAA. Based on the data obtained, it was demonstrated that continuous i.v. injections of l-BMAA induced mitochondrial morphology and structural changes, astrogliosis, motor neuronal death, and other relative functional changes, which led to the overexpression of pro-inflammatory cytokines cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α), and resulted in the upregulation of glycogen synthase kinase-3 (GSK3), downregulation of astrocytic glutamate transporter-1 (GLT-1), accumulation of microtubule-associated protein tau and cytosolic aggregates of TAR DNA-binding protein-43 (TDP-43) in degenerating motor neurons. These results suggest that this model could be used as a useful tool for the mechanistic and therapeutic study of ALS/PDC.
Collapse
Affiliation(s)
- Ke-Wei Tian
- Institute of Anatomy and Cell Biology , Medical College , Zhejiang University , Hangzhou 310058 , China . ; ; Tel: +86-571-88208160
| | - Hong Jiang
- Department of Electrophysiology , Sir Run Run Shaw Hospital , Medical College , Zhejiang University , Hangzhou 310058 , China
| | - Bei-Bei Wang
- Core Facilities , Zhejiang University School of Medicine , Hangzhou 310058 , China
| | - Fan Zhang
- Institute of Anatomy and Cell Biology , Medical College , Zhejiang University , Hangzhou 310058 , China . ; ; Tel: +86-571-88208160
| | - Shu Han
- Institute of Anatomy and Cell Biology , Medical College , Zhejiang University , Hangzhou 310058 , China . ; ; Tel: +86-571-88208160
| |
Collapse
|
17
|
Muñoz-Sáez E, de Munck García E, Arahuetes Portero RM, Martínez A, Solas Alados MT, Miguel BG. Analysis of β-N-methylamino-L-alanine (L-BMAA) neurotoxicity in rat cerebellum. Neurotoxicology 2015; 48:192-205. [PMID: 25898785 DOI: 10.1016/j.neuro.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
Due to its structural similarity to glutamate, L-BMAA could be a trigger for neurodegenerative disorders caused by changes in the intracellular medium, such as increased oxidative stress, mitochondrial dysfunction, impaired synthesis and protein degradation and the imbalance of some enzymes. It is also important to note that according to some published studies, L-BMAA will be incorporated into proteins, causing the alteration of protein homeostasis. Neuronal cells are particularly prone to suffer damage in protein folding and protein accumulation because they have not performed cellular division. In this work, we will analyse the cerebellum impairment triggered by L-BMAA in treated rats. The cerebellum is one of the most important subcortical motor centres and ensures that movements are performed with spatial and temporal precision. Cerebellum damage caused by L-BMAA can contribute to motor impairment. To characterize this neurodegenerative pathology, we first carried out ultrastructure analysis in Purkinje cells showing altered mitochondria, endoplasmic reticulum (ER), and Golgi apparatus (GA). We then performed biochemical assays of GSK3 and TDP-43 in cerebellum, obtaining an increase of both biomarkers with L-BMAA treatment and, finally, performed autophagy studies that revealed a higher level of these processes after treatment. This work provides evidence of cerebellar damage in rats after treatment with L-BMAA. Three months after treatment, affected rats cannot restore the normal functions of the cerebellum regarding motor coordination and postural control.
Collapse
Affiliation(s)
- Emma Muñoz-Sáez
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | | | - Ana Martínez
- Instituto de Química Médica - Centro Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Ma Teresa Solas Alados
- Departamento de Biología Celular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Begoña Gómez Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Bellassoued K, Van Pelt J, Elfeki A. Neurotoxicity in rats induced by the poisonous dreamfish (Sarpa salpa). PHARMACEUTICAL BIOLOGY 2015; 53:286-295. [PMID: 25243872 DOI: 10.3109/13880209.2014.916311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Consumption of Sarpa salpa Linn. (Sparidae) in certain periods of the year is inadvisable because it can cause central nervous system disorders resulting in sea food poisoning. AIMS The present study assesses the cytotoxic effects of compounds, not-yet identified, present in the organ extracts of S. salpa, collected in autumn, the period corresponding to the peak in human health problems. MATERIALS AND METHODS The toxicity was assessed by mouse bioassay of aqueous extract of the fish organs. Wistar rats received daily extracts of different organs of S. salpa by gastric gavage for 7 d (0.3 mL of extract/100 g body weight BW). The dose of tissue extracts of viscera, liver, brain, and flesh of S. salpa administered to rats was as follows: 172, 313, 2050, and 2660 mg/kg BW, respectively. No deaths occurred during the period of treatment. RESULTS The lethal dose (LD50) determined for the crude ciguatoxin (neurotoxins) extracts of viscera, liver, brain, and flesh of S. salpa was as follows: 1.2, 2.2, 14.4, and 18.6 g/kg mouse, respectively. Changes in locomotor activity during the first 2 h and failure in breathing and no evident signs of gastrointestinal problems were recorded. We observed (1) induction of oxidative stress, indicated by an increase in lipid peroxidation (TBARS) in groups that received extracts of liver (+425%) or viscera (+433%), and a significant decrease in antioxidant enzyme activities (SOD, CAT, and GPx) in cerebral cortex tissue by 13%, 25%, and 25% (LT: animals receiving liver extracts) and by 16%, 26%, and 27% (VT: animals receiving viscera extracts), respectively. In contrast, the administration of extracts of flesh and brain induced an increase in antioxidant enzyme activities (SOD, CAT, and GPx) in cerebral cortex tissue by 26%, 23%, and 44% (FT: flesh extract) and 28%, 24%, and 46% (BT: brain extract), respectively; (2) a significant decrease for acetylcholinesterase (AChE) activity in cerebral cortex was recorded in FT, BT, LT, and VT by 27, 34, 58, and 78%, respectively. Moreover, a significant decrease of AChE activity in plasma was recorded in FT, BT, LT, and VT by 16, 21, 38, and 48%, respectively; (3) the histological findings confirmed the biochemical results. CONCLUSIONS Liver and especially the visceral part of S. salpa presented toxicity, which clearly indicates the danger of using this fish as food.
