1
|
Liu L, Liu Y, Guo X, Jin X, Yan W, Lin B, Cai T, Wei Y. Activation of p38 mitogen-activated protein kinase pathway by lipopolysaccharide aggravates postoperative ileus in colorectal cancer patients. J Gastroenterol Hepatol 2022; 37:518-530. [PMID: 34907602 DOI: 10.1111/jgh.15760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Patients undergoing abdominal surgery can develop postoperative ileus (POI). Inflammation of the intestinal muscularis following intestinal manipulation may be caused by displaced bacteria or lipopolysaccharide (LPS). The aim of this study was to investigate the relationship between gut microbiota, LPS, and POI in colorectal cancer (CRC) patients and explore underlying mechanisms of LPS-triggered POI. METHODS Sixty CRC patients undergoing colorectal resection were included. Bacterial communities from fecal samples were characterized by 16S rRNA gene sequencing, and fecal LPS levels were determined by Limulus amebocyte lysate assay. Mice were used to mechanistically investigate the causal relationship between microbiota, LPS, and POI. RESULTS We discovered that CRC patients who developed prolonged POI (PPOI) had a unique pro-inflammatory gut microbial composition during the perioperative period. The highest proportions of Gram-negative bacteria at the genus level were Escherichia-Shigella and Bacteroides; the abundance of Escherichia-Shigella was higher throughout the perioperative period. Fecal LPS levels were significantly higher in patients with PPOI. In mice treated with an antibiotic cocktail, intestinal muscularis inflammation and intestinal dysfunction were significantly improved. Inflammation and dysfunction were significantly reduced in mice treated with polymyxin B, but were worsened by treatment with LPS. Moreover, LPS upregulated p38 phosphorylation in mice, and treatment with an inhibitor of p38 (SB203580) significantly alleviated intestinal inflammation and dysmotility. CONCLUSION Lipopolysaccharide increases intestinal muscularis inflammation via activation of p38 signaling, which aggravates POI. Removing bacterial sources of LPS during the perioperative period is promising for the prophylactic treatment of PPOI.
Collapse
Affiliation(s)
- Lujia Liu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yang Liu
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Xiao Guo
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangren Jin
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Cai
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yunwei Wei
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| |
Collapse
|
2
|
Grehn C, Dittrich AM, Wosniok J, Holz F, Hafkemeyer S, Naehrlich L, Schwarz C. Risk factors for cystic fibrosis arthropathy: Data from the German cystic fibrosis registry. J Cyst Fibros 2021; 20:e87-e92. [PMID: 34034985 DOI: 10.1016/j.jcf.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidemiology and potential risk factors for cystic fibrosis arthropathy (CFA) were studied in a relevant cystic fibrosis (CF) patient cohort. METHODS Cohort study of patients included in the German CF registry in 2016-2017. Descriptive analysis, exploratory tests and multivariable logistic regression were used to assess prevalence of CFA and associated potential risk factors for adult patients with/without chronic Pseudomonas aeruginosa infection. RESULTS 6069 CF patients aged from 0 to 78 years were analysed. CFA was observed in 4.9% of the patients. Prevalence was significantly higher in adult patients (8.4%) compared to patients <18 years (0.7%; p<0.0001). Logistic regression analyses in adult patients (n=3319) showed that CFA was significantly associated with increasing age (OR=1.04; 95% CI: 1.02-1.05; p<0.0001), female gender (OR=2.10; 95%CI:1.52-2.90; p<0.0001), number of hospitalizations (OR=1.24; 95%CI:1.12-1.36; p<0.0001), chronic P. aeruginosa infection (OR=1.83; 95%CI:1.28-2.61; p=0.0009), CF-related diabetes (OR=1.69; 95%CI:1.23-2.33; p=0.0013), pancreatic insufficiency (OR=2.39; 95%CI:1.28-4.46; p=0.0060) and sinusitis/polyps (OR=1.91; 95%CI:1.39-2.62; p<0.0001). In a subgroup analysis of adults without chronic P. aeruginosa infection (n=1550) CFA was also significantly associated with increasing age, female gender, increasing number of hospitalizations, pancreatic insufficiency as well as sinusitis/polyps; antimycotic treatment associated only in this subgroup while association with CF-related diabetes was not significant. CONCLUSION CFA is a frequent and clinically relevant co-morbidity particularly in adult CF patients. CFA is significantly more common in patients with chronic P. aeruginosa colonization but associations with other indicators for a more severe disease course were identified regardless of P. aeruginosa colonization status.
