1
|
Shen X, Guan Z, Zhang C, Yan Z, Sun C. The multicellular compartmentation of plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102616. [PMID: 39142253 DOI: 10.1016/j.pbi.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
The phenomenon of multicellular compartmentation in biosynthetic pathways has been documented for only a limited subset of specialized metabolites, despite its hypothesized significance in facilitating plant survival and adaptation to environmental stress. Transporters that shuttle metabolic intermediates between cells are hypothesized to be integral components enabling compartmentalized biosynthesis. Nevertheless, our understanding of the multicellular compartmentation of plant specialized metabolism and the associated intermediate transporters remains incomplete. The emergence of single-cell and spatial multiomics techniques holds promise for shedding light on unresolved questions in this field, such as the prevalence of multicellular compartmentation across the plant kingdom and the specific types of specialized metabolites whose biosynthetic pathways are prone to compartmentation. Advancing our understanding of the mechanisms underlying multicellular compartmentation will contribute to improving the production of specialized target metabolites through metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| | - Zhijing Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chuyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhaojiu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
2
|
Guedes JG, Ribeiro R, Carqueijeiro I, Guimarães AL, Bispo C, Archer J, Azevedo H, Fonseca NA, Sottomayor M. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:274-299. [PMID: 37804484 PMCID: PMC10735432 DOI: 10.1093/jxb/erad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.
Collapse
Affiliation(s)
- Joana G Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rogério Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês Carqueijeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Ana Luísa Guimarães
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Cláudia Bispo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno A Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Somaletha Chandran K, Humphries J, Goodger JQ, Woodrow IE. Molecular Characterisation of Flavanone O-methylation in Eucalyptus. Int J Mol Sci 2022; 23:ijms23063190. [PMID: 35328610 PMCID: PMC8954846 DOI: 10.3390/ijms23063190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are ubiquitous polyphenolic compounds in plants, long recognised for their health-promoting properties in humans. Methylated flavonoids have received increasing attention due to the potential of methylation to enhance medicinal efficacy. Recently, Eucalyptus species with high levels of the O-methylated flavanone pinostrobin have been identified. Pinostrobin has potential commercial value due to its numerous pharmacological and functional food benefits. Little is known about the identity or mode of action of the enzymes involved in methylating flavanones. This study aimed to identify and characterise the methyltransferase(s) involved in the regiospecific methylation of pinostrobin in Eucalyptus and thereby add to our limited understanding of flavanone biosynthesis in plants. RNA-seq analysis of leaf tips enabled the isolation of a gene encoding a flavanone 7-O-methyltransferase (EnOMT1) in Eucalyptus. Biochemical characterisation of its in vitro activity revealed a range of substrates upon which EnOMT1 acts in a regiospecific manner. Comparison to a homologous sequence from a Eucalyptus species lacking O-methylated flavonoids identified critical catalytic amino acid residues within EnOMT1 responsible for its activity. This detailed molecular characterisation identified a methyltransferase responsible for chemical ornamentation of the core flavanone structure of pinocembrin and helps shed light on the mechanism of flavanone biosynthesis in Eucalyptus.
Collapse
Affiliation(s)
| | - John Humphries
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; (K.S.C.); (J.H.)
| | - Jason Q.D. Goodger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Correspondence:
| | - Ian E. Woodrow
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
4
|
Kumar S, Singh B, Singh R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114647. [PMID: 34562562 DOI: 10.1016/j.jep.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Catharanthus roseus (L.) G. Don is a well known medicinal plant belonging to family Apocynaceae that have been traditionally used as medicine since ancient times. C. roseus is a well-recognized herbal medicine due to its anticancer bisindole alkaloids (vinblastine (111), vincristine (112) and vindesine (121)). In the Ayurvedic system of medicine, different parts of C. roseus are used in folklore herbal medicine for treatment of many types of cancer, diabetes, stomach disorders, kidney, liver and cardiovascular diseases. AIM OF THE STUDY The main idea behind this communication is to update comprehensively and analyze critically the traditional applications, phytochemistry, pharmacological activities, and toxicity of various extracts and isolated compounds from C. roseus. MATERIALS AND METHODS The presented data covers scientific works on C. roseus published across the world between 1967 and 2021 was searched from various international publishing houses using search engines as well as several traditional texts like Ayurveda and relevant books. Collected data from different sources was comprehensively summarized/analyzed for ethnomedicinal uses, phytochemistry, analytical chemistry, biological activities and toxicity studies of C. roseus. RESULTS AND DISCUSSION C. roseus has a wide range of applications in the traditional system of medicine especially in cancer and diabetes. During phytochemical investigation, total of 344 compounds including monoterpene indole alkaloids (MIAs) (110), bisindole alkaloids (35), flavonoids (34), phenolic acids (9) and volatile constituents (156) have been reported in the various extracts and fractions of different plant parts of C. roseus. The extracts and isolated compounds of C. roseus have to exhibit many pharmacological activities such as anticancer/cytotoxic, antidiabetic, antimicrobial, antioxidant, larvicidal and pupicidal. The comparative toxicity of extracts and bioactive compounds investigated in dose dependent manner. The investigation of toxicity showed that the both extracts and isolated compounds are safe to a certain limit beyond that they cause adverse effects. CONCLUSION This review is a comprehensive, critically analyzed summarization of sufficient baseline information of selected topics in one place undertaken till date on C. roseus for future works and drug discovery. The phytochemical investigation including biosynthetic pathways showed that the MIAs and bisindole alkaloids are major and characteristic class of compounds in this plant. The present data confirm that the extracts/fractions and their isolated alkaloids especially vinblastine (111) and vincristine (112) have a potent anticancer/cytotoxic and antidiabetic property and there is a need for further study with particular attention to the mechanisms of anticancer activity. In biosynthesis pathways of alkaloids especially bisindole alkaloids, some enzymes and rearrangement are unexposed therefore it is required to draw special attention. It also focuses on attracting the attention of scientific communities about the widespread biological activities of this species for its better utilization prospects in the near future.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, (affiliated to Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur), Farrukhabad, 209602, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Botany, Government Degree College Bahua Dehat, (affiliated to Professor Rajendra Singh (Rajju Bhaiya) University Prayagraj), Fatehpur, 212663, Uttar Pradesh, India
| |
Collapse
|
5
|
St-Pierre B, Mahroug S, Guirimand G, Courdavault V, Burlat V. RNA In Situ Hybridization of Paraffin Sections to Characterize the Multicellular Compartmentation of Plant Secondary Metabolisms. Methods Mol Biol 2022; 2505:1-32. [PMID: 35732933 DOI: 10.1007/978-1-0716-2349-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a mean to cope with their potential cytotoxicity for the host plant, secondary metabolisms are often sequestered within specific cell types. This spatial organization may reach complex sequential multicellular compartmentation. The most complex example so far characterized is the sequential multicellular biosynthesis of the anticancer monoterpene indole alkaloids in Catharanthus roseus. RNA in situ hybridization has proven a key technological approach to unravel this complex spatial organization. Pioneer work in 1999 discovered the involvement of epidermis and laticifer/idioblasts in the intermediate and late steps of the pathway, respectively. The localization of the early steps of the pathway to the internal phloem-associated parenchyma later came to complete the three-tissular block organization of the pathway. Since then, RNA in situ hybridization was routinely used to map the gene expression profile of most of the nearly 30 genes involved in this pathway. We introduce here a comparison of advantages and drawbacks of in situ hybridization and more popular promoter: GUS strategies. Two main advantages of in situ hybridization are the suitability to any plant species and the direct localization of transcripts rather than the localization of a promoter activity. We provide a step-by-step protocol describing every details allowing to reach a medium throughput including riboprobe synthesis, paraffin-embedded plant tissue array preparation, prehybridization, in situ hybridization, stringent washing and immunodetection of hybridized probes, and imaging steps. This should be helpful for new comers willing to domesticate the technique. This protocol has no species limitation and is particularly adapted to the increasingly studied model, nonmodel species, nonamenable to promoter::GUS transformation, such as C. roseus.