Collapse
Affiliation(s)
- Khaled Bellassoued
- Animal Ecophysiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax , Sfax , Tunisia and
| | | | | |
Collapse
|
19
|
Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples. Toxicon 2013; 76:316-25. [DOI: 10.1016/j.toxicon.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022]
|
20
|
Wang J, Yu S, Jiao S, Lv X, Ma M, Du Y. κ-Selenocarrageenan prevents microcystin-LR-induced hepatotoxicity in BALB/c mice. Food Chem Toxicol 2013; 59:303-10. [PMID: 23811533 DOI: 10.1016/j.fct.2013.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
Microcystins (MCs) are a family of cyclic heptapeptides that are produced by blooming algae Microcystis. MCs have been implicated in the development of liver cancer, necrosis and even intrahepatic bleeding. Effective prophylactic approaches and complete removal of MCs are urgently needed. Accumulating evidence suggests that microcystin-LR (MC-LR)-induced damage is accompanied by oxidative stress. Supplementation of Se can enhance resistance to oxidative stress. Therefore, in the present study, we investigated the protective effects of κ-Selenocarrageenan (Se-Car), a kind of organic Se compound, in Balb/c mice exposed to MC-LR. Our results proved that Se-Car could significantly ameliorate the hepatic damage induced by MC-LR, including serum markers of liver dysfunction, oxidative damages and histological alterations. Furthermore, Se-Car could significantly alleviate the up-regulation of the molecular targets indicating mitochondrial dysfunction and endoplasmic reticulum stress induced by MC-LR. In conclusion, Se-Car showed clear protection against toxicity induced by MC-LR. Thus, Se-Car could be useful as a new category of anti-MC-LR toxicity reagent.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | | | | | | | | | | |
Collapse
|
21
|
Bradley WG, Borenstein AR, Nelson LM, Codd GA, Rosen BH, Stommel EW, Cox PA. Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative diseases? Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:325-33. [PMID: 23286757 DOI: 10.3109/21678421.2012.750364] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS) is caused by gene-environment interactions. Mutations in genes underlying familial ALS (fALS) have been discovered in only 5-10% of the total population of ALS patients. Relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron death leading to the syndrome of ALS, although exposure to chemicals including lead and pesticides, and to agricultural environments, smoking, certain sports, and trauma have all been identified with an increased risk of ALS. There is a need for research to quantify the relative roles of each of the identified risk factors for ALS. Recent evidence has strengthened the theory that chronic environmental exposure to the neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) produced by cyanobacteria may be an environmental risk factor for ALS. Here we describe methods that may be used to assess exposure to cyanobacteria, and hence potentially to BMAA, namely an epidemiologic questionnaire and direct and indirect methods for estimating the cyanobacterial load in ecosystems. Rigorous epidemiologic studies could determine the risks associated with exposure to cyanobacteria, and if combined with genetic analysis of ALS cases and controls could reveal etiologically important gene-environment interactions in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hunter PD, Hanley N, Czajkowski M, Mearns K, Tyler AN, Carvalho L, Codd GA. The effect of risk perception on public preferences and willingness to pay for reductions in the health risks posed by toxic cyanobacterial blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:32-44. [PMID: 22521168 DOI: 10.1016/j.scitotenv.2012.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/19/2012] [Accepted: 02/09/2012] [Indexed: 05/26/2023]
Abstract
Mass populations of toxin-producing cyanobacteria are an increasingly common occurrence in inland and coastal waters used for recreational purposes. These mass populations pose serious risks to human and animal health and impose potentially significant economic costs on society. In this study, we used contingent valuation (CV) methods to elicit public willingness to pay (WTP) for reductions in the morbidity risks posed by blooms of toxin-producing cyanobacteria in Loch Leven, Scotland. We found that 55% of respondents (68% excluding protest voters) were willing to pay for a reduction in the number of days per year (from 90, to either 45 or 0 days) that cyanobacteria pose a risk to human health at Loch Leven. The mean WTP for a risk reduction was UK£9.99-12.23/household/year estimated using a logistic spike model. In addition, using the spike model and a simultaneous equations model to control for endogeneity bias, we found the respondents' WTP was strongly dependent on socio-demographic characteristics, economic status and usage of the waterbody, but also individual-specific attitudes and perceptions towards health risks. This study demonstrates that anticipated health risk reductions are an important nonmarket benefit of improving water quality in recreational waters and should be accounted for in future cost-benefit analyses such as those being undertaken under the auspices of the European Union's Water Framework Directive, but also that such values depend on subjective perceptions of water-related health risks and general attitudes towards the environment.
