1
|
Kapil L, Kumar V, Kaur S, Sharma D, Singh C, Singh A. Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:367-383. [PMID: 36974405 DOI: 10.2174/1871527322666230327092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
Collapse
Affiliation(s)
- Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Srinagar - 246174, Garhwal (Uttarakhand), India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
2
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
3
|
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
|
4
|
Mei L, Yu M, Liu Y, Weh E, Pawar M, Li L, Besirli CG, Schwendeman AA. Synthetic high-density lipoprotein nanoparticles delivering rapamycin for the treatment of age-related macular degeneration. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102571. [PMID: 35623563 PMCID: PMC10655893 DOI: 10.1016/j.nano.2022.102571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 05/03/2023]
Abstract
Synthetic high-density lipoprotein (sHDL) and rapamycin (Rap) have both been shown to be potential treatments for age-related macular degeneration (AMD). The low aqueous solubility of Rap, however, limits its therapeutic utility. Here we used an Apolipoprotein A-I mimetic peptide and phospholipid-based sHDL for the intravitreal delivery of Rap. By incorporation of Rap in sHDL nanoparticles (sHDL-Rap), we achieve 125-fold increase in drug aqueous concentration. When applied in vitro to retinal pigment epithelium cells, sHDL-Rap exhibited the abilities to efflux cholesterol, neutralize endotoxin, and suppress NF-κB activation. As an mTOR inhibitor, Rap induced autophagy and inhibited NF-κB-mediated pro-inflammatory signaling. Additionally, a greater reduction in lipofuscin accumulation and increased anti-inflammatory effects were achieved by sHDL-Rap relative to free drug or sHDL alone. In vivo studies demonstrated that sHDL reached the target retina pigment epithelium (RPE) layer following intravitreal administration in rats. These results suggest that sHDL-Rap holds potential as a treatment for AMD.
Collapse
Affiliation(s)
- Ling Mei
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yayuan Liu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Eric Weh
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Mercy Pawar
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Li Li
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, China
| | - Cagri G Besirli
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anna A Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
5
|
Xie L, Gu Q, Wu X, Yin L. Activation of LXRs Reduces Oxysterol Lipotoxicity in RPE Cells by Promoting Mitochondrial Function. Nutrients 2022; 14:nu14122473. [PMID: 35745203 PMCID: PMC9227277 DOI: 10.3390/nu14122473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Effective treatments for age-related macular degeneration (AMD), the most prevalent neurodegenerative form of blindness in older adults, are lacking. Genome-wide association studies have identified lipid metabolism and inflammation as AMD-associated pathogenic changes. Liver X receptors (LXRs) play a critical role in intracellular homeostases, such as lipid metabolism, glucose homeostasis, inflammation, and mitochondrial function. However, its specific role in AMD and its underlying molecular mechanisms remain unknown. In this study, we investigated the effects of lipotoxicity in human retinal pigmental epithelial (ARPE-19) cells and evaluated how LXRs reduce 7-ketocholesterol (7KCh) lipotoxicity in RPE cells using models, both in vivo and in vitro. A decrease in oxidative lipid accumulation was observed in mouse retinas following the activation of the LXRs; this result was also confirmed in cell experiments. At the same time, LXRs activation reduced RPE cell apoptosis induced by oxysterols. We found that oxysterols decreased the mitochondrial membrane potential in ARPE-19 cells, while LXR agonists counteracted these effects. In cultured ARPE-19 cells, activating LXRs reduced p62, mTOR, and LC3I/II levels, and the knockdown of LXRs elevated the expression of these proteins, indicating that activating LXRs could boost mitophagy. The findings of this study suggest LXR-active pharmaceuticals as a potential therapeutic target for dry AMD.
Collapse
Affiliation(s)
- Lirong Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
| | - Lili Yin
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.X.); (Q.G.); (X.W.)
- Shanghai Key Laboratory of Fundus Disease, Shanghai 200080, China
- Department of Ophthalmology, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
- Correspondence: ; Tel.: +86-135-8581-9498
| |
Collapse
|
6
|
Surakul P, Chutabhakdikul N, Vanichviriyakit R, Promthep K, Thangnipon W. Maternal Stress Induced Autophagy Dysfunction and Immune Activation in the Hippocampus of Adolescence Rat Pups. J Chem Neuroanat 2022; 121:102085. [DOI: 10.1016/j.jchemneu.2022.102085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
|
7
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
8
|
Zhu L, Yuan Q, Zeng Z, Zhou R, Luo R, Zhang J, Tsang CK, Bi W. Rifampicin Suppresses Amyloid-β Accumulation Through Enhancing Autophagy in the Hippocampus of a Lipopolysaccharide-Induced Mouse Model of Cognitive Decline. J Alzheimers Dis 2021; 79:1171-1184. [PMID: 33386800 DOI: 10.3233/jad-200690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition. The metabolism of Aβ is critically affected by autophagy. Although rifampicin is known to mediate neuroinflammation, the underlying mechanism by which rifampicin regulates the cognitive sequelae remains unknown. OBJECTIVE Based on our previous findings that rifampicin possesses neuroprotective effects on improving cognitive function after neuroinflammation, we aimed to examine in this study whether rifampicin can inhibit Aβ accumulation by enhancing autophagy in a mouse model of lipopolysaccharide (LPS)-induced cognitive impairment. METHODS Adult C57BL/6 mice were intraperitoneally injected with rifampicin, chloroquine, and/or LPS every day for 7 days. Pathological and biochemical assays and behavioral tests were performed to determine the therapeutic effect and mechanism of rifampicin on the hippocampus of LPS-induced mice. RESULTS We found that rifampicin ameliorated cognitive impairments in the LPS-induced mice. In addition, rifampicin attenuated the inhibition of autophagosome formation, suppressed the accumulation of Aβ1-42, and protected the hippocampal neurons against LPS-induced damage. Our results further demonstrated that rifampicin improved the neurological function by promoting autophagy through the inhibition of Akt/mTOR/p70S6K signaling pathway in the hippocampus of LPS-induced mice. CONCLUSION Rifampicin ameliorates cognitive impairment by suppression of Aβ1-42 accumulation through inhibition of Akt/mTOR/p70S6K signaling and enhancement of autophagy in the hippocampus of LPS-induced mice.
Collapse
Affiliation(s)
- Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, PR China
| | - Qiongru Yuan
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Zhaohao Zeng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Ruiyi Zhou
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Rixin Luo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Jiawei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, PR China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, PR, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, PR, China
| |
Collapse
|
9
|
Amadoro G, Latina V, Balzamino BO, Squitti R, Varano M, Calissano P, Micera A. Nerve Growth Factor-Based Therapy in Alzheimer's Disease and Age-Related Macular Degeneration. Front Neurosci 2021; 15:735928. [PMID: 34566573 PMCID: PMC8459906 DOI: 10.3389/fnins.2021.735928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease which is the most common cause of dementia among the elderly. Imbalance in nerve growth factor (NGF) signaling, metabolism, and/or defect in NGF transport to the basal forebrain cholinergic neurons occurs in patients affected with AD. According to the cholinergic hypothesis, an early and progressive synaptic and neuronal loss in a vulnerable population of basal forebrain involved in memory and learning processes leads to degeneration of cortical and hippocampal projections followed by cognitive impairment with accumulation of misfolded/aggregated Aβ and tau protein. The neuroprotective and regenerative effects of NGF on cholinergic neurons have been largely demonstrated, both in animal models of AD and in living patients. However, the development of this neurotrophin as a disease-modifying therapy in humans is challenged by both delivery limitations (inability to cross the blood-brain barrier (BBB), poor pharmacokinetic profile) and unwanted side effects (pain and weight loss). Age-related macular degeneration (AMD) is a retinal disease which represents the major cause of blindness in developed countries and shares several clinical and pathological features with AD, including alterations in NGF transduction pathways. Interestingly, nerve fiber layer thinning, degeneration of retinal ganglion cells and changes of vascular parameters, aggregation of Aβ and tau protein, and apoptosis also occur in the retina of both AD and AMD. A protective effect of ocular administration of NGF on both photoreceptor and retinal ganglion cell degeneration has been recently described. Besides, the current knowledge about the detection of essential trace metals associated with AD and AMD and their changes depending on the severity of diseases, either systemic or locally detected, further pave the way for a promising diagnostic approach. This review is aimed at describing the employment of NGF as a common therapeutic approach to AMD and AD and the diagnostic power of detection of essential trace metals associated with both diseases. The multiple approaches employed to allow a sustained release/targeting of NGF to the brain and its neurosensorial ocular extensions will be also discussed, highlighting innovative technologies and future translational prospects.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Rome, Italy
- European Brain Research Institute, Rome, Italy
| | | | | | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| | | | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| |
Collapse
|
10
|
Börner JH, Rawashdeh O, Rami A. Exacerbated Age-Related Hippocampal Alterations of Microglia Morphology, β-Amyloid and Lipofuscin Deposition and Presenilin Overexpression in Per1-/--Mice. Antioxidants (Basel) 2021; 10:antiox10091330. [PMID: 34572962 PMCID: PMC8469021 DOI: 10.3390/antiox10091330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
In humans, alterations of circadian rhythms and autophagy are linked to metabolic, cardiovascular and neurological dysfunction. Autophagy constitutes a specific form of cell recycling in many eukaryotic cells. Aging is the principal risk factor for the development of neurodegenerative diseases. Thus, we assume that both the circadian clock and autophagy are indispensable to counteract aging. We have previously shown that the hippocampus of Per1−/−-mice exhibits a reduced autophagy and higher neuronal susceptibility to ischemic insults compared to wild type (WT). Therefore, we chose to study the link between aging and loss of clock gene Per1−/−-mice. Young and aged C3H- and Per1−/−-mice were used as models to analyze the hippocampal distribution of Aβ42, lipofuscin, presenilin, microglia, synaptophysin and doublecortin. We detected several changes in the hippocampus of aged Per1−/−-mice compared to their wild type littermates. Our results show significant alterations of microglia morphology, an increase in Aβ42 deposition, overexpression of presenilin, decrease in synaptophysin levels and massive accumulation of lipofuscin in the hippocampus of 24-month-old Per1−/−-mice, without alteration of adult neurogenesis. We suggest that the marked lipofuscin accumulation, Aβ42 deposition, and overexpression of presenilin-2 observed in our experiments may be some of the consequences of the slowed autophagy in the hippocampus of aged Per1−/−-mice. This may lead during aging to excessive accumulation of misfolded proteins which may, consequently, result in higher neuronal vulnerability.
