1
|
Siddiqui T, Cosacak MI, Popova S, Bhattarai P, Yilmaz E, Lee AJ, Min Y, Wang X, Allen M, İş Ö, Atasavum ZT, Rodriguez-Muela N, Vardarajan BN, Flaherty D, Teich AF, Santa-Maria I, Freudenberg U, Werner C, Tosto G, Mayeux R, Ertekin-Taner N, Kizil C. Nerve growth factor receptor (Ngfr) induces neurogenic plasticity by suppressing reactive astroglial Lcn2/Slc22a17 signaling in Alzheimer's disease. NPJ Regen Med 2023; 8:33. [PMID: 37429840 DOI: 10.1038/s41536-023-00311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.
Collapse
Affiliation(s)
- Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
- Neuron D GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Annie J Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Zeynep Tansu Atasavum
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Edificio E, 28223, Pozuelo de Alarcon, Madrid, Spain
| | - Uwe Freudenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, D-01069, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, D-01307, Dresden, Germany
| | - Giuseppe Tosto
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, 01307, Dresden, Germany.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Interferon-γ Stimulates Interleukin-27 Derived from Dendritic Cells to Regulate Th9 Differentiation through STAT1/3 Pathway. DISEASE MARKERS 2022; 2022:1542112. [PMID: 36304255 PMCID: PMC9596272 DOI: 10.1155/2022/1542112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
The initiation and progression of allergic asthma (AA) are associated with complex interactions between inflammation and immune response. Herein, we report the specific mechanisms underlying the molecular action of interferon (IFN)-γ in AA regulation. We speculated that IFN-γ inhibits Th9 differentiation by regulating the secretion of interleukin (IL)-27 from dendritic cells (DCs), thereby suppressing airway inflammation in asthma. We constructed a mouse model of ovalbumin-induced AA and overexpressed IFN-γ to evaluate the effect on the IL-27/Th9 axis via the in vitro effect of IFN-γ on IL-27 secretion by DCs and their influence on Th9 differentiation and asthmatic inflammation. IFN-γ overexpression reduced the proportion of Th9 cells and DCs and altered lung morphology and cytokine production in AA-induced mice, thus suppressing the AA phenotype. In addition, exogenous IFN-γ stimulation promoted the secretion of IL-27 and suppressed Th9 differentiation of CD4+ T cells via signal transducer and activator of transcription 1/3 (STAT1/3) signaling in a time-dependent manner. This study aimed to clarify the regulatory effect and mechanism of the IFN-γ/DCs/IL-27/Th9 axis on AA and provide novel insights for effective targeted treatment of asthma.
Collapse
|
3
|
Truong AD, Hong Y, Nguyen HT, Nguyen CT, Chu NT, Tran HTT, Dang HV, Lillehoj HS, Hong YH. Molecular identification and characterisation of a novel chicken leukocyte immunoglobulin-like receptor A5. Br Poult Sci 2020; 62:68-80. [PMID: 32812773 DOI: 10.1080/00071668.2020.1812524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Leukocyte immunoglobulin-like receptor A5 (LILRA5) is a key molecule that regulates the immune system. However, the LILRA5 gene has not been characterised in avian species, including chickens. The present study aimed to identify and functionally characterise LILRA5 identified from two genetically disparate chicken lines, viz., Marek's disease (MD)-resistant (R) line 6.3 and MD-susceptible (S) line 7.2. 2. Multiple sequence alignment and phylogenetic analyses confirmed that the identity and similarity homologies of amino acids of LILRA5 in chicken lines 6.3 and 7.2 ranged between 93% and 93.7%, whereas those between chicken and mammals ranged between 20.9% and 43.7% and 21.1% to 43.9%, respectively. The newly cloned LILRA5 from chicken lines 6.3 and 7.2 revealed high conservation and a close relationship with other known mammalian LILRA5 proteins. 3. The results indicated that LILRA5 from chicken lines 6.3 and 7.2 was associated with phosphorylation of Src kinases and protein tyrosine phosphatase non-receptor type 11 (SHP2), which play a regulatory role in immune functions. Moreover, the results demonstrated that LILRA5 in these lines was associated with the activation of major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of the transporter associated with antigen processing. In addition, LILRA5 in both chicken lines activated and induced Janus kinase (JAK)-signal transducer and the activator of transcription (STAT), nuclear factor kappa B (NF-κB), phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and the extracellular signal-regulated kinase (ERK)1/2 signalling pathways; toll-like receptors; and Th1-, Th2-, and Th17- cytokines. 4. The data suggested that LILRA5 has innate immune receptors essential for macrophage immune response and provide novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- A D Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam.,Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - Y Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - H T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - C T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - N T Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H T T Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H V Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services , Beltsville, MD, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| |
Collapse
|
4
|
Ryan N, Anderson K, Volpedo G, Hamza O, Varikuti S, Satoskar AR, Oghumu S. STAT1 inhibits T-cell exhaustion and myeloid derived suppressor cell accumulation to promote antitumor immune responses in head and neck squamous cell carcinoma. Int J Cancer 2019; 146:1717-1729. [PMID: 31709529 DOI: 10.1002/ijc.32781] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
