1
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
2
|
Younas N, Zafar S, Saleem T, Fernandez Flores LC, Younas A, Schmitz M, Zerr I. Differential interactome mapping of aggregation prone/prion-like proteins under stress: novel links to stress granule biology. Cell Biosci 2023; 13:221. [PMID: 38041189 PMCID: PMC10693047 DOI: 10.1186/s13578-023-01164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Aberrant stress granules (SGs) are emerging as prime suspects in the nucleation of toxic protein aggregates. Understanding the molecular networks linked with aggregation-prone proteins (prion protein, synuclein, and tau) under stressful environments is crucial to understand pathophysiological cascades associated with these proteins. METHODS We characterized and validated oxidative stress-induced molecular network changes of endogenous aggregation-prone proteins (prion protein, synuclein, and tau) by employing immunoprecipitation coupled with mass spectrometry analysis under basal and oxidative stress conditions. We used two different cell models (SH-SY5Y: human neuroblastoma and HeLa cell line) to induce oxidative stress using a well-known inducer (sodium arsenite) of oxidative stress. RESULTS Overall, we identified 597 proteins as potential interaction partners. Our comparative interactome mapping provides comprehensive network reorganizations of three aggregation-prone hallmark proteins, establish novel interacting partners and their dysregulation, and validates that prion protein and synuclein localize in cytoplasmic SGs. Localization of prion protein and synuclein in TIA1-positive SGs provides an important link between SG pathobiology and aggregation-prone proteins. In addition, dysregulation (downregulation) of prion protein and exportin-5 protein, and translocation of exportin-5 into the nucleus under oxidative stress shed light on nucleocytoplasmic transport defects during the stress response. CONCLUSIONS The current study contributes to our understanding of stress-mediated network rearrangements and posttranslational modifications of prion/prion-like proteins. Localization of prion protein and synuclein in the cytoplasmic SGs provides an important link between stress granule pathobiology and aggregation-prone proteins. In addition, our findings demonstrate nucleocytoplasmic transport defects after oxidative stress via dysregulation and nuclear accumulation of exportin-5.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Saima Zafar
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Saleem
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Leticia Camila Fernandez Flores
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Abrar Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
3
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
4
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
5
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
6
|
Contiliani DF, Ribeiro YDA, de Moraes VN, Pereira TC. MicroRNAs in Prion Diseases-From Molecular Mechanisms to Insights in Translational Medicine. Cells 2021; 10:1620. [PMID: 34209482 PMCID: PMC8307047 DOI: 10.3390/cells10071620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules able to post-transcriptionally regulate gene expression via base-pairing with partially complementary sequences of target transcripts. Prion diseases comprise a singular group of neurodegenerative conditions caused by endogenous, misfolded pathogenic (prion) proteins, associated with molecular aggregates. In humans, classical prion diseases include Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker syndrome, and kuru. The aim of this review is to present the connections between miRNAs and prions, exploring how the interaction of both molecular actors may help understand the susceptibility, onset, progression, and pathological findings typical of such disorders, as well as the interface with some prion-like disorders, such as Alzheimer's. Additionally, due to the inter-regulation of prions and miRNAs in health and disease, potential biomarkers for non-invasive miRNA-based diagnostics, as well as possible miRNA-based therapies to restore the levels of deregulated miRNAs on prion diseases, are also discussed. Since a cure or effective treatment for prion disorders still pose challenges, miRNA-based therapies emerge as an interesting alternative strategy to tackle such defying medical conditions.
Collapse
Affiliation(s)
- Danyel Fernandes Contiliani
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Yasmin de Araújo Ribeiro
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Vitor Nolasco de Moraes
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Tiago Campos Pereira
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| |
Collapse
|
7
|
Angelli JN, Passos YM, Brito JMA, Silva JL, Cordeiro Y, Vieira TCRG. Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors. Front Neurosci 2021; 15:689315. [PMID: 34220442 PMCID: PMC8249948 DOI: 10.3389/fnins.2021.689315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/04/2023] Open
Abstract
Prion diseases have been described in humans and other mammals, including sheep, goats, cattle, and deer. Since mice, hamsters, and cats are susceptible to prion infection, they are often used to study the mechanisms of prion infection and conversion. Mammals, such as horses and dogs, however, do not naturally contract the disease and are resistant to infection, while others, like rabbits, have exhibited low susceptibility. Infection involves the conversion of the cellular prion protein (PrPC) to the scrapie form (PrPSc), and several cofactors have already been identified as important adjuvants in this process, such as glycosaminoglycans (GAGs), lipids, and nucleic acids. The molecular mechanisms that determine transmissibility between species remain unclear, as well as the barriers to transmission. In this study, we examine the interaction of recombinant rabbit PrPC (RaPrP) with different biological cofactors such as GAGs (heparin and dermatan sulfate), phosphatidic acid, and DNA oligonucleotides (A1 and D67) to evaluate the importance of these cofactors in modulating the aggregation of rabbit PrP and explain the animal’s different degrees of resistance to infection. We used spectroscopic and chromatographic approaches to evaluate the interaction with cofactors and their effect on RaPrP aggregation, which we compared with murine PrP (MuPrP). Our data show that all cofactors induce RaPrP aggregation and exhibit pH dependence. However, RaPrP aggregated to a lesser extent than MuPrP in the presence of any of the cofactors tested. The binding affinity with cofactors does not correlate with these low levels of aggregation, suggesting that the latter are related to the stability of PrP at acidic pH. The absence of the N-terminus affected the interaction with cofactors, influencing the efficiency of aggregation. These findings demonstrate that the interaction with polyanionic cofactors is related to rabbit PrP being less susceptible to aggregation in vitro and that the N-terminal domain is important to the efficiency of conversion, increasing the interaction with cofactors. The decreased effect of cofactors in rabbit PrP likely explains its lower propensity to prion conversion.
Collapse
Affiliation(s)
- Juliana N Angelli
- Federal Institute of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yulli M Passos
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julyana M A Brito
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C R G Vieira
- Federal Institute of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Ma N, Zhang W, Wan J. Research Progress on circRNA in Nervous System Diseases. Curr Alzheimer Res 2020; 17:687-697. [DOI: 10.2174/1567205017666201111114928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Circular RNAs (circRNAs) are a kind of non-coding RNA molecule with highly stable circular
structures. CircRNAs are primarily composed of exons and/or introns. Recently, a lot of exciting
studies showed that circRNA played an essential role in the development of nervous system diseases.
Here, classification, characteristics, biogenesis, and the association of circRNA dysregulation with nervous
system diseases, such as Alzheimer’s disease, are summarized. The review not only contributes to a
better understanding of circRNAs, but also provides new research directions toward the diagnosis, treatment,
and prevention of nervous system diseases.