Collapse
Affiliation(s)
- Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Samira Mahroug
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Gregory Guirimand
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France.
| |
Collapse
|
6
|
Farzana M, Shahsavarani M, De Luca V, Qu Y. Studying Iridoid Transport in Catharanthus roseus by Grafting. Methods Mol Biol 2022; 2505:69-77. [PMID: 35732937 DOI: 10.1007/978-1-0716-2349-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The plant Catharanthus roseus is well known for its spatial separation of iridoid and monoterpenoid indole alkaloid (MIA) biosynthesis at both intracellular and intercellular levels, collectively suggested by RNA in situ hybridization, enzymatic and transcriptomic studies using leaf epidermis, and fluorescent protein tagging studies. Although documented in other plant species, the long-distance transport of iridoid glycosides, such as secologanin, has not been known in C. roseus until a recent study suggested that secologanin is transported from root to shoot, by grafting low iridoid/MIA mutant scions onto wild-type stock plants. This chapter describes the in vitro cultivation of C. roseus plants and grafting techniques to enable studies concerning iridoid/MIA transport between organs. The iridoid and MIA analysis methods are also provided.
Collapse
Affiliation(s)
- Maisha Farzana
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | | | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Yang Qu
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada.
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, Canada.
| |
Collapse
|
7
|
Biosynthesis and Modulation of Terpenoid Indole Alkaloids in Catharanthus roseus: A Review of Targeting Genes and Secondary Metabolites. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The medicinal plant C. roseus synthesizes biologically active alkaloids via the terpenoid indole alkaloid (TIAs) biosynthetic pathway. Most of these alkaloids have high therapeutic value, such as vinblastine and vincristine. Plant signaling components, plant hormones, precursors, growth hormones, prenylated proteins, and transcriptomic factors regulate the complex networks of TIA biosynthesis. For many years, researchers have been evaluating the scientific value of the TIA biosynthetic pathway and its potential in commercial applications for market opportunities. Metabolic engineering has revealed the major blocks in metabolic pathways regulated at the molecular level, unknown structures, metabolites, genes, enzyme expression, and regulatory genes. Conceptually, this information is necessary to create transgenic plants and microorganisms for the commercial production of high-value dimer alkaloids, such as vinca alkaloids, vinblastine, and vincristine In this review, we present current knowledge of the regulatory mechanisms of these components in the C. roseus TIA pathway, from genes to metabolites.
Collapse
|
8
|
Rao G, Zhang J, Liu X, Lin C, Xin H, Xue L, Wang C. De novo assembly of a new Olea europaea genome accession using nanopore sequencing. HORTICULTURE RESEARCH 2021; 8:64. [PMID: 33790235 PMCID: PMC8012569 DOI: 10.1038/s41438-021-00498-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/17/2023]
Abstract
Olive (Olea europaea L.) is internationally renowned for its high-end product, extra virgin olive oil. An incomplete genome of O. europaea was previously obtained using shotgun sequencing in 2016. To further explore the genetic and breeding utilization of olive, an updated draft genome of olive was obtained using Oxford Nanopore third-generation sequencing and Hi-C technology. Seven different assembly strategies were used to assemble the final genome of 1.30 Gb, with contig and scaffold N50 sizes of 4.67 Mb and 42.60 Mb, respectively. This greatly increased the quality of the olive genome. We assembled 1.1 Gb of sequences of the total olive genome to 23 pseudochromosomes by Hi-C, and 53,518 protein-coding genes were predicted in the current assembly. Comparative genomics analyses, including gene family expansion and contraction, whole-genome replication, phylogenetic analysis, and positive selection, were performed. Based on the obtained high-quality olive genome, a total of nine gene families with 202 genes were identified in the oleuropein biosynthesis pathway, which is twice the number of genes identified from the previous data. This new accession of the olive genome is of sufficient quality for genome-wide studies on gene function in olive and has provided a foundation for the molecular breeding of olive species.
Collapse
Affiliation(s)
- Guodong Rao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Xiaoxia Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chunfu Lin
- MIANNING Yuansheng Agricultural Science and Technology Co., Ltd., Liangshan Yi Autonomous Prefecture Mianning County, Sichuan, 615600, China
| | - Huaigen Xin
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Li Xue
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Chenhe Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
9
|
Stander EA, Sepúlveda LJ, Dugé de Bernonville T, Carqueijeiro I, Koudounas K, Lemos Cruz P, Besseau S, Lanoue A, Papon N, Giglioli-Guivarc’h N, Dirks R, O’Connor SE, Atehortùa L, Oudin A, Courdavault V. Identifying Genes Involved in alkaloid Biosynthesis in Vinca minor Through Transcriptomics and Gene Co-Expression Analysis. Biomolecules 2020; 10:biom10121595. [PMID: 33255314 PMCID: PMC7761029 DOI: 10.3390/biom10121595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
The lesser periwinkle Vinca minor accumulates numerous monoterpene indole alkaloids (MIAs) including the vasodilator vincamine. While the biosynthetic pathway of MIAs has been largely elucidated in other Apocynaceae such as Catharanthus roseus, the counterpart in V. minor remains mostly unknown, especially for reactions leading to MIAs specific to this plant. As a consequence, we generated a comprehensive V. minor transcriptome elaborated from eight distinct samples including roots, old and young leaves exposed to low or high light exposure conditions. This optimized resource exhibits an improved completeness compared to already published ones. Through homology-based searches using C. roseus genes as bait, we predicted candidate genes for all common steps of the MIA pathway as illustrated by the cloning of a tabersonine/vincadifformine 16-O-methyltransferase (Vm16OMT) isoform. The functional validation of this enzyme revealed its capacity of methylating 16-hydroxylated derivatives of tabersonine, vincadifformine and lochnericine with a Km 0.94 ± 0.06 µM for 16-hydroxytabersonine. Furthermore, by combining expression of fusions with yellow fluorescent proteins and interaction assays, we established that Vm16OMT is located in the cytosol and forms homodimers. Finally, a gene co-expression network was performed to identify candidate genes of the missing V. minor biosynthetic steps to guide MIA pathway elucidation.
Collapse
Affiliation(s)
- Emily Amor Stander
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Thomas Dugé de Bernonville
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP, EA 3142), UNIV Angers, UNIV Brest, 49933 Angers, France;
| | - Nathalie Giglioli-Guivarc’h
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Ron Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands;
| | - Sarah Ellen O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| |
Collapse
|
10
|
Guodong R, Jianguo Z, Xiaoxia L, Ying L. Identification of putative genes for polyphenol biosynthesis in olive fruits and leaves using full-length transcriptome sequencing. Food Chem 2019; 300:125246. [PMID: 31357017 DOI: 10.1016/j.foodchem.2019.125246] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Olive (Olea europaea) is a rich source of valuable bioactive polyphenols, which has attracted widespread interest. In this study, we combined targeted metabolome, Pacbio ISOseq transcriptome, and Illumina RNA-seq transcriptome to investigate the association between polyphenols and gene expression in the developing olive fruits and leaves. A total of 12 main polyphenols were measured, and 122 transcripts of 17 gene families, 101 transcripts of 9 gene families, and 106 transcripts of 6 gene families that encode for enzymes involved in flavonoid, oleuropein, and hydroxytyrosol biosynthesis were separately identified. Additionally, 232 alternative splicing events of 18 genes related to polyphenol synthesis were analyzed. This is the first time that the third generations of full-length transcriptome technology were used to study the gene expression pattern of olive fruits and leaves. The results of transcriptome combined with targeted metabolome can help us better understand the polyphenol biosynthesis pathways in the olive.
