1
|
Lando AP, Terrile MC, De Marco MA, Rodriguez M, Martínez-Noël GMA. Nitric oxide participates in sucrose-TOR signaling during meristem activation in Arabidopsis thaliana. PLANTA 2024; 260:113. [PMID: 39367236 DOI: 10.1007/s00425-024-04542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
MAIN CONCLUSION This study provides evidence about the relationship between Target of Rapamycin (TOR) kinase and the signal molecule nitric oxide (NO) in plants. We showed that sucrose (SUC)-mediated TOR activation of root apical meristem (RAM) requires NO and that NO, in turn, participates in the regulation of TOR signaling. Nitric oxide (NO) constitutes a signal molecule that regulates important target proteins related to growth and development and also contributes to metabolic reprogramming that occurs under adverse conditions. Taking into account the important role of NO and its relationship with Target of Rapamycin (TOR) signaling in animals, we wondered about the putative link between both pathways in plants. With this aim, we studied a TOR-dependent process which is the reactivation of the root apical meristem (RAM) in Arabidopsis thaliana. We used pharmacological and genetic tools to evaluate the relationship between NO and TOR on the sugar induction of RAM, using SNP as NO donor, cPTIO as NO scavenger and the nitrate reductase (NR) mutant nia2. The results showed that sucrose (SUC)-mediated TOR activation of the RAM requires NO and that NO, in turn, participates in the regulation of TOR signaling. Interestingly, TOR activation induced by sugar increased the NO levels. We also observed that NO could mediate the repression of SnRK1 activity by SUC. By computational prediction we found putative S-nitrosylation sites in the TOR complex proteins and the catalytic subunit of SnRK1, SnRK1.1. The present work demonstrates for the first time a link between NO and TOR revealing the complex interplay between the two pathways in plants.
Collapse
Affiliation(s)
- Ana Paula Lando
- Instituto de Biotecnología y Biodiversidad (INBIOTEC) and FIBA, Vieytes, 3103, 7600, Mar del Plata, Argentina
| | - María Cecilia Terrile
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata (UNMdP), Funes 3250 4 Nivel, 7600, Mar del Plata, UE, Argentina
| | - María Agustina De Marco
- Instituto de Biotecnología y Biodiversidad (INBIOTEC) and FIBA, Vieytes, 3103, 7600, Mar del Plata, Argentina
| | - Marianela Rodriguez
- Instituto de Fisiología Y Recursos Geneticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras Km 5.5, X5020ICA, Córdoba, Argentina
- Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras Km 5.5 X5020ICA, Córdoba, Argentina
| | | |
Collapse
|
2
|
Xie S, Liu H, Ma T, Shen S, Zheng H, Yang L, Liu L, Wei Z, Xin W, Zou D, Wang J. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Japonica Rice under Low Nitrogen Stress. Int J Mol Sci 2023; 24:ijms24097699. [PMID: 37175411 PMCID: PMC10178291 DOI: 10.3390/ijms24097699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins.
Collapse
Affiliation(s)
- Shupeng Xie
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tianze Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Shen Shen
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lichao Liu
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Zhonghua Wei
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Ingargiola C, Jéhanno I, Forzani C, Marmagne A, Broutin J, Clément G, Leprince AS, Meyer C. The Arabidopsis Target of Rapamycin (TOR) kinase regulates ammonium assimilation and glutamine metabolism. PLANT PHYSIOLOGY 2023:kiad216. [PMID: 37042394 DOI: 10.1093/plphys/kiad216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In eukaryotes, Target of Rapamycin (TOR) is a well conserved kinase that controls cell metabolism and growth in response to nutrients and environmental factors. Nitrogen (N) is an essential element for plants, and TOR functions as a crucial N and amino acid sensor in animals and yeast. However, knowledge on the connections between TOR and the overall N metabolism and assimilation in plants is still limited. In this study, we investigated the regulation of TOR in Arabidopsis (Arabidopsis thaliana) by the N source as well as the impact of TOR deficiency on N metabolism. Inhibition of TOR globally decreased ammonium uptake while triggering a massive accumulation of amino acids, such as Gln, but also of polyamines. Consistently, TOR complex mutants were hypersensitive to Gln. We also showed that the glutamine synthetase inhibitor glufosinate abolishes Gln accumulation resulting from TOR inhibition and improves the growth of TOR complex mutants. These results suggest that a high level of Gln contributes to the reduction in plant growth resulting from TOR inhibition. Glutamine synthetase activity was reduced by TOR inhibition while the enzyme amount increased. In conclusion, our findings show that the TOR pathway is intimately connected to N metabolism and that a decrease in TOR activity results in glutamine synthetase-dependent Gln and amino acid accumulation.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Jéhanno
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Justine Broutin
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- Faculté des Sciences et d'Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
4
|
Transcriptome and Co-Expression Network Analysis Reveals the Molecular Mechanism of Rice Root Systems in Response to Low-Nitrogen Conditions. Int J Mol Sci 2023; 24:ijms24065290. [PMID: 36982364 PMCID: PMC10048922 DOI: 10.3390/ijms24065290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nitrogen is an important nutrient for plant growth and essential metabolic processes. Roots integrally obtain nutrients from soil and are closely related to the growth and development of plants. In this study, the morphological analysis of rice root tissues collected at different time points under low-nitrogen and normal nitrogen conditions demonstrated that, compared with normal nitrogen treatment, the root growth and nitrogen use efficiency (NUE) of rice under low-nitrogen treatment were significantly improved. To better understand the molecular mechanisms of the rice root system’s response to low-nitrogen conditions, a comprehensive transcriptome analysis of rice seedling roots under low-nitrogen and control conditions was conducted in this study. As a result, 3171 differentially expressed genes (DEGs) were identified. Rice seedling roots enhance NUE and promote root development by regulating the genes related to nitrogen absorption and utilization, carbon metabolism, root growth and development, and phytohormones, thereby adapting to low-nitrogen conditions. A total of 25,377 genes were divided into 14 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with nitrogen absorption and utilization. A total of 8 core genes and 43 co-expression candidates related to nitrogen absorption and utilization were obtained in these two modules. Further studies on these genes will contribute to the understanding of low-nitrogen adaptation and nitrogen utilization mechanisms in rice.
Collapse
|
5
|
Liu RX, Li HL, Rui L, Liu GD, Wang T, Wang XF, Li LG, Zhang Z, You CX. An apple NITRATE REDUCTASE 2 gene positively regulates nitrogen utilization and abiotic stress tolerance in Arabidopsis and apple callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:23-32. [PMID: 36689830 DOI: 10.1016/j.plaphy.2023.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential element that plays an important role in crop biomass accumulation and quality formation. Increased crop yield is relied on excessive application of fertilizers, which usually leads to environmental pollution and unsustainable development. Thus, identification and characterization of genes involved in promoting nitrogen use efficiency is of high priority in crop breeding. The activity of nitrate reductase (NR) plays a critical role in nitrogen metabolism. In model plant Arabidopsis, NITRATE REDUCTASE 2 (NIA2), one of the two NRs, is responsible for about 90% of the NR activity. In this study, MdNIA2 gene in apple (Malus domestica) genome was screened out and identified by using AtNIA2 as bait. Phylogenetic analysis revealed that MdNIA2 had the closest evolutionary relationship with MbNIA from Malus baccata. Ectopic expression of MdNIA2 in Arabidopsis elevated the nitrogen use efficiency and increased root hair elongation and formation, resulting in promoted plant growth. Furthermore, the overexpression of MdNIA2 improved salt and drought tolerance in transgenic Arabidopsis and improved the salt tolerance of transgenic apple callus, and MdNIA2-reagualted NO metabolism might contribute to the abiotic stress tolerance. Overall, our data indicate the critical role of MdNIA2 in regulating nitrogen utilization efficiency and abiotic stress responses.
Collapse
Affiliation(s)
- Ran-Xin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Dong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Tian Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin-Guang Li
- Shandong Institute of Pomology, Tai-An, Shandong, 271000, China
| | - Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
6
|
Liu J, Lyu M, Xu X, Liu C, Qin H, Tian G, Zhu Z, Ge S, Jiang Y. Exogenous sucrose promotes the growth of apple rootstocks under high nitrate supply by modulating carbon and nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:196-206. [PMID: 36244192 DOI: 10.1016/j.plaphy.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 05/12/2023]
Abstract
Excessive nitrogen (N) supply often leads to an imbalance of carbon (C) and N metabolism and inhibits plant growth. Sucrose, an important source and signaling substance of C in plants, is closely linked to N metabolism. However, it is not clear whether exogenous sucrose can mitigate the inhibitory effect of high N on plant growth by regulating C and N metabolism. In this study, we investigated the effects of exogenous sucrose on the growth, N metabolism, and C assimilation in the apple rootstock M26 seedlings under normal (5 mM NO3-, NN) and high (30 mM NO3-, HN) NO3- concentrations. Our results showed that high NO3- supply reduced plant growth, photosynthesis, and chlorophyll fluorescence, but spraying with 1% sucrose (HN + 1% Sucrose) significantly alleviated this inhibition. Application of 1% sucrose increased sucrose and sorbitol contents as well as sucrose-phosphate synthase and sucrose synthase activities in the plants under HN treatment and promoted the distribution of 13C photoassimilation products to the root. In addition, spraying with 1% sucrose alleviated the inhibition of N metabolizing enzyme activities by high NO3- supply, reduced NO3- accumulation and N content, increased free amino acid content, and promoted 15N distribution to the aboveground parts. However, spraying with 1% sucrose under the NN treatment negatively affected plant photosynthesis and carbon assimilation. In conclusion, exogenous sucrose increased the C level in plants in the presence of excess N, promoted the balance of C and N metabolism, and alleviated the inhibitory effect of high N on the apple plant growth.