Collapse
Affiliation(s)
- Claudia Grehn
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin, Berlin, Germany.
| | - A-M Dittrich
- Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - J Wosniok
- Interdisziplinäres Zentrum für Klinische Studien (IZKS), Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - F Holz
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin, Berlin, Germany
| | - S Hafkemeyer
- Mukoviszidose Institut gGmbH (MI), Bonn, Germany
| | - L Naehrlich
- Department of Pediatrics, Justus-Liebig-University, Giessen, Germany
| | - C Schwarz
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin, Berlin, Germany
| | | |
Collapse
|
3
|
Kruglikov IL, Shah M, Scherer PE. Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions. eLife 2020; 9:e61330. [PMID: 32930095 PMCID: PMC7492082 DOI: 10.7554/elife.61330] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity and diabetes are established comorbidities for COVID-19. Adipose tissue demonstrates high expression of ACE2 which SARS- CoV-2 exploits to enter host cells. This makes adipose tissue a reservoir for SARS-CoV-2 viruses and thus increases the integral viral load. Acute viral infection results in ACE2 downregulation. This relative deficiency can lead to disturbances in other systems controlled by ACE2, including the renin-angiotensin system. This will be further increased in the case of pre-conditions with already compromised functioning of these systems, such as in patients with obesity and diabetes. Here, we propose that interactions of virally-induced ACE2 deficiency with obesity and/or diabetes leads to a synergistic further impairment of endothelial and gut barrier function. The appearance of bacteria and/or their products in the lungs of obese and diabetic patients promotes interactions between viral and bacterial pathogens, resulting in a more severe lung injury in COVID-19.
Collapse
Affiliation(s)
| | - Manasi Shah
- Division of Endocrinology, University of Texas Southwestern Medical CenterDallasUnited States
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
4
|
Polymyxin B prevents the development of adjuvant arthritis via modulation of TLR/Cox-2 signaling pathway. Life Sci 2020; 259:118250. [PMID: 32791152 DOI: 10.1016/j.lfs.2020.118250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/20/2022]
Abstract
AIMS Several microbial toll-like receptor (TLR) ligands, bacterial DNA and bacterial cell wall fragments have been identified in the synovium of rheumatoid arthritis (RA) patients, proving bacterial involvement in the pathogenesis of RA. The current study aimed to verify that low dose polymyxin B could prevent the development of chronic inflammatory arthritis. METHODS Twelve days post adjuvant injection, Sprague-Dawley rats were treated twice weekly with methotrexate (0.5 mg/kg) or daily with polymyxin B (1 mg/kg) or with combination of both for 1 or 2 weeks. Arthritis progression was assessed by hind paw swelling, serum levels of tumor growth factor-1β (TGF-1β), tumor necrosis factor-alpha (TNF-α), high sensitivity C-reactive protein (HS-CRP) and nuclear factor kappa B (NF-κB) were measured using ELISA. Cyclooxygenase-1 (Cox-1) and Cox-2 activities, as well as mRNA expression of TLR-2 and TLR-4 were determined. Histopathological examination of the ankle joint was performed as well as immunohistochemistry for anti-TLR-4. Histopathological assessment of toxic effects on the kidney was performed. KEY FINDINGS Adjuvant arthritis led to a significant swelling of the hind paw and alteration in all serum parameters, TLR-2 and TLR-4 expression, as well as Cox-2 activity. These alterations were associated with histopathological changes of the joints. Polymyxin B reduced significantly all biomarkers of inflammation, showing better effect of the combination in most of the studied parameters, with minimal signs of nephrotoxicity. SIGNIFICANCE In conclusion, results showed that polymyxin B possesses significant anti-arthritic activity which may be attributed to inhibition of the TLR-4, NF-κB and Cox-2 signaling pathway.