Collapse
Affiliation(s)
- Peter D Hunter
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cohen SA. Analytical techniques for the detection of α-amino-β-methylaminopropionic acid. Analyst 2012; 137:1991-2005. [DOI: 10.1039/c2an16250d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Shulman JM, De Jager PL, Feany MB. Parkinson's disease: genetics and pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:193-222. [PMID: 21034221 DOI: 10.1146/annurev-pathol-011110-130242] [Citation(s) in RCA: 563] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent investigation into the mechanisms of Parkinson's disease (PD) has generated remarkable insight while simultaneously challenging traditional conceptual frameworks. Although the disease remains defined clinically by its cardinal motor manifestations and pathologically by midbrain dopaminergic cell loss in association with Lewy bodies, it is now recognized that PD has substantially more widespread impact, causing a host of nonmotor symptoms and associated pathology in multiple regions throughout the nervous system. Further, the discovery and validation of PD-susceptibility genes contradict the historical view that environmental factors predominate, and blur distinctions between familial and sporadic disease. Genetic advances have also promoted the development of improved animal models, highlighted responsible molecular pathways, and revealed mechanistic overlap with other neurodegenerative disorders. In this review, we synthesize emerging lessons on PD pathogenesis from clinical, pathological, and genetic studies toward a unified concept of the disorder that may accelerate the design and testing of the next generation of PD therapies.
Collapse
Affiliation(s)
- Joshua M Shulman
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
25
|
Esterhuizen-Londt M, Pflugmacher S, Downing TG. The effect of β-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum. Toxicon 2011; 57:803-10. [PMID: 21334358 DOI: 10.1016/j.toxicon.2011.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that exists for implication of BMAA in neurodegenerative disorders relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. Uptake and accumulation of free BMAA by various non-symbiotic organisms, including aquatic macrophytes, has been documented but to date limited evidence of ecotoxicology exists. We therefore investigated the effect of BMAA on the oxidative stress responses of the macrophyte, Ceratophyllum demersum. Markers for oxidative stress in this study are the antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase and glutathione reductase. We found that BMAA had an inhibitory effect on all the oxidative stress response enzymes tested in plants exposed to BMAA. However enzymes not related to oxidative stress response were not affected by BMAA in in vitro experiments. Binding studies in the presence of BMAA showed reduced enzyme specific activity over time compared to the control. This study shows that BMAA causes oxidative stress indirectly as it inhibits antioxidant enzymes required to combat reactive oxygen species that cause damage to cells. Further investigations are required to fully understand the inhibitory effect of BMAA on these enzymes.
Collapse
Affiliation(s)
- M Esterhuizen-Londt
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa
| | | | | |
Collapse
|
26
|
The cyanobacteria derived toxin Beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis. Toxins (Basel) 2010; 2:2837-50. [PMID: 22069578 PMCID: PMC3153186 DOI: 10.3390/toxins2122837] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 12/14/2022] Open
Abstract
There is mounting evidence to suggest that environmental factors play a major role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral Sclerosis). The non-protein amino acid beta-N-methylamino-L-alanine (BMAA) was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam, and has been implicated as a potential environmental factor in ALS, Alzheimer’s disease, and other neurodegenerative diseases. BMAA has a number of toxic effects on motor neurons including direct agonist action on NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. As a non-protein amino acid, there is also the strong possibility that BMAA could cause intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal model for BMAA-induced ALS is lacking, there is substantial evidence to support a link between this toxin and ALS. The ramifications of discovering an environmental trigger for ALS are enormous. In this article, we discuss the history, ecology, pharmacology and clinical ramifications of this ubiquitous, cyanobacteria-derived toxin.
Collapse
|
27
|
Qin W, Xu L, Zhang X, Wang Y, Meng X, Miao A, Yang L. Endoplasmic reticulum stress in murine liver and kidney exposed to microcystin-LR. Toxicon 2010; 56:1334-41. [DOI: 10.1016/j.toxicon.2010.07.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 07/08/2010] [Accepted: 07/22/2010] [Indexed: 11/24/2022]
|
28
|
Farníková K, Kanovský P, Nestrasil I, Otruba P. Coexistence of parkinsonism, dementia and upper motor neuron syndrome in four Czech patients. J Neurol Sci 2010; 296:47-54. [PMID: 20619856 DOI: 10.1016/j.jns.2010.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 05/05/2010] [Accepted: 06/10/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The parkinsonian complex of Guam is an endemic neurodegenerative condition, which has been described only in the islands of the Guam archipelago and at the Kii peninsula of Japan. Up to now, only one "sporadic" case has been described (including the autopsy) in Japan. STUDY OBJECTIVE To describe the clinical, laboratory and neurophysiological characteristics of the neurodegenerative disorder presenting in 4 patients with the complex syndrome of parkinsonism, amyotrophic lateral sclerosis (ALS), and dementia. PATIENTS AND METHODS Four consecutive patients of Caucasian and Czech origin, presenting with the complex syndrome of slowly progressive parkinsonism, amyotrophic lateral sclerosis and dementia were examined clinically, including neuropsychological examination, and they were assessed using magnetic resonance imaging, electromyography and evoked potentials. The blood and CSF samples were also examined, and the levels of inflammatory and neurodegenerative markers (beta-amyloid, cystatin C and tau-proteins) were assessed. RESULTS The clinical phenotype in all four patients corresponded to the one described in the parkinsonian complex of Guam, including the presence of a cognitive deficit at the level of mild to severe dementia. The findings of EMG examination in all cases were those typically seen in ALS, and they met the El Escorial criteria. CSF levels of neurodegenerative markers (tau-protein) were elevated in all four patients. CSF levels of inflammatory markers were normal. CONCLUSION The unique appearance of the syndrome typical for the endemic Guam complex in patients of Caucasian origin in Europe raises a question of endemicity and heredity of the Guam complex and deserves further research.