Collapse
Affiliation(s)
- Jingquan Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mengxue Lyu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinxiang Xu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chunling Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hanhan Qin
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ge Tian
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhanling Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
7
|
Marmagne A, Masclaux-Daubresse C, Chardon F. Modulation of plant nitrogen remobilization and postflowering nitrogen uptake under environmental stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153781. [PMID: 36029571 DOI: 10.1016/j.jplph.2022.153781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Plants are sessile organisms that take up nitrogen (N) from the soil for growth and development. At the postflowering stage, N that plants require for seed growth and filling derives from either root uptake or shoot remobilization. The balance between N uptake and N remobilization determines the final carbon (C) and N composition of the seed. The N uptake and N remobilization mechanisms are regulated by endogenous signals, including hormones, developmental stage, and carbon/nitrogen ratio, and by environmental factors. The cellular responses to the environment are relatively well known. However, the effects of environmental stresses on the balance between N uptake and N remobilization are still poorly understood. Thus, this study aims to analyze the impact of environmental stresses (drought, heat, darkness, triggered defense, and low nitrate) on N fluxes within plants during seed filling. Using publicly available Arabidopsis transcriptome data, expression of several marker genes involved in N assimilation, transport, and recycling was analyzed in relation to stress. Results showed that the responses of genes encoding inorganic N transporters, N assimilation, and N recycling are mainly regulated by N limitation, the genes encoding housekeeping proteases are principally sensitive to C limitation, and the response of genes involved in the transport of organic N is controlled by both C and N limitations. In addition, 15N data were used to examine the effects of severe environmental stresses on N remobilization and N uptake, and a schematic representation of the major factors that regulate the balance between N remobilization and N uptake under the stress and control conditions was provided.
Collapse
Affiliation(s)
- Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
8
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
9
|
Systemic Signaling: A Role in Propelling Crop Yield. PLANTS 2022; 11:plants11111400. [PMID: 35684173 PMCID: PMC9182853 DOI: 10.3390/plants11111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Food security has become a topic of great concern in many countries. Global food security depends heavily on agriculture that has access to proper resources and best practices to generate higher crop yields. Crops, as with other plants, have a variety of strategies to adapt their growth to external environments and internal needs. In plants, the distal organs are interconnected through the vascular system and intricate hierarchical signaling networks, to communicate and enhance survival within fluctuating environments. Photosynthesis and carbon allocation are fundamental to crop production and agricultural outputs. Despite tremendous progress achieved by analyzing local responses to environmental cues, and bioengineering of critical enzymatic processes, little is known about the regulatory mechanisms underlying carbon assimilation, allocation, and utilization. This review provides insights into vascular-based systemic regulation of photosynthesis and resource allocation, thereby opening the way for the engineering of source and sink activities to optimize the yield performance of major crops.
Collapse
|
10
|
Fichtner F, Dissanayake IM, Lacombe B, Barbier F. Sugar and Nitrate Sensing: A Multi-Billion-Year Story. TRENDS IN PLANT SCIENCE 2021; 26:352-374. [PMID: 33281060 DOI: 10.1016/j.tplants.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
Sugars and nitrate play a major role in providing carbon and nitrogen in plants. Understanding how plants sense these nutrients is crucial, most notably for crop improvement. The mechanisms underlying sugar and nitrate sensing are complex and involve moonlighting proteins such as the nitrate transporter NRT1.1/NFP6.3 or the glycolytic enzyme HXK1. Major components of nutrient signaling, such as SnRK1, TOR, and HXK1, are relatively well conserved across eukaryotes, and the diversification of components such as the NRT1 family and the SWEET sugar transporters correlates with plant terrestrialization. In plants, Tre6P plays a hormone-like role in plant development. In addition, nutrient signaling has evolved to interact with the more recent hormone signaling, allowing fine-tuning of physiological and developmental responses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Chaput V, Martin A, Lejay L. Redox metabolism: the hidden player in carbon and nitrogen signaling? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3816-3826. [PMID: 32064525 DOI: 10.1093/jxb/eraa078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
While decades of research have considered redox metabolism as purely defensive, recent results show that reactive oxygen species (ROS) are necessary for growth and development. Close relationships have been found between the regulation of nitrogen metabolism and ROS in response to both carbon and nitrogen availability. Root nitrate uptake and nitrogen metabolism have been shown to be regulated by a signal from the oxidative pentose phosphate pathway (OPPP) in response to carbon signaling. As a major source of NADP(H), the OPPP is critical to maintaining redox balance under stress situations. Furthermore, recent results suggest that at least part of the regulation of the root nitrate transporter by nitrogen signaling is also linked to the redox status of the plant. This leads to the question of whether there is a more general role of redox metabolism in the regulation of nitrogen metabolism by carbon and nitrogen. This review highlights the role of the OPPP in carbon signaling and redox metabolism, and the interaction between redox and nitrogen metabolism. We discuss how redox metabolism could be an important player in the regulation of nitrogen metabolism in response to carbon/nitrogen interaction and the implications for plant adaptation to extreme environments and future crop development.
Collapse
Affiliation(s)
- Valentin Chaput
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Antoine Martin
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Laurence Lejay
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
12
|
Zhao M, Guo R, Li M, Liu Y, Wang X, Fu H, Wang S, Liu X, Shi L. Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in Glycine soja leaves. PHYSIOLOGIA PLANTARUM 2020; 168:819-834. [PMID: 31593297 DOI: 10.1111/ppl.13022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 05/26/2023]
Abstract
To explore the regulatory mechanisms involved in the adaption to nitrogen (N) deficiency of wild soybean, the ion balance, photosynthetic characteristics, metabolic and transcriptional changes in leaves of common and low N (LN)-tolerant wild soybean seedlings under LN stress were determined. The LN-tolerant wild soybean seedlings showed a stronger ability to maintain photosynthesis and nutrient balance than common wild soybean. A total of 52 differentially accumulated metabolites, mainly related to carbon and N metabolism, were identified between the control and the LN treatment group. In general, tricarboxylic acid (TCA) cycle, shikimic acid pathway, synthetase/glutamate synthase (GS/GOGAT) cycle and accumulation of most organic acids were enhanced in LN-tolerant wild soybean, while reduced in common wild soybean under LN stress compared with their respective control group. Moreover, glycolysis, sugar and polyol and fatty acid metabolism increased in both wild soybean genotypes, and increased more in LN-tolerant wild soybean. A total of 3381 differentially expressed genes (DEGs) were identified in leaves of both wild soybean genotypes and the expressed level of DEGs associated with sugars, polyols, fatty acids and energy metabolism was significantly higher in LN-tolerant wild soybean than in common wild soybean, consistent with changes in metabolite level. Our results suggest new ideas for the study of LN tolerance of wild soybean and provide a theoretical basis for development and utilization of wild soybean resources.
Collapse
Affiliation(s)
- Mingli Zhao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Mingxia Li
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Yuan Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Xiaoxia Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Hui Fu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Shiyao Wang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Xueying Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, P. R. China
| |
Collapse
|
13
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
14
|
Lu MZ, Snyder R, Grant J, Tegeder M. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:217-236. [PMID: 31520495 DOI: 10.1111/tpj.14533] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 05/03/2023]
Abstract
Seed development largely depends on the long-distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source-to-sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this 'Push-and-Pull' approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source-to-sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1-overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild-type plants. Together, the results demonstrate that the SUT1-overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Push-and-Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Rachel Snyder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Jan Grant
- New Zealand Institute for Plant and Food Research Ltd, Christchurch, 8140, New Zealand
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
15
|
Appropriate Ammonium-Nitrate Ratio Improves Nutrient Accumulation and Fruit Quality in Pepper (Capsicum annuum L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110683] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ammonium (NH4+) and nitrate (NO3−) are the two forms of inorganic nitrogen essential for physiological and biochemical processes in higher plants, but little is known about how the NH4+:NO3− ratio may affect nitrogen metabolism. This study determined the effect of NH4+:NO3− ratios on plant growth, accumulation, and distribution of nutrient elements, fruit quality, enzyme activity, and relative expression of genes involved in nitrogen (N) metabolism in pepper (Capsicum annuum L.). In a pod experiment, the NH4+:NO3− ratios of 0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50 were arranged in a complete randomized design with three replicates. The application of NH4+:NO3− at 25:75 resulted in highest dry matter and N, phosphorus (P), and potassium (K) accumulation. Pepper treated with 25:75 ratio increased root length, surface areas, and root volume and tips. The contents of vitamin C, soluble sugar, soluble protein, total phenols, flavonoids, and capsaicinoids in the fruits were significantly higher with the NH4+:NO3− ratio of 25:75 compared with 0:100 treatment, while lowering nitrate content was found in NH4+:NO3− ratios of 25:75, 37.5:62.5, and 50:50 treatments. Activity of glutamine synthetase (GS), glutamate synthases (GOGAT) enzyme and the levels of relative expression of genes coding these enzymes were superior when the NH4+:NO3− ratio of 25:75 were applied. Therefore, an appropriate ratio of NH4+:NO3− (25:75) in nitrogen application can stimulate root development, promote enzyme activities, and enhance the productivity and fruit quality in pepper.