Collapse
Affiliation(s)
- Jan Hendrik Börner
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Oliver Rawashdeh
- Chronobiology & Sleep Lab, Faculty of Medicine, School of Biomedical Sciences, The University of Queensland Brisbane, Brisbane 4072, Australia;
| | - Abdelhaq Rami
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
- Correspondence:
| |
Collapse
|
11
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
12
|
Cardoso AM, Morais CM, Rebelo O, Tão H, Barbosa M, Pedroso de Lima MC, Jurado AS. Downregulation of long non-protein coding RNA MVIH impairs glioblastoma cell proliferation and invasion through an miR-302a-dependent mechanism. Hum Mol Genet 2021; 30:46-64. [PMID: 33438023 DOI: 10.1093/hmg/ddab009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GB) is the most frequent and malignant type of brain tumor, for which no effective therapy exists. The high proliferative and invasive nature of GB, as well as its acquired resistance to chemotherapy, makes this type of cancer extremely lethal shortly after diagnosis. Long non-protein coding RNAs (lncRNA) are a class of regulatory RNAs whose levels can be dysregulated in the context of diseases, unbalancing several physiological processes. The lncRNA associated with microvascular invasion in hepatocellular carcinoma (lncRNA-MVIH), overexpressed in several cancers, was described to co-precipitate with phosphoglycerate kinase 1 (PGK1), preventing secretion of this enzyme to the extracellular environment and promoting cell migration and invasion. We hypothesized that, by silencing the expression of lncRNA-MVIH, the secretion of PGK1 would increase, reducing GB cell migration and invasion capabilities. We observed that lncRNA-MVIH silencing in human GB cells significantly decreased glycolysis, cell growth, migration, and invasion and sensitized GB cells to cediranib. However, no increase in extracellular PGK1 was observed as a consequence of lncRNA-MVIH silencing, and therefore, we investigated the possibility of a mechanism of miRNA sponge of lncRNA-MVIH being in place. We found that the levels of miR-302a loaded onto RISC increased in GB cells after lncRNA-MVIH silencing, with the consequent downregulation of several miR-302a molecular targets. Our findings suggest a new mechanism of action of lncRNA-MVIH as a sponge of miR-302a. We suggest that lncRNA-MVIH knockdown may be a promising strategy to address GB invasiveness and chemoresistance, holding potential towards its future application in a clinical context.
Collapse
Affiliation(s)
- Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Catarina M Morais
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, 33004-561 Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, 33004-561 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Amália S Jurado
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
13
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Pinosylvin provides neuroprotection against cerebral ischemia and reperfusion injury through enhancing PINK1/Parkin mediated mitophagy and Nrf2 pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Chen SY, Gao Y, Sun JY, Meng XL, Yang D, Fan LH, Xiang L, Wang P. Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer's Disease. Front Pharmacol 2020; 11:497. [PMID: 32390843 PMCID: PMC7188934 DOI: 10.3389/fphar.2020.00497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The major characteristics of AD are amyloid β plaques, apoptosis, autophagy dysfunction, neuroinflammation, oxidative stress, and mitochondrial dysfunction. These are mostly used as the significant indicators for selecting the effects of potential drugs. It is imperative to explain AD pathogenesis and realize productive treatments. Although the currently used chemical drugs for clinical applications of AD are effective in managing the symptoms, they are inadequate to achieve anticipated preventive or therapeutic outcomes. There are new strategies for treating AD. Traditional Chinese Medicine (TCM) has accumulated thousands of years of experience in treating dementia. Nowadays, numerous modern pharmacological studies have verified the efficacy of many bioactive ingredients isolated from TCM for AD treatment. In this review, representative TCM for the treatment of AD are discussed, and among these herbal medicines, the Lamiaceae family accounts for the highest proportion. It is concluded that monomers and extracts from TCM have potential therapeutic effect for AD treatment.
Collapse
Affiliation(s)
- Shi-Yu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Yi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Li Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Hong Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Halbe L, Rami A. Inhibition of Autophagy Potentiated Hippocampal Cell Death Induced by Endoplasmic Reticulum Stress and its Activation by Trehalose Failed to be Neuroprotective. Curr Neurovasc Res 2020; 16:3-11. [PMID: 30706781 DOI: 10.2174/1567202616666190131155834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress induced the mobilization of two protein breakdown routes, the proteasomal- and autophagy-associated degradation. During ERassociated degradation, unfolded ER proteins are translocated to the cytosol where they are cleaved by the proteasome. When the accumulation of misfolded or unfolded proteins excels the ER capacity, autophagy can be activated in order to undertake the degradative machinery and to attenuate the ER stress. Autophagy is a mechanism by which macromolecules and defective organelles are included in autophagosomes and delivered to lysosomes for degradation and recycling of bioenergetics substrate. MATERIALS AND METHODS Autophagy upon ER stress serves initially as a protective mechanism, however when the stress is more pronounced the autophagic response will trigger cell death. Because autophagy could function as a double edged sword in cell viability, we examined the effects autophagy modulation on ER stress-induced cell death in HT22 murine hippocampal neuronal cells. We investigated the effects of both autophagy-inhibition by 3-methyladenine (3-MA) and autophagy-activation by trehalose on ER-stress induced damage in hippocampal HT22 neurons. We evaluated the expression of ER stress- and autophagy-sensors as well as the neuronal viability. RESULTS AND CONCLUSION Based on our findings, we conclude that under ER-stress conditions, inhibition of autophagy exacerbates cell damage and induction of autophagy by trehalose failed to be neuroprotective.
Collapse
Affiliation(s)
- Luisa Halbe
- Institut fur Zellulare und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universitat, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Abdelhaq Rami
- Institut fur Zellulare und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universitat, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
17
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
18
|
Song L, Yao L, Zhang L, Piao Z, Lu Y. Schizandrol A protects against Aβ 1-42-induced autophagy via activation of PI3K/AKT/mTOR pathway in SH-SY5Y cells and primary hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1739-1752. [PMID: 31900522 DOI: 10.1007/s00210-019-01792-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/05/2019] [Indexed: 12/01/2022]
Abstract
Autophagy, a lysosomal degradative pathway, is crucial for the pathogenesis of Alzheimer's disease (AD). Schizandrol A (SchA) shows multiple pharmacological effects. However, the potential effects and mechanisms of SchA on amyloid-β (Aβ)-induced autophagy remain unclear. In this study, differentiated SH-SY5Y cells or primary hippocampal neurons were pretreated with SchA (2 μg/ml) for 1 h before subjected to Aβ1-42 (10 μM) for 24 h to test its effects on cell viability, apoptosis, oxidative stress, and autophagy. Then an mTOR inhibitor (rapamycin) and a PI3K inhibitor (LY294002) were employed to explore the role of PI3K/AKT/mTOR pathway. The results showed that SchA significantly inhibited Aβ1-42-triggered reduction of viable cells, increases of apoptotic cell number and pro-apoptotic protein expressions, as well as alterations of oxidative stress markers. In addition, the increases of LC3-II/LC3-I and Beclin-1 and decrease of p62 were suppressed by SchA. At the molecular level, we found that the inactivation of PI3K/AKT/mTOR pathway was ameliorated by SchA. Inhibition of PI3K/AKT/mTOR pathway deteriorated the protective effects of SchA against Aβ1-42-induced autophagy activation, cell death, and apoptosis. In conclusion, we demonstrate that SchA attenuates Aβ1-42-induced autophagy through activating PI3K/AKT/mTOR signaling pathway. SchA may be a novel drug for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Lin Song
- School of Life Sciences, Huizhou University, 46 Yanda Avenue, Huizhou, 516007, Guangdong, People's Republic of China.