Collapse
Affiliation(s)
- Nana Ma
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| |
Collapse
|
9
|
Feng F, Ataca ST, Ran M, Wang Y, Breen M, Kepler TB. Gain-Scanning for Protein Microarray Assays. J Proteome Res 2020; 19:2664-2675. [PMID: 31928020 DOI: 10.1021/acs.jproteome.9b00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein microarrays consist of known proteins spotted onto solid substrates and are used to perform highly multivariate assessments of protein-binding interactions. Human protein arrays are routinely applied to pathogen detection, immune response biomarker profiling, and antibody specificity profiling. Here, we describe and demonstrate a new data processing procedure, gain-scan, in which data were acquired under multiple photomultiplier tube (PMT) settings, followed by data fitting with a power function model to estimate the incident light signals of the array spots. Data acquisition under multiple PMT settings solves the difficulty of determining the single optimal PMT gain setting and allows us to maximize the detection of low-intensity signals while avoiding the saturation of high-intensity ones at the same time. The gain-scan data acquisition and fitting also significantly lower the variances over the detectable range of signals and improve the linear data normalization. The performance of the proposed procedure was verified by analyzing the profiling data of both the human polyclonal serum samples and the monoclonal antibody samples with both technical replicates and biological replicates. We showed that the multigain power function was an appropriate model for describing data acquired under multiple PMT settings. The gain-scan fitting alone or in combination with the linear normalization could effectively reduce the technical variability of the array data and lead to better sample separability and more sensitive differential analysis.
Collapse
Affiliation(s)
- Feng Feng
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Sila Toksoz Ataca
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Mingxuan Ran
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Yumei Wang
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Michael Breen
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States.,Department of Mathematics & Statistics, Boston University, Boston, Massachusetts 02118, United States
| |
Collapse
|
10
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Lin SC, Lin CH, Shih NC, Liu HL, Wang WC, Lin KY, Liu ZY, Tseng YJ, Chang HK, Lin YC, Yeh YC, Minato H, Fujii T, Wu YC, Chen MY, Chou TY. Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling. Oncogene 2019; 39:385-398. [PMID: 31477838 DOI: 10.1038/s41388-019-0994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Tumor invasion and metastasis are the major causes of treatment failure and mortality in lung cancer patients. In this study, we identified a group of genes with differential expression in in situ and invasive lung adenocarcinoma tissues by expression profiling; among these genes we further characterized the association of the upregulation of PRNP, the gene encoding cellular Prion protein (PrPc), with lung adenocarcinoma invasiveness. Immunohistochemistry on clinical specimens showed an association of PrPc expression with invasive but not in situ lung adenocarcinoma. Consistently, the expression of PrPc was higher in the highly invasive than in the lowly invasive lung adenocarcinoma cell lines. Knockdown of PrPc expression in cultured lung adenocarcinoma cells decreased their lamellipodium formation, in vitro migration and invasion, and in vivo experimental lung metastasis. Phosphorylation of JNKs was found to correlate with PrPc expression and the inhibition of JNKs suppressed the PrPc-induced up-regulation of lamellipodium formation, cell migration, and invasion. Moreover, we identified the nuclear factor, interleukin 3 regulated (NFIL3) protein as a transcriptional activator of the PRNP promoter. Accordingly, NFIL3 promoted lung cancer cell migration and invasion in a PrPc-dependent manner. High NFIL3 expression in clinical specimens of lung adenocarcinoma was also associated with tumor invasiveness. Overall, our observations suggest that the NFIL3/PrPc axis, through regulating lamellipodium formation and cell mobility via JNK signaling, plays a critical role in lung cancer invasiveness and metastasis.
Collapse
Affiliation(s)
- Shin-Chih Lin
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chia-Hung Lin
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Nien-Chu Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hsin-Ling Liu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Wen-Chao Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Kun-Yang Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Zih-Yu Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yu-Jhen Tseng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hsueh-Kai Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Yi-Cheng Lin
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Yi-Chen Yeh
- Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Hiroshi Minato
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Takeshi Fujii
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Yu-Chung Wu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
| | - Mei-Yu Chen
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Teh-Ying Chou
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan. .,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
12
|
George AK, Master K, Majumder A, Homme RP, Laha A, Sandhu HS, Tyagi SC, Singh M. Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain. Can J Physiol Pharmacol 2019; 97:463-472. [DOI: 10.1139/cjpp-2018-0505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts that are produced via alternative, noncanonical pre-mRNA back-splicing events. These single-stranded RNA molecules have been identified in organisms ranging from the worm (Cortés-López et al. 2018. BMC Genomics, 19: 8; Ivanov et al. 2015. Cell Rep. 10: 170–177) to higher eukaryotes (Yang et al. 2017. Cell Res. 27: 626–641) to plants (Li et al. 2017. Biochem. Biophys. Res. Commun. 488: 382–386). At present, research on circRNAs is an active area because of their diverse roles in development, health, and diseases. Partly because their circularity makes them resistant to degradation, they hold great promise as unique biomarkers for ocular and central nervous system (CNS) disorders. We believe that further work on their applications could help in developing them as “first-in-class” diagnostics, therapeutics, and prognostic targets for numerous eye conditions. Interestingly, many circRNAs play key roles in transcriptional regulation by acting as miRNAs sponges, meaning that they serve as master regulators of RNA and protein expression. Since the retina is an extension of the brain and is part of the CNS, we highlight the current state of circRNA biogenesis, properties, and function and we review the crucial roles that they play in the eye and the brain. We also discuss their regulatory roles as miRNA sponges, regulation of their parental genes or linear mRNAs, translation into micropeptides or proteins, and responses to cellular stress. We posit that future advances will provide newer insights into the fields of RNA metabolism in general and diseases of the aging eye and brain in particular. Furthermore, in keeping pace with the rapidly evolving discipline of RNA“omics”-centered metabolism and to achieve uniformity among researchers, we recently introduced the term “cromics” (circular ribonucleic acids based omics) (Singh et al. 2018. Exp. Eye Res. 174: 80–92).
Collapse
Affiliation(s)
- Akash K. George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kruyanshi Master
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Avisek Majumder
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rubens Petit Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Anwesha Laha
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Harpal S. Sandhu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
13
|
Akhter R. Circular RNA and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1087:239-243. [PMID: 30259371 DOI: 10.1007/978-981-13-1426-1_19] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Circular RNAs (circRNAs) represent a special group of noncoding single-stranded highly stable ribonucleic acid entities abundant in the eukaryotic transcriptome. These circular forms of RNAs are significantly enriched in human brain and retinal tissues. However, the biological evolution and function of these circRNAs are poorly understood. Recent reports showed circRNA to be an important player in the development of neurodegenerative diseases like Alzheimer's disease. With the progression of age, circRNA level increases in the brain and also in age-associated neurological disorder like Alzheimer's disease (AD), Parkinson's disease, inflammatory neuropathy, nervous system neoplasms, and prion diseases. One highly represented circRNA in the human brain and retina is a ciRS-7 (CDR1as) which acts as an endogenous, anticomplementary miRNA inhibitor or "sponge" to quench the normal functioning of miRNA-7. Low CDR1as level can lead to increase in miR-7 expression which downregulates the activity of ubiquitin protein ligase A (UBE2A), an important AD target, functionally involved in clearing toxic amyloid peptides from AD brain. This chapter focuses on the functional relationship of circRNA with AD and interplay of miRNA-mRNA-mediated genetic regulatory networks. Our conceptual understanding also suggests that circRNA can be considered as a potential biomarker and therapeutic target in AD diagnosis and treatment.