Collapse
|
16
|
An Integrated Analysis of the Rice Transcriptome and Metabolome Reveals Differential Regulation of Carbon and Nitrogen Metabolism in Response to Nitrogen Availability. Int J Mol Sci 2019; 20:ijms20092349. [PMID: 31083591 PMCID: PMC6539487 DOI: 10.3390/ijms20092349] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
Nitrogen (N) is an extremely important macronutrient for plant growth and development. It is the main limiting factor in most agricultural production. However, it is well known that the nitrogen use efficiency (NUE) of rice gradually decreases with the increase of the nitrogen application rate. In order to clarify the underlying metabolic and molecular mechanisms of this phenomenon, we performed an integrated analysis of the rice transcriptome and metabolome. Both differentially expressed genes (DEGs) and metabolite Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that carbon and nitrogen metabolism is significantly affected by nitrogen availability. Further analysis of carbon and nitrogen metabolism changes in rice under different nitrogen availability showed that high N inhibits nitrogen assimilation and aromatic metabolism pathways by regulating carbon metabolism pathways such as the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway (PPP). Under low nitrogen, the TCA cycle is promoted to produce more energy and α-ketoglutarate, thereby enhancing nitrogen transport and assimilation. PPP is also inhibited by low N, which may be consistent with the lower NADPH demand under low nitrogen. Additionally, we performed a co-expression network analysis of genes and metabolites related to carbon and nitrogen metabolism. In total, 15 genes were identified as hub genes. In summary, this study reveals the influence of nitrogen levels on the regulation mechanisms for carbon and nitrogen metabolism in rice and provides new insights into coordinating carbon and nitrogen metabolism and improving nitrogen use efficiency in rice.
Collapse
|
17
|
Transcriptome Profile of the Variegated Ficus microcarpa c.v. Milky Stripe Fig Leaf. Int J Mol Sci 2019; 20:ijms20061338. [PMID: 30884842 PMCID: PMC6470861 DOI: 10.3390/ijms20061338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022] Open
Abstract
Photosynthetic properties and transcriptomic profiles of green and white sectors of Ficus microcarpa (c.v. milky stripe fig) leaves were examined in naturally variegated plants. An anatomic analysis indicated that chloroplasts of the white sectors contained a higher abundance of starch granules and lacked stacked thylakoids. Moreover, no photosynthetic rate was detected in the white sectors. Transcriptome profile and differential expressed gene (DEG) analysis showed that genes encoding PSII core proteins were down-regulated in the white sectors. In genes related to chlorophyll metabolism, no DEGs were identified in the biosynthesis pathway of chlorophyll. However, genes encoding the first step of chlorophyll breakdown were up-regulated. The repression of genes involved in N-assimilation suggests that the white sectors were deprived of N. The mutation in the transcription factor mitochondrial transcription termination factor (mTERF) suggests that it induces colorlessness in leaves of the milky stripe fig.
Collapse
|
18
|
Flis A, Mengin V, Ivakov AA, Mugford ST, Hubberten HM, Encke B, Krohn N, Höhne M, Feil R, Hoefgen R, Lunn JE, Millar AJ, Smith AM, Sulpice R, Stitt M. Multiple circadian clock outputs regulate diel turnover of carbon and nitrogen reserves. PLANT, CELL & ENVIRONMENT 2019; 42:549-573. [PMID: 30184255 DOI: 10.1111/pce.13440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 05/09/2023]
Abstract
Plants accumulate reserves in the daytime to support growth at night. Circadian regulation of diel reserve turnover was investigated by profiling starch, sugars, glucose 6-phosphate, organic acids, and amino acids during a light-dark cycle and after transfer to continuous light in Arabidopsis wild types and in mutants lacking dawn (lhy cca1), morning (prr7 prr9), dusk (toc1, gi), or evening (elf3) clock components. The metabolite time series were integrated with published time series for circadian clock transcripts to identify circadian outputs that regulate central metabolism. (a) Starch accumulation was slower in elf3 and prr7 prr9. It is proposed that ELF3 positively regulates starch accumulation. (b) Reducing sugars were high early in the T-cycle in elf3, revealing that ELF3 negatively regulates sucrose recycling. (c) The pattern of starch mobilization was modified in all five mutants. A model is proposed in which dawn and dusk/evening components interact to pace degradation to anticipated dawn. (d) An endogenous oscillation of glucose 6-phosphate revealed that the clock buffers metabolism against the large influx of carbon from photosynthesis. (e) Low levels of organic and amino acids in lhy cca1 and high levels in prr7 prr9 provide evidence that the dawn components positively regulate the accumulation of amino acid reserves.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexander A Ivakov
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sam T Mugford
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, C.H. Waddington Building, University of Edinburgh, Edinburgh, UK
| | | | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
19
|
Expression of novel nitrate reductase genes in the harmful alga, Chattonella subsalsa. Sci Rep 2018; 8:13417. [PMID: 30194416 PMCID: PMC6128913 DOI: 10.1038/s41598-018-31735-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic nitrate reductase (NR) catalyzes the first step in nitrate assimilation and is regulated transcriptionally in response to external cues and intracellular metabolic status. NRs are also regulated post-translationally in plants by phosphorylation and binding of 14-3-3 proteins at conserved serine residues. 14-3-3 binding motifs have not previously been identified in algal NRs. A novel NR (NR2-2/2HbN) with a 2/2 hemoglobin domain was recently described in the alga Chattonella subsalsa. Here, a second NR (NR3) in C. subsalsa is described with a 14-3-3 binding motif but lacking the Heme-Fe domain found in other NRs. Transcriptional regulation of both NRs was examined in C. subsalsa, revealing differential gene expression over a diel light cycle, but not under constant light. NR2 transcripts increased with a decrease in temperature, while NR3 remained unchanged. NR2 and NR3 transcript levels were not inhibited by growth on ammonium, suggesting constitutive expression of these genes. Results indicate that Chattonella responds to environmental conditions and intracellular metabolic status by differentially regulating NR transcription, with potential for post-translational regulation of NR3. A survey of algal NRs also revealed the presence of 14-3-3 binding motifs in other algal species, indicating the need for future research on regulation of algal NRs.
Collapse
|
20
|
Ohashi M, Ishiyama K, Kojima S, Konishi N, Sasaki K, Miyao M, Hayakawa T, Yamaya T. Outgrowth of Rice Tillers Requires Availability of Glutamine in the Basal Portions of Shoots. RICE (NEW YORK, N.Y.) 2018; 11:31. [PMID: 29744685 PMCID: PMC5943206 DOI: 10.1186/s12284-018-0225-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/30/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Our previous studies concluded that metabolic disorder in the basal portions of rice shoots caused by a lack of cytosolic glutamine synthetase1;2 (GS1;2) resulted in a severe reduction in the outgrowth of tillers. Rice mutants lacking GS1;2 (gs1;2 mutants) showed a remarkable reduction in the contents of both glutamine and asparagine in the basal portions of shoots. In the current study, we attempted to reveal the mechanisms for this decrease in asparagine content using rice mutants lacking either GS1;2 or asparagine synthetase 1 (AS1). The contributions of the availability of glutamine and asparagine to the outgrowth of rice tillers were investigated. RESULTS Rice has two AS genes, and the enzymes catalyse asparagine synthesis from glutamine. In the basal portions of rice shoots, expression of OsAS1, the major species in this tissue, was reduced in gs1;2 mutants, whereas OsAS2 expression was relatively constant. OsAS1 was expressed in phloem companion cells of the nodal vascular anastomoses connected to the axillary bud vasculatures in the basal portions of wild-type shoots, whereas cell-specific expression was markedly reduced in gs1;2 mutants. OsAS1 was up-regulated significantly by NH4+ supply in the wild type but not in gs1;2 mutants. When GS reactions were inhibited by methionine sulfoximine, OsAS1 was up-regulated by glutamine but not by NH4+. The rice mutants lacking AS1 (as1 mutants) showed a decrease in asparagine content in the basal portions of shoots. However, glutamine content and tiller number were less affected by the lack of AS1. CONCLUSION These results indicate that in phloem companion cells of the nodal vascular anastomoses, asparagine synthesis is largely dependent on glutamine or its related metabolite-responsive AS1. Thus, the decrease in glutamine content caused by a lack of GS1;2 is suggested to result in low expression of OsAS1, decreasing asparagine content. However, the availability of asparagine generated from AS1 reactions is apparently less effective for the outgrowth of tillers. With respect to the tiller number and the contents of glutamine and asparagine in gs1;2 and as1 mutants, the availability of glutamine rather than asparagine in basal portions of rice shoots may be required for the outgrowth of rice tillers.
