1
|
Monserrat J, Bohórquez C, Gómez Lahoz AM, Movasat A, Pérez A, Ruíz L, Díaz D, Chara L, Sánchez AI, Albarrán F, Sanz I, Álvarez-Mon M. The Abnormal CD4+T Lymphocyte Subset Distribution and Vbeta Repertoire in New-onset Rheumatoid Arthritis Can Be Modulated by Methotrexate Treament. Cells 2019; 8:E871. [PMID: 31405169 PMCID: PMC6721760 DOI: 10.3390/cells8080871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Patients with long-term, treated, rheumatoid arthritis (RA) show abnormalities in their circulating CD4+ T-lymphocytes, but whether this occurs in recently diagnosed naïve patients to disease-modifying drugs (DMARDs) is under discussion. These patients show heterogeneous clinical response to methotrexate (MTX) treatment. We have examined the count of circulating CD4+ T-lymphocytes, and their naïve (TN), central memory (TCM), effector memory (TEM) and effector (TE) subsets, CD28 expression and Vβ TCR repertoire distribution by polychromatic flow cytometry in a population of 68 DMARD-naïve recently diagnosed RA patients, before and after 3 and 6 months of MTX treatment. At pre-treatment baseline, patients showed an expansion of the counts of CD4+ TN, TEM, TE and TCM lymphocyte subsets, and of total CD4+CD28- cells and of the TE subset with a different pattern of numbers in MTX responder and non-responders. The expansion of CD4+TEM lymphocytes showed a predictive value of MTX non-response. MTX treatment was associated to different modifications in the counts of the CD4+ subsets and of the Vβ TCR repertoire family distribution and in the level of CD28 expression in responders and non-responders. In conclusion, the disturbance of CD4+ lymphocytes is already found in DMARD-naïve RA patients with different patterns of alterations in MTX responders and non-responders.
Collapse
Affiliation(s)
- Jorge Monserrat
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
| | - Cristina Bohórquez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana María Gómez Lahoz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Atusa Movasat
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Pérez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Lucía Ruíz
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - David Díaz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Luis Chara
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Isabel Sánchez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Fernando Albarrán
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Melchor Álvarez-Mon
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain.
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
4
|
Hodges E, Krishna MT, Pickard C, Smith JL. Diagnostic role of tests for T cell receptor (TCR) genes. J Clin Pathol 2003; 56:1-11. [PMID: 12499424 PMCID: PMC1769865 DOI: 10.1136/jcp.56.1.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid advances in molecular biological techniques have made it possible to study disease pathogenesis at a genomic level. T cell receptor (TCR) gene rearrangement is an important event in T cell ontogeny that enables T cells to recognise antigens specifically, and any dysregulation in this complex yet highly regulated process may result in disease. Using techniques such as Southern blot hybridisation, polymerase chain reaction, and flow cytometry it has been possible to characterise T cell proliferations in malignancy and in diseases where T cells have been implicated in the pathogenesis. The main aim of this article is to discuss briefly the process of TCR gene rearrangement and highlight the disorders in which expansions or clonal proliferations of T cells have been recognised. It will also describe various methods that are currently used to study T cell populations in body fluids and tissue, their diagnostic role, and current limitations of the methodology.
Collapse
Affiliation(s)
- E Hodges
- Wessex Immunology, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
6
|
Jollow KC, Sundstrom JB, Gravanis MB, Kanter K, Herskowitz A, Ansari AA. Apoptosis of mononuclear cell infiltrates in cardiac allograft biopsy specimens questions studies of biopsy-cultured cells. Transplantation 1997; 63:1482-9. [PMID: 9175814 DOI: 10.1097/00007890-199705270-00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During acute rejection, CD4 and CD8 T cells infiltrate the myocardium and cause myocyte death and dropout. CD4 and CD8 cells use a number of cytotoxic mechanisms, including fas-fas ligand interactions, which lead to apoptotic death. Since fas is expressed on myocytes, we investigated endomyocardial biopsy specimens from cardiac transplant patients to determine whether apoptosis is one of the mechanisms of cell death in acute rejection. Serial sections of individual endomyocardial biopsy specimens from patients histologically diagnosed as having grade 3A rejection (n=22 biopsy specimens), biopsy specimens showing a typical "Quilty effect" (n=10), and specimens with concurrent grade 3A rejection and the Quilty effect (n=6) were evaluated using the C-terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) technique for frequency of apoptosis in myocytes and mononuclear cell infiltrates. None of the examined sections showed detectable evidence of apoptotic myocytes, even within regions clearly showing myocyte damage. Of interest was our consistent finding that 85-98% of mononuclear cell infiltrates within biopsy specimens scored as having grade 3A rejection had undergone apoptosis. In marked contrast, 9 of the 10 specimens with Quilty lesions showed <5% apoptotic mononuclear cells in the endomyocardial infiltrates. Of further interest was our finding of 85-98% apoptotic mononuclear cell infiltrates within Quilty lesions associated with biopsy specimens scored as having grade 3A rejection. The frequency of apoptotic cells determined by the TUNEL technique was confirmed by histological examination of the morphology of the cells and with a technique that involves detection of c-jun. These results prompt a note of caution in the interpretation of data on the phenotype, cytokine profile, Vbeta T cell receptor repertoire, and donor specificity of mononuclear cells cultured and propagated from such cardiac biopsy specimens. The possible reasons for apoptosis of graft-infiltrating mononuclear cells are discussed.
