1
|
Xue M, You Y, Zhang L, Cao J, Xu M, Chen S. ZmHsp18 screened from the ZmHsp20 gene family confers thermotolerance in maize. BMC PLANT BIOLOGY 2024; 24:1048. [PMID: 39506700 PMCID: PMC11539784 DOI: 10.1186/s12870-024-05763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Heat stress has become one of the abiotic stresses that pose an increasing threat to maize production due to global warming. The Hsp20 gene family confers tolerance to various abiotic stresses in plants. However, very few Hsp20s have been identified in relation to maize thermotolerance. In this study, we conducted a comprehensive study of Hsp20s involved in thermotolerance in maize. A total of 33 maize Hsp20 genes (ZmHsp20s) were identified through scanning for a conserved α-crystalline domain (ACD), and they were categorized into 14 subfamilies based on phylogenetic analysis. These genes are distributed across all maize chromosomes and nine of them are in regions previously identified as heat-tolerance quantitative trait loci (hrQTL). These hrQTL-associated ZmHsp20s show variation in tissue-specific expression profiles under normal conditions, and seven of them possess 1-5 heat stress elements in their promoters. The integration of RNA-seq data with real-time RT-PCR analysis indicated that ZmHsp23.4, ZmHsp22.8B and ZmHsp18 were dramatically induced under heat stress. Additionally, these genes exhibited co-expression patterns with key ZmHsfs, which are crucial in the heat tolerance pathway. When a null mutant carrying a frame-shifted ZmHsp18 gene was subjected to heat stress, its survival rate decreased significantly, indicating a critical role of ZmHsp18 in maize thermotolerance. Our study lays the groundwork for further research into the roles of ZmHsp20s in enhancing maize's thermotolerance.
Collapse
Affiliation(s)
- Ming Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yiwen You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Luyao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jinming Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Mingliang Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Saihua Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Wang C, Wang X, Zhou P, Li C. Genome-Wide Identification and Characterization of RdHSP Genes Related to High Temperature in Rhododendron delavayi. PLANTS (BASEL, SWITZERLAND) 2024; 13:1878. [PMID: 38999718 PMCID: PMC11244423 DOI: 10.3390/plants13131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that play essential roles in plant development and in response to various environmental stresses. Understanding R. delavayi HSP genes is of great importance since R. delavayi is severely affected by heat stress. In the present study, a total of 76 RdHSP genes were identified in the R. delavayi genome, which were divided into five subfamilies based on molecular weight and domain composition. Analyses of the chromosome distribution, gene structure, and conserved motif of the RdHSP family genes were conducted using bioinformatics analysis methods. Gene duplication analysis showed that 15 and 8 RdHSP genes were obtained and retained from the WGD/segmental duplication and tandem duplication, respectively. Cis-element analysis revealed the importance of RdHSP genes in plant adaptations to the environment. Moreover, the expression patterns of RdHSP family genes were investigated in R. delavayi treated with high temperature based on our RNA-seq data, which were further verified by qRT-PCR. Further analysis revealed that nine candidate genes, including six RdHSP20 subfamily genes (RdHSP20.4, RdHSP20.8, RdHSP20.6, RdHSP20.3, RdHSP20.10, and RdHSP20.15) and three RdHSP70 subfamily genes (RdHSP70.15, RdHSP70.21, and RdHSP70.16), might be involved in enhancing the heat stress tolerance. The subcellular localization of two candidate RdHSP genes (RdHSP20.8 and RdHSP20.6) showed that two candidate RdHSPs were expressed and function in the chloroplast and nucleus, respectively. These results provide a basis for the functional characterization of HSP genes and investigations on the molecular mechanisms of heat stress response in R. delavayi.
Collapse
Affiliation(s)
- Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| | - Xiaojing Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ping Zhou
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| |
Collapse
|
3
|
Ling Q, Zhang S, Li X, Tang B, Chen A, Zeng T, Ma Q, Chen Y, Tang S, Pan Y, Liu Q, Jia Y, Yong X, Jiang B. Cloning and functional verification of the CmHSP17.9 gene from chrysanthemum. PLoS One 2024; 19:e0301721. [PMID: 38718030 PMCID: PMC11078346 DOI: 10.1371/journal.pone.0301721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
Small molecular heat shock proteins (sHSPs) belong to the HSP family of molecular chaperones. Under high-temperature stress, they can prevent the aggregation of irreversible proteins and maintain the folding of denatured proteins to enhance heat resistance. In this study, the CmHSP17.9-1 and CmHSP17.9-2 genes, which were cloned from chrysanthemum (Chrysanthemum×morifolium 'Jinba') by homologous cloning, had a complete open reading frame of 480 bp each, encoding 159 amino acids. The protein subcellular localization analysis showed that CmHSP17.9-1 and CmHSP17.9-2 were located in the cytoplasm and mostly aggregated in granules, especially around the nucleus. Real-time quantitative PCR (qRT-PCR) analysis showed that the relative expression level of the CmHSP17.9-1 and CmHSP17.9-2 genes was highest in the terminal buds of the chrysanthemum, followed by the leaves. CmHSP17.9-1 and CmHSP17.9-2 overex-pression vectors were constructed and used to transform the chrysanthemum; overexpression of these genes led to the chrysanthemum phenotypes being less affected by high-temperature, and the antioxidant capacity was enhanced. The results showed that chrysanthemum with overex-pression of the CmHSP17.9-1 and CmHSP17.9-2 genes had stronger tolerance than the wild type chrysanthemum after high-temperature treatment or some degree of heat exercise, and overex-pression of the CmHSP17.9-1 gene led to stronger heat resistance than that of the CmHSP17.9-2 gene, providing an important theoretical basis for the subsequent molecular breeding and pro-duction applications of chrysanthemum.