Collapse
Affiliation(s)
- Miwa Ohashi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-8572, Japan.
- Present Address: Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-8572, Japan
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-8572, Japan
| | - Noriyuki Konishi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-8572, Japan
- Present Address: Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan
| | - Kazuhiro Sasaki
- The University of Tokyo, Graduate School of Agricultural and Life Sciences, Institute of Sustainable Agro-ecosystem Services (ISAS), 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Mitsue Miyao
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-8572, Japan
| | - Toshihiko Hayakawa
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-8572, Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-8572, Japan
- Present Address: Division for Interdisciplinary Advanced Research and Education, Tohoku University, 6-3 Aoba, Aramaki-Aza, Aoba-ku, Sendai, 980-0845, Japan
| |
Collapse
|
21
|
A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat Commun 2018; 9:1376. [PMID: 29636481 PMCID: PMC5893545 DOI: 10.1038/s41467-018-03832-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 03/15/2018] [Indexed: 11/22/2022] Open
Abstract
Nitrate is a nutrient signal that triggers complex regulation of transcriptional networks to modulate nutrient-dependent growth and development in plants. This includes time- and nitrate concentration-dependent regulation of nitrate-related gene expression. However, the underlying mechanisms remain poorly understood. Here we identify NIGT1 transcriptional repressors as negative regulators of the ArabidopsisNRT2.1 nitrate transporter gene, and show antagonistic regulation by NLP primary transcription factors for nitrate signalling and the NLP-NIGT1 transcriptional cascade-mediated repression. This antagonistic regulation provides a resolution to the complexity of nitrate-induced transcriptional regulations. Genome-wide analysis reveals that this mechanism is applicable to NRT2.1 and other genes involved in nitrate assimilation, hormone biosynthesis and transcription. Furthermore, the PHR1 master regulator of the phosphorus-starvation response also directly promotes expression of NIGT1 family genes, leading to reductions in nitrate uptake. NIGT1 repressors thus act in two transcriptional cascades, forming a direct link between phosphorus and nitrogen nutritional regulation. Plants respond to nutrients by modulating gene expression. Here, the authors show that nitrate suppresses NRT2.1 nitrate transporter expression via NIGT1 transcriptional repressors and that phosphate starvation enhances this pathway via PHR1, thus linking phosphorus and nitrogen signalling.
Collapse
|
22
|
Wang H, Chen Y, Xu B, Hu W, Snider JL, Meng Y, Chen B, Wang Y, Zhao W, Wang S, Zhou Z. Long-term exposure to slightly elevated air temperature alleviates the negative impacts of short term waterlogging stress by altering nitrogen metabolism in cotton leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:242-251. [PMID: 29253802 DOI: 10.1016/j.plaphy.2017.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 05/01/2023]
Abstract
Short-term waterlogging and chronic elevated temperature occur frequently in the Yangtze River Valley, yet the effects of these co-occurring environments on nitrogen metabolism of the subtending leaf (a major source leaf for boll development) have received little attention. In this study, plants were exposed to two temperature regimes (31.6/26.5 °C and 34.1/29.0 °C) and waterlogging events (0 d, 3 d, 6 d) during flowering and boll development. The results showed that the effects of waterlogging stress and elevated temperature in isolation on nitrogen metabolism were quite different. Waterlogging stress not only limited NR (EC 1.6.6.1) and GS (EC 6.3.1.2) activities through the down-regulation of GhNR and GhGS expression for amino acid synthesis, but also promoted protein degradation by enhanced protease activity and peptidase activity, leading to lower organ and total biomass (reduced by 12.01%-27.63%), whereas elevated temperature inhibited protein degradation by limited protease activity and peptidase activity, promoting plant biomass accumulation. Furthermore, 2-3 °C chronic elevated temperature alleviated the negative impacts of a brief (3 d) waterlogging stress on cotton leaves, with the expression of GhNiR up-regulated, the activities of NR, GS and GOGAT (EC 1.4.7.1) increased and the activities of protease and peptidase decreased, leading to higher protein concentration and enhanced leaf biomass for EW3 relative to AW3. The results of the study suggested that exposure to slightly elevated air temperature improves the cotton plants' ability to recover from short-term (3 d) waterlogging stress by sustaining processes associated with nitrogen assimilation.
Collapse
Affiliation(s)
- Haimiao Wang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
| | - Yinglong Chen
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Bingjie Xu
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Wei Hu
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794, USA.
| | - Yali Meng
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Binglin Chen
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Youhua Wang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Wenqing Zhao
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Shanshan Wang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Zhiguo Zhou
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| |
Collapse
|
23
|
Alt DS, Doyle JW, Malladi A. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:79-87. [PMID: 28578080 DOI: 10.1016/j.jplph.2017.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Blueberry (Vaccinium sp.) is thought to display a preference for the ammonium (NH4+) form over the nitrate (NO3-) form of inorganic nitrogen (N). This N-source preference has been associated with a generally low capacity to assimilate the NO3- form of N, especially within the shoot tissues. Nitrate assimilation is mediated by nitrate reductase (NR), a rate limiting enzyme that converts NO3- to nitrite (NO2-). We investigated potential limitations of NO3- assimilation in two blueberry species, rabbiteye (Vaccinium ashei) and southern highbush (Vaccinium corymbosum) by supplying NO3- to the roots, leaf surface, or through the cut stem. Both species displayed relatively low but similar root uptake rates for both forms of inorganic N. Nitrate uptake through the roots transiently increased NR activity by up to 3.3-fold and root NR gene expression by up to 4-fold. However, supplying NO3- to the roots did not increase its transport in the xylem, nor did it increase NR activity in the leaves, indicating that the acquired N was largely assimilated or stored within the roots. Foliar application of NO3- increased leaf NR activity by up to 3.5-fold, but did not alter NO3- metabolism-related gene expression, suggesting that blueberries are capable of post translational regulation of NR activity in the shoots. Additionally, supplying NO3- to the cut ends of stems resulted in around a 5-fold increase in NR activity, a 10-fold increase in NR transcript accumulation, and up to a 195-fold increase in transcript accumulation of NITRITE REDUCTASE (NiR1) which codes for the enzyme catalyzing the conversion of NO2- to NH4+. These data indicate that blueberry shoots are capable of assimilating NO3- when it is directly supplied to these tissues. Together, these data suggest that limitations in the uptake and translocation of NO3- to the shoots may limit overall NO3- assimilation capacity in blueberry.
Collapse
Affiliation(s)
- Douglas S Alt
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| | - John W Doyle
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Anish Malladi
- Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA, 30602, United Statesof America; Douglas S. Alt, Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
24
|
Vicente R, Pérez P, Martínez-Carrasco R, Morcuende R. Improved responses to elevated CO 2 in durum wheat at a low nitrate supply associated with the upregulation of photosynthetic genes and the activation of nitrate assimilation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:119-128. [PMID: 28554469 DOI: 10.1016/j.plantsci.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/16/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Elevated CO2 often leads to photosynthetic acclimation, and N availability may alter this response. We investigated whether the coordination of shoot-root N assimilation by elevated CO2 may help to optimize the whole-plant N allocation and maximize photosynthesis in hydroponically-grown durum wheat at two NO3- supplies in interaction with plant development. Transcriptional and biochemical analyses were performed on flag leaves and roots. At anthesis, the improved photosynthetic acclimation response to elevated CO2 at low N was associated with increased Rubisco, chlorophyll and amino acid contents, and upregulation of genes related to their biosynthesis, light reactions and Calvin-Benson cycle, while a decrease was recorded at high N. Despite the decrease in carbohydrates with elevated CO2 at low N and the increase at high N, a stronger upward trend in leaf NR activity was found at low rather than high N. The induction of N recycling-related genes was accompanied by an amino acids decline at high N. At the grain-filling stage, the photosynthetic acclimation to elevated CO2 at high N was associated with the downregulation of both N assimilation, mainly in roots, and photosynthetic genes. At low N, enhanced root N assimilation partly compensated for slower shoot N assimilation and maximized photosynthetic capacity.