Collapse
Affiliation(s)
- Rumana Akhter
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
14
|
Zafar S, Shafiq M, Younas N, Schmitz M, Ferrer I, Zerr I. Prion Protein Interactome: Identifying Novel Targets in Slowly and Rapidly Progressive Forms of Alzheimer's Disease. J Alzheimers Dis 2018; 59:265-275. [PMID: 28671123 DOI: 10.3233/jad-170237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rapidly progressive Alzheimer's disease (rpAD) is a variant of AD distinguished by a rapid decline in cognition and short disease duration from onset to death. While attempts to identify rpAD based on biomarker profile classifications have been initiated, the mechanisms which contribute to the rapid decline and prion mimicking heterogeneity in clinical signs are still largely unknown. In this study, we characterized prion protein (PrP) expression, localization, and interactome in rpAD, slow progressive AD, and in non-dementia controls. PrP along with its interacting proteins were affinity purified with magnetic Dynabeads Protein-G, and were identified using Q-TOF-ESI/MS analysis. Our data demonstrated a significant 1.2-fold decrease in di-glycosylated PrP isoforms specifically in rpAD patients. Fifteen proteins appeared to interact with PrP and only two proteins3/4histone H2B-type1-B and zinc alpha-2 protein3/4were specifically bound with PrP isoform isolated from rpAD cases. Our data suggest distinct PrP involvement in association with the altered PrP interacting protein in rpAD, though the pathophysiological significance of these interactions remains to be established.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Neelam Younas
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Ministry of Health, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
15
|
Barbutti I, Xavier-Ferrucio JM, Machado-Neto JA, Ricon L, Traina F, Bohlander SK, Saad STO, Archangelo LF. CATS (FAM64A) abnormal expression reduces clonogenicity of hematopoietic cells. Oncotarget 2018; 7:68385-68396. [PMID: 27588395 PMCID: PMC5356563 DOI: 10.18632/oncotarget.11724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
The CATS (FAM64A) protein interacts with CALM (PICALM) and the leukemic fusion protein CALM/AF10. CATS is highly expressed in leukemia, lymphoma and tumor cell lines and its protein levels strongly correlates with cellular proliferation in both malignant and normal cells. In order to obtain further insight into CATS function we performed an extensive analysis of CATS expression during differentiation of leukemia cell lines. While CATS expression decreased during erythroid, megakaryocytic and monocytic differentiation, a markedly increase was observed in the ATRA induced granulocytic differentiation. Lentivirus mediated silencing of CATS in U937 cell line resulted in somewhat reduced proliferation, altered cell cycle progression and lower migratory ability in vitro; however was not sufficient to inhibit tumor growth in xenotransplant model. Of note, CATS knockdown resulted in reduced clonogenicity of CATS-silenced cells and reduced expression of the self-renewal gene, GLI-1. Moreover, retroviral mediated overexpression of the murine Cats in primary bone marrow cells lead to decreased colony formation. Although our in vitro data suggests that CATS play a role in cellular processes important for tumorigenesis, such as cell cycle control and clonogenicity, these effects were not observed in vivo.
Collapse
Affiliation(s)
- Isabella Barbutti
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Juliana M Xavier-Ferrucio
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - João Agostinho Machado-Neto
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Lauremilia Ricon
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Leticia Fröhlich Archangelo
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil.,Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
16
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Fujishima H, Fumoto S, Shibata T, Nishiki K, Tsukamoto Y, Etoh T, Moriyama M, Shiraishi N, Inomata M. A 17-molecule set as a predictor of complete response to neoadjuvant chemotherapy with docetaxel, cisplatin, and 5-fluorouracil in esophageal cancer. PLoS One 2017; 12:e0188098. [PMID: 29136005 PMCID: PMC5685591 DOI: 10.1371/journal.pone.0188098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Recently, neoadjuvant chemotherapy with docetaxel/cisplatin/5-fluorouracil (NAC-DCF) was identified as a novel strong regimen with a high rate of pathological complete response (pCR) in advanced esophageal cancer in Japan. Predicting pCR will contribute to the therapeutic strategy and the prevention of surgical invasion. However, a predictor of pCR after NAC-DCF has not yet been developed. The aim of this study was to identify a novel predictor of pCR in locally advanced esophageal cancer treated with NAC-DCF. Patients and methods A total of 32 patients who received NAC-DCF followed by esophagectomy between June 2013 and March 2016 were enrolled in this study. We divided the patients into the following 2 groups: pCR group (9 cases) and non-pCR group (23 cases), and compared gene expressions between these groups using DNA microarray data and KeyMolnet. Subsequently, a validation study of candidate molecular expression was performed in 7 additional cases. Results Seventeen molecules, including transcription factor E2F, T-cell-specific transcription factor, Src (known as “proto-oncogene tyrosine-protein kinase of sarcoma”), interferon regulatory factor 1, thymidylate synthase, cyclin B, cyclin-dependent kinase (CDK) 4, CDK, caspase-1, vitamin D receptor, histone deacetylase, MAPK/ERK kinase, bcl-2-associated X protein, runt-related transcription factor 1, PR domain zinc finger protein 1, platelet-derived growth factor receptor, and interleukin 1, were identified as candidate molecules. The molecules were mainly associated with pathways, such as transcriptional regulation by SMAD, RB/E2F, and STAT. The validation study indicated that 12 of the 17 molecules (71%) matched the trends of molecular expression. Conclusions A 17-molecule set that predicts pCR after NAC-DCF for locally advanced esophageal cancer was identified.
Collapse
Affiliation(s)
- Hajime Fujishima
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
- * E-mail:
| | - Shoichi Fumoto
- Department of Surgery, Oita Nakamura Hospital, Yufu, Oita, Japan
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kohei Nishiki
- Department of Surgery, Oita Nakamura Hospital, Yufu, Oita, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Tsuyoshi Etoh
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Norio Shiraishi
- Comprehensive Surgery for Community Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| |
Collapse
|
18
|
Privat N, Levavasseur E, Yildirim S, Hannaoui S, Brandel JP, Laplanche JL, Béringue V, Seilhean D, Haïk S. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains. J Biol Chem 2017; 292:16688-16696. [PMID: 28821618 DOI: 10.1074/jbc.m117.793646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrPSc). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrPSc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease.