Collapse
Affiliation(s)
- Qin Ling
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Shumei Zhang
- School of Landscape Architecture, Liaoning Agricultural College, Yingkou, China
| | - Xin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Beibei Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Ai Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tao Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yijun Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Shaokang Tang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Li Y, Liu Y, Jin L, Peng R. Crosstalk between Ca 2+ and Other Regulators Assists Plants in Responding to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101351. [PMID: 35631776 PMCID: PMC9148064 DOI: 10.3390/plants11101351] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 05/08/2023]
Abstract
Plants have evolved many strategies for adaptation to extreme environments. Ca2+, acting as an important secondary messenger in plant cells, is a signaling molecule involved in plants' response and adaptation to external stress. In plant cells, almost all kinds of abiotic stresses are able to raise cytosolic Ca2+ levels, and the spatiotemporal distribution of this molecule in distant cells suggests that Ca2+ may be a universal signal regulating different kinds of abiotic stress. Ca2+ is used to sense and transduce various stress signals through its downstream calcium-binding proteins, thereby inducing a series of biochemical reactions to adapt to or resist various stresses. This review summarizes the roles and molecular mechanisms of cytosolic Ca2+ in response to abiotic stresses such as drought, high salinity, ultraviolet light, heavy metals, waterlogging, extreme temperature and wounding. Furthermore, we focused on the crosstalk between Ca2+ and other signaling molecules in plants suffering from extreme environmental stress.
Collapse
|
5
|
Expression Profiling of Heat Shock Protein Genes as Putative Early Heat-Responsive Members in Lettuce. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High temperatures due to global warming can cause harmful effects on the productivity of lettuce, a cool-season crop. To identify lettuce heat shock protein (HSP) genes that could be involved in early responses to heat stress in plants, we compared RNA transcriptomes between lettuce plants with and without heat treatment of 37 °C for 1 h. Using transcriptome sequencing analyses, a total of 7986 differentially expressed genes (DEGs) were identified including the top five, LsHSP70A, LsHSP70B, LsHSP17.3A, LsHSP17.9A and LsHSP17.9B, which were the most highly differentially expressed genes. In order to investigate the temporal expression patterns of 24 lettuce HSP genes with a fold-change greater than 100 under heat stress, the expression levels of the genes were measured by qRT-PCR at 0, 1, 4, 8, 14, and 24 h time points after heat treatment. The 24 LsHSP genes were classified into three groups based on the phylogenetic analysis and/or major domains available in each protein, and we provided a potential link between the phylogenetic relationships and expression patterns of the LsHSP genes. Our results showed putative early heat-responsive lettuce HSP genes that could be possible candidates as breeding guides for the development of heat-tolerant lettuce cultivars.
Collapse
|
6
|
Gross LE, Klinger A, Spies N, Ernst T, Flinner N, Simm S, Ladig R, Bodensohn U, Schleiff E. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. THE PLANT CELL 2021; 33:1657-1681. [PMID: 33624803 PMCID: PMC8254496 DOI: 10.1093/plcell/koab052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for the translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of translocon of the outer chloroplast (TOC) membrane. After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.
Collapse
Affiliation(s)
- Lucia E Gross
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Anna Klinger
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nicole Spies
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Theresa Ernst
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Nadine Flinner
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Stefan Simm
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9; D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| |
Collapse
|
7
|
RNA-Seq Time Series of Vitis vinifera Bud Development Reveals Correlation of Expression Patterns with the Local Temperature Profile. PLANTS 2020; 9:plants9111548. [PMID: 33198137 PMCID: PMC7698159 DOI: 10.3390/plants9111548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Plants display sophisticated mechanisms to tolerate challenging environmental conditions and need to manage their ontogenesis in parallel. Here, we set out to generate an RNA-Seq time series dataset throughout grapevine (Vitis vinifera) early bud development. The expression of the developmental regulator VviAP1 served as an indicator of the progression of development. We investigated the impact of changing temperatures on gene expression levels during the time series and detected a correlation between increased temperatures and a high expression level of genes encoding heat-shock proteins. The dataset also allowed the exemplary investigation of expression patterns of genes from three transcription factor (TF) gene families, namely MADS-box, WRKY, and R2R3-MYB genes. Inspection of the expression profiles from all three TF gene families indicated that a switch in the developmental program takes place in July which coincides with increased expression of the bud dormancy marker gene VviDRM1.
Collapse
|
8
|
Sarkar NK, Kotak S, Agarwal M, Kim YK, Grover A. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings. PLANTA 2019; 251:26. [PMID: 31797121 DOI: 10.1007/s00425-019-03318-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION Silencing of CI-sHsps by RNAi negatively affected the seed germination process and heat stress response of rice seedlings. Seed size of RNAiCI-sHsp was reduced as compared to wild-type plants. Small heat shock proteins (sHsps) are the ATP-independent chaperones ubiquitously expressed in response to diverse environmental and developmental cues. Cytosolic sHsps constitute the major repertoire of sHsp family. Rice cytosolic class I (CI)-sHsps consists of seven members (Hsp16.9A, Hsp16.9B, Hsp16.9C, Hsp17.4, Hsp17.7, Hsp17.9A and Hsp18). Purified OsHsp17.4 and OsHsp17.9A proteins exhibited chaperone activity by preventing formation of large aggregates with model substrate citrate synthase. OsHsp16.9A and OsHsp17.4 showed nucleo-cytoplasmic localization, while the localization of OsHsp17.9A was preferentially in the nucleus. Transgenic tobacco plants expressing OsHsp17.4 and OsHsp17.9A proteins and Arabidopsis plants ectopically expressing OsHsp17.4 protein showed improved thermotolerance to the respective trans-hosts during the post-stress recovery process. Single hairpin construct was designed to generate all CI-sHsp silenced (RNAiCI-sHsp) rice lines. The major vegetative and reproductive attributes of the RNAiCI-sHsp plants were comparable to the wild-type rice plants. Basal and acquired thermotolerance response of RNAiCI-sHsp seedlings of rice was mildly affected. The seed length of RNAiCI-sHsp rice plants was significantly reduced. The seed germination process was delayed and seed thermotolerance of RNAiCI-sHsp was negatively affected than the non-transgenic seeds. We, thus, implicate that sHsp genes are critical in seedling thermotolerance and seed physiology.