Collapse
Affiliation(s)
- Katerina Farníková
- Department of Neurology, Palacky University Medical School, University Hospital, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
29
|
Banack S, Downing T, Spácil Z, Purdie E, Metcalf J, Downing S, Esterhuizen M, Codd G, Cox P. Distinguishing the cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) from its structural isomer 2,4-diaminobutyric acid (2,4-DAB). Toxicon 2010; 56:868-79. [DOI: 10.1016/j.toxicon.2010.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/03/2010] [Accepted: 06/05/2010] [Indexed: 11/24/2022]
|
30
|
Bienfang PK, Defelice SV, Laws EA, Brand LE, Bidigare RR, Christensen S, Trapido-Rosenthal H, Hemscheidt TK, McGillicuddy DJ, Anderson DM, Solo-Gabriele HM, Boehm AB, Backer LC. Prominent human health impacts from several marine microbes: history, ecology, and public health implications. Int J Microbiol 2010; 2011:152815. [PMID: 20976073 PMCID: PMC2957129 DOI: 10.1155/2011/152815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/23/2010] [Accepted: 07/25/2010] [Indexed: 12/04/2022] Open
Abstract
This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment.
Collapse
Affiliation(s)
- P K Bienfang
- Center for Oceans and Human Health, Pacific Research Center for Marine Biomedicine, School of Ocean and Earth Science and Technology, MSB no. 205, University of Hawaii, Honolulu, HI, 96822, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shen WB, McDowell KA, Siebert AA, Clark SM, Dugger NV, Valentino KM, Jinnah HA, Sztalryd C, Fishman PS, Shaw CA, Jafri MS, Yarowsky PJ. Environmental neurotoxin-induced progressive model of parkinsonism in rats. Ann Neurol 2010; 68:70-80. [PMID: 20582986 PMCID: PMC2988442 DOI: 10.1002/ana.22018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Exposure to a number of drugs, chemicals, or environmental factors can cause parkinsonism. Epidemiologic evidence supports a causal link between the consumption of flour made from the washed seeds of the plant Cycas micronesica by the Chamorro population of Guam and the development of amyotrophic lateral sclerosis/parkinsonism dementia complex. METHODS We now report that consumption of washed cycad flour pellets by Sprague-Dawley male rats induces progressive parkinsonism. RESULTS Cycad-fed rats displayed motor abnormalities after 2 to 3 months of feeding such as spontaneous unilateral rotation, shuffling gait, and stereotypy. Histological and biochemical examination of brains from cycad-fed rats revealed an initial decrease in the levels of dopamine and its metabolites in the striatum (STR), followed by neurodegeneration of dopaminergic (DAergic) cell bodies in the substantia nigra (SN) pars compacta (SNc). alpha-Synuclein (alpha-syn; proteinase K-resistant) and ubiquitin aggregates were found in the DAergic neurons of the SNc and neurites in the STR. In addition, we identified alpha-syn aggregates in neurons of the locus coeruleus and cingulate cortex. No loss of motor neurons in the spinal cord was found after chronic consumption of cycad flour. In an organotypic slice culture of the rat SN and the striatum, an organic extract of cycad causes a selective loss of dopamine neurons and alpha-syn aggregates in the SN. INTERPRETATION Cycad-fed rats exhibit progressive behavioral, biochemical, and histological hallmarks of parkinsonism, coupled with a lack of fatality.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Metabotropic glutamate receptor 1 mediates the electrophysiological and toxic actions of the cycad derivative beta-N-Methylamino-L-alanine on substantia nigra pars compacta DAergic neurons. J Neurosci 2010; 30:5176-88. [PMID: 20392940 DOI: 10.1523/jneurosci.5351-09.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis-Parkinson dementia complex (ALS-PDC) is a neurodegenerative disease with ALS, parkinsonism, and Alzheimer's symptoms that is prevalent in the Guam population. beta-N-Methylamino alanine (BMAA) has been proposed as the toxic agent damaging several neuronal types in ALS-PDC, including substantia nigra pars compacta dopaminergic (SNpc DAergic) neurons. BMAA is a mixed glutamate receptor agonist, but the specific pathways activated in DAergic neurons are not yet known. We combined electrophysiology, microfluorometry, and confocal microscopy analysis to monitor membrane potential/current, cytosolic calcium concentration ([Ca(2+)](i)) changes, cytochrome-c (cyt-c) immunoreactivity, and reactive oxygen species (ROS) production induced by BMAA. Rapid toxin applications caused reversible membrane depolarization/inward current and increase of firing rate and [Ca(2+)](i) in DAergic neurons. The inward current (I(BMAA)) was mainly mediated by activation of metabotropic glutamate receptor 1 (mGluR1), coupled to transient receptor potential (TRP) channels, and to a lesser extent, AMPA receptors. Indeed, mGluR1 (CPCCOEt) and TRP channels (SKF 96365; Ruthenium Red) antagonists reduced I(BMAA), and a small component of I(BMAA) was reduced by the AMPA receptor antagonist CNQX. Calcium accumulation was mediated by mGluR1 but not by AMPA receptors. Application of a low concentration of NMDA potentiated the BMAA-mediated calcium increase. Prolonged exposure to BMAA caused significant modifications of membrane properties, calcium overload, cell shrinkage, massive cyt-c release into the cytosol and ROS production. In SNpc GABAergic neurons, BMAA activated only AMPA receptors. Our study identifies the mGluR1-activated mechanism induced by BMAA that may cause the neuronal degeneration and parkinsonian symptoms seen in ALS-PDC. Moreover, environmental exposure to BMAA might possibly also contribute to idiopathic PD.