Cancers of the oral cavity remain the sixth most diagnosed cancer worldwide, with high rates of recurrence and mortality. We determined the role of STAT1 during oral carcinogenesis using two orthotopic models in mice genetically deficient for Stat1. Metastatic (LY2) and nonmetastatic (B4B8) head and neck squamous cell carcinoma (HNSCC) cell lines were injected into the oral cavity of Stat1 deficient (Stat1-/- ) and Stat1 competent (Stat1+/+ ) mice. Stat1-/- mice displayed increased tumor growth and metastasis compared to Stat1+/+ mice. Mechanistically, Stat1-/- mice displayed impaired CD4+ and CD8+ T-cell expansion compared to Stat1+/+ mice. This was associated with enhanced T-cell exhaustion, and severely attenuated T-cell antitumor effector responses including reduced expression of IFN-γ and perforin at the tumor site. Interestingly, tumor necrosis factor (TNF)-α production by T cells in tumor-bearing mice was suppressed by Stat1 deficiency. This deficiency in T-cell expansion and functional responses in mice was linked to PD-1 and CD69 overexpression in T cells of Stat1-/- mice. In contrast, we observed increased accumulation of CD11b+ Ly6G+ myeloid derived suppressor cells in tumors, draining lymph nodes, spleens and bone marrow of tumor-bearing Stat1-/- mice, resulting in a protumorigenic microenvironment. Our data demonstrates that STAT1 is an essential mediator of the antitumor response through inhibition of myeloid derived suppressor cell accumulation and promotion of T-cell mediated immune responses in murine head and neck squamous cell carcinoma. Selective induction of STAT1 phosphorylation in HNSCC patients could potentially improve oral tumor outcomes and response to therapy.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Microbiology, The Ohio State University, Columbus, OH
| | - Omar Hamza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH.,Department of Microbiology, The Ohio State University, Columbus, OH
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
5
|
Leukocyte Immunoglobulin-Like Receptors A2 and A6 are Expressed in Avian Macrophages and Modulate Cytokine Production by Activating Multiple Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092710. [PMID: 30208630 PMCID: PMC6163679 DOI: 10.3390/ijms19092710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, β2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Collapse
|
6
|
Truong AD, Hong Y, Lee J, Lee K, Kil DY, Lillehoj HS, Hong YH. Interleukin-34 Regulates Th1 and Th17 Cytokine Production by Activating Multiple Signaling Pathways through CSF-1R in Chicken Cell Lines. Int J Mol Sci 2018; 19:ijms19061665. [PMID: 29874806 PMCID: PMC6032434 DOI: 10.3390/ijms19061665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-34 (IL-34) is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34) signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11) and fibroblast (OU2) cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R) in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK) 2, tyrosine kinase 2 (TYK2), signal transducer and activator of transcription (STAT) 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2), which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1), MyD88, suppressor of cytokine signaling 1 (SOCS1), and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB), and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam.
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA.
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
7
|
Mukherjee S, Hussaini R, White R, Atwi D, Fried A, Sampat S, Piao L, Pan Q, Banerjee P. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol Immunother 2018; 67:761-774. [PMID: 29453519 PMCID: PMC11028238 DOI: 10.1007/s00262-018-2130-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Our earlier studies reported a unique potentiated combination (TriCurin) of curcumin (C) with two other polyphenols. The TriCurin-associated C displays an IC50 in the low micromolar range for cultured HPV+ TC-1 cells. In contrast, because of rapid degradation in vivo, the TriCurin-associated C reaches only low nano-molar concentrations in the plasma, which are sub-lethal to tumor cells. Yet, injected TriCurin causes a dramatic suppression of tumors in TC-1 cell-implanted mice (TC-1 mice) and xenografts of Head and Neck Squamous Cell Carcinoma (HNSCC) cells in nude/nude mice. Here, we use the TC-1 mice to test our hypothesis that a major part of the anti-tumor activity of TriCurin is evoked by innate and adaptive immune responses. TriCurin injection repolarized arginase1high (ARG1high), IL10high, inducible nitric oxide synthaselow (iNOSlow), IL12low M2-type tumor-associated macrophages (TAM) into ARG1low, IL10low, iNOShigh, and IL12high M1-type TAM in HPV+ tumors. The M1 TAM displayed sharply suppressed STAT3 and induced STAT1 and NF-kB(p65). STAT1 and NF-kB(p65) function synergistically to induce iNOS and IL12 transcription. Neutralizing IL12 signaling with an IL12 antibody abrogated TriCurin-induced intra-tumor entry of activated natural killer (NK) cells and Cytotoxic T lymphocytes (CTL), thereby confirming that IL12 triggers recruitment of NK cells and CTL. These activated NK cells and CTL join the M1 TAM to elicit apoptosis of the E6+ tumor cells. Corroboratively, neutralizing IL12 signaling partially reversed this TriCurin-mediated apoptosis. Thus, injected TriCurin elicits an M2→M1 switch in TAM, accompanied by IL12-dependent intra-tumor recruitment of NK cells and CTL and elimination of cancer cells.