Collapse
Affiliation(s)
- Nicolas Privat
- From the INSERM, UMR S1127, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,UPMC, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
| | - Etienne Levavasseur
- From the INSERM, UMR S1127, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,UPMC, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
| | - Serfildan Yildirim
- From the INSERM, UMR S1127, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,UPMC, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
| | - Samia Hannaoui
- From the INSERM, UMR S1127, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,UPMC, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France
| | - Jean-Philippe Brandel
- From the INSERM, UMR S1127, 75013 Paris, France.,CNRS, UMR 7225, 75013 Paris, France.,UPMC, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France.,AP-HP, Cellule nationale de référence des MCJ, G.H. Pitié-Salpêtrière, 75013 Paris, France
| | - Jean-Louis Laplanche
- AP-HP, Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75010 Paris, France
| | | | - Danielle Seilhean
- UPMC, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France.,AP-HP, Laboratoire de Neuropathologie, G.H. Pitié-Salpêtrière, 75013 Paris, France
| | - Stéphane Haïk
- From the INSERM, UMR S1127, 75013 Paris, France, .,CNRS, UMR 7225, 75013 Paris, France.,UPMC, Institut du Cerveau et de la Moelle épinière (ICM), 75013 Paris, France.,AP-HP, Cellule nationale de référence des MCJ, G.H. Pitié-Salpêtrière, 75013 Paris, France.,AP-HP, Laboratoire de Neuropathologie, G.H. Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
19
|
Abu N, Jamal R. Circular RNAs as Promising Biomarkers: A Mini-Review. Front Physiol 2016; 7:355. [PMID: 27588005 PMCID: PMC4988965 DOI: 10.3389/fphys.2016.00355] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/04/2016] [Indexed: 01/01/2023] Open
Abstract
The interest in circular RNAs has resurfaced in the past few years. What was considered as "junk" for nearly two decades is now one of the most interesting molecules. Circular RNAs are non-coding RNAs that are formed by back-splicing events and have covalently closed loops with no poly-adenylated tails. The regulation of circular RNAs is distinctive and they are selectively abundant in different types of tissues. Based on the current knowledge of circular RNAs, these molecules have the potential to be the "next big thing" especially as biomarkers for different diseases. This mini-review attempts to concisely look at the biology of circular RNAs, the putative functional activities, the prevalence of circular RNAs, and the possible role of circular RNA as biomarkers for diagnosis or measuring drug response.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia (UKM) Medical Centre Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, University Kebangsaan Malaysia (UKM) Medical Centre Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Wang H, Tian C, Sun J, Chen LN, Lv Y, Yang XD, Xiao K, Wang J, Chen C, Shi Q, Shao QX, Dong XP. Overexpression of PLK3 Mediates the Degradation of Abnormal Prion Proteins Dependent on Chaperone-Mediated Autophagy. Mol Neurobiol 2016; 54:4401-4413. [PMID: 27344333 DOI: 10.1007/s12035-016-9985-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Polo-like kinase 3 (PLK3) is the main cause of cell cycle reentry-related neuronal apoptosis which has been implicated in the pathogenesis of prion diseases. Previous work also showed the regulatory activity of exogenous PLK3 on the degradation of PrP (prion protein) mutants and pathogenic PrPSc; however, the precise mechanisms remain unknown. In this study, we identified that the overexpression of PLK3-mediated degradation of PrP mutant and PrPSc was repressed by lysosome rather than by proteasomal and macroautophagy inhibitors. Core components of chaperone-mediated autophagy (CMA) effectors, lysosome-associated membrane protein type 2A (LAMP2a), and heat shock cognate protein 70 (Hsc70) are markedly decreased in the HEK293T cells expressing PrP mutant and scrapie-infected cell line SMB-S15. Meanwhile, PrP mutant showed ability to interact with LAMP2a and Hsc70. Overexpression of PLK3 sufficiently increased the cellular levels of LAMP2a and Hsc70, accompanying with declining the accumulations of PrP mutant and PrPSc. The kinase domain (KD) of PLK3 was responsible for elevating LAMP2a and Hsc70. Knockdown of endogenous PLK3 enhanced the activity of macroautophagy in the cultured cells. Moreover, time-dependent reductions of LAMP2a and Hsc70 were also observed in the brain tissues of hamster-adapted scrapie agent 263K-infected hamsters, indicating an impairment of CMA during prion infection. Those data indicate that the overexpression of PLK3-mediated degradation of abnormal PrP is largely dependent on CMA pathway.
Collapse
Affiliation(s)
- Hui Wang
- Department of Immunology and Key Laboratory of Laboratory Medicine of Jiangsu Province, Medical School, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Xiao-Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Qi-Xiang Shao
- Department of Immunology and Key Laboratory of Laboratory Medicine of Jiangsu Province, Medical School, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China. .,Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Choi W, Kim E, Yum SY, Lee C, Lee J, Moon J, Ramachandra S, Malaweera BO, Cho J, Kim JS, Kim S, Jang G. Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells. Prion 2016. [PMID: 26217959 DOI: 10.1080/19336896.2015.1071459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle.
Collapse
Affiliation(s)
- WooJae Choi
- a Laboratory of Theriogenology and Biotechnology; Department of Veterinary Clinical Science ; College of Veterinary Medicine and the Research Institute of Veterinary Science; Seoul National University ; Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shao Y, Chen Y. Roles of Circular RNAs in Neurologic Disease. Front Mol Neurosci 2016; 9:25. [PMID: 27147959 PMCID: PMC4829598 DOI: 10.3389/fnmol.2016.00025] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/27/2016] [Indexed: 11/30/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of endogenous noncoding RNA receiving increasing attention. They have been shown to act as a natural microRNA sponges that repress the activity of corresponding miRNAs by binding with them, thus regulating target genes. Numerous studies have shown that miRNAs are involved in the pathogenesis of neurological diseases. Therefore, circRNAs may act as important regulatory factors in the occurrence and development processes of neurological disease.
Collapse
Affiliation(s)
- Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China; Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China; Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
23
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
24
|
Application of “Omics” Technologies for Diagnosis and Pathogenesis of Neurological Infections. Curr Neurol Neurosci Rep 2015. [DOI: 10.1007/s11910-015-0580-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Trovato A, Panelli S, Strozzi F, Cambulli C, Barbieri I, Martinelli N, Lombardi G, Capoferri R, Williams JL. Expression of genes involved in the T cell signalling pathway in circulating immune cells of cattle 24 months following oral challenge with Bovine Amyloidotic Spongiform Encephalopathy (BASE). BMC Vet Res 2015; 11:105. [PMID: 25956229 PMCID: PMC4424883 DOI: 10.1186/s12917-015-0412-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
Background Bovine Amyloidotic Spongiform Encephalopathy (BASE) is a variant of classical BSE that affects cows and can be transmitted to primates and mice. BASE is biochemically different from BSE and shares some molecular and histo-pathological features with the MV2 sub-type of human sporadic Creutzfeld Jakob Disease (sCJD). Results The present work examined the effects of BASE on gene expression in circulating immune cells. Ontology analysis of genes differentially expressed between cattle orally challenged with brain homogenate from cattle following intracranial inoculation with BASE and control cattle identified three main pathways which were affected. Within the immune function pathway, the most affected genes were related to the T cell receptor-mediated T cell activation pathways. The differential expression of these genes in BASE challenged animals at 10,12 and 24 months following challenge, vs unchallenged controls, was investigated by real time PCR. Conclusions The results of this study show that the effects of prion diseases are not limited to the CNS, but involve the immune system and particularly T cell signalling during the early stage following challenge, before the appearance of clinical signs.
Collapse
Affiliation(s)
- Andrea Trovato
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy.
| | - Simona Panelli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | | | - Caterina Cambulli
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Nicola Martinelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124, Brescia, Italy.
| | - Rossana Capoferri
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027, Rivolta d'Adda, Italy.
| | - John L Williams
- Parco Tecnologico Padano, via Einstein, Lodi, 26900, Italy. .,Present address: School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia.
| |
Collapse
|
26
|
Wang H, Tian C, Fan XY, Chen LN, Lv Y, Sun J, Zhao YJ, Zhang LB, Wang J, Shi Q, Gao C, Chen C, Shao QX, Dong XP. Polo-like kinase 3 (PLK3) mediates the clearance of the accumulated PrP mutants transiently expressed in cultured cells and pathogenic PrP(Sc) in prion infected cell line via protein interaction. Int J Biochem Cell Biol 2015; 62:24-35. [PMID: 25724737 DOI: 10.1016/j.biocel.2015.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/20/2015] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
Polo-like kinases (PLKs) family has long been known to be critical for cell cycle and recent studies have pointed to new dimensions of PLKs function in the nervous system. Our previous study has verified that the levels of PLK3 in the brain are severely downregulated in prion-related diseases. However, the associations of PLKs with prion protein remain unclear. In the present study, we confirmed that PrP protein constitutively interacts with PLK3 as determined by both in vitro and in vivo assays. Both the kinase domain and polo-box domain of PLK3 were proved to bind PrP proteins expressed in mammalian cell lines. Overexpression of PLK3 did not affect the level of wild-type PrP, but significantly decreased the levels of the mutated PrPs in cultured cells. The kinase domain appeared to be responsible for the clearance of abnormally aggregated PrPs, but this function seemed to be independent of its kinase activity. RNA-mediated knockdown of PLK3 obviously aggravated the accumulation of cytosolic PrPs. Moreover, PLK3 overexpression in a scrapie infected cell line caused notable reduce of PrP(Sc) level in a dose-dependent manner, but had minimal effect on the expression of PrP(C) in its normal partner cell line. Our findings here confirmed the molecular interaction between PLK3 and PrP and outlined the regulatory activity of PLK3 on the degradation of abnormal PrPs, even its pathogenic isoform PrP(Sc). We, therefore, assume that the recovery of PLK3 in the early stage of prion infection may be helpful to prevent the toxic accumulation of PrP(Sc) in the brain tissues.