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Limei Zhang
- Department of Obstetrics and Gynecology, Huizhou Third People's Hospital, Huizhou, Huizhou, 516002, Guangdong, People's Republic of China
| | - Zhongyuan Piao
- Department of Neurology, Huizhou Third People's Hospital, Huizhou, 516002, Guangdong, People's Republic of China
| | - Yichan Lu
- Department of Chinese Medicine, Dalian Maternity and Child Health Care Hospital, Dalian, 116033, Liaoning, People's Republic of China
| |
Collapse
|
19
|
Martínez PN, Menéndez ST, Villaronga MDLÁ, Ubelaker DH, García-Pedrero JM, C Zapico S. "The big sleep: Elucidating the sequence of events in the first hours of death to determine the postmortem interval". Sci Justice 2019; 59:418-424. [PMID: 31256813 DOI: 10.1016/j.scijus.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
Recent developments on postmortem interval estimation (PMI) take an advantage of the autolysis process, pointing out to the analysis of the expression of apoptosis and autophagy genes towards this purpose. Oxidative stress plays a role in this signaling as a regulatory mechanism and/or as a consequence of cell death. Additionally, melatonin has been implicated on apoptosis and autophagy signaling, making melatonin a suitable target for PMI determination. The aim of this study was to investigate the early PMI through the analysis of the expression of autophagy genes as well as oxidative stress and melatonin receptor. Our results demonstrated a rapidly increased on the expression of autophagy genes according to the expected sequence of events, then a marked decrease in this expression, matched with the switch to the apoptosis signaling. These results revealed potential candidates to analyze the PMI in the first hours of death, helping to estimate the time-since-death.
Collapse
Affiliation(s)
- Paula Núñez Martínez
- Departamento de Biología Funcional (Área de Fisiología), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Spain
| | - Sofía T Menéndez
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - María de Los Ángeles Villaronga
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Douglas H Ubelaker
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA
| | - Juana M García-Pedrero
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Sara C Zapico
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA; Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
20
|
Ho WM, Akyol O, Reis H, Reis C, McBride D, Thome C, Zhang J. Autophagy after Subarachnoid Hemorrhage: Can Cell Death be Good? Curr Neuropharmacol 2018; 16:1314-1319. [PMID: 29173174 PMCID: PMC6251054 DOI: 10.2174/1570159x15666171123200646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/30/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autophagy is a prosurvival, reparative process that maintainsww cellular homeostasis through lysosomal degradation of selected cytoplasmic components and programmed death of old, dysfunctional, or unnecessary cytoplasmic entities. According to growing evidence, autophagy shows beneficial effects following subarachnoid hemorrhage (SAH). SAH is considered one of the most devastating forms of stroke. METHODS In this review lies in revealing the pathophysiological pathways and the effects of autophagy. Current results from animal studies will be discussed focusing on the effects of inhibitors and inducers of autophagy. In addition, this review discusses the clinical translation of potential neuropharmacological targets that can help prevent early brain injury (EBI) following SAH by incorporating programmed cell death into clinical management. RESULTS Published data showed that autophagy mechanisms have a prosurvival effect to reduce apoptotic cell death after SAH. However, if SAH exceeds a certain stress threshold, autophagy mechanisms lead to increased apoptotic cell death, more brain injury, and worse outcome. CONCLUSION Future investigation on the differences and molecular switches between protective mechanisms of autophagy and excessive "self-eating" autophagy leading to cell death is needed to achieve more insight into the complex pathophysiology of brain injury after SAH. If autophagy after SAH can be controlled to lead to beneficial effects only, as the physiological self-control mechanism, this could be an important target for treatment.
Collapse
Affiliation(s)
- Wing-Mann Ho
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria.,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| | - Haley Reis
- Loma Linda University School of Medicine, Loma Linda, United States
| | - Cesar Reis
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, United States
| | - Devin McBride
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| | - Claudius Thome
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, United States
| |
Collapse
|
21
|
Zuo W, Liu Z, Yan F, Mei D, Hu X, Zhang B. Hyperglycemia abolished Drp-1-mediated mitophagy at the early stage of cerebral ischemia. Eur J Pharmacol 2018; 843:34-44. [PMID: 30447185 DOI: 10.1016/j.ejphar.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022]
Abstract
Exposure to hyperglycemia after cerebral ischemia exacerbates cerebral damage; however, little is known regarding the mechanism. In this study, we focused on the relationship between post-ischemic hyperglycemia and mitochondrial homeostasis at the early stage of ischemia (within the 6 h clinical therapeutic window for thrombolysis). Permanent cerebral ischemia was induced by middle cerebral artery occlusion (pMCAO) for 1, 3, and 6 h. We first elucidated the role of post-ischemic hyperglycemia on mitochondria-mediated injury by testing reactive oxygen species generation, cyt-c release, and caspase-3 activation. Next, we analyzed mitochondrial homeostasis by testing the protein levels related to fission, fusion, biogenesis and elimination. The results showed that hyperglycemia further augmented the mitochondria-mediated injury induced by pMCAO. No significant differences of Fis1, Opa1 and Mfn2 were observed at each time point. There is no significant influence on these three proteins after hyperglycemia in rats of the experimental group compared to their counterparts in the control group. The translocation of the fission protein Drp1 to the mitochondrial outer-membrane increased at 1 h after pMCAO and later steadily decreased over time in normal animals. However, hyperglycemia inhibited both the levels of Drp1 in the cytoplasm and mitochondria. Moreover, hyperglycemia inhibited mitophagy induced by pMCAO at 1 h, although the overall autophagy was increased. In conclusion, pMCAO transiently induced the mitochondrial fission and their elimination by mitophagy. However, hyperglycemia abolished this adaptation reaction of the mitochondria and thus resulted in the accumulation of damaged mitochondria and subsequent damage. Our findings help to refine our understanding of the role of post-ischemic hyperglycemia in brain ischemic injury.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Zhenyu Liu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Feng Yan
- Center for Brain Disorders Research, Capital Medical University, PR China; Beijing Institute for Brain Disorders, PR China; Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Dan Mei
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
22
|
Melo KP, Silva CM, Almeida MF, Chaves RS, Marcourakis T, Cardoso SM, Demasi M, Netto LES, Ferrari MFR. Mild Exercise Differently Affects Proteostasis and Oxidative Stress on Motor Areas During Neurodegeneration: A Comparative Study of Three Treadmill Running Protocols. Neurotox Res 2018; 35:410-420. [PMID: 30276717 DOI: 10.1007/s12640-018-9966-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1 mg/kg/day of rotenone during 4 or 8 weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10 weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.