Collapse
Affiliation(s)
- Sumit Mukherjee
- CUNY Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
- Department of Chemistry, Building 6S, The City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Rahman Hussaini
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Richard White
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Doaa Atwi
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Angela Fried
- CUNY Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Samay Sampat
- College of Arts and Science, New York University, New York, NY, 10003, USA
| | - Longzhu Piao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Probal Banerjee
- Department of Chemistry, Building 6S, The City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
8
|
Thome R, Bonfanti AP, Rasouli J, Mari ER, Zhang GX, Rostami A, Verinaud L. Chloroquine-treated dendritic cells require STAT1 signaling for their tolerogenic activity. Eur J Immunol 2018; 48:1228-1234. [PMID: 29572810 DOI: 10.1002/eji.201747362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023]
Abstract
MS and EAE are T cell-driven autoimmune diseases of the CNS where IL-17-producing Th17 cells promote damage and are pathogenic. Conversely, tolerogenic DCs induce Treg cells and suppress Th17 cells. Chloroquine (CQ) suppresses EAE through the modulation of DCs by unknown mechanisms. Here, we show that STAT 1 is necessary for CQ-induced tolerogenic DCs (tolDCs) to efficiently suppress EAE. We observed that CQ induces phosphorylation of STAT1 in DCs in vivo and in vitro. Genetic blockage of STAT1 abrogated the suppressive activity of CQ-treated DCs. Opposed to its WT counterparts, CQ-treated STAT1-/- BMDCs were unable to suppress Th17 cells and increased EAE severity. Our findings show that STAT1 is a major signaling pathway in CQ-induced tolDCs and may shed light on new therapeutic avenues for the induction of tolDCs in autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Rodolfo Thome
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil.,Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| | | | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| | | | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| |
Collapse
|
9
|
Tlr2 on Bone Marrow and Non-Bone Marrow Derived Cells Regulates Inflammation and Organ Injury in Cooperation with Tlr4 During Resuscitated Hemorrhagic Shock. Shock 2018; 46:519-526. [PMID: 27172151 DOI: 10.1097/shk.0000000000000650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although the role of TLR4 in driving inflammation and organ injury after hemorrhagic shock and resuscitation (H/R) is well established, the role of TLR2-another receptor for damage-associated molecular pattern (DAMP) molecules-is not. In this study, we used a combination of TLR2 and wild type (WT) mice treated with anti-TLR2 and anti-TLR4 neutralizing monoclonal antibodies (mAb) to discern the contribution of TLR2 relative to TLR4 to the systemic inflammatory response in murine H/R. MATERIAL AND METHODS WT mice, TLR2, and WT mice receiving an anti-TLR2 or an anti-TLR4 mAB (given as a pretreatment) were sacrificed at 6 or 20 h post-H/R. Bone marrow TLR2/WT chimeric mice were created to assess the importance of immune and nonimmune cell-associated TLR2. RESULTS TLR2 mice subjected to H/R exhibited significantly less liver damage and lower markers of systemic inflammation only at 20 h. Bone marrow chimeric mice using combinations of TLR2 mice and WT mice demonstrated that TLR2 on non-bone marrow derived cells played a dominant role in the differences at 20 h. Interestingly, WT mice treated with anti-TLR2 mAB demonstrated a reduction in organ damage and systemic inflammation at both 6 and 20 h following H/R. A combination of anti-TLR2 mAB and anti-TLR4 mAB showed that both receptors drive IP-10 and KC levels and that there is cooperation for increases in IL-6, MIG, and MCP-1 levels between TLR2 and TLR4. CONCLUSION These data also support the conclusion that TLR2 and TLR4 act in concert as important receptors in the host immune response to H/R.
Collapse
|
10
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
11
|
Zhu J, Yao K, Guo J, Shi H, Ma L, Wang Q, Liu H, Gao W, Sun A, Zou Y, Ge J. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway. J Cell Mol Med 2017; 21:2884-2895. [PMID: 28597963 PMCID: PMC5661264 DOI: 10.1111/jcmm.13201] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
The immune inflammatory response plays a crucial role in many cardiac pathophysiological processes, including ischaemic cardiac injury and the post-infarction repair process. MicroRNAs (miRNAs) regulate the development and function of dendritic cells (DCs), which are key players in the initiation and regulation of immune responses; however, the underlying regulatory mechanisms remain unclear. Here, we used the supernatants of necrotic primary cardiomyocytes (Necrotic-S) to mimic the myocardial infarction (MI) microenvironment to investigate the role of miRNAs in the regulation of DC-mediated inflammatory responses. Our results showed that Necrotic-S up-regulated the DC maturation markers CD40, CD83 and CD86 and increased the production of inflammatory cytokines, concomitant with the up-regulation of miR-181a and down-regulation of miR-150. Necrotic-S stimulation activated the JAK/STAT pathway and promoted the nuclear translocation of c-Fos and NF-κB p65, and silencing of STAT1 or c-Fos suppressed Necrotic-S-induced DC maturation and inflammatory cytokine production. The effects of Necrotic-S on DC maturation and inflammatory responses, its activation of the JAK/STAT pathway and the induction of cardiomyocyte apoptosis under conditions of hypoxia were suppressed by miR-181a or miR-150 overexpression. Taken together, these data indicate that miR-181a and miR-150 attenuate DC immune inflammatory responses via JAK1-STAT1/c-Fos signalling and protect cardiomyocytes from cell death under conditions of hypoxia.