Collapse
Affiliation(s)
- Hui Wang
- Department of Immunology, and the Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang 212013, Jiangsu, China; State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Xue-Yu Fan
- Department of Immunology, and the Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang 212013, Jiangsu, China; State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Yang-Jing Zhao
- Department of Immunology, and the Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang 212013, Jiangsu, China
| | - Lu-bin Zhang
- Department of Immunology, and the Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang 212013, Jiangsu, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Qi-Xiang Shao
- Department of Immunology, and the Key Laboratory for Laboratory Medicine of Jiangsu Province, Jiangsu University Medical School, Zhenjiang 212013, Jiangsu, China.
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China; Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
27
|
Bravard A, Auvré F, Fantini D, Bernardino-Sgherri J, Sissoëff L, Daynac M, Xu Z, Etienne O, Dehen C, Comoy E, Boussin FD, Tell G, Deslys JP, Radicella JP. The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 2014; 43:904-16. [PMID: 25539913 PMCID: PMC4333392 DOI: 10.1093/nar/gku1342] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prion protein (PrP) is highly conserved and ubiquitously expressed, suggesting that it plays an important physiological function. However, despite decades of investigation, this role remains elusive. Here, by using animal and cellular models, we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1, the major mammalian endonuclease essential for base excision repair, and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp−/− mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus, PrP is required to maintain genomic stability in response to genotoxic stresses.
Collapse
Affiliation(s)
- Anne Bravard
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Frédéric Auvré
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Damiano Fantini
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Ludmilla Sissoëff
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Mathieu Daynac
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Zhou Xu
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Olivier Etienne
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Capucine Dehen
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Emmanuel Comoy
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - François D Boussin
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, I-33100 Udine, Italy
| | - Jean-Philippe Deslys
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - J Pablo Radicella
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
28
|
Scalabrino G, Veber D, Tredici G. Relationships between cobalamin, epidermal growth factor, and normal prions in the myelin maintenance of central nervous system. Int J Biochem Cell Biol 2014; 55:232-41. [PMID: 25239885 DOI: 10.1016/j.biocel.2014.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 01/08/2023]
Abstract
Cobalamin (Cbl), epidermal growth factor (EGF), and prions (PrPs) are key molecules for myelin maintenance in the central and peripheral nervous systems. Cbl and EGF increase normal prion (PrP(C)) synthesis and PrP(C) levels in rat spinal cord (SC) and elsewhere. Cbl deficiency increases PrP(C) levels in rat SC and cerebrospinal fluid (CSF), and decreases PrP(C)-mRNA levels in rat SC. The administration of anti-octapeptide repeat PrP(C) region antibodies (Abs) to Cbl-deficient (Cbl-D) rats prevents SC myelin lesions and a local increase in tumor necrosis factor (TNF)-α levels, whereas anti-TNF-α Abs prevent SC myelin lesions and the increase in SC and CSF PrP(C) levels. As it is known that both Cbl and EGF regulate SC PrP(C) synthesis independently, and that Cbl regulates SC EGF synthesis, EGF may play both Cbl-independent and Cbl-dependent roles. When Cbl-D rats undergo Cbl replacement therapy, SC PrP(C) levels are similar to those observed in Cbl-D rats. In rat frontal cortex (which is marginally affected by Cbl deficiency in histological terms), Cbl deficiency decreases PrP(C) levels and the increase induced by Cbl replacement leads to their normalization. Increased nerve PrP(C) levels are detected in the myelin lesions of the peripheral neuropathy of Cbl-D rats, and CSF PrP(C) levels are also increased in Cbl-D patients (but not in patients with Cbl-unrelated neurological diseases). Various common steps in the downstream signaling pathway of Cbl, EGF, and PrP(C) underlines the close relationship between the three molecules in keeping myelin normal.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milano, Italy.
| | - Daniela Veber
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milano, Italy
| | - Giovanni Tredici
- Department of Translational Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
| |
Collapse
|
29
|
Jerng HH, Pfaffinger PJ. Modulatory mechanisms and multiple functions of somatodendritic A-type K (+) channel auxiliary subunits. Front Cell Neurosci 2014; 8:82. [PMID: 24723849 PMCID: PMC3973911 DOI: 10.3389/fncel.2014.00082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.
Collapse
Affiliation(s)
- Henry H. Jerng
- Department of Neuroscience, Baylor College of MedicineHouston, TX, USA
| | | |
Collapse
|
30
|
Wang H, Tian C, Xu Y, Xie WL, Zhang J, Zhang BY, Ren K, Wang K, Chen C, Wang SB, Shi Q, Shao QX, Dong XP. Abortive cell cycle events in the brains of scrapie-infected hamsters with remarkable decreases of PLK3/Cdc25C and increases of PLK1/cyclin B1. Mol Neurobiol 2013; 48:655-68. [PMID: 23625313 DOI: 10.1007/s12035-013-8455-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/09/2013] [Indexed: 01/15/2023]
Abstract
Polo-like kinases (PLKs) consist of a family of kinases which play critical roles during multiple stages of cell cycle progression. Increase of PLK1 and decrease of PLK3 are associated with the developments and metastases of many types of human malignant tumors; however, the situations of PLKs in prion diseases are less understood. Using Western blots and immunohistochemical and immunofluorescent assays, marked increase of PLK1 and decrease of PLK3 were observed in the brains of scrapie strain 263K-infected hamsters, presenting obviously a time-dependent phenomenon along with disease progression. Similar alterations of PLKs were also detected in a scrapie infectious cell line SMB-S15. Both PLK1 and PLK3 were observed in neurons by confocal microscopy. Accompanying with the changes of PLKs in the brains of 263K-infected hamsters, Cdc25C and its phosphorylated forms (p-Cdc25C-Ser198 and p-Cdc25C-Ser216) were significantly down-regulated, whereas Cyclin B1 and PCNA were obviously up-regulated, while phospho-histone H3 remained almost unchanged. Moreover, exposure of the cytotoxic peptide PrP106-126 on the primary cultured cortical neuron cells induced similar changes of cellular PLKs and some cell cycle-related proteins, such as Cdc25C and its phosphorylated forms, phospho-histone H3. Those results illustrate obviously aberrant expressions of cell cycle regulatory proteins in the prion-infected neurons, which may lead to the cell cycle arrest at M phase. Possibly due to the ill-regulation of some key cell cycle events during prion infection, together with the fact that neurons are unable to complete mitosis, the cell cycle reentry in prion-infected neurons is definitely abortive, which may lead to neuron apoptosis and neuron degeneration.