Collapse
Affiliation(s)
- Karla P Melo
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | - Carolliny M Silva
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | - Michael F Almeida
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | - Rodrigo S Chaves
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sandra M Cardoso
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marilene Demasi
- Laboratorio de Bioquimica e Biofisica, Instituto Butantan, Sao Paulo, SP, Brazil
| | - Luis E S Netto
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
23
|
Hydrogen-Rich Saline Activated Autophagy via HIF-1 α Pathways in Neuropathic Pain Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4670834. [PMID: 29888265 PMCID: PMC5985079 DOI: 10.1155/2018/4670834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/04/2017] [Accepted: 10/26/2017] [Indexed: 12/01/2022]
Abstract
Background Neuropathic pain is a chronic and intractable pain, with very few effective analgesics. It involves an impaired cell autophagy process. Hydrogen-rich saline (HRS) reportedly reduces allodynia and hyperalgesia in a neuropathic pain model; however, it is unknown whether these effects involve autophagy induction. Methods We investigated the relationship between HRS and cell autophagy in a neuropathic pain model generated by chronic constriction injury (CCI) in Sprague–Dawley rats. Rats received an intraperitoneal injection of HRS (10 mL/kg daily, from 1 day before until 14 days after CCI), 3MA (autophagy inhibitor), 2ME2 (HIF-1α inhibitor), or EDHB (HIF-1α agonist). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were tested 1 day before and 1, 3, 7, 10, and 14 days after the operation. HIF-1α and cell autophagy markers in the spinal cord were evaluated by western blotting and real-time PCR assays at 14 days after CCI. Autophagosomes with double membranes were identified by transmission electron microscopy. Results CCI caused behavioral hypersensitivity to mechanical and thermal stimulation in the hind-paw of the injured side. HRS improved MWT and TWL, activated autophagy, and increased autophagosomes and autolysosomes in CCI rats. 3-MA aggravated hyperalgesia and allodynia and suppressed autophagy, while EDHB attenuated hyperalgesia and activated the autophagy procedure and the HIF-1α downstream target gene BNIP3. HIF-1α inhibitors reversed the regulatory effects of HRS on autophagy in CCI rats at 14 days after spinal cord injury. Conclusion HRS reduced mechanical hyperalgesia and activation of cell autophagy in neuropathic pain through a HIF1-dependent pathway.
Collapse
|
24
|
Rami A, Benz A. Exclusive Activation of Caspase-3 in Mossy Fibers and Altered Dynamics of Autophagy Markers in the Mice Hippocampus upon Status Epilepticus Induced by Kainic Acid. Mol Neurobiol 2018; 55:4492-4503. [PMID: 28685385 DOI: 10.1007/s12035-017-0665-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Epileptic seizures are generally associated with pathological changes in the hippocampus such as astrogliosis, mossy fiber sprouting, and neuronal damage. However, more than 30% of temporal lobe epilepsy in humans shows neither neuronal damage nor mossy fiber sprouting despite chronic epileptic seizures. A similar situation exists in certain commonly used strains of mice, specifically C57BL/6 and BALB/c, which exhibit epileptic seizures, but no neuronal damage upon kainic acid administration. This suggests that intrinsic factors may influence the pathological manifestations of epilepsy. Mechanisms which are behind the resistance of hippocampal cells to KA-induced neuronal death are unknown. Autophagy seems to be involved in the pathogenesis of many brain insults and to have a dual nature in neuroprotection and cell death. This study addresses the role of autophagy upon status epilepticus (SE) that has been induced by kainic acid (KA) in the C57BL/6 strain which is classified as seizure resistant. We analyzed the dynamics in the expression of autophagic and cell death markers in the hippocampus upon SE. Immunofluorescence data show that KA did not induce neuronal death in the hippocampal CA1-CA3 subfields; however, it leads to an exclusive activation of caspase-3 in the mossy fibers. We also found alterations in the expression of core proteins of the autophagic machinery. Levels of MAP1LC3, phospho-mTOR/mTOR, and Beclin 1 were significantly increased after induction of seizures. However, levels of Atg3, Atg14, Atg5-Atg12, Atg7, BAG3, Hsp70, and LAMP1 showed no significant alterations compared to controls. Although KA did not induce neuronal death, this study provides morphological and biochemical evidence that status epilepticus induced by KA activates caspase-3 in mossy fibers and induces autophagy in the C57BL/6 hippocampus. These data indicate that autophagic factors may modulate the sensitivity of pyramidal cells to KA and that autophagy may constitute a part of an endogenous neuroprotective arsenal which might be behind the resistance of C57BL/6-hippocampal cells to KA-induced neuronal death.
Collapse
Affiliation(s)
- A Rami
- Institut für Zelluläre und Molekulare Anatomie (Anatomie III), Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.
| | - A Benz
- Institut für Zelluläre und Molekulare Anatomie (Anatomie III), Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| |
Collapse
|
25
|
Tamagno E, Guglielmotto M, Monteleone D, Manassero G, Vasciaveo V, Tabaton M. The Unexpected Role of Aβ1-42 Monomers in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2018; 62:1241-1245. [PMID: 29103036 PMCID: PMC5870015 DOI: 10.3233/jad-170581] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyloid-β (Aβ) has been proposed as a biomarker and a drug target for the therapy of Alzheimer's disease (AD). The neurotoxic entity and relevance of each conformational form of Aβ to AD pathology is still under debate; Aβ oligomers are considered the major killer form of the peptide whereas monomers have been proposed to be involved in physiological process. Here we reviewed some different effects mediated by monomers and oligomers on mechanisms involved in AD pathogenesis such as autophagy and tau aggregation. Data reported in this review demonstrate that Aβ monomers could have a major role in sustaining the pathogenesis of AD and that AD therapy should be focused not only in the removal of oligomers but also of monomers.
Collapse
Affiliation(s)
- Elena Tamagno
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Michela Guglielmotto
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Debora Monteleone
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Giusi Manassero
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Valeria Vasciaveo
- Department of Neuroscience, University of Torino, Torino, Italy,Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO), University of Torino, Torino, Italy
| | - Massimo Tabaton
- Department of Internal Medicine and Medical Specialties (DIMI), Unit of Geriatric Medicine, University of Genova, Genova, Italy,Correspondence to: Dr. Massimo Tabaton, Department of Internal Medicine and Medical Specialities (DIMI) Viale Benedetto XV, 6,16132, Genova, Italy. Tel./Fax: +390103537064; E-mail:
| |
Collapse
|
26
|
Kotlar I, Colonnello A, Aguilera-González MF, Avila DS, de Lima ME, García-Contreras R, Ortíz-Plata A, Soares FAA, Aschner M, Santamaría A. Comparison of the Toxic Effects of Quinolinic Acid and 3-Nitropropionic Acid in C. elegans: Involvement of the SKN-1 Pathway. Neurotox Res 2018; 33:259-267. [PMID: 28822104 DOI: 10.1007/s12640-017-9794-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
The tryptophan metabolite, quinolinic acid (QUIN), and the mitochondrial toxin 3-nitropropionic acid (3-NP) are two important tools for toxicological research commonly used in neurotoxic models of excitotoxicity, oxidative stress, energy depletion, and neuronal cell death in mammals. However, their toxic properties have yet to be explored in the nematode Caenorhabditis elegans (C. elegans) for the establishment of novel, simpler, complementary, alternative, and predictive neurotoxic model of mammalian neurotoxicity. In this work, the effects of QUIN (1-100 mM) and 3-NP (1-10 mM) were evaluated on various physiological parameters (survival, locomotion, and longevity) in a wild-type (WT) strand of C. elegans (N2). Their effects were also tested in the VC1772 strain (knock out for the antioxidant SKN-1 pathway) and the VP596 strain (worms with a reporter gene for glutathione S-transferase (GST) transcription) in order to establish the role of the SKN-1 pathway in the mode of action of QUIN and 3-NP. In N2, the higher doses of both toxins decreased survival, though only QUIN altered motor activity. Both toxins also reduced longevity in the VC1772 strain (as compared to N2 strain) and augmented GST transcription in the VP596 strain at the highest doses. The changes induced by both toxins require high doses, and therefore appear moderate when compared with other toxic agents. Nevertheless, the alterations produced by QUIN and 3-NP in C. elegans are relevant to mammalian neurotoxicity as they provide novel mechanistic approaches to the assessment of neurotoxic events comprising oxidative stress and excitotoxicity, in the nematode model.
Collapse
Affiliation(s)
- Ilan Kotlar
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - María Fernanda Aguilera-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico
- Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alma Ortíz-Plata
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Insurgentes Sur 3877, 14269, Ciudad de México, Mexico.
| |
Collapse
|
27
|
Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, Malouf D, Gillatt D, Li Y. Cancer stem cells and signaling pathways in radioresistance. Oncotarget 2017; 7:11002-17. [PMID: 26716904 PMCID: PMC4905454 DOI: 10.18632/oncotarget.6760] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) is one of the most important strategies in cancer treatment. Radioresistance (the failure to RT) results in locoregional recurrence and metastasis. Therefore, it is critically important to investigate the mechanisms leading to cancer radioresistance to overcome this problem and increase patients' survival. Currently, the majority of the radioresistance-associated researches have focused on preclinical studies. Although the exact mechanisms of cancer radioresistance have not been fully uncovered, accumulating evidence supports that cancer stem cells (CSCs) and different signaling pathways play important roles in regulating radiation response and radioresistance. Therefore, targeting CSCs or signaling pathway proteins may hold promise for developing novel combination modalities and overcoming radioresistance. The present review focuses on the key evidence of CSC markers and several important signaling pathways in cancer radioresistance and explores innovative approaches for future radiation treatment.