Collapse
Affiliation(s)
- Rao Guodong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhang Jianguo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Liu Xiaoxia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luo Ying
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
11
|
Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, Eastman H, Barrow AS, Lim KH, Kam TS, Smith BJ, Duivenvoorden HM, Parker BS, Bradshaw TD, Steinmetz MO, Moses JE. Sustainable Syntheses of (-)-Jerantinines A & E and Structural Characterisation of the Jerantinine-Tubulin Complex at the Colchicine Binding Site. Sci Rep 2018; 8:10617. [PMID: 30006510 PMCID: PMC6045569 DOI: 10.1038/s41598-018-28880-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
Collapse
Affiliation(s)
- Christopher J Smedley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Paul A Stanley
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mohannad E Qazzaz
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Hilary Collins
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Harry Eastman
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | | | - Belinda S Parker
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
- University of Basel, Biozentrum, CH-4056, Basel, Switzerland
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
12
|
Shimoda K, Kubota N, Hamada H, Doi S, Ishihara K, Hamada H, Fujitaka Y, Ono T, Araki M. Ferulic Acid, Methyl Ferulate, and Ferulic Acid Glucopyranosyl Ester Isolated from Cultured Cells of Phytolacca americana. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Production of secondary metabolites in cultured plant cells of Phytolacca americana was investigated. Three compounds, i.e., ferulic acid, methyl ferulate, and ferulic acid glucopyranosyl ester, were isolated from cultured P. americana cells.
Collapse
Affiliation(s)
- Kei Shimoda
- Department of Biomedical chemistry, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
| | - Naoji Kubota
- Department of Biomedical chemistry, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shouta Doi
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Kohji Ishihara
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Hatsuyuki Hamada
- National Institute of Fitness and Sports in Kanoya, 1 Shiromizu-cho, Kagoshima 891-2390, Japan
| | - Yuya Fujitaka
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Tsubasa Ono
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Minami Araki
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
13
|
Kumar SR, Shilpashree HB, Nagegowda DA. Terpene Moiety Enhancement by Overexpression of Geranyl(geranyl) Diphosphate Synthase and Geraniol Synthase Elevates Monomeric and Dimeric Monoterpene Indole Alkaloids in Transgenic Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2018; 9:942. [PMID: 30034406 PMCID: PMC6043680 DOI: 10.3389/fpls.2018.00942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 05/07/2023]
Abstract
Catharanthus roseus is the sole source of two of the most important anticancer monoterpene indole alkaloids (MIAs), vinblastine and vincristine and their precursors, vindoline and catharanthine. The MIAs are produced from the condensation of precursors derived from indole and terpene secoiridoid pathways. It has been previously reported that the terpene moiety limits MIA biosynthesis in C. roseus. Here, to overcome this limitation and enhance MIAs levels in C. roseus, bifunctional geranyl(geranyl) diphosphate synthase [G(G)PPS] and geraniol synthase (GES) that provide precursors for early steps of terpene moiety (secologanin) formation, were overexpressed transiently by agroinfiltration and stably by Agrobacterium-mediated transformation. Both transient and stable overexpression of G(G)PPS and co-expression of G(G)PPS+GES significantly enhanced the accumulation of secologanin, which in turn elevated the levels of monomeric MIAs. In addition, transgenic C. roseus plants exhibited increased levels of root alkaloid ajmalicine. The dimeric alkaloid vinblastine was enhanced only in G(G)PPS but not in G(G)PPS+GES transgenic lines that correlated with transcript levels of peroxidase-1 (PRX1) involved in coupling of vindoline and catharanthine into 3',4'-anhydrovinblastine, the immediate precursor of vinblastine. Moreover, first generation (T1) lines exhibited comparable transcript and metabolite levels to that of T0 lines. In addition, transgenic lines displayed normal growth similar to wild-type plants indicating that the bifunctional G(G)PPS enhanced flux toward both primary and secondary metabolism. These results revealed that improved availability of early precursors for terpene moiety biosynthesis enhanced production of MIAs in C. roseus at the whole plant level. This is the first report demonstrating enhanced accumulation of monomeric and dimeric MIAs including root MIA ajmalicine in C. roseus through transgenic approaches.
Collapse
|
14
|
Sun J, Zhao L, Shao Z, Shanks J, Peebles CAM. Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. Biotechnol Bioeng 2017; 115:673-683. [PMID: 29105731 DOI: 10.1002/bit.26487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
Abstract
The monoterpene indole alkaloids vindoline and catharanthine, which are exclusively synthesized in the medicinal plant Catharanthus roseus, are the two important precursors for the production of pharmaceutically important anti-cancer medicines vinblastine and vincristine. Hairy root culture is an ideal platform for alkaloids production due to its industrial scalability, genetic and chemical stability, and availability of genetic engineering tools. However, C. roseus hairy roots do not produce vindoline due to the lack of expression of the seven-step pathway from tabersonine to vindoline [Murata & De Luca (2015) Plant Journal, 44, 581-594]. The present study describes the genetic engineering of the first two genes tabersonine 16-hydroxylase (T16H) and 16-O-methyl transferase (16OMT) in the missing vindoline pathway under the control of a glucocorticoid-inducible promoter to direct tabersonine toward vindoline biosynthesis in C. roseus hairy roots. In two transgenic hairy roots, the induced overexpression of T16H and 16OMT resulted in the accumulation of vindoline pathway metabolites 16-hydroxytabersonine and 16-methoxytabersonine. The levels of root-specific alkaloids, including lochnericine, 19-hydroxytabersonine and hörhammericine, significantly decreased in the induced hairy roots in comparison to the uninduced control lines. This suggests tabersonine was successfully channeled to the vindoline pathway away from the roots competing pathway based on the overexpression. Interestingly, another two new metabolites were detected in the induced hairy roots and proposed to be the epoxidized-16-hydroxytabersonine and lochnerinine. Thus, the introduction of vindoline pathway genes in hairy roots can cause unexpected terpenoid indole alkaloids (TIA) profile alterations. Furthermore, we observed complex transcriptional changes in TIA genes and regulators detected by RT-qPCR which highlight the tight regulation of the TIA pathway in response to T16H and 16OMT engineering in C. roseus hairy roots.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado
| | - Le Zhao
- Chemical and Biological Engineering, Iowa State University, Center for Biorenewable Chemicals, Ames, Iowa
| | - Zengyi Shao
- Chemical and Biological Engineering, Iowa State University, Center for Biorenewable Chemicals, Ames, Iowa
| | - Jacqueline Shanks
- Chemical and Biological Engineering, Iowa State University, Center for Biorenewable Chemicals, Ames, Iowa
| | - Christie A M Peebles
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
15
|
Demessie Z, Woolfson KN, Yu F, Qu Y, De Luca V. The ATP binding cassette transporter, VmTPT2/VmABCG1, is involved in export of the monoterpenoid indole alkaloid, vincamine in Vinca minor leaves. PHYTOCHEMISTRY 2017; 140:118-124. [PMID: 28478314 DOI: 10.1016/j.phytochem.2017.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Vinca minor is a herbaceous plant from the Apocynaceae family known to produce over 50 monoterpene indole alkaloids (MIAs). These include several biologically active MIAs that have a range of pharmaceutical activities. The present study shows that the MIAs, vincamine, akuammicine, minovincinine, lochnericine and vincadifformine tend to be secreted on V. minor leaf surfaces. A secretion mechanism of MIAs, previously described for Catharanthus roseus, appears to be mediated by a member (CrTPT2) of the pleiotropic drug resistance ABC transporter subfamily. The molecular cloning of an MIA transporter (VmTPT2/VmABCG1) that is predominantly expressed in V. minor leaves was functionally characterized in yeast and established it as an MIA efflux transporter. The similar function of VmTPT2/VmABCG1 to CrTPT2 increases the likelihood that this MIA transporter family may have co-evolved within members of Apocynaceae family to secrete selected MIAs and to regulate leaf MIA surface chemistry.