Collapse
Affiliation(s)
- Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Yeon-Ki Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, 449-728, Korea
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
9
|
Li J, Liu X. Genome-wide identification and expression profile analysis of the Hsp20 gene family in Barley ( Hordeum vulgare L.). PeerJ 2019; 7:e6832. [PMID: 31110921 PMCID: PMC6501772 DOI: 10.7717/peerj.6832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/22/2019] [Indexed: 11/29/2022] Open
Abstract
In plants, heat shock proteins (Hsps) play important roles in response to diverse stresses. Hsp20 is the major family of Hsps, but their role remains poorly understood in barley (Hordeum vulgare L.). To reveal the mechanisms of barley Hsp20s (HvHsp20s) response to stress conditions, we performed a comprehensive genome-wide analysis of the HvHsp20 gene family using bioinformatics-based methods. In total, 38 putative HvHsp20s were identified in barley and grouped into four subfamilies (C, CP, PX, and MT) based on predicted subcellular localization and their phylogenetic relationships. A sequence analysis indicated that most HvHsp20 genes have no intron or one with a relatively short length. In addition, the same group of HvHsp20 proteins in the phylogenetic tree shared similar gene structure and motifs, indicating that they were highly conserved and might have similar function. Based on RNA-seq data analysis, we showed that the transcript levels of HvHsp20 genes could be induced largely by abiotic and biotic stresses such as heat, salt, and powdery mildew. Three HvHsp20 genes, HORVU7Hr1G036540, HORVU7Hr1G036470, and HORVU3Hr1G007500, were up-regulated under biotic and abiotic stresses, suggesting their potential roles in mediating the response of barley plants to environment stresses. These results provide valuable information for further understanding the complex mechanisms of HvHsp20 gene family in barley.
Collapse
Affiliation(s)
- Jie Li
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China
| | - Xinhao Liu
- Kaifeng Agriculture and Forestry Science Institute, Kaifeng, Henan Province, China
| |
Collapse
|
10
|
Transcriptomic and Metabolomic Analysis of the Heat-Stress Response of Populus tomentosa Carr. FORESTS 2019. [DOI: 10.3390/f10050383] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants have evolved mechanisms of stress tolerance responses to heat stress. However, little is known about metabolic responses to heat stress in trees. In this study, we exposed Populus tomentosa Carr. to control (25 °C) and heat stress (45 °C) treatments and analyzed the metabolic and transcriptomic effects. Heat stress increased the cellular concentration of H2O2 and the activities of antioxidant enzymes. The levels of proline, raffinose, and melibiose were increased by heat stress, whereas those of pyruvate, fumarate, and myo-inositol were decreased. The expression levels of most genes (PSB27, PSB28, LHCA5, PETB, and PETC) related to the light-harvesting complexes and photosynthetic electron transport system were downregulated by heat stress. Association analysis between key genes and altered metabolites indicated that glycolysis was enhanced, whereas the tricarboxylic acid (TCA) cycle was suppressed. The inositol phosphate; galactose; valine, leucine, and isoleucine; and arginine and proline metabolic pathways were significantly affected by heat stress. In addition, several transcription factors, including HSFA2, HSFA3, HSFA9, HSF4, MYB27, MYB4R1, and bZIP60 were upregulated, whereas WRKY13 and WRKY50 were downregulated by heat stress. Interestingly, under heat stress, the expression of DREB1, DREB2, DREB2E, and DREB5 was dramatically upregulated at 12 h. Our results suggest that proline, raffinose, melibiose, and several genes (e.g., PSB27, LHCA5, and PETB) and transcription factors (e.g., HSFAs and DREBs) are involved in the response to heat stress in P. tomentosa.
Collapse
|
11
|
Klinger A, Gosch V, Bodensohn U, Ladig R, Schleiff E. The signal distinguishing between targeting of outer membrane β-barrel protein to plastids and mitochondria in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:663-672. [PMID: 30633951 DOI: 10.1016/j.bbamcr.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
The proteome of the outer membrane of mitochondria and chloroplasts consists of membrane proteins anchored by α-helical or β-sheet elements. While proteins with α-helical transmembrane domains are present in all cellular membranes, proteins with β-barrel structure are specific for these two membranes. The organellar β-barrel proteins are encoded in the nuclear genome and thus, have to be targeted to the outer organellar membrane where they are recognized by surface exposed translocation complexes. In the last years, the signals that ensure proper targeting of these proteins have been investigated as essential base for an understanding of the regulation of cellular protein distribution. However, the organellar β-barrel proteins are unique as most of them do not contain a typical targeting information in form of an N-terminal cleavable targeting signal. Recently, it was discovered that targeting and surface recognition of mitochondrial β-barrel proteins in yeast, humans and plants depends on the hydrophobicity of the last β-hairpin of the β-barrel. However, we demonstrate that the hydrophobicity is not sufficient for the discrimination of targeting to chloroplasts or mitochondria. By domain swapping between mitochondrial and chloroplast targeted β-barrel proteins atVDAC1 and psOEP24 we demonstrate that the presence of a hydrophilic amino acid at the C-terminus of the penultimate β-strand is required for mitochondrial targeting. A mutation of the chloroplast β-barrel protein psOEP24 which mimics such profile is efficiently targeted to mitochondria. Thus, we present the properties of the signal for mitochondrial targeting of β-barrel proteins in plants.