Collapse
Affiliation(s)
- Lei Chang
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jingli Hao
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - David Malouf
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | - David Gillatt
- Department of Urology, St George Hospital, Kogarah, NSW, Australia.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
28
|
Olajide OJ, Asogwa NT, Moses BO, Oyegbola CB. Multidirectional inhibition of cortico-hippocampal neurodegeneration by kolaviron treatment in rats. Metab Brain Dis 2017; 32:1147-1161. [PMID: 28405779 DOI: 10.1007/s11011-017-0012-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
Abstract
Earliest signs of neurodegenerative cascades in the course of Alzheimer's disease (AD) are seen within the prefrontal cortex (PFC) and hippocampus, with pathological evidences in both cortical structures correlating with manifestation of behavioural and cognitive deficits. Despite the enormous problems associated with AD's clinical manifestations in sufferers, therapeutic advances for the disorder are still very limited. Therefore, this study examined cortico-hippocampal microstructures in models of AD, and evaluated the possible beneficial roles of kolaviron (Kv)-a biflavonoid complex in rats. Nine groups of rats were orally exposed to sodium azide (NaN3) or aluminium chloride (AlCl3) solely or in different combinations with Kv. Sequel to sacrifice and transcardial perfusion (using buffered saline then 4% paraformaldehyde), PFC and hippocampal tissues were harvested and processed for: spectrophotometric assays of oxidative stress and neuronal bioenergetics parameters, histological demonstration of cytoarchitecture and immunohistochemical evaluation of astrocytes and neuronal cytoskeleton. Results showed alterations in mitochondrial functions, which led to compromised neuronal antioxidant system, dysfunctional neural bioenergetics, hypertrophic astrogliosis, cytoskeletal dysregulation and neuronal death within the PFC and hippocampus. These degenerative events were associated with NaN3 and AlCl3 toxicity in rats. Furthermore, Kv inhibited cortico-hippocampal degeneration through multiple mechanisms that primarily involved halting of biochemical cascades that activate proteases which destroy molecules expedient for cell survival, and others that mediate a program of cell suicide in neuronal apoptosis. In conclusion, Kv showed important neuroprotective roles within cortico-hippocampal cells through multiple mechanisms, and particularly has prominent prophylactic activity than regenerative potentials.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Nnaemeka Tobechukwu Asogwa
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
- Central Research Laboratories Ltd, 132b University Road, Ilorin, Nigeria
| | - Blessing Oluwapelumi Moses
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Christiana Bidemi Oyegbola
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
29
|
l-3-n-Butylphthalide Activates Akt/mTOR Signaling, Inhibits Neuronal Apoptosis and Autophagy and Improves Cognitive Impairment in Mice with Repeated Cerebral Ischemia–Reperfusion Injury. Neurochem Res 2017. [DOI: 10.1007/s11064-017-2328-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
31
|
Fekadu J, Rami A. Beclin-1 Deficiency Alters Autophagosome Formation, Lysosome Biogenesis and Enhances Neuronal Vulnerability of HT22 Hippocampal Cells. Mol Neurobiol 2016; 53:5500-9. [PMID: 26456737 DOI: 10.1007/s12035-015-9453-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022]
Abstract
Beclin-1 is assumed to be a critical component participating in autophagosome formation in mammals; however, the exact role of Beclin-1 in autophagy remains controversial. Here (1) we created a HT22-Beclin-1-knockdown cell line using the Q-techBECN1 technique, (2) examined the potential role of Beclin-1 in an autophagic response in hippocampal HT22 neurons challenged with rapamycin, (3) investigated the expression of several gene products involved in the autophagic pathway, and (4) checked the effects of Beclin-1 knockdown on neuronal death induced by AAS. Rapamycin induced and altered the expression of autophagy signature proteins in wild-type cultures as well as in HT22-Beclin-1-knockdown cells. However, among the examined markers, only two factors exhibited dramatic changes when comparing controls to HT22-Beclin-1-knockdown cells. The amount of LC3, an important protein for the initiation of autophagosome formation and LAMP-1, a major constituent of the lysosomal membrane, underwent a dramatic and highly significant increase in control cultures challenged with rapamycin. In contrast, rapamycin was not able to induce any significant changes in LC3 and LAMP-1 levels in HT22-Beclin-1-knockdown cells. In addition, the knockdown of Beclin-1 enhanced neuronal susceptibility to death signals induced by AAS. Our data demonstrate the essential role of Beclin-1 in the formation of autophagosomes and lysosome biogenesis and underline that deletion of this key system is deleterious for cell viability.
Collapse
Affiliation(s)
- J Fekadu
- Institut für Zelluläre und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - A Rami
- Institut für Zelluläre und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.
| |
Collapse
|
32
|
Onofre I, Mendonça N, Lopes S, Nobre R, de Melo JB, Carreira IM, Januário C, Gonçalves AF, de Almeida LP. Fibroblasts of Machado Joseph Disease patients reveal autophagy impairment. Sci Rep 2016; 6:28220. [PMID: 27328712 PMCID: PMC4916410 DOI: 10.1038/srep28220] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Machado Joseph Disease (MJD) is the most frequent autosomal dominantly inherited cerebellar ataxia caused by the over-repetition of a CAG trinucleotide in the ATXN3 gene. This expansion translates into a polyglutamine tract within the ataxin-3 protein that confers a toxic gain-of-function to the mutant protein ataxin-3, contributing to protein misfolding and intracellular accumulation of aggregates and neuronal degeneration. Autophagy impairment has been shown to be one of the mechanisms that contribute for the MJD phenotype. Here we investigated whether this phenotype was present in patient-derived fibroblasts, a common somatic cell type used in the derivation of induced pluripotent stem cells and subsequent differentiation into neurons, for in vitro disease modeling. We generated and studied adult dermal fibroblasts from 5 MJD patients and 4 healthy individuals and we found that early passage MJD fibroblasts exhibited autophagy impairment with an underlying mechanism of decreased autophagosome production. The overexpression of beclin-1 on MJD fibroblasts reverted partially autophagy impairment by increasing the autophagic flux but failed to increase the levels of autophagosome production. Overall, our results provide a well-characterized MJD fibroblast resource for neurodegenerative disease research and contribute for the understanding of mutant ataxin-3 biology and its molecular consequences.
Collapse
Affiliation(s)
- Isabel Onofre
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Nuno Mendonça
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - Sara Lopes
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui Nobre
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana Barbosa de Melo
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal.,Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Marques Carreira
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal.,Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cristina Januário
- Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - António Freire Gonçalves
- Neurology Department, Coimbra University Hospital Center, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Portugal
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Rapamycin Loaded Solid Lipid Nanoparticles as a New Tool to Deliver mTOR Inhibitors: Formulation and in Vitro Characterization. NANOMATERIALS 2016; 6:nano6050087. [PMID: 28335215 PMCID: PMC5302501 DOI: 10.3390/nano6050087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Abstract
Recently, the use of mammalian target of rapamycin (mTOR) inhibitors, in particular rapamycin (Rp), has been suggested to improve the treatment of neurodegenerative diseases. However, as Rp is a strong immunosuppressant, specific delivery to the brain has been postulated to avoid systemic exposure. In this work, we fabricated new Rp loaded solid lipid nanoparticles (Rp-SLN) stabilized with polysorbate 80 (PS80), comparing two different methods and lipids. The formulations were characterized by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), wide angle X-ray scattering (WAXS), cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and particle tracking. In vitro release and short-term stability were assessed. Biological behavior of Rp-SLN was tested in SH-SY5Y neuroblastoma cells. The inhibition of mTOR complex 1 (mTORC1) was evaluated over time by a pulse-chase study compared to free Rp and Rp nanocrystals. Compritol Rp-SLN resulted more stable and possessing proper size and surface properties with respect to cetyl palmitate Rp-SLN. Rapamycin was entrapped in an amorphous form in the solid lipid matrix that showed partial crystallinity with stable Lβ, sub-Lα and Lβ′ arrangements. PS80 was stably anchored on particle surface. No drug release was observed over 24 h and Rp-SLN had a higher cell uptake and a more sustained effect over a week. The mTORC1 inhibition was higher with Rp-SLN. Overall, compritol Rp-SLN show suitable characteristics and stability to be considered for further investigation as Rp brain delivery system.