Collapse
Affiliation(s)
- Zerihun Demessie
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Kathlyn N Woolfson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Fang Yu
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Yang Qu
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Canada.
| |
Collapse
|
16
|
Liu J, Cai J, Wang R, Yang S. Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions. Int J Mol Sci 2016; 18:ijms18010053. [PMID: 28036025 PMCID: PMC5297688 DOI: 10.3390/ijms18010053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023] Open
Abstract
As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and transport regulation in order to guide our future research.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Chinese Herbal Medicine, Jilin Agricultural University, Changchun 130047, China.
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Junjun Cai
- West China Hospital, Sichuan University, Chengdu 610066, China.
| | - Rui Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Shihai Yang
- College of Chinese Herbal Medicine, Jilin Agricultural University, Changchun 130047, China.
| |
Collapse
|
17
|
Cázares-Flores P, Levac D, De Luca V. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:335-342. [PMID: 27122470 DOI: 10.1111/tpj.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Ajmaline biosynthesis in Rauvolfia serpentina has been one of the most studied monoterpenoid indole alkaloid (MIA) pathways within the plant family Apocynaceae. Detailed molecular and biochemical information on most of the steps involved in the pathway has been generated over the last 30 years. Here we report the identification, molecular cloning and functional expression in Escherichia coli of two R. serpentinacDNAs that are part of a recently discovered γ-tocopherol-like N-methyltransferase (γ-TLMT) family and are involved in indole and side-chain N-methylation of ajmaline. Recombinant proteins showed remarkable substrate specificity for molecules with an ajmalan-type backbone and strict regiospecific N-methylation. Furthermore, N-methyltransferase gene transcripts and enzyme activity were enriched in R. serpentina roots which correlated with accumulation of ajmaline alkaloid. This study elucidates the final step in the ajmaline biosynthetic pathway and describes the enzyme responsible for the formation of Nβ -methylajmaline, an unusual charged MIA found in R. serpentina.
Collapse
Affiliation(s)
- Paulo Cázares-Flores
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, L2S 3A1, Canada
| | - Dylan Levac
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, L2S 3A1, Canada
| | - Vincenzo De Luca
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, L2S 3A1, Canada.
| |
Collapse
|
18
|
Na R, Jiajia L, Dongliang Y, Yingzi P, Juan H, Xiong L, Nana Z, Jing Z, Yitian L. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiol Res 2016; 192:114-121. [PMID: 27664729 DOI: 10.1016/j.micres.2016.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 10/21/2022]
Abstract
Vincamine, a monoterpenoid indole alkaloid which had been marketed as nootropic drugs for the treatment of cerebral insufficiencies, is widely found in plants of the Apocynaceae family. Nerium indicum is a plant belonging to the Apocynaceae family. So, the purpose of this research was designed to investigate the vincamine alkaloids producing endophytic fungi from Nerium indicum, Apocynaceae. 11 strains of endophytic fungi, isolated from the stems and roots of the plant, were grouped into 5 genera on the basis of morphological characteristics. All fungal isolates were fermented and their extracts were preliminary screened by Dragendorff's reagent and thin layer chromatography (TLC). One isolated strain CH1, isolated from the stems of Nerium indicum, had the same Rf value (about 0.56) as authentic vincamine. The extracts of strain CH1 were further analyzed by high performance liquid chromatography (HPLC) and liquid chromatograph-mass spectrometry (LC-MS), and the results showed that the strain CH1 could produce vincamine and vincamine analogues. The acetylcholinesterase (AchE) inhibitory activity assays using Ellman's method revealed that the metabolites of strain CH1 had significant AchE inhibitory activity with an IC50 value of 5.16μg/mL. The isolate CH1 was identified as Geomyces sp. based on morphological and molecular identification, and has been deposited in the China Center for Type Culture Collection (CCTCCM 2014676). This study first reported the natural compounds tabersonine and ethyl-vincamine from endophytic fungi CH1, Geomyces sp. In conclusion, the fungal endophytes from Nerium indicum can be used as alternative source for the production of vincamine and vincamine analogues.
Collapse
Affiliation(s)
- Ren Na
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China; Hunan Vocational College Of Science and Technology, No.784 Jingwan Road, Changsha, Hunan, 410004, China
| | - Liu Jiajia
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China.
| | - Yang Dongliang
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China; Hunan Vocational College Of Science and Technology, No.784 Jingwan Road, Changsha, Hunan, 410004, China
| | - Peng Yingzi
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China
| | - Hong Juan
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China
| | - Liu Xiong
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China
| | - Zhao Nana
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China
| | - Zhou Jing
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China
| | - Luo Yitian
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, No.932, South Lushan Road, Changsha, Hunan, 410083, China
| |
Collapse
|
19
|
Isayenkov S, Maathuis FJM. Construction and applications of a mycorrhizal arbuscular specific cDNA library. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proc Natl Acad Sci U S A 2016; 113:3891-6. [PMID: 27001858 DOI: 10.1073/pnas.1521959113] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue.
Collapse
|
21
|
Pathania S, Bagler G, Ahuja PS. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2016; 7:1229. [PMID: 27588023 PMCID: PMC4988974 DOI: 10.3389/fpls.2016.01229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 08/02/2016] [Indexed: 05/07/2023]
Abstract
Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.
Collapse
Affiliation(s)
- Shivalika Pathania
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- *Correspondence: Shivalika Pathania
| | - Ganesh Bagler
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Center for Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi)New Delhi, India
- Centre for Biologically Inspired System Science, Indian Institute of Technology JodhpurJodhpur, India
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar, India
- Ganesh Bagler
| | - Paramvir S. Ahuja
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Indian Institute of Science Education and Research (IISER) MohaliMohali, India
| |
Collapse
|
22
|
Sievert C, Beuerle T, Hollmann J, Ober D. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis. PHYTOCHEMISTRY 2015; 117:17-24. [PMID: 26057225 DOI: 10.1016/j.phytochem.2015.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis.