Collapse
|
33
|
Faassen EJ, Gillissen F, Zweers HAJ, Lürling M. Determination of the neurotoxins BMAA (beta-N-methylamino-L-alanine) and DAB (alpha-,gamma-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. ACTA ACUST UNITED AC 2010; 10 Suppl 2:79-84. [PMID: 19929738 DOI: 10.3109/17482960903272967] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We aimed to determine concentrations of the neurotoxic amino acids beta-N-methylamino-L-alanine (BMAA) and alpha-,gamma-diaminobutyric acid (DAB) in mixed species scum material from Dutch urban waters that suffer from cyanobacterial blooms. BMAA and DAB were analysed in scum material without derivatization by LC-MSMS (liquid chromatography coupled to tandem mass spectrometry) using hydrophilic interaction chromatography (HILIC). Our method showed high selectivity, good recovery of added compounds after sample extraction (86% for BMAA and 85% for DAB), acceptable recovery after sample hydrolysation (70% for BMAA and 56% for DAB) and acceptable precision. BMAA and DAB could be detected at an injected amount of 0.34 pmol. Free BMAA was detected in nine of the 21 sampled locations with a maximum concentration of 42 microg/g DW. Free DAB was detected in two locations with a maximum concentration of 4 microg/g DW. No protein-associated forms were detected. This study is the first to detect underivatized BMAA in cyanobacterial scum material using LC-MSMS. Ubiquity of BMAA in cyanobacteria scums of Dutch urban waters could not be confirmed, where BMAA and DAB concentrations were relatively low; however, co-occurrence with other cyanobacterial neurotoxins might pose a serious health risk including chronic effects from low-level doses.
Collapse
Affiliation(s)
- Elisabeth J Faassen
- Department of Environmental Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Bradley WG, Mash DC. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. ACTA ACUST UNITED AC 2010; 10 Suppl 2:7-20. [PMID: 19929726 DOI: 10.3109/17482960903286009] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excitement about neurogenetics in the last two decades has diverted attention from environmental causes of sporadic ALS. Fifty years ago endemic foci of ALS with a frequency one hundred times that in the rest of the world attracted attention since they offered the possibility of finding the cause for non-endemic ALS throughout the world. Research on Guam suggested that ALS, Parkinson's disease and dementia (the ALS/PDC complex) was due to a neurotoxic non-protein amino acid, beta-methylamino-L-alanine (BMAA), in the seeds of the cycad Cycas micronesica. Recent discoveries that found that BMAA is produced by symbiotic cyanobacteria within specialized roots of the cycads; that the concentration of protein-bound BMAA is up to a hundred-fold greater than free BMAA in the seeds and flour; that various animals forage on the seeds (flying foxes, pigs, deer), leading to biomagnification up the food chain in Guam; and that protein-bound BMAA occurs in the brains of Guamanians dying of ALS/PDC (average concentration 627 microg/g, 5 mM) but not in control brains have rekindled interest in BMAA as a possible trigger for Guamanian ALS/PDC. Perhaps most intriguing is the finding that BMAA is present in brain tissues of North American patients who had died of Alzheimer's disease (average concentration 95 microg/g, 0.8mM); this suggests a possible etiological role for BMAA in non-Guamanian neurodegenerative diseases. Cyanobacteria are ubiquitous throughout the world, so it is possible that all humans are exposed to low amounts of cyanobacterial BMAA, that protein-bound BMAA in human brains is a reservoir for chronic neurotoxicity, and that cyanobacterial BMAA is a major cause of progressive neurodegenerative diseases including ALS worldwide. Though Montine et al., using different HPLC method and assay techniques from those used by Cox and colleagues, were unable to reproduce the findings of Murch et al., Mash and colleagues using the original techniques of Murch et al. have recently confirmed the presence of protein-bound BMAA in the brains of North American patients dying with ALS and Alzheimer's disease (concentrations >100 microg/g) but not in the brains of non-neurological controls or Huntington's disease. We hypothesize that individuals who develop neurodegenerations may have a genetic susceptibility because of inability to prevent BMAA accumulation in brain proteins and that the particular pattern of neurodegeneration that develops depends on the polygenic background of the individual.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, 1120 NW 14 Street, Miami, FL 33136, USA.
| | | |
Collapse
|
35
|
Purdie EL, Metcalf JS, Kashmiri S, Codd GA. Toxicity of the cyanobacterial neurotoxin beta-N-methylamino-L-alanine to three aquatic animal species. ACTA ACUST UNITED AC 2010; 10 Suppl 2:67-70. [PMID: 19929735 DOI: 10.3109/17482960903273551] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Beta-N-methylamino-L-alanine (BMAA), a neurotoxin and candidate contributory cause of neurodegenerative diseases including amyotrophic lateral sclerosis, is produced by aquatic and terrestrial cyanobacteria. We have determined BMAA toxicity to three aquatic animal species: zebra fish (Danio rerio), brine shrimp (Artemia salina) and the protozoan Nassula sorex. Responses included: clonus convulsions and abnormal spinal axis formation (D. rerio), loss of phototaxis (A. salina) and mortalities (all species). These systems offer potential to further understand BMAA toxicity and the bioaccumulation and fates of BMAA in aquatic food chains leading to potential human exposure.
