1
|
Takahashi H, Arae T, Ishibashi K, Sano R, Demura T, Ohtani M. Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2025; 115:46. [PMID: 40089952 PMCID: PMC11911268 DOI: 10.1007/s11103-025-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Alternative pre-mRNA splicing (AS) is a crucial regulatory layer of gene expression in eukaryotes. AS patterns can change in response to abiotic and biotic stress, allowing cellular functions to adapt to environmental conditions. Here, we examined the effects of cellular stress-inducing chemicals on AS-mediated gene regulation in Arabidopsis thaliana by investigating the alternatively spliced forms of SERINE-ARGININE PROTEIN30 (SRp30) and U1-70 K, encoding splicing factors, as well as ASCORBATE PEROXIDASE3 (APX3) and FOLYLPOLYGLUTAMATE SYNTHASE3 (FPGS3), encoding enzymes important for stress responses. Disrupting key cellular activities, including nitric oxide metabolism, ATPase activity, plastid function, and genome stability, affected AS patterns in Arabidopsis. Stress treatment altered the abundance of uridine-rich small nuclear RNAs (UsnRNAs), especially U1 snRNAs, which are essential non-coding RNA components of U1 small nuclear ribonucleoproteins (U1 snRNPs), suggesting that abnormalities in AS are partially mediated by changes in U1 snRNA levels. The shoot redifferentiation defectice2-1 (srd2-1) mutant defective for snRNA transcription was hypersensitive for stress treatment, since it showed changes in AS patterns at lower concentrations of stress inducers to compare with the wild type. Together, our data suggest that cellular stress can influence gene expression in plants by regulating AS, which is partially regulated by UsnRNA levels through the SRD2-mediated snRNA transcription.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Toshihiro Arae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan
| | - Kodai Ishibashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562, Japan.
| |
Collapse
|
2
|
Köster T, Venhuizen P, Lewinski M, Petrillo E, Marquez Y, Fuchs A, Ray D, Nimeth BA, Riegler S, Franzmeier S, Zheng H, Hughes T, Morris Q, Barta A, Staiger D, Kalyna M. At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626797. [PMID: 39677721 PMCID: PMC11643119 DOI: 10.1101/2024.12.04.626797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alternative splicing is essential for plants, enabling a single gene to produce multiple transcript variants to boost functional diversity and fine-tune responses to environmental and developmental cues. At-RS31, a plant-specific splicing factor in the Serine/Arginine (SR)-rich protein family, responds to light and the Target of Rapamycin (TOR) signaling pathway, yet its downstream targets and regulatory impact remain unknown.To identify At-RS31 targets, we applied individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) and RNAcompete assays. Transcriptomic analyses of At-RS31 mutant and overexpressing plants further revealed its effects on alternative splicing.iCLIP identified 4,034 At-RS31 binding sites across 1,421 genes, enriched in CU-rich and CAGA RNA motifs. Comparative iCLIP and RNAcompete data indicate that the RS domain of At-RS31 may influence its binding specificity in planta, underscoring the value of combining in vivo and in vitro approaches. Transcriptomic analysis showed that At-RS31 modulates diverse splicing events, particularly intron retention and exitron splicing, and influences other splicing modulators, acting as a hierarchical regulator.By regulating stress-response genes and genes in both TOR and abscisic acid (ABA) signaling pathways, At-RS31 may help integrate these signals, balancing plant growth with environmental adaptability through alternative splicing.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter Venhuizen
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Ezequiel Petrillo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yamile Marquez
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Armin Fuchs
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Barbara A. Nimeth
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Sophie Franzmeier
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Timothy Hughes
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Quaid Morris
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Computational Biology and Medicine, Weill-Cornell Graduate School, New York, NY, USA
| | - Andrea Barta
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
3
|
Song W, Zhang J, Lu W, Liang S, Cai H, Guo Y, Chen S, Wang J, Guo T, Liu H, Rao D. A Cyclin Gene OsCYCB1;5 Regulates Seed Callus Induction in Rice Revealed by Genome Wide Association Study. RICE (NEW YORK, N.Y.) 2024; 17:64. [PMID: 39402219 PMCID: PMC11473481 DOI: 10.1186/s12284-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Plant tissue culture is extensively employed in plant functional genomics research and crop genetic improvement breeding. The callus induction ability is critical for utilizing Agrobacterium-mediated genetic transformation. In this study, we conducted a genome-wide association study (GWAS) utilizing 368 rice accessions to identify traits associated with callus induction rate (CIR), resulting in the identification of a total of 104 significant SNP loci. Integrated with gene function annotation and transcriptome analysis, 13 high-confidence candidate genes involved in auxin-related, CYC cyclins, and histone H3K9-specific methyltransferase were identified in significant loci. Furthermore, we also verified a candidate gene, Os05g0493500 (OsCycB1;5), and employed the CRISPR/Cas9 system to generate OsCycB1;5 knockout mutants in rice (Oryza sativa L.). The OscycB1;5 mutant displays significantly reduced callus induction and proliferation capacity, this result indicating OsCycB1;5 is required for the callus formation in rice. Overall, this study provides several reliable loci and high-confidence candidate genes that may significantly affect callus formation in rice. This information will offer valuable insights into the mechanisms underlying callus formation not only in rice but also in other plants.