Collapse
Affiliation(s)
- Rubén Vicente
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain; Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain.
| | - Pilar Pérez
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Rafael Martínez-Carrasco
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - Rosa Morcuende
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
25
|
Zhang X, Li K, Xing R, Liu S, Li P. Metabolite Profiling of Wheat Seedlings Induced by Chitosan: Revelation of the Enhanced Carbon and Nitrogen Metabolism. FRONTIERS IN PLANT SCIENCE 2017; 8:2017. [PMID: 29234335 PMCID: PMC5712320 DOI: 10.3389/fpls.2017.02017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Chitosan plays an important role in regulating growth and eliciting defense in many plant species. However, the exact metabolic response of plants to chitosan is still not clear. The present study performed an integrative analysis of metabolite profiles in chitosan-treated wheat seedlings and further investigated the response of enzyme activities and transcript expression related to the primary carbon (C) and nitrogen (N) metabolism. Metabolite profiling revealed that chitosan could induce significant difference of organic acids, sugars and amino acids in leaves of wheat seedlings. A higher accumulation of sucrose content was observed after chitosan treatment, accompanied by an increase in sucrose phosphate synthase (SPS) and fructose 1, 6-2 phosphatase (FBPase) activities as well as an up-regulation of relative expression level. Several metabolites associated with tricarboxylic acid (TCA) cycle, including oxaloacetate and malate, were also improved along with an elevation of phosphoenolpyruvate carboxylase (PEPC) and pyruvate dehydrogenase (PDH) activities. On the other hand, chitosan could also enhance the N reduction and N assimilation. Glutamate, aspartate and some other amino acids were higher in chitosan-treated plants, accompanied by the activation of key enzymes of N reduction and glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Together, these results suggested a pleiotropic modulation of carbon and nitrogen metabolism in wheat seedlings induced by chitosan and provided a significant insight into the metabolic mechanism of plants in response to chitosan for the first time, and it would give a basic guidance for the future application of chitosan in agriculture.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Pengcheng Li,
| |
Collapse
|
26
|
Huang A, Sang Y, Sun W, Fu Y, Yang Z. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings. PLoS One 2016; 11:e0165732. [PMID: 27820840 PMCID: PMC5098742 DOI: 10.1371/journal.pone.0165732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022] Open
Abstract
The internal C:N balance must be tightly controlled for the normal growth and development of plants. However, the underlying mechanisms, by which plants sense and balance the intracellular C:N status correspondingly to exogenous C:N availabilities remain elusive. In this study, we use comparative gene expression analysis to identify genes that are responsive to imbalanced C:N treatments in the aerial parts of rice seedlings. Transcripts of rice seedlings treated with four C:N availabilities (1:1, 1:60, 60:1 and 60:60) were compared and two groups of genes were classified: high C:low N responsive genes and low C:high N responsive genes. Our analysis identified several functional correlated genes including chalcone synthase (CHS), chlorophyll a-b binding protein (CAB) and other genes that are implicated in C:N balancing mechanism, such as alternative oxidase 1B (OsAOX1B), malate dehydrogenase (OsMDH) and lysine and histidine specific transporter 1 (OsLHT1). Additionally, six jasmonate synthetic genes and key regulatory genes involved in abiotic and biotic stresses, such as OsMYB4, autoinhibited calcium ATPase 3 (OsACA3) and pleiotropic drug resistance 9 (OsPDR9), were differentially expressed under high C:low N treatment. Gene ontology analysis showed that high C:low N up-regulated genes were primarily enriched in fatty acid biosynthesis and defense responses. Coexpression network analysis of these genes identified eight jasmonate ZIM domain protein (OsJAZ) genes and several defense response related regulators, suggesting that high C:low N status may act as a stress condition, which induces defense responses mediated by jasmonate signaling pathway. Our transcriptome analysis shed new light on the C:N balancing mechanisms and revealed several important regulators of C:N status in rice seedlings.
Collapse
Affiliation(s)
- Aobo Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuying Sang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenfeng Sun
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenbiao Yang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
27
|
Chen J, Jing Y, Zhang X, Li L, Wang P, Zhang S, Zhou H, Wu J. Evolutionary and Expression Analysis Provides Evidence for the Plant Glutamate-like Receptors Family is Involved in Woody Growth-related Function. Sci Rep 2016; 6:32013. [PMID: 27554066 PMCID: PMC4995503 DOI: 10.1038/srep32013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/01/2016] [Indexed: 01/10/2023] Open
Abstract
Glutamate-like receptors (GLRs) is a highly conserved family of ligand-gated ion channels, which have been associated with various physiological and developmental processes. Here, we investigated the evolutionary pattern of GLRs in plants. We observed that tandem duplications occupied the largest proportion of the plant GLR gene family expansion. Based on a phylogenetic tree, we suggested a new subfamily, GLR4, which is widespread in angiosperm but absence on Brassicales. Meanwhile, because GLR1 and GLR2 subfamilies were potential sister clades, we combined them into the GLR1&2 subfamily. A comparative analysis of plant GLR subfamilies revealed that selective forces shaped the GLR1&2 repertoires in the stems of eudicotyledons with distinct functional preferences. Moreover, GLR1&2 formed a species-specific highwoody-expanded subfamily, with preferential expression in the cambial-enriched and shoot apical meristem fractions of the highwood species. Together, these findings lay the foundation for evolutionary analysis of plant GLRs over the entire plant timescale and identified unique targets for manipulating the woody-growth behaviours of plant GLRs.
Collapse
Affiliation(s)
- Jianqing Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinghui Jing
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiting Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Santiago JP, Tegeder M. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids. PLANT PHYSIOLOGY 2016; 171:508-21. [PMID: 27016446 PMCID: PMC4854717 DOI: 10.1104/pp.16.00244] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield.
Collapse
Affiliation(s)
- James P Santiago
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
29
|
Davenport S, Le Lay P, Sanchez-Tamburrrino JP. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:96-107. [PMID: 26447683 DOI: 10.1016/j.plaphy.2015.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 05/07/2023]
Abstract
Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.
Collapse
Affiliation(s)
- Susie Davenport
- British American Tobacco, R&D Cambridge, 210 The Science Park, Cambridge, CB4 0WA, UK.
| | - Pascaline Le Lay
- British American Tobacco, R&D Cambridge, 210 The Science Park, Cambridge, CB4 0WA, UK
| | | |
Collapse
|
30
|
Kan CC, Chung TY, Juo YA, Hsieh MH. Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. BMC Genomics 2015; 16:731. [PMID: 26407850 PMCID: PMC4582844 DOI: 10.1186/s12864-015-1892-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/01/2015] [Indexed: 12/02/2022] Open
Abstract
Background Glutamine is a major amino donor for the synthesis of amino acids, nucleotides, and other nitrogen-containing compounds in all organisms. In addition to its role in nutrition and metabolism, glutamine can also function as a signaling molecule in bacteria, yeast, and humans. By contrast, the functions of glutamine in nutrition and as a signaling molecule remain unclear in plants. Results We demonstrated that glutamine could effectively support the growth of rice seedlings. In glutamine-treated rice roots, the glutamine contents increased dramatically, whereas levels of glutamate remained relatively constant. Transcriptome analysis of rice roots revealed that glutamine induced the expression of at least 35 genes involved in metabolism, transport, signal transduction, and stress responses within 30 min. Interestingly, 10 of the 35 early glutamine responsive genes encode putative transcription factors, including two LBD37-like genes that are involved in the regulation of nitrogen metabolism. Glutamine also rapidly induced the expression of the DREB1A, IRO2, and NAC5 transcription factor genes, which are involved in the regulation of stress responses. Conclusions In addition to its role as a metabolic fuel, glutamine may also function as a signaling molecule to regulate gene expression in plants. The rapid induction of transcription factor genes suggests that glutamine may efficiently amplify its signal and interact with the other signal transduction pathways to regulate plant growth and stress responses. Thus, glutamine is a functional amino acid that plays important roles in plant nutrition and signal transduction. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1892-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Cheng Kan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Yan-An Juo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
31
|
Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. PLANT & CELL PHYSIOLOGY 2015; 56:769-78. [PMID: 25634963 DOI: 10.1093/pcp/pcv005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/13/2015] [Indexed: 05/06/2023]
Abstract
Asparagine is synthesized from glutamine by the reaction of asparagine synthetase (AS) and is the major nitrogen form in both xylem and phloem sap in rice (Oryza sativa L.). There are two genes encoding AS, OsAS1 and OsAS2, in rice, but the functions of individual AS isoenzymes are largely unknown. Cell type- and NH4(+)-inducible expression of OsAS1 as well as analyses of knockout mutants were carried out in this study to characterize AS1. OsAS1 was mainly expressed in the roots, with in situ hybridization showing that the corresponding mRNA was specifically accumulated in the three cell layers of the root surface (epidermis, exodermis and sclerenchyma) in an NH4(+)-dependent manner. Conversely, OsAS2 mRNA was abundant in leaf blades and sheathes of rice. Although OsAS2 mRNA was detectable in the roots, its content decreased when NH4(+) was supplied. Retrotransposon-mediated knockout mutants lacking AS1 showed slight stimulation of shoot length and slight reduction in root length at the seedling stage. On the other hand, the mutation caused an approximately 80-90% reduction in free asparagine content in both roots and xylem sap. These results suggest that AS1 is responsible for the synthesis of asparagine in rice roots following the supply of NH4(+). Characteristics of the NH4(+)-dependent increase and the root surface cell-specific expression of OsAS1 gene are very similar to our previous results on cytosolic glutamine synthetase1;2 and NADH-glutamate synthase1 in rice roots. Thus, AS1 is apparently coupled with the primary assimilation of NH4(+) in rice roots.