Collapse
Affiliation(s)
- Esme L Purdie
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK.
| | | | | | | |
Collapse
|
36
|
Krüger T, Mönch B, Oppenhäuser S, Luckas B. LC–MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 2010; 55:547-57. [DOI: 10.1016/j.toxicon.2009.10.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/24/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
|
37
|
Perry JJP, Shin DS, Tainer JA. Amyotrophic lateral sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:9-20. [PMID: 20687491 DOI: 10.1007/978-1-4419-6448-9_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a common neurological disorder that results in loss of motor neurons, leading to a rapidly progressive form of muscle paralysis that is fatal. There is no available cure and current therapies only provide minimal benefit at best. The disease is predominantly sporadic and until very recently only the Cu,Zn superoxide dismutase (Cu,ZnSOD), which is involved in a small number of sporadic cases and a larger component of familial ones, have been analyzed in any detail. Here we describe the clinical aspects of ALS and highlight the genetics and molecular mechanisms behind the disease. We discuss the current understanding and controversies of how mutations in Cu,ZnSOD may cause the disease. We also focus on the recent discovery that mutations in either TDP-43 or FUS/TLS, which are both involved in DNA/RNA synthesis, are likely the cause behind many cases of ALS that are not linked to Cu,ZnSOD.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
38
|
Abstract
Fumonisin B1 Neurotoxicity in Young Carp (Cyprinus CarpioL.)For years scientists have suspected that the environment plays a role in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Mycotoxin fumonisin B1(FB1) is produced by severalFusariumspecies, mainly byFusarium verticilioides, which is one of the most common fungi associated with corn worldwide. Fumonisins are known to cause equine leukoencephalomalacia, a disease associated with the consumption of corn-based feeds contaminated with FB1. Here we have reported chronic experimental toxicosis in one-year-old carp (Cyprinus carpioL.) receiving feed containing 100 mg kg-1or 10 mg kg-1of added FB1for 42 days. We focused on fumonisin toxicity in the fish brain. After staining with hemalaun-eosin, histology of the fish brain revealed vacuolated, degenerate, or necrotic neural cells, scattered around damaged blood capillaries and in the periventricular area. These findings suggest that fumonisin, although it is a hydrophilic molecule, permeated the blood-brain barrier of young carp and had a toxic effect on neuronal cells.
Collapse
|
39
|
Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer's disease. Acta Neurol Scand 2009; 120:216-25. [PMID: 19254284 DOI: 10.1111/j.1600-0404.2008.01150.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to screen for and quantify the neurotoxic amino acid beta-N-methylamino-L-alanine (BMAA) in a cohort of autopsy specimens taken from Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and non-neurological controls. BMAA is produced by cyanobacteria found in a variety of freshwater, marine, and terrestrial habitats. The possibility of geographically broad human exposure to BMAA had been suggested by the discovery of BMAA in brain tissues of Chamorro patients with ALS/Parkinsonism dementia complex from Guam and more recently in AD patients from North America. These observations warranted an independent study of possible BMAA exposures outside of the Guam ecosystem. METHODS Postmortem brain specimens were taken from neuropathologically confirmed cases of 13 ALS, 12 AD, 8 HD patients, and 12 age-matched non-neurological controls. BMAA was quantified using a validated fluorescent HPLC method previously used to detect BMAA in patients from Guam. Tandem mass spectrometric (MS) analysis was carried out to confirm the identification of BMAA in neurological specimens. RESULTS We detected and quantified BMAA in neuroproteins from postmortem brain tissue of patients from the United States who died with sporadic AD and ALS but not HD. Incidental detections observed in two out of the 24 regions were analyzed from the controls. The concentrations of BMAA were below what had been reported previously in Chamarro ALS/ Parkinsonism dementia complex patients, but demonstrated a twofold range across disease and regional brain area comparisons. The presence of BMAA in these patients was confirmed by triple quadrupole liquid chromatography/mass spectrometry/mass spectrometry. CONCLUSIONS The occurrence of BMAA in North American ALS and AD patients suggests the possibility of a gene/environment interaction, with BMAA triggering neurodegeneration in vulnerable individuals.