Collapse
Affiliation(s)
- Anna Klinger
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Victoria Gosch
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Uwe Bodensohn
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Roman Ladig
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany; Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue Str. 15, D-60438 Frankfurt, Germany; Frankfurt Institute of Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt, Germany.
| |
Collapse
|
12
|
Yer EN, Baloglu MC, Ayan S. Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene 2018; 678:324-336. [PMID: 30110648 DOI: 10.1016/j.gene.2018.08.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Heat shock proteins (Hsps) play a key role for regulation of the changes during different stress conditions including salinity, drought, heavy metal and extreme temperature. Molecular based studies on the response mechanisms of forest trees to abiotic stresses started in 2006 when Populus trichocarpa genome sequence was completed as a model tree species. In recent years, bioinformatic analyzes have been carried out to determine functional gene regions of tree species. In this study, sHsp, Hsp40, Hsp60, Hsp90 and Hsp100 gene family members were identified in poplar genome. Some bioinformatics analyses were conducted, such as: identification of DNA/protein sequences, chromosomal localization, gene structure, calculation of genomic duplications, determination of phylogenetic groups, examination of protected motif regions, identification of gene ontology categories, modeling of protein 3D structure, determination of miRNA targeting genes, examination of sHsp, Hsp40, Hsp60, Hsp90 and Hsp100 gene family members in transcriptome data during salinity stress. As a result of bioinformatic analyzes made on P. trichocarpa genome; 60, 145, 49, 34, 12 and 90 genes belonging to members of sHsp, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp100 protein families were firstly defined within the scope of this study. A total of 390 genes belonging to all Hsps gene families were characterized using different bioinformatics tools. In addition, salinity stress was applied to Populus tremula L. (Samsun) naturally grown in Turkey, Hybrid poplar species I-214 (Populus euramericana Dode. Guinier) and Black Poplar species (Populus nigra L.), Geyve and N.03.368.A clones. The expression levels of the selected Hsps genes were determined by the qRT-PCR method. After salt stress application in various poplar clones, expression levels of genes including PtsHsp-11, PtsHsp-21, PtsHsp-36, PtHsp40-113, PtHsp40-117, PtHsp60-31, PtHsp60-33, PtHsp60-38, PtHsp60-49, PtHsp70-09, PtHsp70-12, 33, PtHsp90-09, PtHsp90-12, PtHsp100-21, and PtHsp100-75 were increased. The role of the Hsps genes during salt stress has been revealed. Together with detailed bioinformatics analyses, gene expression analysis greatly contributes to understand functions of these gene family members. This research serves as a blueprint for future studies and offers a significant clue for the further study of the functions of this important gene family. Moreover, determined genes in this study can also be used for cloning studies in agricultural practices.
Collapse
Affiliation(s)
- Esra Nurten Yer
- Silviculture Department, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Turkey.
| | - Sezgin Ayan
- Silviculture Department, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
13
|
Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress. Genes (Basel) 2018; 9:genes9020035. [PMID: 29360757 PMCID: PMC5852552 DOI: 10.3390/genes9020035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Heat-shock proteins (HSPs) are ubiquitous proteins with important roles in response to biotic and abiotic stress. The 70-kDa heat-shock genes (Hsp70s) encode a group of conserved chaperone proteins that play central roles in cellular networks of molecular chaperones and folding catalysts across all the studied organisms including bacteria, plants and animals. Several Hsp70s involved in drought tolerance have been well characterized in various plants, whereas no research on Chenopodium quinoa HSPs has been completed. Here, we analyzed the genome of C. quinoa and identified sixteen Hsp70 members in quinoa genome. Phylogenetic analysis revealed the independent origination of those Hsp70 members, with eight paralogous pairs comprising the Hsp70 family in quinoa. While the gene structure and motif analysis showed high conservation of those paralogous pairs, the synteny analysis of those paralogous pairs provided evidence for expansion coming from the polyploidy event. With several subcellular localization signals detected in CqHSP70 protein paralogous pairs, some of the paralogous proteins lost the localization information, indicating the diversity of both subcellular localizations and potential functionalities of those HSP70s. Further gene expression analyses revealed by quantitative polymerase chain reaction (qPCR) analysis illustrated the significant variations of Cqhsp70s in response to drought stress. In conclusion, the sixteen Cqhsp70s undergo lineage-specific expansions and might play important and varied roles in response to drought stress.
Collapse
|
14
|
Truong HA, Jeong CY, Lee WJ, Lee BC, Chung N, Kang CS, Cheong YK, Hong SW, Lee H. Evaluation of a Rapid Method for Screening Heat Stress Tolerance Using Three Korean Wheat (Triticum aestivum L.) Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017. [PMID: 28650654 DOI: 10.1021/acs.jafc.7b01752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Thermotolerance in plants is a topic of concern given the current trends in global warming. Here, we aimed to develop a rapid and reproducible screening method for selection of heat stress-tolerant wheat varieties to expedite the breeding process. We tested the robustness of the screen in three Korean wheat cultivars, "BackJung", "KeumKang", and "ChoKyeong". We showed that 4-day-old seedlings of "KeumKang" had the highest survival rates after a 45 °C treatment for 20 h. Moreover, the ability to retain chlorophyll and antioxidant activity was also highest in "KeumKang". The increase in malondialdehyde content in "ChoKyeong" indicated that this cultivar showed the greatest damage after heat stress. Collectively, our results showed that "KeumKang" is the most heat-tolerant cultivar of the three examined. In conclusion, the most reliable and rapid screening method in our investigation was survival rate examined at lethal temperature.