Collapse
|
5
|
Wang Q, Zhou X, Zhao Y, Xiao J, Lu Y, Shi Q, Wang Y, Wang H, Liang Q. Polyphyllin I Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response in Macrophages Through the NF-κB Pathway. Front Immunol 2018; 9:2091. [PMID: 30319603 PMCID: PMC6170622 DOI: 10.3389/fimmu.2018.02091] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder, characterized by an increased number of M1-like macrophages in the joints. Polyphyllin I (PPI), one of the main components in the Rhizoma of Paris polyphyllin, displays a selective inhibitory effect on various tumor cells. Here we sought to investigate the anti-rheumatoid arthritis effects and mechanisms of PPI on macrophages in vivo and in vitro. Materials and Methods:In vitro, primary bone marrow-derived macrophages (BMMs) and peritoneal elucidated macrophages (PEMs) were stimulated by lipopolysaccharide (LPS) and Interferon (IFN)-γ and then treated with PPI. We determined the degree of activation of IKKα/β and p65, two key mediators of the NF-κB-mediated inflammatory pathway, by measuring their phosphorylated forms by Western blot. The p65 nuclear localization was detected by immunofluorescent staining. Further, a NF-κB-linked luciferase reporter plasmid, as well as those expressing key mediators of the Toll-like receptor 4 pathway, such as myeloid differentiation primary response 88 (MYD88), interleukin-1 receptor (IL-1R) associated kinase (IRAK)-1, TNF receptor associated factors (TRAF)-6, Transforming growth factor-b–activated kinase 1 (TAK1) and p65, were used to identify the mechanism by which PPI achieves its inhibitory effects on macrophage-mediated inflammation. Moreover, a NF-κB inhibitor, p65-targeted siRNAs, and a p65 plasmid were further used to validate the anti-inflammatory mechanism of PPI. In vivo, PPI (1 mg/kg) was administered intragastrically one time a day for 7 weeks starting on the 42nd day after the first immunization with collagen in a collagen-induced arthritis (CIA) mouse model. Micro-computed Tomography scanning, histological examination, F4/80 and iNOS double immunofluorescent staining and CD4 immunohistochemical staining were performed to determine the effect of PPI treatment on joint structure and inflammation in this model. Results: PPI reduced the inflammatory cytokines production of PEMs stimulated by LPS/IFN-γ, inhibited the phosphorylation of IKKα/β and p65, and prevented p65 nuclear localization. The NF-κB luciferase assay showed that the target of PPI was closely related to the NF-κB pathway. Moreover, NF-κB inhibition, siRNA-mediated knockdown of p65, and p65 overexpression eliminated PPI's inhibitory effect. In addition, PPI attenuated the bone erosion and synovitis, as well as M1-like macrophage and T cell infiltration, in the ankle joint of the CIA model. Conclusion: PPI demonstrated effective amelioration of synovial inflammation in the ankle joint of CIA mice while suppressing NF-κB-mediated production of pro-inflammatory effectors in activated macrophages.