Collapse
Affiliation(s)
- Jianbing Zhu
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Kang Yao
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Junjie Guo
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
- Department of CardiologyThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Hongtao Shi
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Leilei Ma
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Qian Wang
- Department of Laboratory MedicineShanghai Chest Hospital affiliated to Shanghai Jiaotong UniversityShanghaiChina
| | - Haibo Liu
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Gao
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Aijun Sun
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Shanghai Institute of Cardiovascular DiseasesZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Truong AD, Hong Y, Hoang CT, Lee J, Hong YH. Chicken IL-26 regulates immune responses through the JAK/STAT and NF-κB signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:10-20. [PMID: 28259699 DOI: 10.1016/j.dci.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Chicken interleukin 26 (ChIL-26), a member of the IL-10 family, is expressed in T cells and can induce expression of proinflammatory cytokines. We examined the response of signal transduction pathways to ChIL-26 stimulation in the chicken T (CU91), macrophage (HD11), and fibroblast (OU2) cell lines. ChIL-26 activated JAK2 and TYK2 phosphorylation, as well as activation of STAT1, STAT3, and SHP2 via tyrosine/serine residues. We also showed that ChIL-26 activates the phosphorylation of NF-κB1, TAK1, and MyD88 kinase, which are key regulators of NF-κB signaling pathways. Moreover, ChIL-26 stimulation upregulated mRNA expression of chemokines (CCL4, CCL20, and CXCL14), Th1 (IFN-α, IFN-β, IFN-γ, IL-1β, and IL-6), Th2 (IL-4 and IL-10), and Th17 (IL-12p40, IL-17A, and IL-17F), and the Treg cytokines (TGF-β4); additionally, it increased Th1 and Th17 protein levels and nitric oxide production but did not affect cell proliferation. Together, these results suggest that ChIL-26-induced activation of chemokines, Th1, Th2, and, Th17, and the Treg cytokines is mediated through JAK/STAT and NF-κB signaling pathways in chicken T, macrophage, and fibroblast cell lines. These results indicate a key role for ChIL-26-induced polarization of the immune response and could reveal new therapeutic approaches for use in combination with molecules that activate T and macrophage cells via activation JAK/STAT and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cong Thanh Hoang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
13
|
Staples E, Morillo-Gutierrez B, Davies J, Petersheim D, Massaad M, Slatter M, Dimou D, Doffinger R, Hackett S, Kumararatne D, Hadfield J, Eldridge MD, Geha RS, Abinun M, Thaventhiran JED. Disseminated Mycobacterium malmoense and Salmonella Infections Associated with a Novel Variant in NFKBIA. J Clin Immunol 2017; 37:415-418. [PMID: 28417298 PMCID: PMC5489571 DOI: 10.1007/s10875-017-0390-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/27/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Emily Staples
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Beatriz Morillo-Gutierrez
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne, NE1 4LP, UK
| | - Jessica Davies
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Daniel Petersheim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel Massaad
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Slatter
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne, NE1 4LP, UK
| | - Dimitra Dimou
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Rainer Doffinger
- Department of Clinical Immunology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Scott Hackett
- Paediatric Immunology Department, Birmingham Heartlands Hospital, Birmingham, B9 5SS, UK
| | | | - James Hadfield
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mario Abinun
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne, NE1 4LP, UK
| | - James E D Thaventhiran
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK. .,Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
14
|
Mukherjee S, Baidoo J, Fried A, Atwi D, Dolai S, Boockvar J, Symons M, Ruggieri R, Raja K, Banerjee P. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int J Cancer 2016; 139:2838-2849. [DOI: 10.1002/ijc.30398] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Sumit Mukherjee
- CUNY Doctoral Program In Biochemistry, CUNY Graduate Center, NY-10016
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| | - Juliet Baidoo
- CUNY Doctoral Program In Biochemistry, CUNY Graduate Center, NY-10016
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
| | - Angela Fried
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| | - Doaa Atwi
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| | - Sukanta Dolai
- CUNY Doctoral Program In Chemistry, CUNY Graduate Center, NY-10016
| | - John Boockvar
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, NY 11030
- Department of Neurosurgery, Hofstra Northwell School of Medicine, NY 11030
- Department of Otolaryngology, Hofstra Northwell School of Medicine, NY 11030
| | - Marc Symons
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, NY 11030
- Department of Neurosurgery, Hofstra Northwell School of Medicine, NY 11030
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, NY 11030
| | - Rosamaria Ruggieri
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, NY 11030
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, NY 11030
- Department of Radiation Medicine, Hofstra Northwell School of Medicine, NY 11030
| | - Krishnaswami Raja
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
| | - Probal Banerjee
- CUNY Doctoral Program In Biochemistry, CUNY Graduate Center, NY-10016
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| |
Collapse
|
15
|
Guo H, Liu Y, Gu J, Wang Y, Liu L, Zhang P, Li Y. Endostatin inhibits the growth and migration of 4T1 mouse breast cancer cells by skewing macrophage polarity toward the M1 phenotype. Cancer Immunol Immunother 2016; 65:677-88. [PMID: 27034233 PMCID: PMC11028708 DOI: 10.1007/s00262-016-1824-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/07/2016] [Indexed: 11/30/2022]
Abstract
The phenotypic diversity of tumor-associated macrophages (TAMs) increases with tumor development. One of the hallmarks of malignancy is the polarization of TAMs from a pro-immune (M1) phenotype to an immunosuppressive (M2) phenotype. However, the molecular basis of this process is still unclear. Endostatin is a powerful inhibitor of angiogenesis capable of suppressing tumor growth and metastasis. Here, we demonstrate that endostatin induces RAW264.7 cell polarization toward the M1 phenotype in vitro. Endostatin has no effect on TAM numbers in vivo, but results in an increased proportion of F4/80(+)Nos2(+) cells and a decreased proportion of F4/80(+)CD206(+) cells. Overexpression of endostatin in RAW264.7 cells resulted in a decrease in the phosphorylation of STAT3, an increase in expression of vascular endothelial growth factor A and placental growth factor, and an increase in the phosphorylation of STAT1, IκBα and p65 proteins compared with controls. These results indicate that endostatin regulates macrophage polarization, promoting the M1 phenotype by targeting NF-κB and STAT signaling.