Collapse
Affiliation(s)
- Hai An Truong
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chan Young Jeong
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University , Seoul 02841, Republic of Korea
| | - Won Je Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Cheon Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Namhyun Chung
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chon-Sik Kang
- Crop Breeding Division, National Institute of Crop Science, RDA , Wanju, 55365, Republic of Korea
| | - Young-Keun Cheong
- Crop Breeding Division, National Institute of Crop Science, RDA , Wanju, 55365, Republic of Korea
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Center, Chonnam National University , Gwangju, 61186, Republic of Korea
| | - Hojoung Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University , Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Röth S, Mirus O, Bublak D, Scharf KD, Schleiff E. DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:31-44. [PMID: 27560701 DOI: 10.1111/tpj.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/15/2023]
Abstract
HsfB1 is a central regulator of heat stress (HS) response and functions dually as a transcriptional co-activator of HsfA1a and a general repressor in tomato. HsfB1 is efficiently synthesized during the onset of HS and rapidly removed in the course of attenuation during the recovery phase. Initial results point to a complex regime modulating HsfB1 abundance involving the molecular chaperone Hsp90. However, the molecular determinants affecting HsfB1 stability needed to be established. We provide experimental evidence that DNA-bound HsfB1 is efficiently targeted for degradation when active as a transcriptional repressor. Manipulation of the DNA-binding affinity by mutating the HsfB1 DNA-binding domain directly influences the stability of the transcription factor. During HS, HsfB1 is stabilized, probably due to co-activator complex formation with HsfA1a. The process of HsfB1 degradation involves nuclear localized Hsp90. The molecular determinants of HsfB1 turnover identified in here are so far seemingly unique. A mutational switch of the R/KLFGV repressor motif's arginine and lysine implies that the abundance of other R/KLFGV type Hsfs, if not other transcription factors as well, might be modulated by a comparable mechanism. Thus, we propose a versatile mechanism for strict abundance control of the stress-induced transcription factor HsfB1 for the recovery phase, and this mechanism constitutes a form of transcription factor removal from promoters by degradation inside the nucleus.
Collapse
Affiliation(s)
- Sascha Röth
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Daniela Bublak
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Klaus-Dieter Scharf
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
- Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| |
Collapse
|
16
|
Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 2016; 6:32641. [PMID: 27586959 PMCID: PMC5009299 DOI: 10.1038/srep32641] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 11/12/2022] Open
Abstract
Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Jananee Jaishankar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | | | - Shweta Shweta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Anand Dangi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
17
|
HanumanthaRao B, Nair RM, Nayyar H. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective. FRONTIERS IN PLANT SCIENCE 2016; 7:957. [PMID: 27446183 PMCID: PMC4925713 DOI: 10.3389/fpls.2016.00957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems-biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions.
Collapse
Affiliation(s)
| | - Ramakrishnan M. Nair
- Vegetable Breeding – Legumes, World Vegetable Center, South AsiaHyderabad, India
| | - Harsh Nayyar
- Department of Botany, Panjab UniversityChandigarh, India
| |
Collapse
|
18
|
Wang X, Huang W, Yang Z, Liu J, Huang B. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis. Sci Rep 2016; 6:28021. [PMID: 27320381 PMCID: PMC4913247 DOI: 10.1038/srep28021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022] Open
Abstract
Heat stress transcription factor A2s (HsfA2s) are key regulators in plant response to high temperature. Our objectives were to isolate an HsfA2 gene (CtHsfA2b) from a warm-season grass species, African bermudagrass (Cynodon transvaalensis Burtt-Davy), and to determine the physiological functions and transcriptional regulation of HsfA2 for improving heat tolerance. Gene expression analysis revealed that CtHsfA2b was heat-inducible and exhibited rapid response to increasing temperature. Ectopic expression of CtHsfA2b improved heat tolerance in Arabidopsis and restored heat-sensitive defects of Arabidopsis hsfa2 mutant, which was demonstrated by higher survival rate and photosynthetic parameters, and lower electrolyte leakage in transgenic plants compared to the WT or hsfa2 mutant. CtHsfA2b transgenic plants showed elevated transcriptional regulation of several downstream genes, including those encoding ascorbate peroxidase (AtApx2) and heat shock proteins [AtHsp18.1-CI, AtHsp22.0-ER, AtHsp25.3-P and AtHsp26.5-P(r), AtHsp70b and AtHsp101-3]. CtHsfA2b was found to bind to the heat shock element (HSE) on the promoter of AtApx2 and enhanced transcriptional activity of AtApx2. These results suggested that CtHsfA2b could play positive roles in heat protection by up-regulating antioxidant defense and chaperoning mechanisms. CtHsfA2b has the potential to be used as a candidate gene to genetically modify cool-season species for improving heat tolerance.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Ascorbate Peroxidases/genetics
- Ascorbate Peroxidases/metabolism
- Cynodon/genetics
- DNA, Plant/chemistry
- DNA, Plant/isolation & purification
- DNA, Plant/metabolism
- Gene Expression Regulation, Plant
- Heat Shock Transcription Factors/genetics
- Heat Shock Transcription Factors/metabolism
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Heat-Shock Response/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic
- Reactive Oxygen Species/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Stress, Physiological
- Thermotolerance/genetics
- Transcriptional Activation
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Xiuyun Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Wanlu Huang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
19
|
Abu-Romman S. Genotypic response to heat stress in durum wheat and the expression of small HSP genes. RENDICONTI LINCEI 2015. [DOI: 10.1007/s12210-015-0471-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. PLANT, CELL & ENVIRONMENT 2015; 38:1881-95. [PMID: 24995670 DOI: 10.1111/pce.12396] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 05/21/2023]
Abstract
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Center of Membrane Proteomics, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| |
Collapse
|
21
|
Kumari P, Mahapatro GK, Banerjee N, Sarin NB. Ectopic expression of GroEL from Xenorhabdus nematophila in tomato enhances resistance against Helicoverpa armigera and salt and thermal stress. Transgenic Res 2015; 24:859-73. [PMID: 25958082 DOI: 10.1007/s11248-015-9881-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
The GroEL homolog XnGroEL protein of Xenorhabdus nematophila belongs to a highly conserved family of molecular chaperones/heat shock proteins (Hsps). XnGroEL was shown to possess oral insecticidal activity against a major crop pest Helicoverpa armigera. Under normal conditions, the Hsps/chaperones facilitate folding, assembly, and translocation of cellular proteins, while in stress conditions they protect proteins from denaturation. In this study, we describe generation of transgenic tomato plants overexpressing insecticidal XnGroEL protein and their tolerance to biotic and abiotic stresses. Presence of XnGroEL in the transgenic tomato lines conferred resistance against H. armigera showing 100% (p ≤ 0.001) mortality of neonates. In addition, XnGroEL provided thermotolerance and protection against high salt concentration to the tomato plants. Expression of XnGroEL minimized photo-oxidation of chlorophyll and reduced oxidative damage of cell membrane system of the plants under heat and salt stress. The enhanced tolerance to abiotic stresses correlated with increase in the anti-oxidative enzyme activity and reduced H2O2 accumulation in transgenic tomato plants. The variety of beneficial properties displayed by XnGroEL protein provides an opportunity for value addition and improvement of crop productivity.