Collapse
Affiliation(s)
- Hui Wang
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013,, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Campisi E, Cardone F, Graziano S, Galeno R, Pocchiari M. Role of proteomics in understanding prion infection. Expert Rev Proteomics 2013; 9:649-66. [PMID: 23256675 DOI: 10.1586/epr.12.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are fatal neurodegenerative pathologies characterized by the autocatalytic misfolding and polymerization of a cellular glycoprotein (cellular prion protein [PrP(C)]) that accumulates in the CNS and leads to neurodegeneration. The detailed mechanics of PrP(C) conversion to its pathological isoform (PrP(TSE)) are unclear but one or more exogenous factors are likely involved in the process of PrP misfolding. In the last 20 years, proteomic investigations have identified several endogenous proteins that interact with PrP(C), PrP(TSE) or both, which are possibly involved in the prion pathogenetic process. However, current approaches have not yet produced convincing conclusions on the biological value of such PrP interactors. Future advancements in the comprehension of the molecular pathogenesis of prion diseases, in experimental techniques and in data analysis procedures, together with a boost in more productive international collaborations, are therefore needed to improve the understanding on the role of PrP interactors. Finally, the advancement of 'omics' techniques in prion diseases will contribute to the development of novel diagnostic tests and effective drugs.
Collapse
Affiliation(s)
- Edmondo Campisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
32
|
Tian C, Dong X. The structure of prion: is it enough for interpreting the diverse phenotypes of prion diseases? Acta Biochim Biophys Sin (Shanghai) 2013; 45:429-34. [PMID: 23459557 DOI: 10.1093/abbs/gmt021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are neurodegenerative diseases, which affect human and many species of animals with 100% fatality rate. The most accepted etiology for prion disease is 'prion', which arises from the conversion from cellular PrP(C) to the pathological PrP(Sc). This review discussed the characteristic structure of PrP, including PRNP gene, PrP(C), PrP(Sc), PrP amyloid, and prion strains.
Collapse
Affiliation(s)
- Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | | |
Collapse
|
33
|
Komori R, Kobayashi T, Matsuo H, Kino K, Miyazawa H. Csn3 gene is regulated by all-trans retinoic acid during neural differentiation in mouse P19 cells. PLoS One 2013; 8:e61938. [PMID: 23613978 PMCID: PMC3629135 DOI: 10.1371/journal.pone.0061938] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
κ-Casein (CSN3) is known to play an essential role in controlling the stability of the milk micelles. We found that the expression of Csn3 was induced by all-trans retinoic acid (ATRA) during neural differentiation in P19 embryonal carcinoma cells from our study using DNA microarray. In this paper, we describe the detailed time course of Csn3 expression and the induction mechanism of Csn3 transcription activation in this process. The Csn3 expression was induced rapidly and transiently within 24 h of ATRA treatment. Retinoic acid receptor (RAR)-specific agonists were used in expression analysis to identify the RAR subtype involved upregulation of Csn3; a RARα-specific agonist mimicked the effects of ATRA on induction of Csn3 expression. Therefore, RARα may be the RAR subtype mediating the effects of ATRA on the induction of Csn3 gene transcription in this differentiation-promoting process of P19 cells. We found that the promoter region of Csn3 contained a typical consensus retinoic acid response element (RARE), and this RARE was necessary for ATRA-dependent transcriptional regulation. We confirmed that RARα bound to this RARE sequence in P19 cells. These findings indicated that the Csn3 expression is upregulated via ATRA-bound RARα and binding of this receptor to the RARE in the Csn3 promoter region. This will certainly serve as a first step forward unraveling the mysteries of induction of Csn3 in the process of neural differentiation.
Collapse
Affiliation(s)
- Rie Komori
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hikaru Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
- * E-mail:
| |
Collapse
|
34
|
Satoh JI. Molecular Network Analysis of Target RNAs and Interacting Proteins of TDP-43, a Causative Gene for the Neurodegenerative Diseases ALS/FTLD. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) is an evolutionarily conserved nuclear protein that regulates gene expression by forming a multimolecular complex with a wide variety of target RNAs and interacting proteins. Abnormally phosphorylated, ubiquitinated, and aggregated TDP-43 proteins constitute a principal component of neuronal and glial cytoplasmic and nuclear inclusions in the brains of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), establishing a novel clinical entity designated TDP-43 proteinopathy. Although increasing evidence suggests that the neurodegenerative process underlying ALS and FTLD is attributable to a toxic gain of function or a loss of cellular function of TDP-43, the precise molecular mechanisms remain largely unknown. Recent advances in systems biology enable us to characterize the global molecular network extracted from large-scale data of the genome, transcriptome, and proteome with the pathway analysis tools of bioinformatics endowed with a comprehensive knowledge base. The present study was conducted to characterize the comprehensive molecular network of TDP-43 target RNAs and interacting proteins, recently identified by deep sequencing with next-generation sequencers and mass spectrometric analysis. The results propose the systems biological view that TDP-43 serves as a molecular coordinator of the RNA-dependent regulation of gene transcription and translation pivotal for performing diverse neuronal functions and that the disruption of TDP-43-mediated molecular coordination induces neurodegeneration in ALS and FTLD.
Collapse
|
35
|
Archangelo LF, Greif PA, Maucuer A, Manceau V, Koneru N, Bigarella CL, Niemann F, dos Santos MT, Kobarg J, Bohlander SK, Saad STO. The CATS (FAM64A) protein is a substrate of the Kinase Interacting Stathmin (KIS). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1269-79. [PMID: 23419774 DOI: 10.1016/j.bbamcr.2013.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 12/22/2022]
Abstract
The CATS protein (also known as FAM64A and RCS1) was first identified as a novel CALM (PICALM) interactor that influences the subcellular localization of the leukemogenic fusion protein CALM/AF10. CATS is highly expressed in cancer cell lines in a cell cycle dependent manner and is induced by mitogens. CATS is considered a marker for proliferation, known to control the metaphase-to-anaphase transition during the cell division. Using CATS as a bait in a yeast two-hybrid screen we identified the Kinase Interacting Stathmin (KIS or UHMK1) protein as a CATS interacting partner. The interaction between CATS and KIS was confirmed by GST pull-down, co-immunoprecipitation and co-localization experiments. Using kinase assay we showed that CATS is a substrate of KIS and mapped the phosphorylation site to CATS serine 131 (S131). Protein expression analysis revealed that KIS levels changed in a cell cycle-dependent manner and in the opposite direction to CATS levels. In a reporter gene assay KIS was able to enhance the transcriptional repressor activity of CATS, independent of CATS phophorylation at S131. Moreover, we showed that CATS and KIS antagonize the transactivation capacity of CALM/AF10.In summary, our results show that CATS interacts with and is a substrate for KIS, suggesting that KIS regulates CATS function.