Collapse
Affiliation(s)
- Wenjing Song
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Zhang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Lu
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Liang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hairong Cai
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shiyi Chen
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Aerospace-Mutation Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Dehua Rao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Hu F, Fang D, Zhang W, Dong K, Ye Z, Cao J. Lateral root primordium: Formation, influencing factors and regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108429. [PMID: 38359556 DOI: 10.1016/j.plaphy.2024.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Roots are the primary determinants of water and nutrient uptake by plants. The structure of roots is largely determined by the repeated formation of new lateral roots (LR). A new lateral root primordium (LRP) is formed between the beginning and appearance of LR, which defines the organization and function of LR. Therefore, proper LRP morphogenesis is a crucial process for lateral root formation. The development of LRP is regulated by multiple factors, including hormone and environmental signals. Roots integrate signals and regulate growth and development. At the molecular level, many genes regulate the growth and development of root organs to ensure stable development plans, while also being influenced by various environmental factors. To gain a better understanding of the LRP formation and its influencing factors, this study summarizes previous research. The cell cycle involved in LRP formation, as well as the roles of ROS, auxin, other auxin-related plant hormones, and genetic regulation, are discussed in detail. Additionally, the effects of gravity, mechanical stress, and cell death on LRP formation are explored. Throughout the text unanswered or poorly understood questions are identified to guide future research in this area.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Takayanagi N, Mukai M, Sugiyama M, Ohtani M. Transcriptional regulation of cell proliferation competence-associated Arabidopsis genes, CDKA;1, RID1 and SRD2, by phytohormones in tissue culture. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:329-333. [PMID: 36349236 PMCID: PMC9592934 DOI: 10.5511/plantbiotechnology.22.0513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/13/2022] [Indexed: 06/16/2023]
Abstract
During organ regeneration, differentiated cells acquire cell proliferation competence before the re-start of cell division. In Arabidopsis thaliana (Arabidopsis), CDKA;1, a cyclin-dependent kinase, RID1, a DEAH-box RNA helicase, and SRD2, a small nuclear RNA transcription factor, are implicated in the regulation of cell proliferation competence. Here, we report phytohormonal transcriptional regulation of these cell proliferation competence-associated genes during callus initiation. We can induce the callus initiation from Arabidopsis hypocotyl explants by the culture on the auxin-containing medium. By RT-quantitative PCR analysis, we observed higher mRNA accumulation of CDKA;1, RID1, and SRD2 in culture on the auxin-containing medium than in culture on the auxin-free medium. Promoter-reporter analysis showed that the CDKA;1, RID1, and SRD2 expression was induced in the stele regions containing pericycle cells, where cell division would be resumed to make callus, by the culture in the medium containing auxin and/or cytokinin. However, the expression levels of these genes in cortical and epidermal cells, which would not originate callus cells, were variable by genes and phytohormonal conditions. We also found that the rid1-1 mutation greatly decreased the expression levels of CDKA;1 and SRD2 during callus initiation specifically at 28°C (restrictive temperature), while the srd2-1 mutation did not obviously decrease the expression levels of CDKA;1 and RID1 regardless of temperature conditions but rather even increased them at 22°C (permissive temperature). Together, our results implicated the phytohormonal and differential regulation of cell proliferation competence-associated genes in the multistep regulation of cell proliferation competence.
Collapse
Affiliation(s)
- Natsu Takayanagi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Mai Mukai
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Munetaka Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
6
|
Ohbayashi I, Sakamoto Y, Kuwae H, Kasahara H, Sugiyama M. Enhancement of shoot regeneration by treatment with inhibitors of auxin biosynthesis and transport during callus induction in tissue culture of Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:43-50. [PMID: 35800968 PMCID: PMC9200084 DOI: 10.5511/plantbiotechnology.21.1225a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/25/2021] [Indexed: 05/31/2023]
Abstract
In two-step culture systems for efficient shoot regeneration, explants are first cultured on auxin-rich callus-inducing medium (CIM), where cells are activated to proliferate and form calli containing root-apical meristem (RAM)-type stem cells and stem cell niche, and then cultured on cytokinin-rich shoot-inducing medium (SIM), where stem cells and stem cell niche of the shoot apical meristem (SAM) are established eventually leading to shoot regeneration. In the present study, we examined the effects of inhibitors of auxin biosynthesis and polar transport in the two-step shoot regeneration culture of Arabidopsis and found that, when they were applied during CIM culture, although callus growth was repressed, shoot regeneration in the subsequent SIM culture was significantly increased. The regeneration-stimulating effect of the auxin biosynthesis inhibitor was not linked with the reduction in the endogenous indole-3-acetic acid (IAA) level. Expression of the auxin-responsive reporter indicated that auxin response was more uniform and even stronger in the explants cultured on CIM with the inhibitors than in the control explants. These results suggested that the shoot regeneration competence of calli was enhanced somehow by the perturbation of the endogenous auxin dynamics, which we discuss in terms of the transformability between RAM and SAM stem cell niches.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan R.O.C
| | - Yuki Sakamoto
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
| | - Hitomi Kuwae
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo 112-0001, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
8
|
Lin J, Zhu Z. Plant responses to high temperature: a view from pre-mRNA alternative splicing. PLANT MOLECULAR BIOLOGY 2021; 105:575-583. [PMID: 33550520 DOI: 10.1007/s11103-021-01117-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/09/2021] [Indexed: 05/14/2023]
Abstract
This review focused on the recent breakthroughs in plant high temperature responses from an alternative splicing angle. With the inevitable global warming, high temperature triggers plants to change their growth and developmental programs for adapting temperature increase. In the past decades, the signaling mechanisms from plant thermo-sensing to downstream transcriptional cascades have been extensively studied. Plenty of elegant review papers have summarized these breakthroughs from signal transduction to cross-talk within plant hormones and environmental cues. Precursor messenger RNA (pre-mRNA) splicing enables plants to produce a series of functional un-related proteins and thus enhances the regulation flexibility. Plants take advantage of this strategy to modulate their proteome diversity under high ambient temperature and elicit developmental plasticity. In this review, we particularly focus on pre-mRNA splicing regulation underlying plant high temperature responses, and will shed new light on the understanding of post-transcriptional regulation on plant growth and development.