Collapse
Affiliation(s)
- Punam Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gagan Kumar Mahapatro
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupama Banerjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, Schleiff E. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. PLANT, CELL & ENVIRONMENT 2015; 38:693-709. [PMID: 25124075 DOI: 10.1111/pce.12426] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/05/2014] [Indexed: 05/28/2023]
Abstract
Heat shock proteins (Hsps) are molecular chaperones primarily involved in maintenance of protein homeostasis. Their function has been best characterized in heat stress (HS) response during which Hsps are transcriptionally controlled by HS transcription factors (Hsfs). The role of Hsfs and Hsps in HS response in tomato was initially examined by transcriptome analysis using the massive analysis of cDNA ends (MACE) method. Approximately 9.6% of all genes expressed in leaves are enhanced in response to HS, including a subset of Hsfs and Hsps. The underlying Hsp-Hsf networks with potential functions in stress responses or developmental processes were further explored by meta-analysis of existing microarray datasets. We identified clusters with differential transcript profiles with respect to abiotic stresses, plant organs and developmental stages. The composition of two clusters points towards two major chaperone networks. One cluster consisted of constitutively expressed plastidial chaperones and other genes involved in chloroplast protein homeostasis. The second cluster represents genes strongly induced by heat, drought and salinity stress, including HsfA2 and many stress-inducible chaperones, but also potential targets of HsfA2 not related to protein homeostasis. This observation attributes a central regulatory role to HsfA2 in controlling different aspects of abiotic stress response and tolerance in tomato.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt/Main, Germany; Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Tillmann B, Röth S, Bublak D, Sommer M, Stelzer EHK, Scharf KD, Schleiff E. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato. MOLECULAR PLANT 2015; 8:228-41. [PMID: 25619681 DOI: 10.1016/j.molp.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 05/09/2023]
Abstract
Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response.
Collapse
Affiliation(s)
- Bodo Tillmann
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Sascha Röth
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Manuel Sommer
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
|
25
|
Wang Y, Dai Y, Tao X, Wang JZ, Cheng HY, Yang H, Ma XR. Heat Shock Factor Genes of Tall Fescue and Perennial Ryegrass in Response to Temperature Stress by RNA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:1226. [PMID: 26793208 PMCID: PMC4707269 DOI: 10.3389/fpls.2015.01226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/18/2015] [Indexed: 05/15/2023]
Abstract
Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea, and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress, respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP), ascorbate peroxidase (APX), inositol-3-phosphate synthase (IPS), and galactinol synthase (GOLS1), showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops.
Collapse
Affiliation(s)
- Yan Wang
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Ya Dai
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Jia-Zhen Wang
- School of Life Sciences, Zunyi Normal CollegeZunyi, China
| | - Hai-Yang Cheng
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Hong Yang
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
- *Correspondence: Xin-Rong Ma
| |
Collapse
|
26
|
Li J, McConkey BJ, Cheng Z, Guo S, Glick BR. Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteomics 2013; 84:119-31. [PMID: 23568019 DOI: 10.1016/j.jprot.2013.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 03/19/2013] [Indexed: 11/17/2022]
Abstract
UNLABELLED Plant growth-promoting bacteria (PGPB) can both facilitate plant growth and improve plant resistance to a variety of environmental stresses. In order to investigate the mechanisms that PGPB use to protect plants under hypoxic conditions, the protein profiles of stressed and non-stressed cucumber roots, either treated or not treated with PGPB, were examined. Two dimensional difference in-gel electrophoresis (DIGE) was used to detect significantly up- or down-regulated proteins (p<0.05, |ratio|>1.5) in cucumber roots in response to hypoxia. There were 1980, 1893 and 1735 protein spots detected from cucumber roots in the absence of stress in the presence of the PGPB Pseudomonas putida UW4, following hypoxic stress, and following hypoxic stress in the presence of P. putida UW4, respectively. The numbers of significantly changed protein spots were 0, 106, and 147 in these three treatments respectively. Proteins were identified by LTQ-MS/MS and categorized into classes corresponding to transcription, protein synthesis, signal transduction, carbohydrate and nitrogen metabolism, defense stress, antioxidant, binding and others. The functions of the proteins whose expression changed significantly were analyzed in detail, contributing to a more thorough understanding of how PGPB mediate the stress response in plants. BIOLOGICAL SIGNIFICANCE To our knowledge, only a limited number of papers have addressed cucumber proteomics, this study is the first report to describe the effect of plant growth-promoting bacteria (P. putida UW4) on cucumber plants under hypoxic stress using a proteomic approach. Thus, this work provides new insights to understand the cross-reactivity between P. putida UW4 and cucumber plant. A model of cucumber roots in response to P. putida UW4 and hypoxia was proposed: P. putida UW4 and hypoxic stress caused changes of gene expression in cucumber roots, then transcription was stimulated, the proteins involved in carbohydrate metabolism, nitrogen metabolism, defense stress, antioxidant, binding and others were induced, these proteins might work cooperatively to release hypoxic stress and promote cucumber growth. These results describe a dynamic protein network to explain the promotion mechanism of P. putida UW4, and also provide a solid basis for further functional research of single nodes of this network.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
27
|