Collapse
|
36
|
GONG HANSHI, GUO YAN, TIAN CHAN, XIE WULING, SHI QI, ZHANG JIN, XU YIN, WANG SHAOBIN, ZHANG BAOYUN, CHEN CAO, LIU YONG, DONG XIAOPING. Reduction of protein kinase MARK4 in the brains of experimental scrapie rodents and human prion disease correlates with deposits of PrPSc. Int J Mol Med 2012; 30:569-78. [DOI: 10.3892/ijmm.2012.1025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/14/2012] [Indexed: 11/06/2022] Open
|
37
|
Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nat Struct Mol Biol 2012; 19:517-24, S1. [PMID: 22484317 DOI: 10.1038/nsmb.2273] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
Despite intense research in the context of neurodegenerative diseases associated with its misfolding, the endogenous human prion protein PrP(C) (or PRNP) has poorly understood physiological functions. Whereas most PrP(C) is exposed to the extracellular environment, conserved domains result in transmembrane forms of PrP(C) that traffic in the endolysosomal system and are linked to inherited and infectious neuropathologies. One transmembrane PrP(C) variant orients the N-terminal 'octarepeat' domain into the cytoplasm. Here we demonstrate that the octarepeat domain of human PrP(C) contains GW/WG motifs that bind Argonaute (AGO) proteins, the essential components of microRNA (miRNA)-induced silencing complexes (miRISCs). Transmembrane PrP(C) preferentially binds AGO, and PrP(C) promotes formation or stability of miRISC effector complexes containing the trinucleotide repeat-containing gene 6 proteins (TNRC6) and miRNA-repressed mRNA. Accordingly, effective repression of several miRNA targets requires PrP(C). We propose that dynamic interactions between PrP(C)-enriched endosomes and subcellular foci of AGO underpin these effects.
Collapse
|
38
|
Kang SG, Roh YM, Lau A, Westaway D, McKenzie D, Aiken J, Kim YS, Yoo HS. Establishment and characterization of Prnp knockdown neuroblastoma cells using dual microRNA-mediated RNA interference. Prion 2011; 5:93-102. [PMID: 21494092 DOI: 10.4161/pri.5.2.15621] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. In the pathogenesis of the disease, the cellular prion protein (PrPC) is required for replication of abnormal prion (PrPSc), which results in accumulation of PrPSc. Although there have been extensive studies using Prnp knockout systems, the normal function of PrPC remains ambiguous. Compared with conventional germline knockout technologies and transient naked siRNA-dependent knockdown systems, newly constructed durable chained-miRNA could provide a cell culture model that is closer to the disease status and easier to achieve with no detrimental sequelae. The selective silencing of a target gene by RNA interference (RNAi) is a powerful approach to investigate the unknown function of genes in vitro and in vivo. To reduce PrPC expression, a novel dual targeting-microRNA (miRdual) was constructed. The miRdual, which targets N- and C- termini of Prnp simultaneously, more effectively suppressed PrPC expression compared with conventional single site targeting. Furthermore, to investigate the cellular change following PrPC depletion, gene expression analysis of PrPC interacting and/or associating genes and several assays including proliferation, viability and apoptosis were performed. The transcripts 670460F02Rik and Plk3, Ppp2r2b and Csnk2a1 increase in abundance and are reported to be involved in cell proliferation and mitochondrial-mediated apoptosis. Dual-targeting RNAi with miRdual against Prnp will be useful for analyzing the physiological function of PrPC in neuronal cell lines and may provide a potential therapeutic intervention for prion diseases in the future.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Department of Infectious Diseases, College of Veterinary Medicine, KRF Zoonotic Disease Priority Research Institute and BK21 Program for Veterinary Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Satoh JI. [Molecular network analysis of multiple sclerosis brain lesion proteome]. ACTA ACUST UNITED AC 2011; 33:182-8. [PMID: 20818146 DOI: 10.2177/jsci.33.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A recent proteomics study of multiple sclerosis (MS) brain lesion-specific proteome profiling clearly revealed a pivotal role of coagulation cascade proteins in chronic active demyelination (Han MH et al. Nature 451 : 1076-1081, 2008). However, among thousands of proteins identified, nearly all of remaining proteins were left behind to be characterized in terms of their implications in MS brain lesion development. By the systems biology approach using four different pathway analysis tools of bioinformatics, we studied molecular networks and pathways of the proteome dataset of acute plaque (AP), chronic active plaque (CAP), and chronic plaque (CP). The database search on KEGG and PANTHER indicated the relevance of extracellular matrix (ECM)-mediated focal adhesion and integrin signaling to CAP and CP proteome. IPA identified the network constructed with a wide range of ECM components as one of the networks highly relevant to CAP proteome. KeyMolnet disclosed a central role of the complex interaction among diverse cytokine signaling pathways in brain lesion development at all disease stages, as well as a role of integrin signaling in CAP and CP. Although four distinct platforms produced diverse results, they commonly suggested a role of ECM and integrin signaling in development of chronic lesions of MS. These observations indicate that the selective blockade of the interaction between ECM and integrins would be a rational approach for designing inhibitors of chronic inflammatory demyelination in MS brain lesions.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
40
|
Mishra M, Inoue N, Heese K. Characterizing the novel protein p33MONOX. Mol Cell Biochem 2010; 350:127-34. [DOI: 10.1007/s11010-010-0690-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/18/2010] [Indexed: 11/29/2022]
|
41
|
Silva JL, Vieira TCRG, Gomes MPB, Rangel LP, Scapin SMN, Cordeiro Y. Experimental approaches to the interaction of the prion protein with nucleic acids and glycosaminoglycans: Modulators of the pathogenic conversion. Methods 2010; 53:306-17. [PMID: 21145399 DOI: 10.1016/j.ymeth.2010.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022] Open
Abstract
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jerson L Silva
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| | | | | | | | | | | |
Collapse
|
42
|
Prion protein self-interactions: A gateway to novel therapeutic strategies? Vaccine 2010; 28:7810-23. [DOI: 10.1016/j.vaccine.2010.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022]
|
43
|
Gibbings D, Voinnet O. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol 2010; 20:491-501. [PMID: 20630759 DOI: 10.1016/j.tcb.2010.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/24/2023]
Abstract
Recent advances in the cell biology of RNA silencing have unraveled an intriguing association of post-transcriptionally regulated RNA with endolysosomal membranes in several circumstances of mRNA localization, microRNA activity and viral RNA transport and packaging. Endolysosomal membranes are a nexus of communication and transport between cells and their exterior environment for signaling receptors, pathogens and nutrients. Here, we discuss recent data that support a view that endolysosomal positioning of RNA might facilitate intercellular transmission of RNA and host defence against viruses and retrotransposons. Positioning of RNA regulatory mechanisms on endolysosomal membranes might permit rapid and localized control of microRNA (miRNA) gene regulatory programs and mRNA translation in response to environmental signals, such as activated plasma membrane receptors transported on endosomes. Finally, we suggest that the pathology of several conditions, including Huntington's disease, might be a consequence of the disruption of the control of RNA via endolysosomal membranes.