Collapse
|
34
|
Cell death and neurodegeneration in the postnatal development of cerebellar vermis in normal and Reeler mice. Ann Anat 2016; 207:76-90. [PMID: 26931496 DOI: 10.1016/j.aanat.2016.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022]
Abstract
Programmed cell death (PCD) was demonstrated in neurons and glia in normal brain development, plasticity, and aging, but also in neurodegeneration. (Macro)autophagy, characterized by cytoplasmic vacuolization and activation of lysosomal hydrolases, and apoptosis, typically entailing cell shrinkage, chromatin and nuclear condensation, are the two more common forms of PCD. Their underlying intracellular pathways are partly shared and neurons can die following both modalities, according to the type of death-triggering stimulus. Reelin is an extracellular protein necessary for proper neuronal migration and brain lamination. In the mutant Reeler mouse, its absence causes neuronal mispositioning, with a notable degree of cerebellar hypoplasia that was tentatively related to an increase in PCD. We have carried out an ultrastructural analysis on the occurrence and type of postnatal PCD affecting the cerebellar neurons in normal and Reeler mice. In the forming cerebellar cortex, PCD took the form of apoptosis or autophagy and mainly affected the cerebellar granule cells (CGCs). Densities of apoptotic CGCs were comparable in both mouse strains at P0-P10, while, in mutants, they increased to become significantly higher at P15. In WT mice the density of autophagic neurons did not display statistically significant differences in the time interval examined in this study, whereas it was reduced in Reeler in the P0-P10 interval, but increased at P15. Besides CGCs, the Purkinje neurons also displayed autophagic features in both WT and Reeler mice. Therefore, cerebellar neurons undergo different types of PCD and a Reelin deficiency affects the type and degree of neuronal death during postnatal development of the cerebellum.
Collapse
|
35
|
Xue Z, Guo Y, Fang Y. Moderate activation of autophagy regulates the intracellular calcium ion concentration and mitochondrial membrane potential in beta-amyloid-treated PC12 cells. Neurosci Lett 2016; 618:50-57. [PMID: 26923671 DOI: 10.1016/j.neulet.2016.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disease. Aggregated beta-amyloid (Aβ) disturbs Ca(2+) homeostasis and causes mitochondrial dysfunction and finally underlies AD. Recent evidence suggests that autophagy initiation by Beclin-1 protein might be involved in the pathogenesis of AD. However, the effects of Beclin-1 dependent autophagy on intracellular calcium ion concentration ([Ca(2+)]i) and mitochondrial membrane potential (MMP) is unclear. The effects of Beclin-1 dependent autophagy that were activated by a gradient concentration of autophagy activator rapamycin or inhibited by autophagy inhibitor 3-methyladenine (3-MA) on cell viability and cell morphology were examined. Pretreatment with rapamycin significantly up-regulated the expression of Beclin-1 in response to Aβ1-42 application, but after pretreatment with 3-MA it was significantly down-regulated. Moderate activation of Beclin-1 dependent autophagy had an up regulation effect on cell viability and could maintain the original morphology of cells. Furthermore, rapamycin or 3-MA on [Ca(2+)]i and MMP in Aβ1-42 treatment of PC12 cells were evaluated. We also report that PC12 cells treated with Aβ1-42 showed an increase in [Ca(2+)]i but a decrease in MMP when compared to the normal control. However the application of rapamycin prior to this prevented the increase in [Ca(2+)]i and the decrease in MMP in response to Aβ1-42. When 3-MA was applied this exacerbated the effect of Aβ1-42 on the [Ca(2+)]i and the MMP. This shows that moderate activation of Beclin-1 dependent autophagy by rapamycin can modulate Ca(2+) homeostasis and maintain MMP in response to Aβ1-42 induced cytotoxicity and so may have a preventive function in AD.
Collapse
Affiliation(s)
- Zhongfeng Xue
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Sanya Hospital of Traditional Chinese Medicine, Sanya, China
| | - Yalei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Hainan Tropical Ocean University, Sanya, China
| | - Yongqi Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
36
|
Kang EB, Cho JY. Effect of treadmill exercise on PI3K/AKT/mTOR, autophagy, and Tau hyperphosphorylation in the cerebral cortex of NSE/htau23 transgenic mice. J Exerc Nutrition Biochem 2015; 19:199-209. [PMID: 26527331 PMCID: PMC4624121 DOI: 10.5717/jenb.2015.15090806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 07/27/2015] [Accepted: 09/08/2015] [Indexed: 11/05/2022] Open
Abstract
Purpose Neurofibrillary tangles, one of pathological features of Alzheimer’s disease, are produced by the hyperphosphorylation and aggregation of tau protein. This study aimed to investigate the effects of treadmill exercise on PI3K/AKT/mTOR signal transmission, autophagy, and cognitive ability that are involved in the hyperphosphorylation and aggregation of tau protein. Methods Experimental animals (NSE/htau23 mice) were divided into non-transgenic control group (Non-Tg-Control; CON; n = 7), transgenic control group (Tg-CON; n = 7), and transgenic exercise group (Tg-Treadmill Exercise; TE; n = 7). The Tg-TE group was subjected to treadmill exercise for 12 weeks. After the treadmill exercise was completed, the cognitive ability was determined by conducting underwater maze tests. Western blot was conducted to determine the phosphorylation status of PI3K/AKT/mTOR proteins and autophagy-related proteins (Beclin-1, p62, LC3-B); hyperphosphorylation and aggregation of tau protein (Ser199/202, Ser404, Thr231, PHF-1); and phosphorylation of GSK-3β, which is involved in the phosphorylation of tau protein in the cerebral cortex of experimental animals. Results In the Tg-TE group that was subjected to treadmill exercise for 12 weeks, abnormal mTOR phosphorylation of PI3K/AKT proteins was improved via increased phosphorylation and its activity was inhibited by increased GSK-3β phosphorylation compared with those in the Tg-CON group, which was used as the control group. In addition, the expression of Beclin-1 protein involved in autophagosome formation was increased in the Tg-TE group compared with that in the Tg-CON group, whereas that of p62 protein was reduced in the Tg-TE group compared with that in the Tg-CON group. Autophagy was activated owing to the increased expression of LC3-B that controls the completion of autophagosome formation. The hyperphosphorylation and aggregation (Ser199/202, Ser404, Thr231, PHF-1) of tau protein was found to be reduced in the Tg-TE group compared with that in the Tg-CON group. Furthermore, in the underwater maze test, the Tg-TE group showed a reduced escape time and distance compared with those of the Tg-CON group, suggesting that learning and cognitive ability were improved. Conclusion These findings suggest that aerobic exercise such as treadmill exercise might be an effective approach to ameliorate the pathological features (or neurofibrillary tangles) of Alzheimer’s disease.
Collapse
Affiliation(s)
- Eun-Bum Kang
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Mitter SK, Song C, Qi X, Mao H, Rao H, Akin D, Lewin A, Grant M, Dunn W, Ding J, Bowes Rickman C, Boulton M. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 2015; 10:1989-2005. [PMID: 25484094 DOI: 10.4161/auto.36184] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.
Collapse
Key Words
- 3-MA, 3-methyladenine
- ACTB, β-actin
- AMD, age-related macular degeneration
- APOE4, apolipoprotein E4
- FACS, fluorescence-activated cell sorting
- FBS, fetal bovine serum
- GFP, green fluorescent protein
- GSH, glutathione, reduced
- GSSG, glutathione, oxidized
- H2O2, hydrogen peroxide
- HFC, high fat, cholesterol-enriched diet
- LC3, microtubule-associated protein 1 light chain 3
- MMP, mitochondrial membrane potential
- MTT, 3-(4 5-dimethylthiazol-3-yl)-2, 5-diphenyl tetrazolium bromide
- ND, normal (rodent) diet
- POS, photoreceptor outer segments
- ROS, reactive oxygen species
- RPE
- RPE, retinal pigmented epithelium
- SOD2/MnSOD, superoxide dismutase 2, mitochondrial
- UPS, ubiquitin-proteasome system
- age-related macular degeneration
- aging
- autophagy
- oxidative stress
Collapse
Affiliation(s)
- Sayak K Mitter
- a Department of Ophthalmology ; Indiana University School of Medicine ; Indianapolis , IN USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rami A, Benz AP, Niquet J, Langhagen A. Axonal Accumulation of Lysosomal-Associated Membrane Protein 1 (LAMP1) Accompanying Alterations of Autophagy Dynamics in the Rat Hippocampus Upon Seizure-Induced Injury. Neurochem Res 2015; 41:53-63. [PMID: 26329516 DOI: 10.1007/s11064-015-1704-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 02/02/2023]
Abstract
We found a dramatic upregulation in the expression of LC3 in the hippocampus of rats upon status epilepticus (SE). However, the enhancement in LC3 expression might be caused by a reduction in lysosomal activity or by alterations in autophagosome-lysosome fusion leading to a cytosolic vesicular retention. In order to dissect this aspect, we monitored the spatial and temporal expression of LC3 and LAMP1 in the hippocampus of rats with SE. The Western blot analysis showed that the expression of LAMP1 was slightly increased in hippocampal cells at 6, 24, and 48 h post-SE. However, immunofluorescence analysis showed dramatic spatial changes in LAMP1 distribution within the hippocampus. LAMP1 in controls was localised only in cytosol as dot like staining, however at 24 h post-SE LAMP1 was not only highly expressed, but accumulated in mossy fibers of dentate gyrus. In parallel, we found few scattered LC3-positive-dots in neurites of dentate gyrus which co-localise with LAMP1-positive structures. We conclude that SE not only increased autophagosomal abundance, but also lysosomal activities and a massive accumulation of LAMP1 in axons of dentate gyrus. This could support the hypothesis that the marked increased autophagosomal abundance in cytosol reflects an increase in the autophagic activity more than an inhibition of autophagosomal clearance. Although LAMP1 may have contributed to cell damage in the selective vulnerable hippocampal CA1-subfield, it is also possible that lysosomal/autophagic mechanisms in mossy fibers were compensatory and reflected an attempt to survive the epileptic insult by breaking down non-essential components.