Collapse
Affiliation(s)
- Jingya Lin
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Alternative splicing of DSP1 enhances snRNA accumulation by promoting transcription termination and recycle of the processing complex. Proc Natl Acad Sci U S A 2020; 117:20325-20333. [PMID: 32747542 DOI: 10.1073/pnas.2002115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1β. Unlike DSP1α, DSP1β is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.
Collapse
|
10
|
Nakamura M, Köhler C, Hennig L. Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway spruce. BMC Genomics 2019; 20:997. [PMID: 31856707 PMCID: PMC6923980 DOI: 10.1186/s12864-019-6385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. RESULTS Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. CONCLUSION Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
11
|
Chiam NC, Fujimura T, Sano R, Akiyoshi N, Hiroyama R, Watanabe Y, Motose H, Demura T, Ohtani M. Nonsense-Mediated mRNA Decay Deficiency Affects the Auxin Response and Shoot Regeneration in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2000-2014. [PMID: 31386149 DOI: 10.1093/pcp/pcz154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Plants generally possess a strong ability to regenerate organs; for example, in tissue culture, shoots can regenerate from callus, a clump of actively proliferating, undifferentiated cells. Processing of pre-mRNA and ribosomal RNAs is important for callus formation and shoot regeneration. However, our knowledge of the roles of RNA quality control via the nonsense-mediated mRNA decay (NMD) pathway in shoot regeneration is limited. Here, we examined the shoot regeneration phenotypes of the low-beta-amylase1 (lba1)/upstream frame shift1-1 (upf1-1) and upf3-1 mutants, in which the core NMD components UPF1 and UPF3 are defective. These mutants formed callus from hypocotyl explants normally, but this callus behaved abnormally during shoot regeneration: the mutant callus generated numerous adventitious root structures instead of adventitious shoots in an auxin-dependent manner. Quantitative RT-PCR and microarray analyses showed that the upf mutations had widespread effects during culture on shoot-induction medium. In particular, the expression patterns of early auxin response genes, including those encoding AUXIN/INDOLE ACETIC ACID (AUX/IAA) family members, were significantly affected in the upf mutants. Also, the upregulation of shoot apical meristem-related transcription factor genes, such as CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, was inhibited in the mutants. Taken together, these results indicate that NMD-mediated transcriptomic regulation modulates the auxin response in plants and thus plays crucial roles in the early stages of shoot regeneration.
Collapse
Affiliation(s)
- Nyet-Cheng Chiam
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyo Fujimura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Nobuhiro Akiyoshi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
12
|
Torres-Martínez HH, Rodríguez-Alonso G, Shishkova S, Dubrovsky JG. Lateral Root Primordium Morphogenesis in Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:206. [PMID: 30941149 PMCID: PMC6433717 DOI: 10.3389/fpls.2019.00206] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
Morphogenetic processes are the basis of new organ formation. Lateral roots (LRs) are the building blocks of the root system. After LR initiation and before LR emergence, a new lateral root primordium (LRP) forms. During this period, the organization and functionality of the prospective LR is defined. Thus, proper LRP morphogenesis is a decisive process during root system formation. Most current studies on LRP morphogenesis have been performed in the model species Arabidopsis thaliana; little is known about this process in other angiosperms. To understand LRP morphogenesis from a wider perspective, we review both contemporary and earlier studies. The latter are largely forgotten, and we attempted to integrate them into present-day research. In particular, we consider in detail the participation of parent root tissue in LRP formation, cell proliferation and timing during LRP morphogenesis, and the hormonal and genetic regulation of LRP morphogenesis. Cell type identity acquisition and new stem cell establishement during LRP morphogenesis are also considered. Within each of these facets, unanswered or poorly understood questions are identified to help define future research in the field. Finally, we discuss emerging research avenues and new technologies that could be used to answer the remaining questions in studies of LRP morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
13
|
Park HY, Lee HT, Lee JH, Kim JK. Arabidopsis U2AF65 Regulates Flowering Time and the Growth of Pollen Tubes. FRONTIERS IN PLANT SCIENCE 2019; 10:569. [PMID: 31130976 PMCID: PMC6510283 DOI: 10.3389/fpls.2019.00569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/15/2019] [Indexed: 05/19/2023]
Abstract
During pre-mRNA splicing, U2 small nuclear ribonucleoprotein auxiliary factor 65 (U2AF65) interacts with U2AF35 and splicing factor 1 (SF1), allowing for the recognition of the 3'-splice site by the ternary complex. The functional characterization of U2AF65 homologs has not been performed in Arabidopsis thaliana yet. Here, we show that normal plant development, including floral transition, and male gametophyte development, requires two Arabidopsis U2AF65 isoforms (AtU2AF65a and AtU2AF65b). Loss-of-function mutants of these two isoforms displayed opposite flowering phenotypes: atu2af65a mutants showed late flowering, whereas atu2af65b mutants were characterized by slightly early flowering, as compared to that in the wild-type (Col-0) plants. These abnormal flowering phenotypes were well-correlated with the expression patterns of the flowering time genes such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). However, the two atu2af65 mutants did not display any morphological abnormalities or alterations in abiotic stress tests. Double mutation of the AtU2AF65a and AtU2AF65b genes resulted in non-viable seeds due to defective male gametophyte. In vitro pollen germination test revealed that mutations in both AtU2AF65a and AtU2AF65b genes significantly impaired pollen tube growth. Collectively, our findings suggest that two protein isoforms of AtU2AF65 are differentially involved in regulating flowering time and display a redundant role in pollen tube growth.