Collapse
Affiliation(s)
- J Pablo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Soriani MH, Desnuelle C. Épidémiologie de la SLA. Rev Neurol (Paris) 2009; 165:627-40. [DOI: 10.1016/j.neurol.2009.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/02/2009] [Accepted: 04/13/2009] [Indexed: 12/11/2022]
|
41
|
Liu X, Rush T, Zapata J, Lobner D. beta-N-methylamino-l-alanine induces oxidative stress and glutamate release through action on system Xc(-). Exp Neurol 2009; 217:429-33. [PMID: 19374900 DOI: 10.1016/j.expneurol.2009.04.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/12/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
Abstract
beta-N-methylamino-l-alanine (BMAA) is a non-protein amino acid implicated in the neurodegenerative disease amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC) on Guam. BMAA has recently been discovered in the brains of Alzheimer's patients in Canada and is produced by various species of cyanobacteria around the world. These findings suggest the possibility that BMAA may be of concern not only for specific groups of Pacific Islanders, but for a much larger population. Previous studies have indicated that BMAA can act as an excitotoxin by acting on the NMDA receptor. We have shown that the mechanism of neurotoxicity is actually three-fold; it involves not only direct action on the NMDA receptor, but also activation of metabotropic glutamate receptor 5 (mGluR5) and induction of oxidative stress. We now explore the mechanism by which BMAA activates the mGluR5 receptor and induces oxidative stress. We found that BMAA inhibits the cystine/glutamate antiporter (system Xc(-)) mediated cystine uptake, which in turn leads to glutathione depletion and increased oxidative stress. BMAA also appears to drive glutamate release via system Xc(-) and this glutamate induces toxicity through activation of the mGluR5 receptor. Therefore, the oxidative stress and mGluR5 activation induced by BMAA are both mediated through action at system Xc(-). The multiple mechanisms of BMAA toxicity, particularly the depletion of glutathione and enhanced oxidative stress, may account for its ability to induce complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Department of Biomedical Sciences, Marquette University, 561 N. 15th Street, Rm 446 Milwaukee, WI 53233, USA
| | | | | | | |
Collapse
|
42
|
Hunter PD, Tyler AN, Gilvear DJ, Willby NJ. Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:2627-33. [PMID: 19452927 DOI: 10.1021/es802977u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mass populations of toxic cyanobacteria in recreational waters can present a serious risk to human health. Intelligence on the abundance and distribution of cyanobacteria is therefore needed to aid risk assessment and management activities. In this paper, we use data from the Compact Airborne Spectrographic Imager-2 (CASI-2) to monitor seasonal change in the concentration of chlorophyll a (Chl a) and the cyanobacterial biomarker pigment C-phycocyanin (C-PC) in a series of shallow lakes in the U.K. The World Health Organization guidance levels for cyanobacteria in recreational waters were subsequently used to build a decision tree classification model for cyanobacterial risk assessment which was driven using Chl a and C-PC products derived from the CASI-2 data. The results demonstrate that remote sensing can be used to acquire intelligence on the distribution and abundance of cyanobacteria in inland waterbodies. It is argued the use of remote sensing reconnaissance, in conjunction with in situ based monitoring approaches, would greatly aid the assessment of cyanobacterial risks in inland waters and improve our ability to protect human health.
Collapse
Affiliation(s)
- Peter D Hunter
- School of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland.
| | | | | | | |
Collapse
|
43
|
Karlsson O, Lindquist NG, Brittebo EB, Roman E. Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (beta-N-methylamino-L-alanine) following neonatal administration to rodents. Toxicol Sci 2009; 109:286-95. [PMID: 19321797 DOI: 10.1093/toxsci/kfp062] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyanobacteria are extensively distributed in terrestrial and aquatic environments all over the world. Most cyanobacteria can produce the neurotoxin beta-N-methylamino-L-alanine (BMAA), which has been detected in several water systems and could accumulate in food chains. The aim of the study was to investigate the transfer of BMAA to fetal and neonatal brains and the effects of BMAA on the development of behavioral characteristics during the brain growth spurt (BGS) in rodents. Pregnant and neonatal mice were given an injection of (3)H-BMAA on gestational day 14 and postnatal day (PND) 10, respectively, and processed for tape-section autoradiography. The study revealed transplacental transfer of (3)H-BMAA and a significant uptake in fetal mouse brain. The radioactivity was specifically located in the hippocampus, striatum, brainstem, spinal cord and cerebellum of 10-day-old mice. The effect of repeated BMAA treatment (200 or 600 mg/kg s.c.) during BGS on rat behavior was also studied. BMAA treatment on PND 9-10 induced acute alterations, such as impaired locomotor ability and hyperactivity, in the behavior of neonatal rats. Furthermore, rats given the high dose of BMAA failed to habituate to the test environment when tested at juvenile age. In conclusion, the results demonstrated that BMAA was transferred to the neonatal brain and induced significant changes in the behavior of neonatal rats following administration during BGS. The observed behavioral changes suggest possible cognitive impairment. Increased information on the long-term effects of BMAA on cognitive function following fetal and neonatal exposure is required for assessment of the risk to children's health.
Collapse
Affiliation(s)
- Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA. Cyanobacteria (Nostoc commune) used as a dietary item in the Peruvian highlands produce the neurotoxic amino acid BMAA. JOURNAL OF ETHNOPHARMACOLOGY 2008; 118:159-65. [PMID: 18495396 DOI: 10.1016/j.jep.2008.04.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 03/21/2008] [Accepted: 04/04/2008] [Indexed: 05/03/2023]
Abstract
In the mountains of Peru, globular colonies of Nostoc commune (Nostocales) are collected in the highland lakes by the indigenous people, who call them llullucha. They are consumed locally, traded for maize, or sold, eventually entering the folk markets of Cusco and other neighboring cities. Throughout highland Peru, Nostoc commune is highly salient as a seasonal dietary item, being eaten alone, or in picante -- a local stew -- and is said to be highly nutritious. Nostoc commune has been known to produce unusual amino acids, including those of the mycosporine group, which possibly function to prevent UV damage. We analyzed 21 different Nostoc commune spherical colonies from 7 different market collections in the Cusco area for the presence of beta-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid produced by diverse taxa of cyanobacteria, using four different analytical techniques (HPLC-FD, UPLC-UV, UPLC/MS, LC/MS/MS). We found using all four techniques that BMAA was present in the samples purchased in the Peruvian markets. Since BMAA has been putatively linked to neurodegenerative illness, it would be of interest to know if the occurrence of ALS, Alzheimer's, or Parkinson's Disease is greater among individuals who consume llullucha in Peru.