Collapse
Affiliation(s)
- Miwa Ohashi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Noriyuki Konishi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Kentaro Nakano
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan Present address: Cambridge Technology Partners Co. Ltd., 1-1-1 Toyosu, Koto-ku, Tokyo 135-8560 Japan
| | - Keiichi Kanno
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Toshihiko Hayakawa
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| |
Collapse
|
32
|
Santiago EF, Larentis TC, Barbosa VM, Caires ARL, Morais GA, Súarez YR. Can the Chlorophyll-a Fluorescence be Useful in Identifying Acclimated Young Plants from Two Populations of Cecropia Pachystachya Trec. (Urticaceae), Under Elevated CO2 Concentrations? J Fluoresc 2014; 25:49-57. [DOI: 10.1007/s10895-014-1478-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
|
33
|
Konishi M, Yanagisawa S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5589-600. [PMID: 25005135 DOI: 10.1093/jxb/eru267] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrogen is one of the primary macronutrients of plants, and nitrate is the most abundant inorganic form of nitrogen in soils. Plants take up nitrate in soils and utilize it both for nitrogen assimilation and as a signalling molecule. Thus, an essential role for nitrate in plants is triggering changes in gene expression patterns, including immediate induction of the expression of genes involved in nitrate transport and assimilation, as well as several transcription factor genes and genes related to carbon metabolism and cytokinin biosynthesis and response. Significant progress has been made in recent years towards understanding the molecular mechanisms underlying nitrate-regulated gene expression in higher plants; a new stage in our understanding of this process is emerging. A key finding is the identification of NIN-like proteins (NLPs) as transcription factors governing nitrate-inducible gene expression. NLPs bind to nitrate-responsive DNA elements (NREs) located at nitrate-inducible gene loci and activate their NRE-dependent expression. Importantly, post-translational regulation of NLP activity by nitrate signalling was strongly suggested to be a vital process in NLP-mediated transcriptional activation and subsequent nitrate responses. We present an overview of the current knowledge of the molecular mechanisms underlying nitrate-regulated gene expression in higher plants.
Collapse
Affiliation(s)
- Mineko Konishi
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
34
|
Satou M, Enoki H, Oikawa A, Ohta D, Saito K, Hachiya T, Sakakibara H, Kusano M, Fukushima A, Saito K, Kobayashi M, Nagata N, Myouga F, Shinozaki K, Motohashi R. Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins. PLANT MOLECULAR BIOLOGY 2014; 85:411-28. [PMID: 24793022 PMCID: PMC4052017 DOI: 10.1007/s11103-014-0194-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/17/2014] [Indexed: 05/08/2023]
Abstract
We used four mutants having albino or pale green phenotypes with disrupted nuclear-encoded chloroplast proteins to analyze the regulatory system of metabolites in chloroplast. We performed an integrated analyses of transcriptomes and metabolomes of the four mutants. Transcriptome analysis was carried out using the Agilent Arabidopsis 2 Oligo Microarray, and metabolome analysis with two mass spectrometers; a direct-infusion Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR/MS) and a gas chromatograph-time of flight mass spectrometer. Among approximately 200 known metabolites detected by the FT-ICR/MS, 71 metabolites showed significant changes in the mutants when compared with controls (Ds donor plants). Significant accumulation of several amino acids (glutamine, glutamate and asparagine) was observed in the albino and pale green mutants. Transcriptome analysis revealed altered expressions of genes in several metabolic pathways. For example, genes involved in the tricarboxylic acid cycle, the oxidative pentose phosphate pathway, and the de novo purine nucleotide biosynthetic pathway were up-regulated. These results suggest that nitrogen assimilation is constitutively promoted in the albino and pale green mutants. The accumulation of ammonium ions in the albino and pale green mutants was consistently higher than in Ds donor lines. Furthermore, genes related to pyridoxin accumulation and the de novo purine nucleotide biosynthetic pathway were up-regulated, which may have occurred as a result of the accumulation of glutamine in the albino and pale green mutants. The difference in metabolic profiles seems to be correlated with the disruption of chloroplast internal membrane structures in the mutants. In albino mutants, the alteration of metabolites accumulation and genes expression is stronger than pale green mutants.
Collapse
Affiliation(s)
- Masakazu Satou
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
- Present Address: Dragon Genomics Center, TAKARA BIO INC., Ootsu, Shiga 520-2198 Japan
| | - Harumi Enoki
- Department of Agriculture, Shizuoka University, 836 Ohoya Suruga-ku, Shizuoka, Shizuoka 422-8529 Japan
| | - Akira Oikawa
- Graduate School of Agricultural and Biological Science, Osaka Prefecture University, Sakai, Osaka 599-8531 Japan
| | - Daisaku Ohta
- Graduate School of Agricultural and Biological Science, Osaka Prefecture University, Sakai, Osaka 599-8531 Japan
| | - Kazunori Saito
- K.K., Bruker Daltonics, Yokohama, Kanagawa 221-0022 Japan
| | - Takushi Hachiya
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
| | - Hitoshi Sakakibara
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
| | - Miyako Kusano
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
| | - Atsushi Fukushima
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
| | - Kazuki Saito
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
- Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba 263-8522 Japan
| | | | - Noriko Nagata
- Faculty of Science, Japan Woman’s University, Bunkyou-ku, Tokyo, 112-8681 Japan
| | - Fumiyoshi Myouga
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
| | - Kazuo Shinozaki
- Plant Science Center (Center for Sustainable Resource Science), RIKEN, Yokohama, Kanagawa 230-0045 Japan
| | - Reiko Motohashi
- Department of Agriculture, Shizuoka University, 836 Ohoya Suruga-ku, Shizuoka, Shizuoka 422-8529 Japan
| |
Collapse
|
35
|
Wang M, Shen Q, Xu G, Guo S. New insight into the strategy for nitrogen metabolism in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:1-37. [PMID: 24725423 DOI: 10.1016/b978-0-12-800180-6.00001-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitrogen (N) is one of the most important mineral nutrients required by higher plants. Primary N absorbed by higher plants includes nitrate (NO3(-)), ammonium (NH4(+)), and organic N. Plants have developed several mechanisms for regulating their N metabolism in response to N availability and environmental conditions. Numerous transporters have been characterized and the mode of N movement within plants has been demonstrated. For further assimilation of N, various enzymes are involved in the key processes of NO3(-) or NH4(+) assimilation. N and carbon (C) metabolism are tightly coordinated in the fundamental biochemical pathway that permits plant growth. As N and C metabolism are the fundamental constituents of plant life, understanding N regulation is essential for growing plants and improving crop production. Regulation of N metabolism at the transcriptional and posttranscriptional levels provides important perceptions in the complex regulatory network of plants to adapt to changing N availability. In this chapter, recent advances in elucidating molecular mechanisms of N metabolism processes and regulation strategy, as well as interactions between C and N, are discussed. This review provides new insights into the strategy for studying N metabolism at the cellular level for optimum plant growth in different environments.
Collapse
Affiliation(s)
- Min Wang
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qirong Shen
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Guohua Xu
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Shiwei Guo
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
36
|
Price MB, Kong D, Okumoto S. Inter-subunit interactions between glutamate-like receptors in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:e27034. [PMID: 24300102 PMCID: PMC4091553 DOI: 10.4161/psb.27034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 05/27/2023]
Abstract
The plant Glutamate-Like Receptors (GLRs) are homologs of animal ionotropic glutamate receptors (iGluRs), and are hypothesized to be potential amino acid sensors in plants. Genetic studies of proteins from this family implicate individual GLRs in a diversity of physiological roles in plants. Recently, amino-acid gated channel activities have been proven for a few plant GLRs, suggesting that at least some of the functional mechanisms are conserved between plant GLRs and animal iGluRs. Animal iGluRs generally form heterotetramers, and the ligand-binding specificity and channel functionality is determined by interaction between the subunits. In order to investigate whether plant GLRs interact with each other, a modified yeast-2-hybrid system (mbSUS) approach was taken on 15 of the 20 Arabidopsis GLRs to identify potential interaction partners. Using this approach, we have successfully identified GLR subunits that are capable of interacting with multiple other GLRs. Unlike iGluRs, sequence similarity between the subunit was not correlated with the likelihood of interaction among 2 given subunits. Interactions between selected GLRs (GLR1.1, 2.9, 3.2, and 3.4) were further tested in another heterologous expression system, mammalian HEK293 cells, using Förster resonance energy transfer (FRET). Two separate approaches (sensitized FRET and acceptor photobleaching) indicated that GLRs 1.1 and 3.4 are capable of forming homomers, whereas other combinations did not result in detectable FRET between the subunits.