Collapse
Affiliation(s)
- Hyo-Young Park
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Hee Tae Lee
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jeong Hwan Lee
- Division of Life Science, Chonbuk National University, Jeonju, South Korea
- *Correspondence: Jeong Hwan Lee, Jeong-Kook Kim,
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
- *Correspondence: Jeong Hwan Lee, Jeong-Kook Kim,
| |
Collapse
|
14
|
Fukudome A, Koiwa H. Cytokinin-overinduced transcription factors and thalianol cluster genes in CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4-silenced Arabidopsis roots during de novo shoot organogenesis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513299. [PMID: 30188775 PMCID: PMC6204838 DOI: 10.1080/15592324.2018.1513299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Cytokinin (CK) is one of key phytohormones for de-differentiation and de novo organogenesis in plants. During the CK-mediated organogenesis not only genes in CK homeostasis, perception and signal transduction, but also factors regulating basic transcription, splicing and chromatin remodeling contribute to coordinate a sequence of events leading to formation of new organs. We have found that silencing of RNA polymerase II CTD-phosohatase-like 4 (CPL4RNAi) in Arabidopsis induces CK-oversensitive de novo shoot organogenesis (DNSO) from roots, partly by early activation of transcription factors such as WUSCHEL and SHOOT MERISTEMLESS during pre-incubation on callus induction media. Here we show that a cluster of thalianol-biogenesis genes is highly expressed in the CPL4RNAi during DNSO, implying involvement of CPL4 in transcriptional regulation of the thalianol pathway in DNSO.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
15
|
Fukudome A, Goldman JS, Finlayson SA, Koiwa H. Silencing Arabidopsis CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4 induces cytokinin-oversensitive de novo shoot organogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:799-812. [PMID: 29573374 DOI: 10.1111/tpj.13895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
De novo shoot organogenesis (DNSO) is a post-embryonic development programme that has been widely exploited by plant biotechnology. DNSO is a hormonally regulated process in which auxin and cytokinin (CK) coordinate suites of genes encoding transcription factors, general transcription factors, and RNA metabolism machinery. Here we report that silencing Arabidopsis thaliana carboxyl-terminal domain (CTD) phosphatase-like 4 (CPL4RNAi ) resulted in increased phosphorylation levels of RNA polymerase II (pol II) CTD and altered lateral root development and DNSO efficiency of the host plants. Under standard growth conditions, CPL4RNAi lines produced no or few lateral roots. When induced by high concentrations of auxin, CPL4RNAi lines failed to produce focused auxin maxima at the meristem of lateral root primordia, and produced fasciated lateral roots. In contrast, root explants of CPL4RNAi lines were highly competent for DNSO. Efficient DNSO of CPL4RNAi lines was observed even under 10 times less the CK required for the wild-type explants. Transcriptome analysis showed that CPL4RNAi , but not wild-type explants, expressed high levels of shoot meristem-related genes even during priming on medium with a high auxin/CK ratio, and during subsequent shoot induction with a lower auxin/CK ratio. Conversely, CPL4RNAi enhanced the inhibitory phenotype of the shoot redifferentiation defective2-1 mutation, which affected snRNA biogenesis and formation of the auxin gradient. These results indicated that CPL4 functions in multiple regulatory pathways that positively and negatively affect DNSO.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jared S Goldman
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Scott A Finlayson
- Molecular and Environmental Plant Sciences, Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
16
|
Ohtani M. Plant snRNP Biogenesis: A Perspective from the Nucleolus and Cajal Bodies. FRONTIERS IN PLANT SCIENCE 2017; 8:2184. [PMID: 29354141 PMCID: PMC5758608 DOI: 10.3389/fpls.2017.02184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Small nuclear ribonucleoproteins (snRNPs) are protein-RNA complexes composed of specific snRNP-associated proteins along with small nuclear RNAs (snRNAs), which are non-coding RNA molecules abundant in the nucleus. snRNPs mainly function as core components of the spliceosome, the molecular machinery for pre-mRNA splicing. Thus, snRNP biogenesis is a critical issue for plants, essential for the determination of a cell's activity through the regulation of gene expression. The complex process of snRNP biogenesis is initiated by transcription of the snRNA in the nucleus, continues in the cytoplasm, and terminates back in the nucleus. Critical steps of snRNP biogenesis, such as chemical modification of the snRNA and snRNP maturation, occur in the nucleolus and its related sub-nuclear structures, Cajal bodies. In this review, I discuss roles for the nucleolus and Cajal bodies in snRNP biogenesis, and a possible linkage between the regulation of snRNP biogenesis and plant development and environmental responses.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Misato Ohtani,
| |
Collapse
|
17
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
18
|
Ohtani M. Expanding the plant non-coding RNA world. JOURNAL OF PLANT RESEARCH 2017; 130:3-5. [PMID: 28005188 DOI: 10.1007/s10265-016-0896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
19
|
de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H, Bräutigam A, Carlsbecker A, Gould SB. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. THE NEW PHYTOLOGIST 2016; 209:705-20. [PMID: 26358624 PMCID: PMC5049668 DOI: 10.1111/nph.13630] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2015] [Indexed: 05/10/2023]
Abstract
The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.