Collapse
Affiliation(s)
- Christian Sievert
- Botanical Institute and Botanical Garden, Christian-Albrechts University Kiel, Germany
| | - Till Beuerle
- Institute for Pharmaceutical Biology, TU Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany
| | - Julien Hollmann
- Botanical Institute and Botanical Garden, Christian-Albrechts University Kiel, Germany
| | - Dietrich Ober
- Botanical Institute and Botanical Garden, Christian-Albrechts University Kiel, Germany.
| |
Collapse
|
23
|
Qu Y, Easson MLAE, Froese J, Simionescu R, Hudlicky T, De Luca V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 2015; 112:6224-9. [PMID: 25918424 PMCID: PMC4434687 DOI: 10.1073/pnas.1501821112] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antitumor substances related to vinblastine and vincristine are exclusively found in the Catharanthus roseus (Madagascar periwinkle), a member of the Apocynaceae plant family, and continue to be extensively used in cancer chemotherapy. Although in high demand, these valuable compounds only accumulate in trace amounts in C. roseus leaves. Vinblastine and vincristine are condensed from the monoterpenoid indole alkaloid (MIA) precursors catharanthine and vindoline. Although catharanthine biosynthesis remains poorly characterized, the biosynthesis of vindoline from the MIA precursor tabersonine is well understood at the molecular and biochemical levels. This study uses virus-induced gene silencing (VIGS) to identify a cytochrome P450 [CYP71D1V2; tabersonine 3-oxygenase (T3O)] and an alcohol dehydrogenase [ADHL1; tabersonine 3-reductase (T3R)] as candidate genes involved in the conversion of tabersonine or 16-methoxytabersonine to 3-hydroxy-2,3-dihydrotabersonine or 3-hydroxy-16-methoxy-2,3-dihydrotabersonine, which are intermediates in the vindorosine and vindoline pathways, respectively. Biochemical assays with recombinant enzymes confirm that product formation is only possible by the coupled action of T3O and T3R, as the reaction product of T3O is an epoxide that is not used as a substrate by T3R. The T3O and T3R transcripts were identified in a C. roseus database representing genes preferentially expressed in leaf epidermis and suggest that the subsequent reaction products are transported from the leaf epidermis to specialized leaf mesophyll idioblast and laticifer cells to complete the biosynthesis of these MIAs. With these two genes, the complete seven-gene pathway was engineered in yeast to produce vindoline from tabersonine.
Collapse
Affiliation(s)
- Yang Qu
- Department of Biological Sciences and
| | | | - Jordan Froese
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Razvan Simionescu
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | - Tomas Hudlicky
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
24
|
Dugé de Bernonville T, Clastre M, Besseau S, Oudin A, Burlat V, Glévarec G, Lanoue A, Papon N, Giglioli-Guivarc'h N, St-Pierre B, Courdavault V. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. PHYTOCHEMISTRY 2015; 113:9-23. [PMID: 25146650 DOI: 10.1016/j.phytochem.2014.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 05/12/2023]
Abstract
The Madagascar periwinkle produces a large palette of Monoterpenoid Indole Alkaloids (MIAs), a class of complex alkaloids including some of the most valuable plant natural products with precious therapeutical values. Evolutionary pressure on one of the hotspots of biodiversity has obviously turned this endemic Malagasy plant into an innovative alkaloid engine. Catharanthus is a unique taxon producing vinblastine and vincristine, heterodimeric MIAs with complex stereochemistry, and also manufactures more than 100 different MIAs, some shared with the Apocynaceae, Loganiaceae and Rubiaceae members. For over 60 years, the quest for these powerful anticancer drugs has inspired biologists, chemists, and pharmacists to unravel the chemistry, biochemistry, therapeutic activity, cell and molecular biology of Catharanthus roseus. Recently, the "omics" technologies have fuelled rapid progress in deciphering the last secret of strictosidine biosynthesis, the central precursor opening biosynthetic routes to several thousand MIA compounds. Dedicated C. roseus transcriptome, proteome and metabolome databases, comprising organ-, tissue- and cell-specific libraries, and other phytogenomic resources, were developed for instance by PhytoMetaSyn, Medicinal Plant Genomic Resources and SmartCell consortium. Tissue specific library screening, orthology comparison in species with or without MIA-biochemical engines, clustering of gene expression profiles together with various functional validation strategies, largely contributed to enrich the toolbox for plant synthetic biology and metabolic engineering of MIA biosynthesis.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Burlat
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617 Auzeville, F-31326 Castanet-Tolosan, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Nicolas Papon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
25
|
Metabolic engineering of higher plants and algae for isoprenoid production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:161-99. [PMID: 25636485 DOI: 10.1007/10_2014_290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.
Collapse
|
26
|
Srivastava S, Pandey R, Kumar S, Nautiyal CS. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants. PROTOPLASMA 2014; 251:1307-1320. [PMID: 24658891 DOI: 10.1007/s00709-014-0621-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Several plants of Catharanthus roseus cv 'leafless inflorescence (lli)' showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants' metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere.
Collapse
|
27
|
Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene 2014; 554:181-95. [PMID: 25445288 DOI: 10.1016/j.gene.2014.10.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/08/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small endogenous non-coding RNAs of ~19-24 nucleotides and perform regulatory roles in many plant processes. To identify miRNAs involved in regulatory networks controlling diverse biological processes including secondary metabolism in Catharanthus roseus, an important medicinal plant, we employed deep sequencing of small RNA from leaf tissue. A total of 88 potential miRNAs comprising of 81 conserved miRNAs belonging to 35 families and seven novel miRNAs were identified. Precursors for 16 conserved and seven novel cro-miRNAs were identified, and their stem-loop hairpin structures were predicted. Selected cro-miRNAs were analyzed by stem-loop qRT-PCR and differential expression patterns were observed in different vegetative tissues of C. roseus. Targets were predicted for conserved and novel cro-miRNAs, which were found to be involved in diverse biological role(s) including secondary metabolism. Our study enriches available resources and information regarding miRNAs and their potential targets for better understanding of miRNA-mediated gene regulation in plants.
Collapse
|
28
|
Lin C, Cai J, Yang X, Hu L, Lin G. Liquid chromatography mass spectrometry simultaneous determination of vindoline and catharanthine in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2014; 29:97-102. [PMID: 24828449 DOI: 10.1002/bmc.3244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/30/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Abstract
Vinblastine and vincristine, both of which are bisindole alkaloids derived from vindoline and catharanthine, have been used for cancer chemotherapy; their monomeric precursor molecules are vindoline and catharanthine. A simple and selective liquid chromatography mass spectrometry method for simultaneous determination of vindoline and catharanthine in rat plasma was developed. Chromatographic separation was achieved on a C18 (2.1 × 50 mm, 3.5 µm) column with acetonitrile-0.1% formic acid in water as mobile phase with gradient elution. The flow rate was set at 0.4 mL/min. An electrospray ionization source was applied and operated in positive ion mode; selective ion monitoring mode was used for quantification. Mean recoveries were in the range of 87.3-92.6% for vindoline in rat plasma and 88.5-96.5% for catharanthine. Matrix effects for vindoline and catharanthine were measured to be between 95.3 and 104.7%. Coefficients of variation of intra-day and inter-day precision were both <15%. The accuracy of the method ranged from 93.8 to 108.1%. The method was successfully applied in a pharmacokinetic study of vindoline and catharanthine in rats. The bioavailability of vindoline and catharanthine were 5.4 and 4.7%, respectively.
Collapse
Affiliation(s)
- Chongliang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | | | | | | | | |
Collapse
|
29
|
Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Höfer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O’Connor SE, Courdavault V. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. PLANT PHYSIOLOGY 2013; 163:1792-803. [PMID: 24108213 PMCID: PMC3850188 DOI: 10.1104/pp.113.222828] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 05/18/2023]
Abstract
Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis.
Collapse
|
30
|
ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci U S A 2013; 110:15830-5. [PMID: 24019465 DOI: 10.1073/pnas.1307504110] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface.
Collapse
|
31
|
Yu F, Thamm AMK, Reed D, Villa-Ruano N, Quesada AL, Gloria EL, Covello P, De Luca V. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis. PHYTOCHEMISTRY 2013; 91:122-7. [PMID: 22652241 DOI: 10.1016/j.phytochem.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/20/2012] [Accepted: 05/01/2012] [Indexed: 06/01/2023]
Abstract
Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus.