Collapse
|
47
|
Metcalf JS, Banack SA, Lindsay J, Morrison LF, Cox PA, Codd GA. Co-occurrence of β-N-methylamino-l-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 2008; 10:702-8. [PMID: 18237305 DOI: 10.1111/j.1462-2920.2007.01492.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- James S Metcalf
- Division of Molecular and Environmental Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 4HN, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Eriksson J, Jonasson S, Papaefthimiou D, Rasmussen U, Bergman B. Improving derivatization efficiency of BMAA utilizing AccQ-Tag® in a complex cyanobacterial matrix. Amino Acids 2008; 36:43-8. [DOI: 10.1007/s00726-007-0023-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
|
49
|
Karamyan VT, Speth RC. Animal models of BMAA neurotoxicity: a critical review. Life Sci 2007; 82:233-46. [PMID: 18191417 DOI: 10.1016/j.lfs.2007.11.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 01/26/2023]
Abstract
Of all the molecules reported to have toxicological effects, BMAA (beta-methylamino alanine) stands out as having the most checkered past. In the late 1960's it was reported to be a toxic component of the cycad flour consumed by Chamorros on Guam which caused the high incidence of amyotrophic lateral sclerosis (ALS) in Guam, that was associated with a Parkinson's disease-like dementia complex (ALS-PDC). However, because ALS-PDC is a slow onset disease, manifesting itself as long as 30 years following exposure to the putative neurotoxin, and only acute toxic effects of BMAA were observed in animal studies, interest in BMAA waned. A seminal study by Spencer et al., in 1987 showing neurological impairments with long-term BMAA-fed monkeys revived the hypothesis that BMAA could cause ALS-PDC. However, the amounts of BMAA used in that study were viewed as being the equivalent of a person consuming their body weight of cycad flour every day. Again, the BMAA hypothesis was discarded. Recently a third iteration of the BMAA hypothesis has been proposed. It is based on the discovery of a novel dietary source of BMAA via biomagnification of BMAA in flying foxes, once consumed in great amounts by Chamorros. Also, reports that BMAA can be incorporated into plant and animal proteins, a heretofore unrecognized dietary source of BMAA, further solidified this new hypothesis. However, once again this hypothesis has its detractors and it remains controversial. This manuscript critically evaluates in vivo studies directed at establishing an animal model of BMAA-induced ALS-PDC and their implications for this hypothesis.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmacology, School of Pharmacy, University of Mississippi, MS 38677, USA
| | | |
Collapse
|
50
|
Banack SA, Johnson HE, Cheng R, Cox PA. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar Drugs 2007; 5:180-96. [PMID: 18463731 PMCID: PMC2365698 DOI: 10.3390/md504180] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 12/04/2007] [Indexed: 11/19/2022] Open
Abstract
Diverse species of cyanobacteria have recently been discovered to produce the neurotoxic non-protein amino acid β-methylamino-L-alanine (BMAA). In Guam, BMAA has been studied as a possible environmental toxin in the diets of indigenous Chamorro people known to have high levels of Amyotrophic Lateral Sclerosis/ Parkinsonism Dementia Complex (ALS/PDC). BMAA has been found to accumulate in brain tissues of patients with progressive neurodegenerative illness in North America. In Guam, BMAA was found to be produced by endosymbiotic cyanobacteria of the genus Nostoc which live in specialized cycad roots. We here report detection of BMAA in laboratory cultures of a free-living marine species of Nostoc. We successfully detected BMAA in this marine species of Nostoc with five different methods: HPLC-FD, UPLC-UV, Amino Acid Analyzer, LC/MS, and Triple Quadrupole LC/MS/MS. This consensus of five different analytical methods unequivocally demonstrates the presence of BMAA in this marine cyanobacterium. Since protein-associated BMAA can accumulate in increasing levels within food chains, it is possible that biomagnification of BMAA could occur in marine ecosystems similar to the biomagnification of BMAA in terrestrial ecosystems. Production of BMAA by marine cyanobacteria may represent another route of human exposure to BMAA. Since BMAA at low concentrations causes the death of motor neurons, low levels of BMAA exposure may trigger motor neuron disease in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Sandra Anne Banack
- Institute for Ethnomedicine, Box 3464, Jackson Hole, Wyoming 83001, USA; E-mails:
(Sandra Anne Banack);
(Holly E. Johnson);
(Ran Cheng)
- Department of Biological Science, California State University, Fullerton, California 92834, USA
| | - Holly E. Johnson
- Institute for Ethnomedicine, Box 3464, Jackson Hole, Wyoming 83001, USA; E-mails:
(Sandra Anne Banack);
(Holly E. Johnson);
(Ran Cheng)
| | - Ran Cheng
- Institute for Ethnomedicine, Box 3464, Jackson Hole, Wyoming 83001, USA; E-mails:
(Sandra Anne Banack);
(Holly E. Johnson);
(Ran Cheng)
| | - Paul Alan Cox
- Institute for Ethnomedicine, Box 3464, Jackson Hole, Wyoming 83001, USA; E-mails:
(Sandra Anne Banack);
(Holly E. Johnson);
(Ran Cheng)
- * Author to whom correspondence should be addressed; E-mail:
| |
Collapse
|