Collapse
Affiliation(s)
- Jan de Vries
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Angela Melanie Fischer
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Mayo Roettger
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophie Rommel
- Population GeneticsHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Henriette Schluepmann
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 83584CH Utrechtthe Netherlands
| | - Andrea Bräutigam
- Plant BiochemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological BotanyUppsala BioCenterLinnean Centre for Plant BiologyUppsala UniversityUlls väg 24ESE‐756 51UppsalaSweden
| | - Sven Bernhard Gould
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| |
Collapse
|
20
|
Ohtani M. Regulation of RNA metabolism is important for in vitro dedifferentiation of plant cells. JOURNAL OF PLANT RESEARCH 2015; 128:361-369. [PMID: 25694002 DOI: 10.1007/s10265-015-0700-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
The characteristic high regenerative ability of plants has been exploited to develop in vitro plant regeneration techniques, which are usually initiated by an in vitro dedifferentiation step induced by artificial phytohormone treatment. Recent advances in plant molecular biological and genetic technologies have revealed the importance of the regulation of RNA metabolism, including the control of rRNA biosynthesis, pre-mRNA splicing, and miRNA-based RNA decay, in successful in vitro dedifferentiation. This review provides a brief overview of current knowledge of the roles of RNA metabolism in the dedifferentiation of plant cells in vitro. In addition, the possibility that plant-specific aspects of RNA metabolism regulation are linked closely to their high regenerative ability is discussed.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan,
| |
Collapse
|
21
|
Ohtani M, Takebayashi A, Hiroyama R, Xu B, Kudo T, Sakakibara H, Sugiyama M, Demura T. Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2015; 128:371-80. [PMID: 25740809 DOI: 10.1007/s10265-015-0704-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, Ohnuma M, Ezura H, Imamura J, Sugimoto K. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. JOURNAL OF PLANT RESEARCH 2015; 128:389-97. [PMID: 25810222 DOI: 10.1007/s10265-015-0714-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/17/2015] [Indexed: 05/20/2023]
Abstract
Callus formation and de novo organogenesis often occur in the wounded tissues of plants. Although this regenerative capacity of plant cells has been utilized for many years, molecular basis for the wound-induced acquisition of regeneration competency is yet to be elucidated. Here we find that wounding treatment is essential for shoot regeneration from roots in the conventional tissue culture of Arabidopsis thaliana. Furthermore, we show that an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) plays a pivotal role for the acquisition of regeneration competency in the culture system. Ectopic expression of WIND1 can bypass both wounding and auxin pre-treatment and increase de novo shoot regeneration from root explants cultured on shoot-regeneration promoting media. In Brassica napus, activation of Arabidopsis WIND1 also greatly enhances de novo shoot regeneration, further corroborating the role of WIND1 in conferring cellular regenerative capacity. Our data also show that sequential activation of WIND1 and an embryonic regulator LEAFY COTYLEDON2 enhances generation of embryonic callus, suggesting that combining WIND1 with other transcription factors promote efficient and organ-specific regeneration. Our findings in the model plant and crop plant point to a possible way to efficiently induce callus formation and regeneration by utilizing transcription factors as a molecular switch.
Collapse
Affiliation(s)
- Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sugiyama M. Historical review of research on plant cell dedifferentiation. JOURNAL OF PLANT RESEARCH 2015; 128:349-59. [PMID: 25725626 DOI: 10.1007/s10265-015-0706-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 05/23/2023]
Abstract
Plant cell dedifferentiation has long attracted interest as a key process for understanding the plasticity of plant development. In early studies, typical examples of plant cell dedifferentiation were described as physiological and cytological changes associated with wound healing or regenerative development. Subsequently, plant tissue and cell culture techniques, in which exciting progress was achieved after discovery of the hormonal control of cell proliferation and organogenesis in vitro in the 1950s, have been used extensively to study dedifferentiation. The pioneer studies of plant tissue/cell culture led to the hypothesis that many mature plant cells retain totipotency and related dedifferentiation to the initial step of the expression of totipotency. Plant tissue/cell cultures have provided experimental systems not only for physiological analysis, but also for genetic and molecular biological analysis, of dedifferentiation. More recently, proteomic, transcriptomic, and epigenetic analyses have been applied to the study of plant cell dedifferentiation. All of these works have expanded our knowledge of plant cell dedifferentiation, and current research is contributing to unraveling the molecular mechanisms. The present article provides a brief overview of the history of research on plant cell dedifferentiation.
Collapse
Affiliation(s)
- Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo, 112-0001, Japan,
| |
Collapse
|
24
|
Tsugeki R, Tanaka-Sato N, Maruyama N, Terada S, Kojima M, Sakakibara H, Okada K. CLUMSY VEIN, the Arabidopsis DEAH-box Prp16 ortholog, is required for auxin-mediated development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:183-97. [PMID: 25384462 DOI: 10.1111/tpj.12721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 05/25/2023]
Abstract
Pre-messenger RNA (pre-mRNA) splicing is essential in eukaryotic cells. In animals and yeasts, the DEAH-box RNA-dependent ATPase Prp16 mediates conformational change of the spliceosome, thereby facilitating pre-mRNA splicing. In yeasts, Prp16 also plays an important role in splicing fidelity. Conversely, PRP16 orthologs in Chlamydomonas reinhardtii and nematode do not have an important role in general pre-mRNA splicing, but are required for gene silencing and sex determination, respectively. Functions of PRP16 orthologs in higher plants have not been described until now. Here we show that the CLUMSY VEIN (CUV) gene encoding the unique Prp16 ortholog in Arabidopsis thaliana facilitates auxin-mediated development including male-gametophyte transmission, apical-basal patterning of embryonic and gynoecium development, stamen development, phyllotactic flower positioning, and vascular development. cuv-1 mutation differentially affects splicing and expression of genes involved in auxin biosynthesis, polar auxin transport, auxin perception and auxin signaling. The cuv-1 mutation does not have an equal influence on pre-mRNA substrates. We propose that Arabidopsis PRP16/CUV differentially facilitates expression of genes, which include genes involved in auxin biosynthesis, transport, perception and signaling, thereby collectively influencing auxin-mediated development.