Collapse
Affiliation(s)
- Hua Guo
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Yanan Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Junlian Gu
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
| | - Yue Wang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Lianqin Liu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Ping Zhang
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China
| | - Yang Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, School of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
16
|
Zhang X, Ulm A, Somineni HK, Oh S, Weirauch MT, Zhang HX, Chen X, Lehn MA, Janssen EM, Ji H. DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenetics Chromatin 2014; 7:21. [PMID: 25161698 PMCID: PMC4144987 DOI: 10.1186/1756-8935-7-21] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Background Dendritic cells (DCs) are important mediators of innate and adaptive immune responses, but the gene networks governing their lineage differentiation and maturation are poorly understood. To gain insight into the mechanisms that promote human DC differentiation and contribute to the acquisition of their functional phenotypes, we performed genome-wide base-resolution mapping of 5-methylcytosine in purified monocytes and in monocyte-derived immature and mature DCs. Results DC development and maturation were associated with a great loss of DNA methylation across many regions, most of which occurs at predicted enhancers and binding sites for known transcription factors affiliated with DC lineage specification and response to immune stimuli. In addition, we discovered novel genes that may contribute to DC differentiation and maturation. Interestingly, many genes close to demethylated CG sites were upregulated in expression. We observed dynamic changes in the expression of TET2, DNMT1, DNMT3A and DNMT3B coupled with temporal locus-specific demethylation, providing possible mechanisms accounting for the dramatic loss in DNA methylation. Conclusions Our study is the first to map DNA methylation changes during human DC differentiation and maturation in purified cell populations and will greatly enhance the understanding of DC development and maturation and aid in the development of more efficacious DC-based therapeutic strategies.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Ashley Ulm
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Hari K Somineni
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Sunghee Oh
- Division of Human Genetics, Kim Sook Za Children's Hospital Medical Center Research Foundation, 745 JikJi Daero Heung Deok Gu, Cheongju, Chung Buk 361-841, South Korea
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Hong-Xuan Zhang
- Procter & Gamble Co., Mason Business Center, 8700 S Mason Montgomery Road, Mason, OH 45040, USA
| | - Xiaoting Chen
- School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Maria A Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Kaler P, Owusu BY, Augenlicht L, Klampfer L. The Role of STAT1 for Crosstalk between Fibroblasts and Colon Cancer Cells. Front Oncol 2014; 4:88. [PMID: 24818101 PMCID: PMC4012204 DOI: 10.3389/fonc.2014.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 12/22/2022] Open
Abstract
Signaling between tumor cells and the associated stroma has an important impact on cancer initiation and progression. The tumor microenvironment has a paradoxical role in tumor progression and fibroblasts, a major component of the tumor stroma, have been shown to either inhibit or promote cancer development. In this study, we established that normal intestinal fibroblasts activate STAT1 signaling in colon cancer cells and, in contrast to cancer-associated fibroblasts, inhibit growth of tumor cells. Treatment of 18Co fibroblasts with the proinflammatory cytokine TNFα interfered with their ability to trigger STAT1 signaling in cancer cells. Accordingly, intestinal myofibroblasts isolated from patients with ulcerative colitis or Crohn’s disease, which are activated and produce high levels of TNFα, failed to stimulate STAT1 signaling in tumor cells, demonstrating that activated myofibroblasts lose the ability to trigger growth-inhibitory STAT1 signaling in tumor cells. Finally, we confirmed that silencing of STAT1 in tumor cells alters the crosstalk between tumor cells and fibroblasts, suggesting STAT1 as a novel link between intestinal inflammation and colon cancer. We demonstrated that normal fibroblasts restrain the growth of carcinoma cells, at least in part, through the induction of STAT1 signaling in cancer cells and showed that changes in the microenvironment, as they occur in inflammatory bowel disease, alter the crosstalk between carcinoma cells and fibroblasts, perturb the homeostasis of intestinal tissue, and thereby contribute to tumor progression.
Collapse
|
18
|
Kim YS, Kang WS, Kwon JS, Hong MH, Jeong HY, Jeong HC, Jeong MH, Ahn Y. Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis. J Cell Mol Med 2014; 18:1018-27. [PMID: 24571348 PMCID: PMC4508142 DOI: 10.1111/jcmm.12248] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 01/15/2014] [Indexed: 02/07/2023] Open
Abstract
We examined whether a shift in macrophage phenotype could be therapeutic for myocardial infarction (MI). The mouse macrophage cell line RAW264.7 was stimulated with peptidoglycan (PGN), with or without 5-azacytidine (5AZ) treatment. MI was induced by ligation of the left anterior descending coronary artery in rats, and the rats were divided into two groups; a saline-injection group and a 5AZ-injection group (2.5 mg/kg/day, intraperitoneal injection). LV function was evaluated and immunohistochemical analyses were performed 2 weeks after MI. Cardiac fibrosis was induced by angiotensin II (AngII) infusion with or without 5AZ (5 mg/kg/day) in mice. Nitric oxide was produced by PGN, which was reduced by 77.87% after 5AZ treatment. Both induction of inducible nitric oxide synthase (iNOS) and iNOS promoter activity by PGN were inhibited by 5AZ. Ejection fraction (59.00 ± 8.03% versus 42.52 ± 2.58%), contractility (LV dP/dt-max, 8299.76 ± 411.56 mmHg versus 6610.36 ± 282.37 mmHg) and relaxation indices (LV dP/dt-min, −4661.37 ± 210.73 mmHg versus −4219.50 ± 162.98 mmHg) were improved after 5AZ administration. Cardiac fibrosis in the MI+5AZ was 8.14 ± 1.00%, compared with 14.93 ± 2.98% in the MI group (P < 0.05). Arginase-1(+)CD68(+) macrophages with anti-inflammatory phenotype were predominant in the infarct border zone of the MI+5AZ group, in comparison with the MI group. AngII-induced cardiac fibrosis was also attenuated after 5AZ administration. In cardiac fibroblasts, pro-fibrotic mediators and cell proliferation were increased by AngII, and these increases were attenuated after 5AZ treatment. 5AZ exerts its cardiac protective role through modulation of macrophages and cardiac fibroblasts.