Collapse
Affiliation(s)
- Michelle B Price
- Department of Plant Pathology, Physiology, and Weed Science; Virginia Polytechnic Institute and State University; Blacksburg, VA USA
| | - Dongdong Kong
- Department of Cell Biology and Molecular Genetics,University of Maryland, College Park, MD USA
| | - Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science; Virginia Polytechnic Institute and State University; Blacksburg, VA USA
| |
Collapse
|
37
|
Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. PLANT & CELL PHYSIOLOGY 2013; 54:1881-93. [PMID: 24058148 PMCID: PMC3814184 DOI: 10.1093/pcp/pct127] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/09/2013] [Indexed: 05/18/2023]
Abstract
Cytokinin activity in plants is closely related to nitrogen availability, and an Arabidopsis gene for adenosine phosphate-isopentenyltransferase (IPT), IPT3, is regulated by inorganic nitrogen sources in a nitrate-specific manner. In this study, we have identified another regulatory system of cytokinin de novo biosynthesis in response to nitrogen status. In rice, OsIPT4, OsIPT5, OsIPT7 and OsIPT8 were up-regulated in response to exogenously applied nitrate and ammonium, with accompanying accumulation of cytokinins. Pre-treatment of roots with l-methionine sulfoximine, a potent inhibitor of glutamine synthetase, abolished the nitrate- and ammonium-dependent induction of OsIPT4 and OsIPT5, while glutamine application induced their expression. Thus, neither nitrate nor ammonium, but glutamine or a related metabolite, is essential for the induction of these IPT genes in rice. On the other hand, glutamine-dependent induction of IPT3 occurs in Arabidopsis, at least to some extent. In transgenic lines repressing the expression of OsIPT4, which is the dominant IPT in rice roots, the nitrogen-dependent increase of cytokinin in the xylem sap was significantly reduced, and seedling shoot growth was retarded despite sufficient nitrogen. We conclude that plants possess multiple regulation systems for nitrogen-dependent cytokinin biosynthesis to modulate growth in response to nitrogen availability.
Collapse
|
38
|
Zhang Y, Liu H, Yin H, Wang W, Zhao X, Du Y. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:49-56. [PMID: 23872742 DOI: 10.1016/j.plaphy.2013.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 06/25/2013] [Indexed: 05/27/2023]
Abstract
Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg L(-1)) were found to induce the generation of nitric oxide (NO) in the root system of wheat (Triticum aestivum L.), which promoted the formation and elongation of wheat roots in a dose-dependent manner. NO inhibitors suggested that nitrate reductase (NR), rather than nitric oxide synthase (NOS), was essential for AOS-induced root development. Further studies confirmed that AOS-induced NO generation in wheat roots by up-regulating the gene expression and enzyme activity of NR at the post-transcriptional level. The anatomy and RT-PCR results showed that AOS accelerated the division and growth of stele cells, leading to an increase in the ratio of stele area to root transverse area. This could be inhibited by the NR inhibitor, sodium tungstate, which indicated that NO catalyzed by the NR was involved in AOS regulation of root development. Taken together, in the early stage of AOS-induced root development, NO generation was a novel mechanism by which AOS regulated plant growth. The results also showed that this marine resource could be widely used for crop development.
Collapse
Affiliation(s)
- Yunhong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning Provincial Key Laboratory of Carbohydrates, 457 Zhongshan Road, Dalian 116023, Liaoning, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber APM, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 2013; 14:442. [PMID: 23822863 PMCID: PMC3716532 DOI: 10.1186/1471-2164-14-442] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/21/2013] [Indexed: 12/01/2022] Open
Abstract
Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation.
Collapse
Affiliation(s)
- Urte Schlüter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr, 5, 91058, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1071-1084. [PMID: 23190083 DOI: 10.1111/pce.12046] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/24/2023]
Abstract
Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Collapse
Affiliation(s)
- Guy Hanke
- Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany
| | | |
Collapse
|
41
|
Sawaki N, Tsujimoto R, Shigyo M, Konishi M, Toki S, Fujiwara T, Yanagisawa S. A nitrate-inducible GARP family gene encodes an auto-repressible transcriptional repressor in rice. PLANT & CELL PHYSIOLOGY 2013; 54:506-17. [PMID: 23324170 DOI: 10.1093/pcp/pct007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nitrogen is the most important macronutrient in plants and its supply induces responses in gene expression, metabolism and developmental processes. However, the molecular mechanisms underlying the nitrogen responses remain poorly understood. Here we show that the supply of nitrate but not ammonium immediately induces the expression of a transcriptional repressor gene in rice, designated NIGT1 (Nitrate-Inducible, GARP-type Transcriptional Repressor 1). The results of DNA-binding site selection experiments and electrophoretic mobility shift assays indicated that NIGT1 binds to DNA containing either of two consensus sequences, GAATC or GAATATTC. In transient reporter assays, NIGT1 was found to repress transcription from the promoters containing the identified NIGT1-binding sequences in vivo. Furthermore, NIGT1 repressed the activity of its own promoter, suggesting an autorepression mechanism. Consistently, nitrate-induced NIGT1 expression was found to be down-regulated after a transient peak during nitrate treatment, and the nitrate-induced expression of NIGT1 decreased in transgenic rice plants in which this gene was constitutively overexpressed. Furthermore, the chlorophyll content that could be a marker of nitrogen utilization was found to be decreased in NIGT1 overexpressors of rice grown with nitrate medium but not with ammonium medium. Thus, we propose NIGT1 as a nitrate-inducible and autorepressible transcriptional repressor that may play a role in the nitrogen response in rice. Taken together with the fact that the NIGT1-binding sites are conserved in promoter sequences of Arabidopsis NIGT1 homologs, our findings imply the presence of a time-dependent complex system for nitrate-responsive transcriptional regulation that is conserved in both monocots and dicots.
Collapse
Affiliation(s)
- Naoya Sawaki
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Seabra AR, Pereira PA, Becker JD, Carvalho HG. Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:976-92. [PMID: 22414438 DOI: 10.1094/mpmi-12-11-0322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.
Collapse
Affiliation(s)
- Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
43
|
Price MB, Jelesko J, Okumoto S. Glutamate receptor homologs in plants: functions and evolutionary origins. FRONTIERS IN PLANT SCIENCE 2012; 3:235. [PMID: 23115559 PMCID: PMC3483616 DOI: 10.3389/fpls.2012.00235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/02/2012] [Indexed: 05/03/2023]
Abstract
The plant glutamate-like receptor homologs (GLRs) are homologs of mammalian ionotropic glutamate receptors (iGluRs) which were discovered more than 10 years ago, and are hypothesized to be potential amino acid sensors in plants. Although initial progress on this gene family has been hampered by gene redundancy and technical issues such as gene toxicity; genetic, pharmacological, and electrophysiological approaches are starting to uncover the functions of this protein family. In parallel, there has been tremendous progress in elucidating the structure of animal glutamate receptors (iGluRs), which in turn will help understanding of the molecular mechanisms of plant GLR functions. In this review, we will summarize recent progress on the plant GLRs. Emerging evidence implicates plant GLRs in various biological processes in and beyond N sensing, and implies that there is some overlap in the signaling mechanisms of amino acids between plants and animals. Phylogenetic analysis using iGluRs from metazoans, plants, and bacteria showed that the plant GLRs are no more closely related to metazoan iGluRs as they are to bacterial iGluRs, indicating the separation of plant, other eukaryotic, and bacterial GLRs might have happened as early on as the last universal common ancestor. Structural similarities and differences with animal iGluRs, and the implication thereof, are also discussed.