Collapse
Affiliation(s)
- Ryuji Tsugeki
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Shinohara N, Ohbayashi I, Sugiyama M. Involvement of rRNA biosynthesis in the regulation of CUC1 gene expression and pre-meristematic cell mound formation during shoot regeneration. FRONTIERS IN PLANT SCIENCE 2014; 5:159. [PMID: 24808900 PMCID: PMC4009429 DOI: 10.3389/fpls.2014.00159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 05/05/2023]
Abstract
At an early stage of shoot regeneration from calli of Arabidopsis, pre-meristematic cell mounds develop in association with localized strong expression of CUP-SHAPED COTYLEDON (CUC) genes. Previous characterization of root initiation-defective 3 (rid3), an Arabidopsis mutant originally isolated as being temperature-sensitive for adventitious root formation, with respect to shoot regeneration implicated RID3 in the negative regulation of CUC1 expression and the restriction of cell division in pre-meristematic cell mounds. Positional cloning has identified RID3 as a WD40 repeat protein gene whose molecular function was not investigated before. Here we performed in silico analysis of RID3 and found that RID3 is orthologous to IPI3, which mediates pre-rRNA processing in Saccharomyces cerevisiae. In the rid3 mutant, rRNA precursors accumulated to a very high level in a temperature-dependent manner. This result indicates that RID3 is required for pre-rRNA processing as is IPI3. We compared rid3 with rid2, a temperature-sensitive mutant that is mutated in a putative RNA methyltransferase gene and is impaired in pre-rRNA processing, for seedling morphology, shoot regeneration, and CUC1 expression. The rid2 and rid3 seedlings shared various developmental alterations, such as a pointed-leaf phenotype, which is often observed in ribosome-related mutants. In tissue culture for the induction of shoot regeneration, both rid2 and rid3 mutations perturbed cell-mound formation and elevated CUC1 expression. Together, our findings suggest that rRNA biosynthesis may be involved in the regulation of CUC1 gene expression and pre-meristematic cell-mound formation during shoot regeneration.
Collapse
Affiliation(s)
| | | | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of TokyoTokyo, Japan
| |
Collapse
|
26
|
Abstract
Plants have evolved powerful regeneration abilities to recover from damage. Studies on plant regeneration are of high significance as the underlying mechanisms of plant regeneration are not only linking to the fundamental researches in many fields but also to the development of widely used plant biotechnology. Higher plants show three main types of regeneration: tissue regeneration, de novo organogenesis, and somatic embryogenesis. In this review, we summarize recent research on plant regeneration, mainly focusing on Arabidopsis thaliana and moss. New data suggest that plant hormones trigger regeneration and that several key transcription factors respond to hormone signals to determine cell-fate transition. Cell-fate transition requires genome-wide changes in gene expression, which are regulated via epigenetic pathways. Certain epigenetic factors may be recruited by transcription factors to relocate to new loci and regulate gene expression. Cross talk among hormone signaling, transcription factors, and epigenetic factors is involved in different types of plant regeneration, suggesting that elegant and complex regulatory mechanisms control which type of regeneration is triggered in plants under different circumstances. Since regeneration is initiated by wounding, identification of the wound signal is an important objective for future research.
Collapse
Affiliation(s)
- Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Szymanowska-Pułka J. Form matters: morphological aspects of lateral root development. ANNALS OF BOTANY 2013; 112:1643-54. [PMID: 24190952 PMCID: PMC3838556 DOI: 10.1093/aob/mct231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/13/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. SCOPE AND CONCLUSIONS In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties.
Collapse
|
28
|
Tsukaya H, Byrne ME, Horiguchi G, Sugiyama M, Van Lijsebettens M, Lenhard M. How do 'housekeeping' genes control organogenesis?--Unexpected new findings on the role of housekeeping genes in cell and organ differentiation. JOURNAL OF PLANT RESEARCH 2013; 126:3-15. [PMID: 22922868 DOI: 10.1007/s10265-012-0518-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 05/08/2023]
Abstract
In recent years, an increasing number of mutations in what would appear to be 'housekeeping genes' have been identified as having unexpectedly specific defects in multicellular organogenesis. This is also the case for organogenesis in seed plants. Although it is not surprising that loss-of-function mutations in 'housekeeping' genes result in lethality or growth retardation, it is surprising when (1) the mutant phenotype results from the loss of function of a 'housekeeping' gene and (2) the mutant phenotype is specific. In this review, by defining housekeeping genes as those encoding proteins that work in basic metabolic and cellular functions, we discuss unexpected links between housekeeping genes and specific developmental processes. In a surprising number of cases housekeeping genes coding for enzymes or proteins with functions in basic cellular processes such as transcription, post-transcriptional modification, and translation affect plant development.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Transcriptome Analysis of Age-Related Gain of Callus-Forming Capacity in Arabidopsis Hypocotyls. ACTA ACUST UNITED AC 2012; 53:1457-69. [DOI: 10.1093/pcp/pcs090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol 2012; 9:302-13. [PMID: 22336715 DOI: 10.4161/rna.19101] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, a large number of non-coding RNAs (ncRNAs) have been found in a wide variety of organisms, but their biological functions are poorly understood, except for several tiny RNAs. To identify novel ncRNAs with essential functions in flowering plants, we focused attention on RNA polymerase III (Pol III) and its transcriptional activity, because most Pol III-transcribed RNAs contribute to key processes relating to cell activities, and have highly conserved promoter elements: upstream sequence elements, a TATA-like sequence, and a poly(T) stretch as a transcription terminator. After in silico prediction from the Arabidopsis genome, 20 novel ncRNAs candidates were obtained. AtR8 RNA (approx. 260 nt) and AtR18 RNA (approx. 160 nt) were identified by efficient in vitro transcription by Pol III in tobacco nuclear extracts. AtR8 RNA was conserved among six additional taxa of Brassicaceae, and the secondary structure of the RNA was also conserved among the orthologs. Abundant accumulation of AtR8 RNA was observed in the plant roots and cytosol of cultured cells. The RNA was not processed into a smaller fragment and no short open reading frame was included. Remarkably, expression of the AtR8 RNA responded negatively to hypoxic stress, and this regulation evidently differed from that of U6 snRNA.