Collapse
Affiliation(s)
- Yong Sook Kim
- Heart Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kuuliala K, Lappalainen M, Turunen U, Puolakkainen P, Kemppainen E, Siitonen S, Repo H, Mustonen H. Detection of muramyl dipeptide-sensing pathway defects in monocytes of patients with Crohn's disease using phospho-specific whole blood flow cytometry. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 73:494-502. [PMID: 23837874 DOI: 10.3109/00365513.2013.811612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral blood mononuclear cells of Crohn's disease (CD) patients with the common 1007fs mutation of the caspase recruitment domain-containing 15/nucleotide-binding oligomerization domain-containing 2 (CARD15/NOD2) gene show impaired nuclear factor kappa B (NF-κB) activation in response to muramyl dipeptide (MDP), as determined by Western blotting. We applied phospho-specific flow cytometry to examine NF-κB and p38 activation in whole blood monocytes of 16 CD patients with or without the 1007fs and previously described rare mutations of the CARD15 gene, and healthy reference subjects. Aliquots of whole blood were supplemented with MDP (0-1000 ng/mL), incubated for 10-40 min and processed for flow cytometry. Bacterial lipopolysaccharide (LPS) was used as a positive control agonist. We found that NF-κB and p38 phosphorylation induced by MDP was not detectable in monocytes of patients homozygous for the CARD15 1007fs mutation, while those induced by LPS were normal. We also determined MDP-induced NF-κB phosphorylation levels in nuclear extracts of mononuclear cells separated from blood using enzyme-linked immunosorbent assay (ELISA), and observed that the levels decreased in a 1007fs mutation-dose dependent manner. We conclude that phospho-specific whole blood flow cytometry provides a means to study phosphorylation of NF-κB and p38 in clinical samples and can be applied to screening of CD patients homozygous for the CARD15 1007fs mutation.
Collapse
Affiliation(s)
- Krista Kuuliala
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim S, Kim SY, Pribis JP, Lotze M, Mollen KP, Shapiro R, Loughran P, Scott MJ, Billiar TR. Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Mol Med 2013; 19:88-98. [PMID: 23508573 DOI: 10.2119/molmed.2012.00306] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/11/2013] [Indexed: 12/11/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a DNA-binding protein that possesses cytokinelike, proinflammatory properties when released extracellularly in the C23-C45 disulfide form. HMGB1 also plays a key role as a mediator of acute and chronic inflammation in models of sterile injury. Although HMGB1 interacts with multiple pattern recognition receptors (PRRs), many of its effects in injury models occur through an interaction with toll-like receptor 4 (TLR4). HMGB1 interacts directly with the TLR4/myeloid differentiation protein 2 (MD2) complex, although the nature of this interaction remains unclear. We demonstrate that optimal HMGB1-dependent TLR4 activation in vitro requires the coreceptor CD14. TLR4 and MD2 are recruited into CD14-containing lipid rafts of RAW264.7 macrophages after stimulation with HMGB1, and TLR4 interacts closely with the lipid raft protein GM1. Furthermore, we show that HMGB1 stimulates tumor necrosis factor (TNF)-α release in WT but not in TLR4(-/-), CD14(-/-), TIR domain-containing adapter-inducing interferon-β (TRIF)(-/-) or myeloid differentiation primary response protein 88 (MyD88)(-/-) macrophages. HMGB1 induces the release of monocyte chemotactic protein 1 (MCP-1), interferon gamma-induced protein 10 (IP-10) and macrophage inflammatory protein 1α (MIP-1α) in a TLR4- and CD14-dependent manner. Thus, efficient recognition of HMGB1 by the TLR4/MD2 complex requires CD14.
Collapse
Affiliation(s)
- Sodam Kim
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The role of myelomonocytic cells like monocytes and macrophages as first line of host defense is well established. Recent understanding of these cells using systems biology, transgenesis and in disease models has brought them to a center stage in orchestrating crucial functions during homeostasis and pathogenesis. Thus, understanding the functional diversity of these cells in health and disease as well as the mechanisms that control these events would be crucial for designing strategies for regulating disease and reinstate homeostasis.