Collapse
Affiliation(s)
- Fang Yu
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V, Papon N, Meyer S, Godet S, St-Pierre B, Giglioli-Guivarc'h N, Fischer MJC, Memelink J, Clastre M. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. PHYTOCHEMISTRY 2013; 85:36-43. [PMID: 23102596 DOI: 10.1016/j.phytochem.2012.09.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/21/2012] [Accepted: 09/26/2012] [Indexed: 05/21/2023]
Abstract
Madagascar periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) produces monoterpene indole alkaloids (MIAs), secondary metabolites of high interest due to their therapeutic value. A key step in the biosynthesis is the generation of geraniol from geranyl diphosphate (GPP) in the monoterpenoid branch of the MIA pathway. Here we report on the cloning and functional characterization of C. roseus geraniol synthase (CrGES). The full-length CrGES was over-expressed in Escherichia coli and the purified recombinant protein catalyzed the conversion of GPP into geraniol with a K(m) value of 58.5 μM for GPP. In vivo CrGES activity was evaluated by heterologous expression in a Saccharomyces cerevisiae strain mutated in the farnesyl diphosphate synthase gene. Analysis of culture extracts by gas chromatography-mass spectrometry confirmed the excretion of geraniol into the growth medium. Transient transformation of C. roseus cells with a Yellow Fluorescent Protein-fusion construct revealed that CrGES is localized in plastid stroma and stromules. In aerial plant organs, RNA in situ hybridization showed specific labeling of CrGES transcripts in the internal phloem associated parenchyma as observed for other characterized genes involved in the early steps of MIA biosynthesis. Finally, when cultures of Catharanthus cells were treated with the alkaloid-inducing hormone methyl jasmonate, an increase in CrGES transcript levels was observed. This observation coupled with the tissue-specific expression and the subcellular compartmentalization support the idea that CrGES initiates the monoterpenoid branch of the MIA biosynthetic pathway.
Collapse
Affiliation(s)
- Andrew J Simkin
- Université François-Rabelais, EA2106, Biomolécules et Biotechnologies Végétales, 31 Avenue Monge, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 2012; 7:e43038. [PMID: 22916202 PMCID: PMC3423439 DOI: 10.1371/journal.pone.0043038] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022] Open
Abstract
In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of (1)H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus.
Collapse
Affiliation(s)
- Qifang Pan
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Quan Wang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Fang Yuan
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shihai Xing
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jingya Zhao
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Yuesheng Tian
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guofeng Wang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Kexuan Tang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
34
|
Nuringtyas TR, Choi YH, Verpoorte R, Klinkhamer PGL, Leiss KA. Differential tissue distribution of metabolites in Jacobaea vulgaris, Jacobaea aquatica and their crosses. PHYTOCHEMISTRY 2012; 78:89-97. [PMID: 22516740 DOI: 10.1016/j.phytochem.2012.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 05/07/2023]
Abstract
Plants are attacked by many different herbivores. Some will consume whole leaves or roots, while others will attack specific types of tissue. Thus, insight into the metabolite profiles of different types of leaf tissues is necessary to understand plant resistance against herbivores. Jacobaea vulgaris, J. aquatica and three genotypes of their crossings were used to study the variation in metabolomic profiles between epidermis and mesophyll tissues. Extracts of epidermis and mesophyll tissues were obtained using carborundum abrasion (CA). Subsequently, (1)H nuclear magnetic resonance (NMR) spectroscopy and multivariate data analyses were applied to compare the metabolome profiles. Orthogonal partial least-squares-discriminant analysis (OPLS-DA) resulted in a clear separation of epidermis and mesophyll extracts. The epidermis contained significantly higher amounts of jacaranone and phenylpropanoids, specifically chlorogenic (5-O-CQA) and feruloyl quinic (FQA) acids compared to the mesophyll. In contrast, the mesophyll showed significantly higher concentrations of pyrrolizidine alkaloids (PAs), specifically jacobine and jaconine. The tissue specific distribution of these compounds was constant over all genotypes tested. Phenylpropanoids, 5-O-CQA and FQA, as well as PAs are known for their inhibitory effect on herbivores, especially against thrips. Thrips feeding commences with the penetration of the epidermis, followed by ingestion of sub-epidermal or mesophyll. Thrips thus may have to encounter phenylpropanoids in the epidermis as the first line of defence, before encountering the PAs as the ultimate defence in the mesophyll. The finding of tissue specific defense may have a major impact on studies of plant resistance. We cannot judge resistance using analyses of a whole roots, leafs or flowers. In such a whole-organism approach, the levels of potential defense compounds are far below the real ones encountered in tissues involved in the first line of defense. Instead, it is of great importance to study the defence compounds in the specific tissue to which the herbivore is confined.
Collapse
Affiliation(s)
- Tri R Nuringtyas
- Faculty of Biology, Gadjah Mada University, Teknika Selatan Sekip Utara, 55281 Yogyakarta, Indonesia.
| | | | | | | | | |
Collapse
|
35
|
Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J Genet 2012. [DOI: 10.1007/s12041-012-0150-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Verma P, Mathur AK, Srivastava A, Mathur A. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. PROTOPLASMA 2012; 249:255-68. [PMID: 0 DOI: 10.1007/s00709-011-0291-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/17/2011] [Indexed: 05/21/2023]
|
37
|
De Luca V, Salim V, Levac D, Atsumi SM, Yu F. Discovery and functional analysis of monoterpenoid indole alkaloid pathways in plants. Methods Enzymol 2012; 515:207-29. [PMID: 22999176 DOI: 10.1016/b978-0-12-394290-6.00010-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous difficulties have been associated with forward genetic approaches to identify, and functionally characterize genes involved in the biosynthesis, regulation, and transport of monoterpenoid indole alkaloids (MIAs). While the identification of certain classes of genes associated with MIA pathways has facilitated the use of homology-based approaches to clone other genes catalyzing similar reactions in other parts of the pathway, this has not greatly speeded up the pace of gene discovery for the diversity of reactions involved. Compounding this problem has been the lack of knowledge or even availability of certain MIA intermediates that would be required to establish a novel enzyme reaction to functionally identify a biosynthetic step or the candidate gene product involved. The advent of inexpensive sequencing technologies for transcriptome and genome sequencing, combined with proteomics and metabolomics, is now revolutionizing the pace of gene discovery associated with MIA pathways and their regulation. The discovery process uses large databases of genes, proteins, and metabolites from an ever-expanding list of nonmodel plant species competent to produce and accumulate MIAs. Comparative bioinformatics between species, together with gene expression analysis of particular tissue, cell, and developmental types, is helping to identify target genes that can then be investigated for their possible role in an MIA pathway by virus-induced gene silencing. Successful silencing not only confirms the involvement of the candidate gene but also allows identification of the pathway intermediate involved. In many circumstances, the pathway intermediate can be isolated for use as a substrate in order to confirm gene function in heterologous bacterial, yeast, or plant expression systems.