Collapse
Affiliation(s)
- Qiong Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
6
|
Qu L, Caterina MJ. Enhanced excitability and suppression of A-type K(+) currents in joint sensory neurons in a murine model of antigen-induced arthritis. Sci Rep 2016; 6:28899. [PMID: 27363579 PMCID: PMC4929491 DOI: 10.1038/srep28899] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Pain is a dominant symptom of rheumatoid arthritis (RA) and its adequate treatment represents a major unmet need. However, the cellular mechanisms that drive arthritis pain are largely unexplored. Here, we examined the changes in the activity of joint sensory neurons and the associated ionic mechanisms using an animal model of antigen-induced arthritis (AIA). Methylated-bovine serum albumin (mBSA), but not vehicle challenge, in the ankle of previously immunized mice produced time-dependent symptoms of arthritis, including joint inflammation, primary mechanical hyperalgesia in the ipsilateral ankle, and secondary mechanical and heat hyperalgesia in the ipsilateral hindpaw. In vivo electrophysiological recordings revealed that Dil-labeled joint sensory neurons in AIA mice exhibited a greater incidence of spontaneous activity, mechanically evoked after-discharges, and/or increased responses to mechanical stimulation of their receptive fields, compared to control animals. Whole-cell recordings in vitro showed that AIA enhanced the excitability of joint sensory neurons. These signs of neuronal hyperexcitability were associated with a significant reduction in the density of A-type K+ currents. Thus, our data suggest that neuronal hyperexcitability, brought about in part by reduced A-type K+ currents, may contribute to pain-related behaviors that accompany antigen-induced arthritis and/or other antigen-mediated diseases.
Collapse
Affiliation(s)
- Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
Yoshino S, Mizutani N, Matsuoka D, Sae-Wong C. Intratracheal exposure to Fab fragments of an allergen-specific monoclonal antibody regulates asthmatic responses in mice. Immunology 2014; 141:617-27. [PMID: 24303921 DOI: 10.1111/imm.12225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 11/08/2013] [Accepted: 11/24/2013] [Indexed: 12/20/2022] Open
Abstract
Fab fragments (Fabs) maintain the ability to bind to specific antigens but lack effector functions due to the absence of the Fc portion. In the present study, we tested whether Fabs of an allergen-specific monoclonal antibody (mAb) were able to regulate asthmatic responses in mice. Asthmatic responses were induced in BALB/c mice by passive sensitization with anti-ovalbumin (OVA) polyclonal antibodies (pAbs) (day 0) and by active sensitization with OVA (days 0 and 14), followed by intratracheal (i.t.) challenge with OVA on day 1 and days 28, 29, 30 and 35. Fabs prepared by the digestion of an anti-OVA IgG1 (O1-10) mAb with papain were i.t. administered only once 30 min before antigenic challenge on day 1 or day 35. The results showed that i.t. administration of O1-10 Fabs with OVA markedly suppressed the early and/or late phases of asthmatic responses caused by passive and active sensitization. Similar results were obtained when Fabs of anti-OVA IgG2b mAb (O2B-3) were i.t. administered. In contrast, neither i.t. injection of intact 01-10/O2B-3 nor systemic injection of O1-10 Fabs suppressed the asthmatic responses. In vitro studies revealed that the capture of OVA by O1-10 Fabs prevented the subsequent binding of intact anti-OVA pAbs to the captured OVA. These results suggest that asthmatic responses may be down-regulated by the i.t. exposure to Fabs of an allergen-specific mAb via a mechanism involving the capture of allergen by Fabs in the respiratory tract before the interaction of intact antibody and allergen essential for the induction of asthmatic responses.
Collapse
Affiliation(s)
- Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | | | | | | |
Collapse
|
8
|
Suppression of collagen-induced arthritis by intra-articular lentiviral vector-mediated delivery of Toll-like receptor 7 short hairpin RNA gene. Gene Ther 2011; 19:752-60. [PMID: 22089492 DOI: 10.1038/gt.2011.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Knockdown of Toll-like receptors (TLRs) is a novel therapeutic strategy in treating patients with rheumatoid arthritis (RA). We examined the effects of lentiviral vector-mediated delivery of TLR7 short hairpin RNA gene (Lt.shTLR7) on collagen-induced arthritis (CIA). After being immunized on days 0 and 7, Sprague-Dawley rats received intra-articular (i.a.) injection of Lt.shTLR7 or scramble control vector on days 7 and 10. The therapeutic effects were evaluated by measuring ankle circumferences, articular index, and radiographic and histological scores on killing on day 16. Microvessel densities, vascular endothelial growth factor (VEGF) levels, pro-inflammatory cytokine concentrations and T-cell numbers within the synovial tissues were measured. Moreover, VEGF and pro-inflammatory cytokine concentrations in culture supernatants from TLR7-transfected synovial fibroblasts (SFs) stimulated with imiquimod or endogenous ligands were examined. There were significant reduction in ankle circumferences, articular indexes, and radiographic and histological scores. Microvessel densities, VEGF concentrations, interleukin (IL)-1β and IL-6 levels and T-cell densities within synovial tissues were significantly lower. Induction of VEGF, IL-1β and IL-6 production from stimulated SFs was significantly suppressed. Taken together, these data demonstrate the effects of i.a. lentiviral vector-mediated delivery of shTLR7 RNA gene on inhibition of CIA, and implicate the manipulation of TLR7 as a potential therapeutic strategy in RA patients.