Collapse
Affiliation(s)
- Juan Wu
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS. De novo shoot organogenesis: from art to science. TRENDS IN PLANT SCIENCE 2011; 16:597-606. [PMID: 21907610 DOI: 10.1016/j.tplants.2011.08.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 06/26/2011] [Accepted: 08/16/2011] [Indexed: 05/18/2023]
Abstract
In vitro shoot organogenesis and plant regeneration are crucial for both plant biotechnology and the fundamental study of plant biology. Although the importance of auxin and cytokinin has been known for more than six decades, the underlying molecular mechanisms of their function have only been revealed recently. Advances in identifying new Arabidopsis genes, implementing live-imaging tools and understanding cellular and molecular networks regulating de novo shoot organogenesis have helped to redefine the empirical models of shoot organogenesis and plant regeneration. Here, we review the functions and interactions of genes that control key steps in two distinct developmental processes: de novo shoot organogenesis and lateral root formation.
Collapse
Affiliation(s)
- Jérôme Duclercq
- Université de Picardie Jules Verne, Unité de Recherche EA3900-Laboratoire Androgenèse et Biotechnologie, Faculté des Sciences, 33 Rue Saint-Leu, 80039 Amiens, France
| | | | | | | |
Collapse
|
32
|
Ohbayashi I, Konishi M, Ebine K, Sugiyama M. Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:49-60. [PMID: 21401745 DOI: 10.1111/j.1365-313x.2011.04574.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A temperature-sensitive mutant of Arabidopsis, root initiation defective 2-1 (rid2-1), is characterized by peculiar defects in callus formation. To gain insights into the requirements for the reactivation of cell division, we analyzed this mutant and isolated the gene responsible, RID2. The phenotypes of rid2-1 in tissue culture and in seedlings indicated that the rid2 mutation has various (acute and non-acute) inhibitory effects on different aspects of cell proliferation. This suggests that the RID2 function is not directly involved in every cycle of cell division, but is related to 'vitality', supporting cell proliferation. The rid2-1 mutation was shown to cause nucleolar vacuolation and excessive accumulation of various intermediates of pre-rRNA processing. Positional cloning of the RID2 gene revealed that it encodes an evolutionarily conserved methyltransferase-like protein, which was found to localize in the nucleus, with accumulation being most evident in the nucleolus. It can be inferred from these findings that RID2 contributes to the nucleolar activity for pre-rRNA processing, probably through some methylation reaction.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
33
|
Yang Q, He H, Li H, Tian H, Zhang J, Zhai L, Chen J, Wu H, Yi G, He ZH, Peng X. NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and Rubisco formation in rice. PLoS One 2011; 6:e20015. [PMID: 21625436 PMCID: PMC3100308 DOI: 10.1371/journal.pone.0020015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/08/2011] [Indexed: 01/17/2023] Open
Abstract
NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice.
Collapse
Affiliation(s)
- Qiaosong Yang
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Han He
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Heying Li
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Hua Tian
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianjun Zhang
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Liguang Zhai
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Jiandong Chen
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Hong Wu
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zheng-Hui He
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Xinxiang Peng
- Key Laboratory of Plant Functional Genomics and Biotechnology, Education Department of Guangdong Province, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
34
|
Ohtani M, Demura T, Sugiyama M. Particular significance of SRD2-dependent snRNA accumulation in polarized pattern generation during lateral root development of Arabidopsis. PLANT & CELL PHYSIOLOGY 2010; 51:2002-2012. [PMID: 20965997 DOI: 10.1093/pcp/pcq159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lateral root primordia are initiated by anticlinal division of cells in the pericycle and are constructed through an ordered set of cell divisions. At the completion of the development of the primordium, cell division ceases, after which the lateral root meristem is activated. In Arabidopsis, this course of lateral root morphogenesis was found to be significantly susceptible to srd2-1, a temperature-sensitive mutation of the SRD2 gene encoding an activator of small nuclear RNA (snRNA) transcription. The srd2-1 mutation altered the organization of cells of the root primordium and, importantly, maintained primordial cell division for a long period, resulting in the formation of abnormal hemispherical laterals. Expression patterns of various reporter genes suggested that both the apical-basal and radial axes were not well established in the lateral root primordia of the srd2-1 mutant. In the early stages of development of the primordium, the srd2-1 mutation reduced the amount of the auxin efflux facilitator PIN-FORMED (PIN) and, probably by this means, interfered with the generation of an auxin gradient. Spliceosomal snRNAs accumulated at high levels throughout young root primordia and then decreased in association with the arrest of cell division, and finally increased again when the apical meristem became activated. The accumulation of snRNAs was severely suppressed by the srd2-1 mutation, and this was detectable before any morphological defect became evident. These findings suggest that high-level accumulation of snRNA involving the SRD2 function is particularly important for expression of PINs in polarized pattern generation during the development of lateral root primordia.