Collapse
Affiliation(s)
- A Rami
- Institut für Zelluläre und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.
| | - A P Benz
- Institut für Zelluläre und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - J Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - A Langhagen
- Institut für Zelluläre und Molekulare Anatomie (Anatomie III), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| |
Collapse
|
39
|
Yang DJ, Zhu L, Ren J, Ma RJ, Zhu H, Xu J. Dysfunction of autophagy as the pathological mechanism of motor neuron disease based on a patient-specific disease model. Neurosci Bull 2015. [PMID: 26219222 DOI: 10.1007/s12264-015-1541-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autophagy is the main catabolic pathway in cells for the degradation of impaired proteins and organelles. Accumulating evidence supports the hypothesis that dysfunction of autophagy, leading to an imbalance of proteostasis and the accumulation of toxic proteins in neurons, is a central player in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). The clinical pathology of ALS is complex and many genes associated with autophagy and RNA processing are mutated in patients with the familial form. But a causal relationship between autophagic dysfunction and ALS has not been fully established. More importantly, studies on the pathological mechanism of ALS are mainly based on animal models that may not precisely recapitulate the disease itself in human beings. The development of human iPSC techniques allows us to address these issues directly in human cell models that may profoundly influence drug discovery for ALS.
Collapse
Affiliation(s)
- Dan-Jing Yang
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| | | | | | | | | | | |
Collapse
|
40
|
Cai Z, Zeng W, Tao K, E Z, Wang B, Yang Q. Chaperone-mediated autophagy: roles in neuroprotection. Neurosci Bull 2015. [PMID: 26206599 DOI: 10.1007/s12264-015-1540-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chaperone-mediated autophagy (CMA), one of the main pathways of lysosomal proteolysis, is characterized by the selective targeting and direct translocation into the lysosomal lumen of substrate proteins containing a targeting motif biochemically related to the pentapeptide KFERQ. Along with the other two lysosomal pathways, macro- and micro-autophagy, CMA is essential for maintaining cellular homeostasis and survival by selectively degrading misfolded, oxidized, or damaged cytosolic proteins. CMA plays an important role in pathologies such as cancer, kidney disorders, and neurodegenerative diseases. Neurons are post-mitotic and highly susceptible to dysfunction of cellular quality-control systems. Maintaining a balance between protein synthesis and degradation is critical for neuronal functions and homeostasis. Recent studies have revealed several new mechanisms by which CMA protects neurons through regulating factors critical for their viability and homeostasis. In the current review, we summarize recent advances in the understanding of the regulation and physiology of CMA with a specific focus on its possible roles in neuroprotection.
Collapse
Affiliation(s)
- Zhibiao Cai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | | | | | | | | | | |
Collapse
|
41
|
Villamil-Ortiz JG, Cardona-Gomez GP. Comparative analysis of autophagy and tauopathy related markers in cerebral ischemia and Alzheimer's disease animal models. Front Aging Neurosci 2015; 7:84. [PMID: 26042033 PMCID: PMC4436888 DOI: 10.3389/fnagi.2015.00084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) and cerebral ischemia (CI) are neuropathologies that are characterized by aggregates of tau protein, a hallmark of cognitive disorder and dementia. Protein accumulation can be induced by autophagic failure. Autophagy is a metabolic pathway involved in the homeostatic recycling of cellular components. However, the role of autophagy in those tauopathies remains unclear. In this study, we performed a comparative analysis to identify autophagy related markers in tauopathy generated by AD and CI during short-term, intermediate, and long-term progression using the 3xTg-AD mouse model (aged 6,12, and 18 months) and the global CI 2-VO (2-Vessel Occlusion) rat model (1,15, and 30 days post-ischemia). Our findings confirmed neuronal loss and hyperphosphorylated tau aggregation in the somatosensory cortex (SS-Cx) of the 3xTg-AD mice in the late stage (aged 18 months), which was supported by a failure in autophagy. These results were in contrast to those obtained in the SS-Cx of the CI rats, in which we detected neuronal loss and tauopathy at 1 and 15 days post-ischemia, and this phenomenon was reversed at 30 days. We proposed that this phenomenon was associated with autophagy induction in the late stage, since the data showed a decrease in p-mTOR activity, an association of Beclin-1 and Vps34, a progressive reduction in PHF-1, an increase in LC3B puncta and autophago-lysosomes formation were observed. Furthermore, the survival pathways remained unaffected. Together, our comparative study suggest that autophagy could ameliorates tauopathy in CI but not in AD, suggesting a differential temporal approach to the induction of neuroprotection and the prevention of neurodegeneration.
Collapse
Affiliation(s)
| | - Gloria P. Cardona-Gomez
- *Correspondence: Gloria P. Cardona-Gomez, Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, Calle 62 #52–59, Torre 1, Piso 4, Laboratorio 412, Antioquia, Medellín, Colombia
| |
Collapse
|
42
|
Del Rosario JS, Feldmann KG, Ahmed T, Amjad U, Ko B, An J, Mahmud T, Salama M, Mei S, Asemota D, Mano I. Death Associated Protein Kinase (DAPK) -mediated neurodegenerative mechanisms in nematode excitotoxicity. BMC Neurosci 2015; 16:25. [PMID: 25899010 PMCID: PMC4414438 DOI: 10.1186/s12868-015-0158-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background Excitotoxicity (the toxic overstimulation of neurons by the excitatory transmitter Glutamate) is a central process in widespread neurodegenerative conditions such as brain ischemia and chronic neurological diseases. Many mechanisms have been suggested to mediate excitotoxicity, but their significance across diverse excitotoxic scenarios remains unclear. Death Associated Protein Kinase (DAPK), a critical molecular switch that controls a range of key signaling and cell death pathways, has been suggested to have an important role in excitotoxicity. However, the molecular mechanism by which DAPK exerts its effect is controversial. A few distinct mechanisms have been suggested by single (sometimes contradicting) studies, and a larger array of potential mechanisms is implicated by the extensive interactome of DAPK. Results Here we analyze a well-characterized model of excitotoxicity in the nematode C. elegans to show that DAPK is an important mediator of excitotoxic neurodegeneration across a large evolutionary distance. We further show that some proposed mechanisms of DAPK’s action (modulation of synaptic strength, involvement of the DANGER-related protein MAB-21, and autophagy) do not have a major role in nematode excitotoxicity. In contrast, Pin1/PINN-1 (a DAPK interaction-partner and a peptidyl-prolyl isomerase involved in chronic neurodegenerative conditions) suppresses neurodegeneration in our excitotoxicity model. Conclusions Our studies highlight the prominence of DAPK and Pin1/PINN-1 as conserved mediators of cell death processes in diverse scenarios of neurodegeneration.