Collapse
|
9
|
Campo GM, Avenoso A, Nastasi G, Micali A, Prestipino V, Vaccaro M, D'Ascola A, Calatroni A, Campo S. Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:1170-81. [PMID: 21723389 DOI: 10.1016/j.bbadis.2011.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/16/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023]
Abstract
Previous studies have reported that low molecular mass HA and highly polymerized HA respectively elicited pro- and anti-inflammatory responses by modulating the toll-like receptor 4 (TLR-4) and the TLR-2. The activation of TLR-4 and TLR-2 mediated by collagen-induced arthritis (CIA) induces the myeloid differentiation primary response protein (MyD88) and the tumor necrosis factor receptor-associated factor 6 (TRAF6), and ends with the liberation of NF-kB which, in turn, stimulates pro-inflammatory cytokine production. The aim of this study was to investigate the influence of high molecular weight HA at different concentrations on TLR-4 and TLR-2 modulation in CIA in mice. Arthritis was induced in mice via intradermal injection of an emulsion containing bovine type II collagen in complete Freund's adjuvant. Mice were treated with HA intraperitoneally daily for 30days. CIA increased TLR-4, TLR-2, MyD88 and TRAF6 mRNA expression and the related protein in the cartilage of arthritic joints. High levels of both mRNA and related protein were also detected for tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL-1-β), interleukin-17 (IL-17), matrix metalloprotease-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in the joint of arthritic mice. HA treatment significantly limited CIA incidence and decreased all the parameters up-regulated by CIA. The improvement of biochemical parameters was also supported by histological analysis, plasma and synovial fluid HA levels. These results suggest that the TLR-4 and TLR-2 play an important role in the arthritis mechanism and the interaction/block of HA at high molecular mass may reduce inflammation and cartilage injury.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, 98125 Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Erridge C. Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C. J Food Sci 2011; 76:H72-9. [PMID: 21535770 DOI: 10.1111/j.1750-3841.2010.02018.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Recent evidence suggests that exposure to stimulants of the innate immune receptors Toll-like receptor (TLR)-2 and TLR4 may contribute to the development of atherosclerosis and insulin resistance. We showed recently that common foodsuffs can contain TLR-stimulants, and that the greatest concentrations were present in meat-based products. Using a recently developed quantitative bioassay, we here examined the kinetics of accumulation of TLR2- and TLR4-stimulants in a variety of meat products held at 5 °C in air or under a modified atmosphere for up to 8 d. Meat content of TLR-stimulants increased with time in each meat examined and was paralleled by growth of pseudomonads and Enterobacteriaceae, suggesting that bacterial lipopeptides and lipopolysaccharides are the likely sources of TLR2- and TLR4-stimulants, respectively. TLR-stimulants reached the highest levels (approximately 80 μg lipopeptide-equivalents per gramme and approximately 7 μg lipopolysaccharide-equivalents per gram) in meat that was minced rather than intact, and when stored in air rather than under a modified atmosphere. TLR2- and TLR4-stimulants in meat products cooked for 1 h retained approximately 20% and approximately 40% of their bioactivity, respectively. In summary, storage conditions and microbial flora critically regulate the kinetics of TLR2- and TLR4-stimulant accumulation in meat products and these may retain biological activity after cooking. PRACTICAL APPLICATION The novel assays presented in this work could be used to predict the potential of foodstuffs to promote inflammatory signaling in human subjects, which may be deleterious to health. These assays may also be used to monitor the historical microbial flora in food products after cooking or other forms of food processing may have rendered the original microflora nonviable.