Collapse
Affiliation(s)
- Michelle Beth Price
- Department of Plant Pathology, Physiology and Weed ScienceVirginia Tech, Blacksburg, VA, USA
| | - John Jelesko
- Department of Plant Pathology, Physiology and Weed ScienceVirginia Tech, Blacksburg, VA, USA
| | - Sakiko Okumoto
- Department of Plant Pathology, Physiology and Weed ScienceVirginia Tech, Blacksburg, VA, USA
- *Correspondence: Sakiko Okumoto, Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, 549 Latham Hall, Blacksburg, VA 24060, USA. e-mail:
| |
Collapse
|
44
|
El-kereamy A, Guevara D, Bi YM, Chen X, Rothstein SJ. Exploring the molecular and metabolic factors contributing to the adaptation of maize seedlings to nitrate limitation. FRONTIERS IN PLANT SCIENCE 2011; 2:49. [PMID: 22666225 PMCID: PMC3364463 DOI: 10.3389/fpls.2011.00049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/22/2011] [Indexed: 05/05/2023]
Abstract
Crop production on soils containing sub-optimal levels of nitrogen (N) severely compromises yield potential. The development of plant varieties displaying high N use efficiency (NUE) will optimize N fertilizer use and reduce the environmental damage caused by excess N application. Maize is one of the most important crops cultivated worldwide. Identification of the genotypes with an enhanced NUE in the field is both time and resource consuming and sometime is difficult due to the regulation in the biotechnology programs. Identification of traits associated with adaptation to N limitation at an early vegetative stage which could reflect NUE at maturity is in need. We developed a hydroponic growth system and used it to test two genotypes that were different in their NUE at maturity under N limitation. One genotype SRG-200 showed a higher NUE than the other genotype SRG-100 and we used its hybrid SRG-150 as a reference for NUE. A number of phenotypic, molecular, and metabolic factors were tested using these three genetic lines at an early vegetative stage to determine which of these could be more indicative of predicting improved NUE at an early seedling stage. These include a transcriptional analysis which showed that the higher NUE in SRG-200 genotype is associated with higher transcript levels for the genes involved in nitrate transport, N assimilation, and GS and that the SRG-200 genotype maintained higher sugar content in leaves. Those identified in this study could be useful indicators for selecting promising maize lines at early stages to help develop elite varieties showing an enhanced NUE.
Collapse
Affiliation(s)
- Ashraf El-kereamy
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - David Guevara
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Xi Chen
- Syngenta Biotechnology Inc., Research Triangle ParkDurham, NC, USA
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| |
Collapse
|
45
|
Chen M, Thelen JJ. Plastid uridine salvage activity is required for photoassimilate allocation and partitioning in Arabidopsis. THE PLANT CELL 2011; 23:2991-3006. [PMID: 21828290 PMCID: PMC3180806 DOI: 10.1105/tpc.111.085829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleotides are synthesized from de novo and salvage pathways. To characterize the uridine salvage pathway, two genes, UKL1 and UKL2, that tentatively encode uridine kinase (UK) and uracil phosphoribosyltransferase (UPRT) bifunctional enzymes were studied in Arabidopsis thaliana. T-DNA insertions in UKL1 and UKL2 reduced transcript expression and increased plant tolerance to toxic analogs 5-fluorouridine and 5-fluorouracil. Enzyme activity assays using purified recombinant proteins indicated that UKL1 and UKL2 have UK but not UPRT activity. Subcellular localization using a C-terminal enhanced yellow fluorescent protein fusion indicated that UKL1 and UKL2 localize to plastids. The ukl2 mutant shows reduced transient leaf starch during the day. External application of orotate rescued this phenotype in ukl2, indicating pyrimidine pools are limiting for starch synthesis in ukl2. Intermediates for lignin synthesis were upregulated, and there was increased lignin and reduced cellulose content in the ukl2 mutant. Levels of ATP, ADP, ADP-glucose, UTP, UDP, and UDP-glucose were altered in a light-dependent manner. Seed composition of the ukl1 and ukl2 mutants included lower oil and higher protein compared with the wild type. Unlike single gene mutants, the ukl1 ukl2 double mutant has severe developmental defects and reduced biomass accumulation, indicating these enzymes catalyze redundant reactions. These findings point to crucial roles played by uridine salvage for photoassimilate allocation and partitioning.
Collapse
Affiliation(s)
- Mingjie Chen
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
46
|
Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochem Biophys Res Commun 2011; 411:708-13. [DOI: 10.1016/j.bbrc.2011.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/02/2011] [Indexed: 11/24/2022]
|
47
|
Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, Xu G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2319-32. [PMID: 21220781 DOI: 10.1093/jxb/erq403] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The high affinity nitrate transport system (HATS) plays an important role in rice nitrogen acquisition because, even under flooded anaerobic cultivation when NH(4)(+) dominates, significant nitrification occurs on the root surface. In the rice genome, four NRT2 and two NAR2 genes encoding HATS components have been identified. One gene OsNRT2.3 was mRNA spliced into OsNRT2.3a and OsNRT2.3b and OsNAR2.1 interacts with OsNRT2.1/2.2 and OsNRT2.3a to provide nitrate uptake. Using promoter-GUS reporter plants and semi-quantitative RT-PCR analyses, it was observed that OsNAR2.1 was expressed mainly in the root epidermal cells, differently from the five OsNRT2 genes. OsNAR2.1, OsNRT2.1, OsNRT2.2, and OsNRT2.3a were up-regulated by nitrate and suppressed by NH(4)(+) and high root temperature (37 °C). Expression of all these genes was increased by light or external sugar supply. Root transcripts of OsNRT2.3b and OsNRT2.4 were much less abundant and not affected by temperature. Expression of OsNRT2.3b was insensitive to the form of N supply. Expression of OsNRT2.4 responded to changes in auxin supply unlike all the other NRT2 genes. A region from position -311 to -1, relative to the translation start site in the promoter region of OsNAR2.1, was found to contain the cis-element(s) necessary for the nitrate-, but not light- and sugar-dependent activation. However, it was difficult to define a conserved cis-element in the promoters of the nitrate-regulated OsNRT2/OsNAR2 genes. The results imply distinct physiological functions for each OsNRT2 transporter, and differential regulation pathways by N and C status.
Collapse
Affiliation(s)
- Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. MOLECULAR PLANT 2010; 3:973-96. [PMID: 20926550 DOI: 10.1093/mp/ssq049] [Citation(s) in RCA: 415] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In addition to light and water, CO(2) and mineral elements are required for plant growth and development. Among these factors, nitrogen is critical, since it is needed to synthesize amino acids, which are the building elements of protein, nucleotides, chlorophyll, and numerous other metabolites and cellular components. Therefore, nitrogen is required by plants in higher quantities and this investment in nitrogen supports the use of CO(2), water, and inorganic nitrogen to produce sugars, organic acids, and amino acids, the basic building blocks of biomass accumulation. This system is maintained by complex metabolic machinery, which is regulated at different levels according to environmental factors such as light, CO(2), and nutrient availability. Plants integrate these signals via a signaling network, which involves metabolites as well as nutrient-sensing proteins. Due to its importance, much research effort has been expended to understand how carbon and nitrogen metabolism are integrated and regulated according to the rates of photosynthesis, photorespiration, and respiration. Thus, in this article, we both discuss recent advances in carbon/nitrogen metabolisms as well as sensing and signaling systems in illuminated leaves of C3-plants and provide a perspective of the type of experiments that are now required in order to take our understanding to a higher level.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
49
|
Lambeck I, Chi JC, Krizowski S, Mueller S, Mehlmer N, Teige M, Fischer K, Schwarz G. Kinetic analysis of 14-3-3-inhibited Arabidopsis thaliana nitrate reductase. Biochemistry 2010; 49:8177-86. [PMID: 20690630 DOI: 10.1021/bi1003487] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic assimilatory nitrate reductase (NR) is a dimeric multidomain molybdo-heme-flavo protein that catalyzes the first and rate-limiting step in the nitrate assimilation of plants, algae, and fungi. Nitrate reduction takes place at the N-terminal molybdenum cofactor-containing domain. Reducing equivalents are derived from NADH, which reduce the C-terminal FAD domain followed by single-electron transfer steps via the middle heme domain to the molybdenum center. In plants, nitrate reduction is post-translationally inhibited by phosphorylation and subsequent binding of 14-3-3 protein to a conserved phosphoserine located in the surface-exposed hinge between the catalytic and heme domain. Here we investigated Arabidopsis thaliana NR activity upon phosphorylation and 14-3-3 binding by using a fully defined in vitro system with purified proteins. We demonstrate that among different calcium-dependent protein kinases (CPKs), CPK-17 efficiently phosphorylates Ser534 in NR. Out of eight purified Arabidopsis 14-3-3 proteins, isoforms ω, κ, and λ exhibited the strongest inhibition of NR. The kinetic parameters of noninhibited, phosphorylated NR (pNR) and pNR in a complex with 14-3-3 were investigated. An 18-fold reduction in k(cat) and a decrease in the apparent K(M)(nitrate) (from 280 to 141 μM) were observed upon binding of 14-3-3 to pNR, suggesting a noncompetitive inhibition with a preferential binding to the substrate-bound state of the enzyme. Recording partial activities of NR demonstrated that the transfer of electrons to the heme is not affected by 14-3-3 binding. The Ser534Ala variant of NR was not inhibited by 14-3-3 proteins. We propose that 14-3-3 binding to Ser534 blocks the transfer of electrons from heme to nitrate by arresting the domain movement via hinge 1.
Collapse
Affiliation(s)
- Iris Lambeck
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kumar A, Gupta N, Gupta AK, Gaur VS. Identification of biomarker for determining genotypic potential of nitrogen-use-efficiency and optimization of the nitrogen inputs in crop plants. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12892-009-0105-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|