Waters ER. The evolution, function, structure, and expression of the plant sHSPs. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:391-403. [PMID: 23255280 DOI: 10.1093/jxb/ers355] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Small heat shock proteins are a diverse, ancient, and important family of proteins. All organisms possess small heat shock proteins (sHSPs), indicating that these proteins evolved very early in the history of life prior to the divergence of the three domains of life (Archaea, Bacteria, and Eukarya). Comparing the structures of sHSPs from diverse organisms across these three domains reveals that despite considerable amino acid divergence, many structural features are conserved. Comparisons of the sHSPs from diverse organisms reveal conserved structural features including an oligomeric form with a β-sandwich that forms a hollow ball. This conservation occurs despite significant divergence in primary sequences. It is well established that sHSPs are molecular chaperones that prevent misfolding and irreversible aggregation of their client proteins. Most notably, the sHSPs are extremely diverse and variable in plants. Some plants have >30 individual sHSPs. Land plants, unlike other groups, possess distinct sHSP subfamilies. Most are highly up-regulated in response to heat and other stressors. Others are selectively expressed in seeds and pollen, and a few are constitutively expressed. As a family, sHSPs have a clear role in thermotolerance, but attributing specific effects to individual proteins has proved challenging. Considerable progress has been made during the last 15 years in understanding the sHSPs. However, answers to many important questions remain elusive, suggesting that the next 15 years will be at least equally rewarding.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
28
|
Li M, Ji L, Yang X, Meng Q, Guo S. The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. PLANT CELL REPORTS 2012; 31:1969-79. [PMID: 22790321 DOI: 10.1007/s00299-012-1309-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/13/2012] [Accepted: 06/23/2012] [Indexed: 05/25/2023]
Abstract
A known sweet pepper cDNA clone, CaHSP26 encoding the chloroplast-localized small heat shock protein (CPsHSP), was isolated and introduced into tobacco plants. It has been reported that CaHSP26 is a member of the CPsHSP gene family related to extreme temperature tolerance in plants. In the present work, the transcripts were detected in the transgenic tobacco lines. The actual quantum yield of photosynthesis (ΦPSII), non-photochemical quenching, and stomatal conductance (gs) in the transgenic lines overexpressing CaHSP26 were higher than those in the wild-type plants under a range of photosynthetic photon flux density during chilling stress. Electron microscopic analysis showed that the transgenic line (L1) had larger size of stomata to lessen stomatal limitation. The activities of ascorbate peroxidase (APX), peroxidase (POD) and catalase (CAT) were also higher in the transgenic lines than those in wild-type plants. Additionally, a significant increase in cis-unsaturated fatty acid contents was observed in transgenic lines due to lower temperatures. These results suggested that CaHSP26 protein plays an important role in protection of PSII by maintaining the antioxidative enzyme activities to avoid or mitigate photooxidation and increasing the fluidity of the thylakoid membrane during chilling stress under low irradiance. Key message CaHSP26 protein protects PSII by maintaining the antioxidative enzyme activities to avoid or mitigate photooxidation and increases the fluidity of the thylakoid membrane during chilling stress under low irradiance.
Collapse
Affiliation(s)
- Meifang Li
- College of Life Science, Liaocheng University, Liaocheng, 252059, China
| | | | | | | | | |
Collapse
|
29
|
Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan YL. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1155-66. [PMID: 22105847 PMCID: PMC3276082 DOI: 10.1093/jxb/err329] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 05/18/2023]
Abstract
Heat stress can cause severe crop yield losses by impairing reproductive development. However, the underlying mechanisms are poorly understood. We examined patterns of carbon allocation and activities of sucrose cleavage enzymes in heat-tolerant (HT) and -sensitive (HS) tomato (Solanum lycopersicum L.) lines subjected to normal (control) and heat stress temperatures. At the control temperature of 25/20 °C (day/night) the HT line exhibited higher cell wall invertase (CWIN) activity in flowers and young fruits and partitioned more sucrose to fruits but less to vegetative tissues as compared to the HS line, independent of leaf photosynthetic capacity. Upon 2-, 4-, or 24-h exposure to day or night temperatures of 5 °C or more above 25/20 °C, cell wall (CWIN) and vacuolar invertases (VIN), but not sucrose synthase (SuSy), activities in young fruit of the HT line were significantly higher than those of the HS line. The HT line had a higher level of transcript of a CWIN gene, Lin7, in 5-day fruit than the HS line under control and heat stress temperatures. Interestingly, heat induced transcription of an invertase inhibitor gene, INVINH1, but reduced its protein abundance. Transcript levels of LePLDa1, encoding phospholipase D, which degrades cell membranes, was less in the HT line than in the HS line after exposure to heat stress. The data indicate that high invertase activity of, and increased sucrose import into, young tomato fruit could contribute to their heat tolerance through increasing sink strength and sugar signalling activities, possibly regulating a programmed cell death pathway.
Collapse
Affiliation(s)
- Zhimiao Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - William M. Palmer
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Antony P. Martin
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Frederick Rainsford
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ye Jin
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
- College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - John W. Patrick
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yuejian Yang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, China
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
30
|
Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:104-19. [PMID: 22033015 DOI: 10.1016/j.bbagrm.2011.10.002] [Citation(s) in RCA: 580] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/13/2022]
Abstract
Ten years after the first overview of a complete plant Hsf family was presented for Arabidopsis thaliana by Nover et al. [1], we compiled data for 252 Hsfs from nine plant species (five eudicots and four monocots) with complete or almost complete genome sequences. The new data set provides interesting insights into phylogenetic relationships within the Hsf family in plants and allows the refinement of their classification into distinct groups. Numerous publications over the last decade document the diversification and functional interaction of Hsfs as well as their integration into the complex stress signaling and response networks of plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Klaus-Dieter Scharf
- Molecular Cellbiology of Plants, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany.
| | | | | | | |
Collapse
|
31
|
Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. PLANT, CELL & ENVIRONMENT 2011; 34:1488-506. [PMID: 21554326 DOI: 10.1111/j.1365-3040.2011.02347.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 °C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.