Collapse
|
22
|
Spear P, Barber A, Rynda-Apple A, Sentman CL. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF. THE JOURNAL OF IMMUNOLOGY 2012; 188:6389-98. [PMID: 22586039 DOI: 10.4049/jimmunol.1103019] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The infiltration of suppressive myeloid cells into the tumor microenvironment restrains anti-tumor immunity. However, cytokines may alter the function of myeloid lineage cells to support tumor rejection, regulating the balance between pro- and anti-tumor immunity. In this study, it is shown that effector cytokines secreted by adoptively transferred T cells expressing a chimeric Ag receptor (CAR) shape the function of myeloid cells to promote endogenous immunity and tumor destruction. Mice bearing the ovarian ID8 tumor were treated with T cells transduced with a chimeric NKG2D receptor. GM-CSF secreted by the adoptively transferred T cells recruited peripheral F4/80(lo)Ly-6C(+) myeloid cells to the tumor microenvironment in a CCR2-dependent fashion. T cell IFN-γ and GM-CSF activated local, tumor-associated macrophages, decreased expression of regulatory factors, increased IL-12p40 production, and augmented Ag processing and presentation by host macrophages to Ag-specific T cells. In addition, T cell-derived IFN-γ, but not GM-CSF, induced the production of NO by F4/80(hi) macrophages and enhanced their lysis of tumor cells. The ability of CAR T cell therapy to eliminate tumor was moderately impaired when inducible NO synthase was inhibited and greatly impaired in the absence of peritoneal macrophages after depletion with clodronate encapsulated liposomes. This study demonstrates that the activation of host macrophages by CAR T cell-derived cytokines transformed the tumor microenvironment from immunosuppressive to immunostimulatory and contributed to inhibition of ovarian tumor growth.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
23
|
Patients with acute pancreatitis complicated by organ failure show highly aberrant monocyte signaling profiles assessed by phospho-specific flow cytometry. Crit Care Med 2010; 38:1702-8. [PMID: 20512034 DOI: 10.1097/ccm.0b013e3181e7161c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To outline signaling profiles and transmigration capacity of monocytes of patients with severe acute pancreatitis. DESIGN Prospective study. SETTING University hospital intensive care unit. PATIENTS Thirteen patients with severe acute pancreatitis. All patients had organ dysfunction (acute respiratory distress syndrome in 12, renal dysfunction in eight). Healthy volunteers served as reference subjects. INTERVENTIONS Blood samples were collected after admission to the intensive care unit. MEASUREMENTS AND MAIN RESULTS Phosphorylation of nuclear factor-kappaB and p38, signal transducers and activators of transcription (STATs) 1, 3, 5, and extracellular signal-regulated kinases 1/2 in appropriately stimulated and nonstimulated samples were studied using phospho-specific whole-blood flow cytometry. Monocyte chemotactic protein-1-induced transmigration of monocytes among mononuclear cells obtained by density gradient centrifugation was studied using Transwell cell culture inserts covered with confluent layer of endothelial EA-HY cells. Phosphorylation levels of nuclear factor-kappaB induced by tumor necrosis factor, bacterial lipopolysaccharide, muramyl dipeptide, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis were significantly lower in patients' monocytes than monocytes of healthy reference subjects, whereas mitogen-activated protein kinase p38 phosphorylation levels were normal. Phosphorylation levels induced by interleukin-6 in STAT1 and STAT3 and by combination of phorbol 12-myristate 13-acetate and calcium ionophore A23187 in extracellular signal-regulated kinases 1/2, members of a mitogen-activated protein kinase family, were depressed in patients' monocytes, whereas phosphorylation levels induced by granulocyte-macrophage colony-stimulating factor in STAT5 was normal. In nonstimulated samples, phosphorylation levels were normal. The transmigration percentage of patients' monocytes was significantly lower than that of reference monocytes. CONCLUSIONS In severe acute pancreatitis, monocytes show impaired nuclear factor kappaB and STAT1 activation, which may increase susceptibility to secondary infections. p38 activation is normal and STAT3 activation is depressed, which may contribute to maintenance of systemic inflammation. Extracellular signal-regulated kinases 1/2 activation is impaired, which may depress monocytes' transmigration and may consequently increase risk of infection. Monitoring of monocyte signaling profiles may aid in finding new therapeutic approaches and predictors of outcome of severe acute pancreatitis.
Collapse
|
24
|
Biswas SK, Lewis CE. NF-κB as a central regulator of macrophage function in tumors. J Leukoc Biol 2010; 88:877-84. [PMID: 20573802 DOI: 10.1189/jlb.0310153] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TAMs are usually abundant in the tumor microenvironment and are now known to play an essential role in tumor progression. For example, TAMs influence many aspects of tumorigenesis, such as the growth, survival, invasion, and metastasis of tumor cells, tumor angiogenesis, and the suppression of other tumor-infiltrating immune effector cells. The molecular pathways that regulate these tumor-promoting functions of TAMs are currently under intense investigation. Several recent studies about transgenic murine tumor models have shown that the transcription factor NF-κB is a key player in tumor progression with distinct roles in regulating the functions of macrophages and tumor cells in malignant tumors. Here, we outline the evidence for classical and noncanonical NF-κB signaling pathways driving the tumor-promoting repertoire of TAMs.