Collapse
Affiliation(s)
- Misato Ohtani
- Biomass Engineering Program, RIKEN, Yokohama, 230-0045 Japan
| | | | | |
Collapse
|
35
|
Tamaki H, Konishi M, Daimon Y, Aida M, Tasaka M, Sugiyama M. Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature-sensitive mutants of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:1027-39. [PMID: 19054368 DOI: 10.1111/j.1365-313x.2008.03750.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adventitious organogenesis in plant tissue culture involves de novo formation of apical meristems and should therefore provide important information about the fundamentals of meristem gene networks. We identified novel factors required for neoformation of the shoot apical meristem (SAM) through an analysis of shoot regeneration in root initiation defective3 (rid3) and root growth defective3 (rgd3) temperature-sensitive mutants of Arabidopsis. After induction of callus to regenerate shoots, cell division soon ceased and was then reactivated locally in the surface region, resulting in formation of mounds of dense cells in which adventitious-bud SAMs were eventually constructed. The rgd3 mutation inhibited reactivation of cell division and suppressed expression of CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and SHOOT MERISTEMLESS (STM). In contrast, the rid3 mutation caused excess ill-controlled cell division on the callus surface. This was intimately related to enhanced and broadened expression of CUC1. Positional cloning revealed that the RGD3 and RID3 genes encode BTAF1 (a kind of TATA-binding protein-associated factor) and an uncharacterized WD-40 repeat protein, respectively. In the early stages of shoot regeneration, RGD3 was expressed (as was CUC1) in the developing cell mounds, whereas RID3 was expressed outside the cell mounds. When RID3 was over-expressed artificially, the expression levels of CUC1 and STM were significantly reduced. Taken together, these findings show that both negative regulation by RID3 and positive regulation by RGD3 of the CUC-STM pathway participate in proper control of cell division as a prerequisite for SAM neoformation.
Collapse
Affiliation(s)
- Hiroaki Tamaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y. A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:829-44. [PMID: 18266916 DOI: 10.1111/j.1365-313x.2008.03445.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To study cellular morphogenesis genetically, we isolated loss-of-function mutants of Arabidopsis thaliana, designated ibo1. The ibo1 mutations cause local outgrowth in the middle of epidermal cells of the hypocotyls and petioles, resulting in the formation of a protuberance. In Arabidopsis, the hypocotyl epidermis differentiates into two alternate cell files, the stoma cell file and the non-stoma cell file, by a mechanism involving TRANSPARENT TESTA GLABRA1 (TTG1) and GLABRA2 (GL2). The ectopic protuberances of the ibo1 mutants were preferentially induced in the non-stoma cell files, which express GL2. TTG1-dependent epidermal patterning is required for protuberance formation in ibo1, suggesting that IBO1 functions downstream from epidermal cell specification. Pharmacological and genetic analyses demonstrated that ethylene promotes protuberance formation in ibo1, implying that IBO1 acts antagonistically to ethylene to suppress radial outgrowth. IBO1 is identical to NEK6, which encodes a Never In Mitosis A (NIMA)-related protein kinase (Nek) with sequence similarity to Neks involved in microtubule organization in fungi, algae, and animals. The ibo1-1 mutation, in which a conserved Glu residue in the activation loop is substituted by Arg, completely abolishes its kinase activity. The intracellular localization of GFP-tagged NEK6 showed that NEK6 mainly accumulates in cytoplasmic spots associated with cortical microtubules and with a putative component of the gamma-tubulin complex. The localization of NEK6 is regulated by the C-terminal domain, which is truncated in the ibo1-2 allele. These results suggest that the role of NEK6 in the control of cellular morphogenesis is dependent on its kinase action and association with the cortical microtubules.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
37
|
Shanmugam M, Hernandez N. Mitotic functions for SNAP45, a subunit of the small nuclear RNA-activating protein complex SNAPc. J Biol Chem 2008; 283:14845-56. [PMID: 18356157 PMCID: PMC2386947 DOI: 10.1074/jbc.m800833200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The small nuclear RNA-activating protein complex SNAPc is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAPc contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF δ, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G2/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAPc subunit, leads to an accumulation of cells with a G0/G1 DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAPc and another as a factor required for proper mitotic progression.
Collapse
|
38
|
Ohtani M, Demura T, Sugiyama M. Differential requirement for the function of SRD2, an snRNA transcription activator, in various stages of plant development. PLANT MOLECULAR BIOLOGY 2008; 66:303-314. [PMID: 18064403 DOI: 10.1007/s11103-007-9271-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 11/25/2007] [Indexed: 05/25/2023]
Abstract
Small nuclear RNA (snRNA) is a class of eukaryotic noncoding RNAs, which have essential roles in pre-mRNA splicing and rRNA processing. As these functions are fundamental to cell activities, the regulation of snRNA transcription should be a vital issue for all eukaryotes. Here we address developmental control of snRNA transcription and its significance through the analysis of the SRD2 gene of Arabidopsis (Arabidopsis thaliana), which encodes an activator of snRNA transcription. In young seedlings, a high level of SRD2 expression was observed in shoot and root apical meristems, leaf primordia, and root stele tissues, where a large amount of snRNA accumulated. In mature plants, SRD2 was highly expressed in developing leaves and flowers as well as apical meristems. Mutations in the SRD2 gene interfered with many, but not all, aspects of development in the regions that showed strong expression of SRD2. Of note, establishment of the fully active state of apical meristems in the seedling stage was very sensitive to the srd2-1 mutation, while maintenance of the established meristems was substantially insensitive. These results demonstrated differential requirement for the SRD2 function in various stages of plant development.
Collapse
Affiliation(s)
- Misato Ohtani
- Plant Science Center, RIKEN, Yokohama 230-0045, Japan
| | | | | |
Collapse
|