Collapse
Affiliation(s)
- Clett Erridge
- Dept of Cardiovascular Sciences, Glenfield General Hospital, Univ of Leicester, Groby Road, Leicester LE3 9QP, UK.
| |
Collapse
|
11
|
Erridge C. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables. Food Chem Toxicol 2011; 49:1464-7. [DOI: 10.1016/j.fct.2011.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/05/2011] [Accepted: 02/25/2011] [Indexed: 12/01/2022]
|
12
|
The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr 2010; 105:15-23. [PMID: 20849668 DOI: 10.1017/s0007114510003004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ingestion of fatty meals is associated with a transient, low-grade systemic inflammatory response in human subjects, involving the activation of circulating monocytes and the secretion of pro-inflammatory cytokines. However, it is not yet clear how different foodstuffs may promote inflammatory signalling. In a screen of forty filter-sterilised soluble extracts from common foodstuffs, seven were found to induce the secretion of TNF-α and IL-6 from human monocytes in vitro. To investigate what may differentiate inflammatory from non-inflammatory food extracts, stimulants of Toll-like receptor (TLR) 2 and TLR4 were quantified using human embryonic kidney-293 cells transfected with each TLR, and calibrated with defined bacterial lipopeptide (BLP) and lipopolysaccharide (LPS) standards. These assays revealed that while most foods contained undetectable levels of TLR2 or TLR4 stimulants, all TNF-α-inducing foods contained stimulants of either TLR2 (up to 1100 ng BLP-equivalent/g) or TLR4 (up to 2700 ng LPS-equivalent/g) in both the soluble and insoluble fractions. TLR stimulants were present mainly in meat products and processed foods, but were minimal or undetectable in fresh fruit and vegetables. The capacity of food extracts to induce TNF-α secretion in monocytes correlated with the content of both TLR2 (r 0·837) and TLR4 stimulants (r 0·748), and was completely abolished by specific inhibition of TLR2 and TLR4. LPS and BLP were found to be highly resistant to typical cooking times and temperatures, low pH and protease treatment. In conclusion, apparently unspoiled foodstuffs can contain large quantities of stimulants of TLR2 and TLR4, both of which may regulate their capacity to stimulate inflammatory signalling.
Collapse
|
13
|
Abdollahi-Roodsaz S, Joosten LAB, Koenders MI, van den Brand BT, van de Loo FAJ, van den Berg WB. Local interleukin-1-driven joint pathology is dependent on toll-like receptor 4 activation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2004-13. [PMID: 19834062 DOI: 10.2353/ajpath.2009.090262] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) may contribute to the pathogenesis of chronic inflammatory destructive diseases through the recognition of endogenous ligands produced on either inflammation or degeneration of the extracellular matrix. The presence of endogenous TLR agonists has been reported in rheumatoid joints. In the present study, we investigated the significance of TLR2 and TLR4 activation by locally- produced endogenous ligands in the severity of joint inflammation and destruction. Local joint pathology independent of systemic immune activation was induced by overexpression of interleukin (IL)-1 and TNF in naive joints using adenoviral gene transfer. Here, we report that at certain doses, IL-1-induced local joint inflammation, cartilage proteoglycan depletion, and bone erosion are dependent on TLR4 activation, whereas TLR2 activation is not significantly involved. In comparison, tumor necrosis factor alpha-driven joint pathology seemed to be less dependent on TLR2 and TLR4. The severity of IL-1-induced bone erosion and irreversible cartilage destruction was markedly reduced in TLR4(-/-) mice, even though the degree of inflammation was similar, suggesting uncoupled processes. Furthermore, the expression of cathepsin K, a marker for osteoclast activity, induced by IL-1beta was dependent on TLR4. Overexpression of IL-1beta in the joint as well as ex vivo IL-1 stimulation of patellae provoked the release of endogenous TLR4 agonists capable of inducing TLR4-mediated cytokine production. These data emphasize the potential relevance of TLR4 activation in rheumatoid arthritis, particularly with respect to IL-1-mediated joint pathology.