Collapse
Affiliation(s)
- K C Jollow
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
8
|
Sakkas LI, Platsoucas CD. Immunopathogenesis of juvenile rheumatoid arthritis: role of T cells and MHC. Immunol Res 1995; 14:218-36. [PMID: 8778211 DOI: 10.1007/bf02918218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Juvenile rheumatoid arthritis (JRA) is defined as chronic arthritis of unknown etiology appearing in patients less than 16 years of age. The disease is heterogeneous and is classified as pauciarticular, polyarticular, or systemic-onset disease. A few lines of evidence suggest that T cells are involved in the pathogenesis of the disease. T cells infiltrating the synovial membrane bear markers of activation and produce cytokines. The association of particular subtypes of JRA with certain HLA class II alleles provides strong evidence in favor of T cell involvement through an HLA-peptide-T cell receptor complex. Limited data from a few patients with JRA on T cell receptor transcripts from synovial membrane or synovial fluid cells point towards oligoclonality. This further supports the concept that T cells infiltrating the synovial membrane or extravasating into synovial fluid in patients with JRA reflect antigen-driven T cell proliferation.
Collapse
Affiliation(s)
- L I Sakkas
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pa., USA
| | | |
Collapse
|
10
|
Abstract
Our understanding of the immunobiology of PBC has dramatically changed with the application of molecular biology to clinical medicine. Because of the molecular characterization and identification of the mitochondrial autoantigens, it is now possible to define explicitly mitochondrial autoantigens and examine recognition sites at the primary sequence level. In addition, the expression of cloned antigens has facilitated the development of more reliable assays for mitochondrial autoantibodies. The use of cloned recombinant antigens should, one day, replace the traditional AMA immunofluorescence for diagnostic assays. Possible genetic and environmental factors associated with risk for PBC can also be investigated. It is now also possible to begin the task to defining the role of T cells in the immunopathology of PBC and exploring the issue of whether specific immunotherapy is feasible. There is increasing evidence that PDC-E2 or a similar molecule is located on the cell membrane of biliary epithelial cells. The mechanism for this expression remains to be studied. The explosion of data in PBC is an example of the application of new techniques to investigate old problems. This has occurred because of networking between laboratories in many countries and the generous exchange of sera and donation of livers removed at transplantation. Unfortunately, there is no animal model for PBC; if an animal model was found it would have major importance. Finally, we emphasize the need to study patients early in the course of disease in order to define the events that initiate pathology.