Collapse
Affiliation(s)
- Subhra K Biswas
- 1.Biomedical Sciences Institutes, Agency for Science, Technology and Research (A*STAR), #04-01 Immunos, 8A Biomedical Grove, Singapore.
| | | |
Collapse
|
25
|
Type I interferons mediate the innate cytokine response to recombinant fowlpox virus but not the induction of plasmacytoid dendritic cell-dependent adaptive immunity. J Virol 2010; 84:6549-63. [PMID: 20410285 DOI: 10.1128/jvi.02618-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons (IFNs) are considered to be important mediators of innate immunity due to their inherent antiviral activity, ability to drive the transcription of a number of genes involved in viral clearance, and their role in the initiation of innate and adaptive immune responses. Due to the central role of type I IFNs, we sought to determine their importance in the generation of immunity to a recombinant vaccine vector fowlpox virus (FPV). In analyzing the role of type I IFNs in immunity to FPV, we show that they are critical to the secretion of a number of innate and proinflammatory cytokines, including type I IFNs themselves as well as interleukin-12 (IL-12), tumor necrosis factor-alpha (TNF-alpha), IL-6, and IL-1beta, and that deficiency leads to enhanced virus-mediated antigen expression. Interestingly, however, type I IFNs were not required for adaptive immune responses to recombinant FPV even though plasmacytoid dendritic cells (pDCs), the primary producers of type I IFNs, have been shown to be requisite for this to occur. Furthermore, we provide evidence that the importance of pDCs may lie in their ability to capture and present virally derived antigen to T cells rather than in their capacity as professional type I IFN-producing cells.
Collapse
|
26
|
Aging is associated with altered dendritic cells subset distribution and impaired proinflammatory cytokine production. Exp Gerontol 2010; 45:163-9. [DOI: 10.1016/j.exger.2009.11.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/28/2009] [Accepted: 11/16/2009] [Indexed: 12/19/2022]
|
27
|
Rosenblatt J, Bissonnette A, Ahmad R, Wu Z, Vasir B, Stevenson K, Zarwan C, Keefe W, Glotzbecker B, Mills H, Joyce R, Levine JD, Tzachanis D, Boussiotis V, Kufe D, Avigan D. Immunomodulatory effects of vitamin D: implications for GVHD. Bone Marrow Transplant 2010; 45:1463-8. [PMID: 20081878 DOI: 10.1038/bmt.2009.366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GVHD remains a major source of morbidity and mortality after allogeneic BMT. GVHD is mediated by alloreactive T cells derived from the hematopoietic graft that target host tissues. Pre-clinical models have shown that presentation of alloantigens by host DCs results in the activation of donor-derived T cells that mediate GVHD. Strategies that interfere with the Ag-presenting capacity of DCs after allogeneic transplantation may decrease the risk of developing GVHD. Vitamin D is a hormone essential for calcium metabolism that shows immunomodulatory properties. We showed that correction of vitamin D deficiency appeared to mitigate manifestations of GVHD. In pre-clinical studies, we have shown that vitamin D inhibits DC maturation, polarizes T-cell populations toward the expression of Th2 as compared with Th1 cytokines, and blunts allogeneic T-cell proliferation in response to DC stimulation. Exposure to vitamin D resulted in increased expression of IDO, an enzyme responsible for tryptophan metabolism that is upregulated in tolerizing DCs. These data suggest that exposure to vitamin D results in immature DC populations that bias toward tolerizing rather than stimulatory T-cell populations. Vitamin D may therefore have a role in the prevention of GVHD.
Collapse
Affiliation(s)
- J Rosenblatt
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Targeted NF-kappaB inhibition of asthmatic serum-mediated human monocyte-derived dendritic cell differentiation in a transendothelial trafficking model. Cell Immunol 2009; 260:14-20. [PMID: 19691956 DOI: 10.1016/j.cellimm.2009.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/05/2009] [Accepted: 07/10/2009] [Indexed: 11/23/2022]
Abstract
Transendothelial trafficking model mimics in vivo differentiation of monocytes into dendritic cells (DC). The serum from patients with systemic lupus erythematosus promotes the differentiation of monocytes into mature DC. We have shown that selective inhibition of NF-kappaB by adenoviral gene transfer of a novel mutated IkappaBalpha (AdIkappaBalphaM) in DC contributes to T cell tolerance. Here we demonstrated for the first time that asthmatic serum facilitated human monocyte-derived DC (MDDC) maturation associated with increased NF-kappaB activation in this model. Furthermore, selective blockade of NF-kappaB by AdIkappaBalphaM in MDDC led to increased apoptosis, and decreased levels of CD80, CD83, CD86, and IL-12 p70 but not IL-10 in asthmatic serum-stimulated MDDC, accompanied by reduced proliferation of T cells. These results suggest that AdIkappaBalphaM-transferred MDDC are at a more immature stage which is beneficial to augment the immune tolerance in asthma.
Collapse
|
29
|
Abstract
The pivotal role of tumor-associated macrophages (TAMs) in tumor progression is now well established. TAMs have been shown to influence multiple steps in tumor development including the growth, survival, invasion, and metastasis of tumor cells as well as angiogenesis and lymphangiogenesis in tumors. The molecular circuits that polarize TAMs toward such a protumoral phenotype are now the focus of intense investigation. The transcription factor, nuclear factor-kappaB (NF-kappaB), is a master regulator of many cellular processes and been shown to regulate various pathways that impact on the function of TAMs. Much evidence for this has come from the use of elegant transgenic murine tumor models in which modification of single components of the NF-kappaB signaling pathway has been shown to regulate the pro-tumor repertoire of TAMs. Here, we outline this evidence and attempt to reconcile the various views that have emerged recently over the exact role of NF-kappaB in this phenomenon.
Collapse
|