Collapse
Affiliation(s)
- Vincenzo De Luca
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| | | | | | | | | |
Collapse
|
38
|
Sung PH, Huang FC, Do YY, Huang PL. Functional expression of geraniol 10-hydroxylase reveals its dual function in the biosynthesis of terpenoid and phenylpropanoid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4637-43. [PMID: 21504162 DOI: 10.1021/jf200259n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Geraniol 10-hydroxylase (G10H), a cytochrome P450 monooxygenase, has been reported to be involved in the biosynthesis of terpenoid indole alkaloids. The gene for Catharanthus roseus G10H (CrG10H) was cloned and heterologously expressed in baculovirus-infected insect cells. A number of substrates were subjected to assay the enzyme activity of CrG10H. As reported in a previous study, CrG10H hydroxylated the monoterpenoid geraniol at the C-10 position to generate 10-hydroxygeraniol. Interestingly, CrG10H also catalyzed 3'-hydroxylation of naringenin to produce eriodictyol. Coexpression of an Arabidopsis NADPH P450 reductase substantially increased the ability of CrG10H to hydroxylate naringenin. The catalytic activity of CrG10H was approximately 10 times more efficient with geraniol than with naringenin, judged by the k(cat)/K(m) values. Thus, G10H also plays an important role in the biosynthetic pathway of flavonoids, in addition to its previously described role in the metabolism of terpenoids.
Collapse
Affiliation(s)
- Pin-Hui Sung
- Department of Horticulture, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
39
|
Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:549-57. [PMID: 21047699 DOI: 10.1016/j.jplph.2010.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 05/24/2023]
Abstract
Vindoline constitutes the main terpenoid indole alkaloid accumulated in leaves of Catharanthus roseus, and four genes involved in its biosynthesis have been identified. However, the spatial organization of the tabersonine-to-vindoline biosynthetic pathway is still incomplete. To pursue the characterization of this six-step conversion, we illustrated, with in situ hybridization, that the transcripts of the second biosynthetic enzyme, 16-hydroxytabersonine 16-O-methyltransferase (16OMT), are specifically localized to the aerial organ epidermis. At the subcellular level, by combining GFP imaging, bimolecular fluorescence complementation assays and yeast two-hybrid analysis, we established that the first biosynthetic enzyme, tabersonine 16-hydroxylase (T16H), is anchored to the ER as a monomer via a putative N-terminal helix that we cloned using a PCR approach. We also showed that 16OMT homodimerizes in the cytoplasm, allowing its exclusion from the nucleus and thus facilitating the uptake of T16H conversion product, although no T16H/16OMT interactions occur. Moreover, the two last biosynthetic enzymes, desacetoxyvindoline-4-hydroxylase (D4H) and deacetylvindoline-4-O-acetyltransferase (DAT), were shown to operate as monomers that reside in the nucleocytoplasmic compartment following passive diffusion to the nucleus allowed by the protein size. No D4H/DAT interactions were detected, suggesting the absence of metabolic channeling in the vindoline biosynthetic pathway. Finally, these results highlight the importance of the inter- and intracellular translocations of intermediates during the vindoline biosynthesis and their potential regulatory role.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA 2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle 37200 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V. The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 2011; 278:749-63. [PMID: 21205206 DOI: 10.1111/j.1742-4658.2010.07994.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catharanthus roseus synthesizes a wide range of valuable monoterpene indole alkaloids, some of which have recently been recognized as functioning in plant defence mechanisms. More specifically, in aerial organ epidermal cells, vacuole-accumulated strictosidine displays a dual fate, being either the precursor of all monoterpene indole alkaloids after export from the vacuole, or the substrate for a defence mechanism based on the massive protein cross-linking, which occurs subsequent to organelle membrane disruption during biotic attacks. Such a mechanism relies on a physical separation between the vacuolar strictosidine-synthesizing enzyme and the nucleus-targeted enzyme catalyzing its activation through deglucosylation. In the present study, we carried out the spatial characterization of this mechanism by a cellular and subcellular study of three enzymes catalyzing the synthesis of the two strictosidine precursors (i.e. tryptamine and secologanin). Using RNA in situ hybridization, we demonstrated that loganic acid O-methyltransferase transcript, catalysing the penultimate step of secologanin synthesis, is specifically localized in the epidermis. A combination of green fluorescent protein imaging, bimolecular fluorescence complementation assays and yeast two-hybrid analysis enabled us to establish that both loganic acid O-methyltransferase and the tryptamine-producing enzyme, tryptophan decarboxylase, form homodimers in the cytosol, thereby preventing their passive diffusion to the nucleus. We also showed that the cytochrome P450 secologanin synthase is anchored to the endoplasmic reticulum via a N-terminal helix, thus allowing the production of secologanin on the cytosolic side of the endoplasmic reticulum membrane. Consequently, secologanin and tryptamine must be transported to the vacuole to achieve strictosidine biosynthesis, demonstrating the importance of trans-tonoplast translocation events during these metabolic processes.
Collapse
Affiliation(s)
- Grégory Guirimand
- Université François Rabelais de Tours, EA2106 Biomolécules et Biotechnologies Végétales, IFR 135 Imagerie fonctionnelle, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci U S A 2010; 107:15287-92. [PMID: 20696903 DOI: 10.1073/pnas.0911451107] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The monoterpenoid indole alkaloids (MIAs) of Madagascar periwinkle (Catharanthus roseus) continue to be the most important source of natural drugs in chemotherapy treatments for a range of human cancers. These anticancer drugs are derived from the coupling of catharanthine and vindoline to yield powerful dimeric MIAs that prevent cell division. However the precise mechanisms for their assembly within plants remain obscure. Here we report that the complex development-, environment-, organ-, and cell-specific controls involved in expression of MIA pathways are coupled to secretory mechanisms that keep catharanthine and vindoline separated from each other in living plants. Although the entire production of catharanthine and vindoline occurs in young developing leaves, catharanthine accumulates in leaf wax exudates of leaves, whereas vindoline is found within leaf cells. The spatial separation of these two MIAs provides a biological explanation for the low levels of dimeric anticancer drugs found in the plant that result in their high cost of commercial production. The ability of catharanthine to inhibit the growth of fungal zoospores at physiological concentrations found on the leaf surface of Catharanthus leaves, as well as its insect toxicity, provide an additional biological role for its secretion. We anticipate that this discovery will trigger a broad search for plants that secrete alkaloids, the biological mechanisms involved in their secretion to the plant surface, and the ecological roles played by them.
Collapse
|
42
|
Abbott E, Hall D, Hamberger B, Bohlmann J. Laser microdissection of conifer stem tissues: isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC PLANT BIOLOGY 2010; 10:106. [PMID: 20540781 PMCID: PMC3095273 DOI: 10.1186/1471-2229-10-106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 06/12/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND Laser microdissection (LMD) has been established for isolation of individual tissue types from herbaceous plants. However, there are few reports of cell- and tissue-specific analysis in woody perennials. While microdissected tissues are commonly analyzed for gene expression, reports of protein, enzyme activity and metabolite analysis are limited due in part to an inability to amplify these molecules. Conifer stem tissues are organized in regular patterns with xylem, phloem and cortex development controlled by the activity of the cambial zone (CZ). Defense responses of conifer stems against insects and pathogens involve increased accumulation of terpenoids in cortical resin ducts (CRDs) and de novo formation of traumatic resin ducts from CZ initials. These tissues are difficult to isolate for tissue-specific molecular and biochemical characterization and are thus good targets for application of LMD. RESULTS We describe robust methods for isolation of individual tissue-types from white spruce (Picea glauca) stems for analysis of RNA, enzyme activity and metabolites. A tangential cryosectioning approach was important for obtaining large quantities of CRD and CZ tissues using LMD. We report differential expression of genes involved in terpenoid metabolism between CRD and CZ tissues and in response to methyl jasmonate (MeJA). Transcript levels of beta-pinene synthase and levopimaradiene/abietadiene synthase were constitutively higher in CRDs, but induction was stronger in CZ in response to MeJA. 3-Carene synthase was more strongly induced in CRDs compared to CZ. A differential induction pattern was observed for 1-deoxyxyulose-5-phosphate synthase, which was up-regulated in CRDs and down-regulated in CZ. We identified terpene synthase enzyme activity in CZ protein extracts and terpenoid metabolites in both CRD and CZ tissues. CONCLUSIONS Methods are described that allow for analysis of RNA, enzyme activity and terpenoid metabolites in individual tissues isolated by LMD from woody conifer stems. Patterns of gene expression are demonstrated in specific tissues that may be masked in analysis of heterogeneous samples. Combined analysis of transcripts, proteins and metabolites of individual tissues will facilitate future characterization of complex processes of woody plant development, including periodic stem growth and dormancy, cell specialization, and defense and may be applied widely to other plant species.