Collapse
Affiliation(s)
- R L Coppel
- Monash University, Department of Microbiology, Clayton, Victoria, Australia
| | | |
Collapse
|
11
|
Van de Water J, Ansari A, Prindiville T, Coppel RL, Ricalton N, Kotzin BL, Liu S, Roche TE, Krams SM, Munoz S, Gershwin ME. Heterogeneity of autoreactive T cell clones specific for the E2 component of the pyruvate dehydrogenase complex in primary biliary cirrhosis. J Exp Med 1995; 181:723-33. [PMID: 7836925 PMCID: PMC2191887 DOI: 10.1084/jem.181.2.723] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The extraordinary specificity of bile duct destruction in primary biliary cirrhosis (PBC) and the presence of T cell infiltrates in the portal tracts have suggested that biliary epithelial cells are the targets of an autoimmune response. The immunodominant antimitochondrial response in patients with PBC is directed against the E2 component of pyruvate dehydrogenase (PDC-E2). Hitherto, there have only been limited reports on the characterization and V beta usage of PDC-E2-specific cloned T cell lines. In this study, we examined peripheral blood mononuclear cells (PBMC) for their reactivity to the entire PDC complex as well as to the E1- and E2-specific components. We also examined the phenotype, lymphokine profile, and V beta usage of PDC-specific T cell clones isolated from cellular infiltrates from the livers of PBC patients. We report that PBMC from 16/19 patients with PBC, but not 12 control patients, respond to the PDC-E2 subunit. Interestingly, this response was directed to the inner and/or the outer lipoyl domains, despite the serologic observation that the autoantibody response is directed predominantly to the inner lipoyl domain. Additionally, lymphokine analysis of interleukin (IL) 2/IL-4/interferon gamma production from individual liver-derived autoantigen-specific T cell clones suggests that both T helper cell Th1- and Th2-like clones are present in the liver. Moreover, there was considerable heterogeneity in the T cell receptor for antigen (TCR) V beta usage of these antigen-specific autoreactive T cell clones. This is in contrast to murine studies in which animals are induced to develop autoimmunity by specific immunization and have an extremely limited T cell V beta repertoire. Thus, our data suggest that in human organ-specific autoimmune diseases, such as PBC, the TCR V beta repertoire is heterogenous.
Collapse
Affiliation(s)
- J Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California Davis 95616
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Rheumatoid arthritis (RA) is a systemic disease of unknown etiology characterized by chronic inflammation mainly in the joints. Several lines of evidence suggest that T cells are involved in the pathogenesis of the disease. RA is associated with certain HLA-DR alleles. Studies analyzing T-cell receptor transcripts in RA have found biased or preferential usage of certain V alpha and/or V beta gene segments by T cells infiltrating the synovial membrane or extravasating into the synovial fluid compared to peripheral blood. In certain patients few T-cell antigen receptor (TCR) clones dominated the infiltrating T cells, suggesting that T cells from the synovial membrane or the synovial fluid comprise oligoclonal populations of T cells. However, other studies have found a polyclonal population of T cells. In interpreting these results the phase of the disease (early vs. late RA), the source of T cells and the limitations of the methods used in these studies should be taken into consideration. However, it appears that synovial T cells comprise oligoclonal populations of T cells and that there is a bias towards particular TCR gene segments, although a specific TCR gene segment in RA has not emerged.
Collapse
Affiliation(s)
- L I Sakkas
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
14
|
Quayle AJ, Chomarat P, Miossec P, Kjeldsen-Kragh J, Førre O, Natvig JB. Rheumatoid inflammatory T-cell clones express mostly Th1 but also Th2 and mixed (Th0-like) cytokine patterns. Scand J Immunol 1993; 38:75-82. [PMID: 8101016 DOI: 10.1111/j.1365-3083.1993.tb01696.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study was performed in order to characterize whether T cells from rheumatoid synovial inflammation belong to the Th1- or Th2-like functional subsets. Cytokine production was studied in 26 CD4+ alpha beta+ and 2 CD8+ alpha beta T-cell clones from the synovial fluid, the synovial membrane and peripheral blood of 5 patients. Fifteen of the CD4+ clones were raised against various mycobacterial antigens and 11 CD4+ clones and 2 CD8+ clones were raised unspecifically using PHA and/or IL-2. The specificities of these clones are not known. In the mycobacterial antigen-specific group, all CD4+ alpha beta T-cell clones produced IFN-gamma at high levels, while the production of IL-4 was generally absent or low (< 1 ng/ml), consistent with a Th1-like profile. Some of these clones, however, also produced various amounts of IL-10 which has been regarded as a Th2 product but can be produced also in lower amounts by Th1 cells. One HSP-65-specific clone produced levels of IL-4 and IL-10 in the same order as that of IFN-gamma, thus appearing to be Th0-like. Among the 11 unspecific CD4+ clones, 7 showed a Th1-like pattern but with lower levels of IFN-gamma than the antigen-specific clones. However, three clones did not produce any IFN-gamma activity but produced IL-4 and one of them also produced distinct amounts of IL-10, compatible with a Th2-like pattern. In addition, one of the clones also showed an almost equally strong IFN-gamma and IL-4 production, thus most likely representing a Th0-like clone.
Collapse
Affiliation(s)
- A J Quayle
- Institute of Immunology and Rheumatology, Oslo, Norway
| | | | | | | | | | | |
Collapse
|