Collapse
Affiliation(s)
- Derrick Gibbings
- UPR2357, Centre National de la Recherche Scientifique, Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg France.
| | | |
Collapse
|
44
|
Nieznanski K. Interactions of prion protein with intracellular proteins: so many partners and no consequences? Cell Mol Neurobiol 2010; 30:653-66. [PMID: 20041289 DOI: 10.1007/s10571-009-9491-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of transmissible spongiform encephalopathies (TSEs)--fatal diseases of the central nervous system. Its physiological function as well as exact role in neurodegeneration remain unclear, hence screens for proteins interacting with PrP seem to be the most promising approach to elucidating these issues. PrP is mostly a plasma membrane-anchored extracellular glycoprotein and only a small fraction resides inside the cell, yet the number of identified intracellular partners of PrP is comparable to that of its membranal or extracellular interactors. Since some TSEs are accompanied by significantly increased levels of cytoplasmic PrP and this fraction of the protein has been found to be neurotoxic, it is of particular interest to characterize the intracellular interactome of PrP. It seems reasonable that at elevated cytoplasmic levels, PrP may exert cytotoxic effect by affecting the physiological functions of its intracellular interactors. This review is focused on the cytoplasmic partners of PrP along with possible consequences of their binding.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Biochemistry, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur St, Warsaw 02093, Poland.
| |
Collapse
|
45
|
Weiss E, Ramljak S, Asif AR, Ciesielczyk B, Schmitz M, Gawinecka J, Schulz-Schaeffer W, Behrens C, Zerr I. Cellular prion protein overexpression disturbs cellular homeostasis in SH-SY5Y neuroblastoma cells but does not alter p53 expression: a proteomic study. Neuroscience 2010; 169:1640-50. [PMID: 20547212 DOI: 10.1016/j.neuroscience.2010.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 11/29/2022]
Abstract
The definite physiological role of the cellular prion protein (PrP(c)) remains elusive. There is ample in vitro and in vivo evidence suggesting a neuroprotective role for PrP(c). On the other hand, several in vitro and in vivo studies demonstrated detrimental effects of PrP(c) overexpression through activation of a p53 pathway. Recently, we reported that transient overexpression of PrP(c) in human embryonic kidney 293 cells elicits proteome expression changes which point to deregulation of proteins involved in energy metabolism and cellular homeostasis. Here we report proteome expression changes following stable PrP(c) overexpression in human neuronal SH-SY5Y cells. In total 18 proteins that are involved in diverse biological processes were identified as differentially regulated. The majority of these proteins is involved in cell signaling, cytoskeletal organization and protein folding. Annexin V exhibited a several fold up-regulation following stable PrP(c) overexpression in SH-SY5Y cells. This finding has been reproduced in alternative, mouse N2a and human SK-N-LO neuroblastoma cell lines transiently overexpressing PrP(c). Annexin V plays an important role in maintenance of calcium homeostasis which when disturbed can activate a p53-dependent cell death. Although we did not detect changes in p53 expression between PrP(c) overexpressing SH-SY5Y and control cells, deregulation of several proteins including annexin V, polyglutamine tract-binding protein-1, spermine synthase and transgelin 2 indicates disrupted cellular equilibrium. We conclude that stable PrP(c) overexpression in SH-SY5Y cells is sufficient to perturb cellular balance but insufficient to affect p53 expression.
Collapse
Affiliation(s)
- E Weiss
- Department of Neurology, Georg-August University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shiina Y, Arima K, Tabunoki H, Satoh JI. TDP-43 dimerizes in human cells in culture. Cell Mol Neurobiol 2010; 30:641-52. [PMID: 20043239 DOI: 10.1007/s10571-009-9489-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
TAR DNA-binding protein-43 (TDP-43) is a 43-kDa nuclear protein involved in regulation of gene expression. Abnormally, phosphorylated, ubiquitinated, and aggregated TDP-43 constitute a principal component of neuronal and glial cytoplasmic and nuclear inclusions in the brains of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS), although the molecular mechanism that triggers aggregate formation remains unknown. By Western blot analysis using anti-TDP-43 antibodies, we identified a band with an apparent molecular mass of 86-kDa in HEK293, HeLa, and SK-N-SH cells in culture. It was labeled with both N-terminal-specific and C-terminal-specific TDP-43 antibodies, enriched in the cytosolic fraction, and the expression levels were reduced by TDP-43 siRNA but unaltered by treatment with MG-132 or by expression of ubiqulin-1 or casein kinase-1. By immunoprecipitation analysis, we found the interaction between the endogenous full-length TDP-43 and the exogenous Flag-tagged TDP-43, and identified the N-terminal half of TDP-43 spanning amino acid residues 3-183 as an intermolecular interaction domain. When the tagged 86-kDa tandemly connected dimer of TDP-43 was overexpressed in HEK293, it was sequestered in the cytoplasm and promoted an accumulation of high-molecular-mass TDP-43-immunoreactive proteins. Furthermore, the 86-kDa band was identified in the immunoblot of human brain tissues, including those of ALS. These results suggest that the 86-kDa band represents dimerized TDP-43 expressed constitutively in normal cells under physiological conditions.
Collapse
Affiliation(s)
- Yuki Shiina
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo, 204-8588, Japan
| | | | | | | |
Collapse
|
47
|
Small molecule selectivity and specificity profiling using functional protein microarrays. Methods Mol Biol 2010. [PMID: 20217583 DOI: 10.1007/978-1-60761-663-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Small molecules interact with proteins to perturb their functions, a property that has been exploited both for research applications and to produce therapeutic agents for disease treatment. Commonly utilized approaches for identifying the target proteins for a small molecule have limitations in terms of throughput and resource consumption and lack a mechanism to broadly assess the selectivity profile of the small molecule. Here we describe how protein microarray technology can be applied to the study of small molecule-protein interactions using tritiated small molecules. Protein arrays comprising thousands of full-length functional proteins facilitate target identification for those small molecules discovered in cell-based phenotypic assays and both target validation and off-target binding assessment for compounds discovered in target-based screens. The assays are highly reproducible, sensitive, and scalable, and provide an enabling technology for small molecule selectivity profiling in the context of drug development.
Collapse
|
48
|
GABAA receptor subunit β1 is involved in the formation of protease-resistant prion protein in prion-infected neuroblastoma cells. FEBS Lett 2010; 584:1193-8. [DOI: 10.1016/j.febslet.2010.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 11/15/2022]
|
49
|
Sumiyoshi K, Obayashi S, Tabunoki H, Arima K, Satoh JI. Protein microarray analysis identifies cyclic nucleotide phosphodiesterase as an interactor of Nogo-A. Neuropathology 2010; 30:7-14. [PMID: 19508346 DOI: 10.1111/j.1440-1789.2009.01035.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nogo-A, a neurite outgrowth inhibitor, is expressed exclusively on oligodendrocytes and neurons in the CNS. The central domain of Amino-Nogo spanning amino acids 567-748 in the human Nogo-A designated NIG, mediates persistent inhibition of axonal outgrowth and induces growth cone collapse by signaling through an as yet unidentified NIG receptor. We identified 82 NIG-interacting proteins by screening a high-density human protein microarray composed of 5000 proteins with a recombinant NIG protein as a probe. Following an intensive database search, we selected 12 neuron/oligodendrocyte-associated NIG interactors. Among them, we verified the molecular interaction of NIG with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a cell type-specific marker of oligodendrocytes, by immunoprecipitation and cell imaging analysis. Although CNP located chiefly in the cytoplasm of oligodendrocytes might not serve as a cell-surface NIG receptor, it could act as a conformational stabilizer for the intrinsically unstructured large segment of Amino-Nogo.
Collapse
Affiliation(s)
- Kenta Sumiyoshi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | | | | | | | | |
Collapse
|
50
|
Fenner BJ, Scannell M, Prehn JHM. Expanding the substantial interactome of NEMO using protein microarrays. PLoS One 2010; 5:e8799. [PMID: 20098747 PMCID: PMC2808332 DOI: 10.1371/journal.pone.0008799] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/24/2009] [Indexed: 11/18/2022] Open
Abstract
Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.
Collapse
Affiliation(s)
- Beau J. Fenner
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Scannell
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H. M. Prehn
- Centre for Human Proteomics and Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|