Collapse
Affiliation(s)
- Eric Abbott
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, B.C., V6T 1Z4, Canada
| | - Dawn Hall
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Björn Hamberger
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, B.C., V6T 1Z4, Canada
| |
Collapse
|
43
|
Genetic Engineering Technology and Pharmacological Evaluation of Chinese Medicine. Chin J Nat Med 2010. [DOI: 10.3724/sp.j.1009.2009.00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:463-89. [PMID: 19152489 DOI: 10.1146/annurev.arplant.043008.092035] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.
Collapse
Affiliation(s)
- Kazuki Saito
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Japan.
| | | |
Collapse
|
45
|
Abstract
High-resolution cellular analysis will help answer many important questions in plant biology including how genetic information is differentially used to enable the formation and development of the plant body. By comparing transcriptome data from distinct cell types during various stages of development, insight can be obtained into the transcriptional networks that underpin the attributes and contributions of particular cells and tissues. Laser microdissection (LM) is a technique that enables researchers to obtain specific cells or tissues from histological samples in a manner conducive to downstream molecular analysis. LM has become an established strategy in many areas of biology and it has recently been adapted for use with many types of plant tissue.
Collapse
Affiliation(s)
- Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
46
|
Peebles CA, Shanks JV, San KY. The role of the octadecanoid pathway in the production of terpenoid indole alkaloids inCatharanthus roseushairy roots under normal and UV-B stress conditions. Biotechnol Bioeng 2009; 103:1248-54. [DOI: 10.1002/bit.22350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Traditional and non-traditional plant growth regulators alters phytochemical constituents in Catharanthus roseus. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Campos-Tamayo F, Hernández-Domínguez E, Vázquez-Flota F. Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. ANNALS OF BOTANY 2008; 102:409-415. [PMID: 18587132 PMCID: PMC2701790 DOI: 10.1093/aob/mcn108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/08/2008] [Accepted: 06/04/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The Madagascar periwinkle (Catharanthus roseus) produces the monoterpenoid alkaloid vindoline, which requires a specialized cell organization present only in the aerial tissues. Vindoline content can be affected by photoperiod and this effect seems to be associated with the morphogenetic capacity of branches; this association formed the basis of the study reported here. METHODS Vindoline-producing in vitro shoot cultures were exposed either to continuous light or a 16-h photoperiod regime. New plantlet formation and alkaloid biosynthesis were analysed throughout a culture cycle. KEY RESULTS In cultures under the photoperiod, the formation of new plantlets occurred in a more synchronized fashion as compared to those under continuous light. The accumulation of vindoline in cultures under the photoperiod occurred in co-ordination with plantlet formation, in contrast to cultures under continuous light, and coincided with a peak of activity of deacetylvindoline acetyl CoA acetyltransferase (DAT), the enzyme that catalyses the last step in vindoline biosynthesis. When new plantlet formation was blocked in cultures under the photoperiod by treatment with phytoregulators, vindoline synthesis was also reduced via an effect on DAT activity. No association between plantlet formation and other biosynthetic enzymes, such as tryptophan decarboxylase (TDC) and deacetoxyvindoline 4-hydroxylase (D4H), was found. Effects of light treatment on vindoline synthesis were not mediated by ORCA-3 proteins (which are involved in the induction of alkaloid synthesis in response to elicitation), suggesting that the presence of a different set of regulatory proteins. CONCLUSIONS The data suggest that vindoline biosynthesis is associated with morphogenesis in shoot cultures of C. roseus.
Collapse
|
49
|
Facchini PJ, De Luca V. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:763-84. [PMID: 18476877 DOI: 10.1111/j.1365-313x.2008.03438.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alkaloids represent a large and diverse group of compounds that are related by the occurrence of a nitrogen atom within a heterocyclic backbone. Unlike other types of secondary metabolites, the various structural categories of alkaloids are unrelated in terms of biosynthesis and evolution. Although the biology of each group is unique, common patterns have become apparent. Opium poppy (Papaver somniferum), which produces several benzylisoquinoline alkaloids, and Madagascar periwinkle (Catharanthus roseus), which accumulates an array of monoterpenoid indole alkaloids, have emerged as the premier organisms used to study plant alkaloid metabolism. The status of these species as model systems results from decades of research on the chemistry, enzymology and molecular biology responsible for the biosynthesis of valuable pharmaceutical alkaloids. Opium poppy remains the only commercial source for morphine, codeine and semi-synthetic analgesics, such as oxycodone, derived from thebaine. Catharanthus roseus is the only source for the anti-cancer drugs vinblastine and vincristine. Impressive collections of cDNAs encoding biosynthetic enzymes and regulatory proteins involved in the formation of benzylisoquinoline and monoterpenoid indole alkaloids are now available, and the rate of gene discovery has accelerated with the application of genomics. Such tools have allowed the establishment of models that describe the complex cell biology of alkaloid metabolism in these important medicinal plants. A suite of biotechnological resources, including genetic transformation protocols, has allowed the application of metabolic engineering to modify the alkaloid content of these and related species. An overview of recent progress on benzylisoquinoline and monoterpenoid indole alkaloid biosynthesis in opium poppy and C. roseus is presented.
Collapse
Affiliation(s)
- Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | |
Collapse
|
50
|
Murata J, Roepke J, Gordon H, De Luca V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. THE PLANT CELL 2008; 20:524-42. [PMID: 18326827 PMCID: PMC2329939 DOI: 10.1105/tpc.107.056630] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 05/17/2023]
Abstract
Catharanthus roseus is the sole commercial source of the monoterpenoid indole alkaloids (MIAs), vindoline and catharanthine, components of the commercially important anticancer dimers, vinblastine and vincristine. Carborundum abrasion technique was used to extract leaf epidermis-enriched mRNA, thus sampling the epidermome, or complement, of proteins expressed in the leaf epidermis. Random sequencing of the derived cDNA library established 3655 unique ESTs, composed of 1142 clusters and 2513 singletons. Virtually all known MIA pathway genes were found in this remarkable set of ESTs, while only four known genes were found in the publicly available Catharanthus EST data set. Several novel MIA pathway candidate genes were identified, as demonstrated by the cloning and functional characterization of loganic acid O-methyltransferase involved in secologanin biosynthesis. The pathways for triterpene biosynthesis were also identified, and metabolite analysis showed that oleanane-type triterpenes were localized exclusively to the cuticular wax layer. The pathways for flavonoid and very-long-chain fatty acid biosynthesis were also located in this cell type. The results illuminate the biochemical specialization of Catharanthus leaf epidermis for the production of multiple classes of metabolites. The value and versatility of this EST data set for biochemical and biological analysis of leaf epidermal cells is also discussed.
Collapse
Affiliation(s)
- Jun Murata
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S3A1 Canada
| | | | | | | |
Collapse
|