Collapse
Affiliation(s)
- John S Del Rosario
- Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education (SBE), City College of New York (CCNY), The City University of New York (CUNY), New York, NY, USA. .,MS program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Katherine Genevieve Feldmann
- Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education (SBE), City College of New York (CCNY), The City University of New York (CUNY), New York, NY, USA. .,PhD program in Neuroscience, the CUNY Graduate Center, New York, NY, USA.
| | - Towfiq Ahmed
- Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Uzair Amjad
- Undergraduate program in Biochemistry, CCNY, CUNY, New York, NY, USA.
| | - BakKeung Ko
- MS program in Biology, CCNY, CUNY, New York, NY, USA. .,Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - JunHyung An
- Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Tauhid Mahmud
- Undergraduate program in Biology, CCNY, CUNY, New York, NY, USA.
| | - Maha Salama
- Bs/MD program, Sophie Davis SBE, CCNY, CUNY, New York, NY, USA.
| | - Shirley Mei
- Bs/MD program, Sophie Davis SBE, CCNY, CUNY, New York, NY, USA.
| | - Daniel Asemota
- Bs/MD program, Sophie Davis SBE, CCNY, CUNY, New York, NY, USA.
| | - Itzhak Mano
- Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education (SBE), City College of New York (CCNY), The City University of New York (CUNY), New York, NY, USA. .,PhD program in Neuroscience, the CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
43
|
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015; 8:450. [PMID: 25628535 PMCID: PMC4290586 DOI: 10.3389/fncel.2014.00450] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada ; Department of Pathology, University of Manitoba Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
44
|
Yuntao F, Chenjia G, Panpan Z, Wenjun Z, Suhua W, Guangwei X, Haifeng S, Jian L, Wanxin P, Yun F, Cai J, Aschner M, Rongzhu L. Role of autophagy in methylmercury-induced neurotoxicity in rat primary astrocytes. Arch Toxicol 2014; 90:333-45. [PMID: 25488884 DOI: 10.1007/s00204-014-1425-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/25/2014] [Indexed: 11/30/2022]
Abstract
Autophagy is an evolutionarily conserved process in which cytoplasmic proteins and organelles are degraded and recycled for reuse. There are numerous reports on the role of autophagy in cell growth and death; however, the role of autophagy in methylmercury (MeHg)-induced neurotoxicity has yet to be identified. We studied the role of autophagy in MeHg-induced neurotoxicity in astrocytes. MeHg reduced astrocytic viability in a concentration- and time-dependent manner, and induced apoptosis. Pharmacological inhibition of autophagy with 3-methyladenine or chloroquine, as well as the silencing of the autophagy-related protein 5, increased MeHg-induced cytotoxicity and the ratio of apoptotic astrocytes. Conversely, rapamycin, an autophagy inducer, along with as N-acetyl-L-cysteine, a precursor of reduced glutathione, decreased MeHg-induced toxicity and the ratio of apoptotic astrocytes. These results indicated that MeHg-induced neurotoxicity was reduced, at least in part, through the activation of autophagy. Accordingly, modulation of autophagy may offer a new avenue for attenuating MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Yuntao
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Guo Chenjia
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhang Panpan
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhao Wenjun
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Suhua
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xing Guangwei
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shi Haifeng
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lu Jian
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Peng Wanxin
- Department of Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Feng Yun
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77550-1106, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lu Rongzhu
- Department of Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
45
|
Viscomi MT, D’Amelio M, Cavallucci V, Latini L, Bisicchia E, Nazio F, Fanelli F, Maccarrone M, Moreno S, Cecconi F, Molinari M. Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy 2014; 8:222-35. [DOI: 10.4161/auto.8.2.18599] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
46
|
Xue Z, Guo Y, Zhang S, Huang L, He Y, Fang R, Fang Y. Beta-asarone attenuates amyloid beta-induced autophagy via Akt/mTOR pathway in PC12 cells. Eur J Pharmacol 2014; 741:195-204. [DOI: 10.1016/j.ejphar.2014.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/28/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
|
47
|
Kesidou E, Lagoudaki R, Touloumi O, Poulatsidou KN, Simeonidou C. Autophagy and neurodegenerative disorders. Neural Regen Res 2014; 8:2275-83. [PMID: 25206537 PMCID: PMC4146038 DOI: 10.3969/j.issn.1673-5374.2013.24.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation of aberrant proteins and inclusion bodies are hallmarks in most neurodegenerative diseases. Consequently, these aggregates within neurons lead to toxic effects, overproduction of reactive oxygen species and oxidative stress. Autophagy is a significant intracellular mechanism that removes damaged organelles and misfolded proteins in order to maintain cell homeostasis. Excessive or insufficient autophagic activity in neurons leads to altered homeostasis and influences their survival rate, causing neurodegeneration. The review article provides an update of the role of autophagic process in representative chronic and acute neurodegenerative disorders.
Collapse
Affiliation(s)
- Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Macedonia, Greece
| | - Roza Lagoudaki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Macedonia, Greece
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Macedonia, Greece
| | - Kyriaki-Nefeli Poulatsidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Macedonia, Greece
| | - Constantina Simeonidou
- Department of Experimental Physiology, Medical School, Aristotle University of Thessaloniki, Macedonia, Greece
| |
Collapse
|
48
|
Guglielmotto M, Monteleone D, Piras A, Valsecchi V, Tropiano M, Ariano S, Fornaro M, Vercelli A, Puyal J, Arancio O, Tabaton M, Tamagno E. Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy 2014; 10:1827-43. [PMID: 25136804 DOI: 10.4161/auto.30001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.
Collapse
Affiliation(s)
- Michela Guglielmotto
- Department of Neuroscience; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| | - Debora Monteleone
- Department of Clinical and Biological Sciences; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| | - Antonio Piras
- Department of Neuroscience; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| | - Valeria Valsecchi
- Department of Neuroscience; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| | - Marta Tropiano
- Department of Neuroscience; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| | - Stefania Ariano
- Department of Clinical and Biological Sciences; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| | | | - Alessandro Vercelli
- Department of Neuroscience; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| | - Julien Puyal
- Department of Fundamental Neurosciences; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland; Clinic of Neonatology; Department of Pediatrics and Pediatric Surgery; Lausanne University Hospital and University of Lausanne; Lausanne, Switzerland
| | - Ottavio Arancio
- Department of Pathology and Cell Biology; Taub Institute for Research on Alzheimer's Disease and the Aging Brain; Columbia University; New York, NY USA
| | - Massimo Tabaton
- Department of Internal Medicine; Unit of Geriatric Medicine; University of Genoa; Genoa, Italy
| | - Elena Tamagno
- Department of Neuroscience; University of Torino; Torino, Italy; Neuroscience Institute of Cavalieri Ottolenghi Foundation (NICO); University of Torino; Torino, Italy
| |
Collapse
|
49
|
A novel manganese complex LMnAc selectively kills cancer cells by induction of ROS-triggered and mitochondrial-mediated cell death. SCIENCE CHINA-LIFE SCIENCES 2014; 57:998-1010. [PMID: 24935782 DOI: 10.1007/s11427-014-4682-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
We previously identified a novel synthesized metal compound, LMnAc ([L2Mn2(Ac)(H2O)2](Ac) (L=bis(2-pyridylmethyl) amino-2-propionic acid)). This compound exhibited significant inhibition on cancer cell proliferation and was more selective against cancer cells than was the popular chemotherapeutic reagent cisplatin. In this study, we further investigated the underlying molecular mechanisms of LMnAc-induced cancer cell death. We found that LMnAc achieved its selectivity against cancer cells through the transferrin-transferrin receptor system, which is highly expressed in tumor cells. LMnAc triggered cancer cells to commit autophagy and apoptosis, which was mediated by the mitochondrial pathway. Moreover, LMnAc disrupted mitochondrial function, resulting in mitochondrial membrane potential collapse and ATP reduction. In addition, LMnAc induced intracellular Ca(2+) overload and reactive oxygen species generation. Interestingly, its anticancer effect was significantly reduced following pretreatment with the antioxidant N-acetyl cysteine, indicating that reactive oxygen species triggered cell death. Altogether, our data suggest that LMnAc appears to be a selectively promising anticancer drug candidate.
Collapse
|
50
|
Schiavi A, Ventura N. The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 2014; 56:147-53. [PMID: 24607515 DOI: 10.1016/j.exger.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/07/2023]
Abstract
Mitochondria are highly dynamic organelles which play a central role in cellular homeostasis. Mitochondrial dysfunction leads to life-threatening disorders and accelerates the aging process. Surprisingly, on the other hand, a mild reduction of mitochondria functionality can have pro-longevity effects in organisms spanning from yeast to mammals. Autophagy is a fundamental cellular housekeeping process that needs to be finely regulated for proper cell and organism survival, as underlined by the fact that both its over- and its defective activation have been associated with diseases and accelerated aging. A reciprocal interplay exists between mitochondria and autophagy, which is needed to constantly adjust cellular energy metabolism in different pathophysiological conditions. Here we review general features of mitochondrial function and autophagy with particular focus on their crosstalk and its possible implication in the aging process.
Collapse
Affiliation(s)
- Alfonso Schiavi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|