Collapse
Affiliation(s)
- David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Al-Whaibi MH. Plant heat-shock proteins: A mini review. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2011. [PMID: 0 DOI: 10.1016/j.jksus.2010.06.022] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
33
|
Hahn A, Bublak D, Schleiff E, Scharf KD. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. THE PLANT CELL 2011; 23:741-55. [PMID: 21307284 PMCID: PMC3077788 DOI: 10.1105/tpc.110.076018] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 01/07/2011] [Accepted: 01/22/2011] [Indexed: 05/17/2023]
Abstract
Heat stress transcription factors (Hsfs) regulate gene expression in response to environmental stress. The Hsf network in plants is controlled at the transcriptional level by cooperation of distinct Hsf members and by interaction with chaperones. We found two general mechanisms of Hsf regulation by chaperones while analyzing the three major Hsfs, A1, A2, and B1, in tomato (Solanum lycopersicum). First, Hsp70 and Hsp90 regulate Hsf function by direct interactions. Hsp70 represses the activity of HsfA1, including its DNA binding, and the coactivator function of HsfB1 in the complex with HsfA2, while the DNA binding activity of HsfB1 is stimulated by Hsp90. Second, Hsp90 affects the abundance of HsfA2 and HsfB1 by modulating hsfA2 transcript degradation involved in regulation of the timing of HsfA2 synthesis. By contrast, HsfB1 binding to Hsp90 and to DNA are prerequisites for targeting this Hsf for proteasomal degradation, which also depends on a sequence element in its carboxyl-terminal domain. Thus, HsfB1 represents an Hsp90 client protein that, by interacting with the chaperone, is targeted for, rather than protected from, degradation. Based on these findings, we propose a versatile regulatory regime involving Hsp90, Hsp70, and the three Hsfs in the control of heat stress response.
Collapse
|
34
|
Basha E, Jones C, Wysocki V, Vierling E. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 2010; 285:11489-97. [PMID: 20145254 PMCID: PMC2857027 DOI: 10.1074/jbc.m109.074088] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/30/2010] [Indexed: 11/06/2022] Open
Abstract
The small heat shock proteins (sHSPs) and alpha-crystallins are highly effective, ATP-independent chaperones that can bind denaturing client proteins to prevent their irreversible aggregation. One model of sHSP function suggests that the oligomeric sHSPs are activated to the client-binding form by dissociation at elevated temperatures to dimers or other sub-oligomeric species. Here we examine this model in a comparison of the oligomeric structure and chaperone activity of two conserved classes of cytosolic sHSPs in plants, the class I (CI) and class II (CII) proteins. Like the CI sHSPs, recombinant CII sHSPs from three divergent plant species, pea, wheat, and Arabidopsis, are dodecamers as determined by nano-electrospray mass spectrometry. While at 35 to 45 degrees C, all three CI sHSPs reversibly dissociate to dimers, the CII sHSPs retain oligomeric structure at high temperature. The CII dodecamers are, however, dynamic and rapidly exchange subunits, but unlike CI sHSPs, the exchange unit appears larger than a dimer. Differences in dodecameric structure are also reflected in the fact that the CII proteins do not hetero-oligomerize with CI sHSPs. Binding of the hydrophobic probe bis-ANS and limited proteolysis demonstrate CII proteins undergo significant, reversible structural changes at high temperature. All three recombinant CII proteins more efficiently protect firefly luciferase from insolubilization during heating than do the CI proteins. The CI and CII proteins behave strictly additively in client protection. In total, the results demonstrate that different sHSPs can achieve effective protection of client proteins by varied mechanisms.
Collapse
Affiliation(s)
- Eman Basha
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Christopher Jones
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Vicki Wysocki
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Elizabeth Vierling
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
35
|
Healy TM, Tymchuk WE, Osborne EJ, Schulte PM. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol Genomics 2010; 41:171-84. [PMID: 20103695 DOI: 10.1152/physiolgenomics.00209.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Northern and southern subspecies of the Atlantic killifish, Fundulus heteroclitus, differ in maximal thermal tolerance. To determine whether these subspecies also differ in their heat shock response (HSR), we exposed 20°C acclimated killifish to a 2 h heat shock at 34°C and examined gene expression in fish from both subspecies during heat shock and recovery using real-time quantitative PCR and a heterologous cDNA microarray designed for salmonid fishes. The heat shock proteins Hsp70-1, hsp27, and hsp30 were upregulated to a greater extent in the high temperature-tolerant southern subspecies than in the less tolerant northern subspecies, whereas hsp70-2 (which showed the largest upregulation of all the heat shock proteins) in both gill and muscle and hsp90α in muscle was upregulated to a greater extent in northern than in southern fish. These data demonstrate that differences in the HSR between subspecies cannot be due to changes in a single global regulator but must occur via gene-specific mechanisms. They also suggest that the role, if any, of hsps in establishing thermal tolerance is complex and varies from gene to gene. Heterologous microarray hybridization provided interpretable gene expression signatures, detecting differential regulation of genes known to be involved in the heat shock response in other species. Under control conditions, a variety of genes were differentially expressed in muscle between subspecies that suggest differences in muscle fiber type and could relate to previously observed differences between subspecies in the thermal sensitivity of swimming performance and metabolism.
Collapse
Affiliation(s)
- Timothy M. Healy
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wendy E. Tymchuk
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward J. Osborne
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M. Schulte
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|