Collapse
|
14
|
Abdollahi-Roodsaz S, Joosten LAB, Helsen MM, Walgreen B, van Lent PL, van den Bersselaar LA, Koenders MI, van den Berg WB. Shift from toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. ACTA ACUST UNITED AC 2008; 58:3753-64. [DOI: 10.1002/art.24127] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Abdollahi-Roodsaz S, Joosten LAB, Roelofs MF, Radstake TRDJ, Matera G, Popa C, van der Meer JWM, Netea MG, van den Berg WB. Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. ACTA ACUST UNITED AC 2007; 56:2957-67. [PMID: 17763416 DOI: 10.1002/art.22848] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Degeneration of extracellular matrix of cartilage leads to the production of molecules capable of activating the immune system via Toll-like receptor 4 (TLR-4). The objective of this study was to investigate the involvement of TLR-4 activation in the development and progression of autoimmune destructive arthritis. METHODS A naturally occurring TLR-4 antagonist, highly purified lipopolysaccharide (LPS) from Bartonella quintana, was first characterized using mouse macrophages and human dendritic cells (DCs). Mice with collagen-induced arthritis (CIA) and mice with spontaneous arthritis caused by interleukin-1 receptor antagonist (IL-1Ra) gene deficiency were treated with TLR-4 antagonist. The clinical score for joint inflammation, histologic characteristics of arthritis, and local expression of IL-1 in joints were evaluated after treatment. RESULTS The TLR-4 antagonist inhibited DC maturation induced by Escherichia coli LPS and cytokine production induced by both exogenous and endogenous TLR-4 ligands, while having no effect on these parameters by itself. Treatment of CIA using TLR-4 antagonist substantially suppressed both clinical and histologic characteristics of arthritis without influencing the adaptive anti-type II collagen immunity crucial for this model. Treatment with TLR-4 antagonist strongly reduced IL-1beta expression in articular chondrocytes and synovial tissue. Furthermore, such treatment inhibited IL-1-mediated autoimmune arthritis in IL-1Ra(-/-) mice and protected the mice against cartilage and bone pathology. CONCLUSION In the present study, we demonstrate for the first time that inhibition of TLR-4 suppresses the severity of experimental arthritis and results in lower IL-1 expression in arthritic joints. Our data suggest that TLR-4 might be a novel target in the treatment of rheumatoid arthritis.
Collapse
|
16
|
Przerwa A, Zimecki M, Switała-Jeleń K, Dabrowska K, Krawczyk E, Łuczak M, Weber-Dabrowska B, Syper D, Miedzybrodzki R, Górski A. Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol 2006; 195:143-50. [PMID: 16447074 DOI: 10.1007/s00430-006-0011-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) play a major role in mediating antibacterial functions of phagocytic cells. However, excessive ROS production may cause oxidative stress and tissue damage. Uncompensated ROS release has been implicated in a variety of disorders. Novel means of controlling elevated ROS production are urgently needed. We showed that homologous but not the heterologous phages inhibited, in a dose dependent manner, the degree of chemiluminescence in phagocytes induced by Escherichia coli. Treatment of the cells with the phages alone resulted in a small increase in ROS production. Homologous phages also facilitated phagocytosis when preincubated with bacteria. On the other hand, both homologous and heterologous phages inhibited phagocytosis following preincubation with phagocytic cells. The treatment of infected and uninfected mice with phages did not significantly alter the rate of phagocytosis by blood granulocytes and monocytes. In conclusion, we showed that bacteriophages can decrease ROS production by phagocytes. Although in some in vitro experimental models the phages tended to diminish phagocytosis, this phenomenon may be of little significance in clinical situations, since the process of eliminating bacteria in phage-treated patients is predominantly accomplished by both phages and phagocytes.
Collapse
Affiliation(s)
- Anna Przerwa
- Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|