1
|
Machelová A, Dadejová MN, Franek M, Mougeot G, Simon L, Le Goff S, Duc C, Bassler J, Demko M, Schwarzerová J, Desset S, Probst AV, Dvořáčková M. The histone chaperones ASF1 and HIRA are required for telomere length and 45S rDNA copy number homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1125-1141. [PMID: 39400911 DOI: 10.1111/tpj.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Genome stability is significantly influenced by the precise coordination of chromatin complexes that facilitate the loading and eviction of histones from chromatin during replication, transcription, and DNA repair processes. In this study, we investigate the role of the Arabidopsis H3 histone chaperones ANTI-SILENCING FUNCTION 1 (ASF1) and HISTONE REGULATOR A (HIRA) in the maintenance of telomeres and 45S rDNA loci, genomic sites that are particularly susceptible to changes in the chromatin structure. We find that both ASF1 and HIRA are essential for telomere length regulation, as telomeres are significantly shorter in asf1a1b and hira mutants. However, these shorter telomeres remain localized around the nucleolus and exhibit a comparable relative H3 occupancy to the wild type. In addition to regulating telomere length, ASF1 and HIRA contribute to silencing 45S rRNA genes and affect their copy number. Besides, ASF1 supports global heterochromatin maintenance. Our findings also indicate that ASF1 transiently binds to the TELOMERE REPEAT BINDING 1 protein and the N terminus of telomerase in vivo, suggesting a physical link between the ASF1 histone chaperone and the telomere maintenance machinery.
Collapse
Affiliation(s)
- Adéla Machelová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| | - Martina Nešpor Dadejová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Guillaume Mougeot
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Lauriane Simon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Samuel Le Goff
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Céline Duc
- Nantes Université, CNRS, US2B UMR 6286, Nantes, F-44000, France
| | - Jasmin Bassler
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Martin Demko
- Core Facility Bioinformatics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00, Czech Republic
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Sophie Desset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Aline V Probst
- iGReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, Clermont-Ferrand, 63001, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, CZ-61137, Czech Republic
| |
Collapse
|
2
|
Feng Y, Guo X, Luo M, Sun Y, Sun L, Zhang H, Zou Y, Liu D, Lu H. GbHSP90 act as a dual functional role regulated in telomere stability in Ginkgo biloba. Int J Biol Macromol 2024; 279:135240. [PMID: 39250995 DOI: 10.1016/j.ijbiomac.2024.135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The heat shock protein 90 (HSP90) family members are not only widely involved in animal cellular immune response and signal transduction pathway regulation, but also play an important role in plant development and environmental stress response. Here,we identified a HSP90 family member in Ginkgo biloba, designated as GbHSP90, which performs a dual functional role to regulate telomere stability. GbHSP90 was screened by a yeast one-hybrid library using the Ginkgo biloba telomeric DNA (TTTAGGG)5. Fluorescence polarization, surface plasmon resonance(SPR) and EMSA technologyies revealed a specific interaction between GbHSP90 and the double-stranded telomeric DNA via its N-CR region, with no affinity for the single-stranded telomeric DNA or human double-stranded telomeric DNA. Furthermore, yeast two-hybrid system and Split-LUC assay demonstrated that GbHSP90 can interacts with two telomere end-binding proteins:the ginkgo telomerase reverse transcriptase (GbTERT) and the ginkgo Structural Maintenance of Chromosomes protein 1 (GbSMC1). Overexpression of GbHSP90 in human 293 T and HeLa cells increased cell growth rate, the content of telomerase reverse transcriptase (TERT), and promote cell division and inhibit cell apoptosis. Our results indicated GbHSP90 have dually functions: as a telomere-binding protein that binds specifically to double-stranded telomeric DNA and as a molecular chaperone that modulates cell differentiation and apoptosis by binding to telomere protein complexes in Ginkgo biloba. This study contributes to a significantly understanding of the unique telomere complex structure and regulatory mechanisms in Ginkgo biloba, a long-lived tree species.
Collapse
Affiliation(s)
- Yuping Feng
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueqin Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mei Luo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 561113, China
| | - Yu Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Leiqian Sun
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yirong Zou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Xuan H, Li Y, Liu Y, Zhao J, Chen J, Shi N, Zhou Y, Pi L, Li S, Xu G, Yang H. The H1/H5 domain contributes to OsTRBF2 phase separation and gene repression during rice development. THE PLANT CELL 2024; 36:3787-3808. [PMID: 38976557 PMCID: PMC11483615 DOI: 10.1093/plcell/koae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Transcription factors (TFs) tightly control plant development by regulating gene expression. The phase separation of TFs plays a vital role in gene regulation. Many plant TFs have the potential to form phase-separated protein condensates; however, little is known about which TFs are regulated by phase separation and how it affects their roles in plant development. Here, we report that the rice (Oryza sativa) single Myb TF TELOMERE REPEAT-BINDING FACTOR 2 (TRBF2) is highly expressed in fast-growing tissues at the seedling stage. TRBF2 is a transcriptional repressor that binds to the transcriptional start site of thousands of genes. Mutation of TRBF2 leads to pleiotropic developmental defects and misexpression of many genes. TRBF2 displays characteristics consistent with phase separation in vivo and forms phase-separated condensates in vitro. The H1/H5 domain of TRBF2 plays a crucial role in phase separation, chromatin targeting, and gene repression. Replacing the H1/H5 domain by a phase-separated intrinsically disordered region from Arabidopsis (Arabidopsis thaliana) AtSERRATE partially recovers the function of TRBF2 in gene repression in vitro and in transgenic plants. We also found that TRBF2 is required for trimethylation of histone H3 Lys27 (H3K27me3) deposition at specific genes and genome wide. Our findings reveal that phase separation of TRBF2 facilitates gene repression in rice development.
Collapse
Affiliation(s)
- Hua Xuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jingze Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jianhao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Nan Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Limin Pi
- Hubei Hongshan Laboratory, Wuhan 430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoyong Xu
- Hubei Hongshan Laboratory, Wuhan 430070, China
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Lu J, Wang W, Fan C, Sun J, Yuan G, Guo Y, Yu X, Chang Y, Liu J, Wang C. Telo boxes within the AGAMOUS second intron recruit histone 3 lysine 27 methylation to increase petal number in rose (Rosa chinensis) in response to low temperatures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1486-1499. [PMID: 38457289 DOI: 10.1111/tpj.16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/10/2024]
Abstract
The petals of rose (Rosa sp.) flowers determine the ornamental and industrial worth of this species. The number of petals in roses was previously shown to be subject to fluctuations in ambient temperature. However, the mechanisms by which rose detects and responds to temperature changes are not entirely understood. In this study, we identified short interstitial telomere motifs (telo boxes) in the second intron of AGAMOUS (RcAG) from China rose (Rosa chinensis) that play an essential role in precise temperature perception. The second intron of RcAG harbors two telo boxes that recruit telomere repeat binding factors (RcTRBs), which interact with CURLY LEAF (RcCLF) to compose a repressor complex. We show that this complex suppresses RcAG expression when plants are subjected to low temperatures via depositing H3K27me3 marks (trimethylation of lysine 27 on histone H3) over the RcAG gene body. This regulatory mechanism explains the low-temperature-dependent decrease in RcAG transcript levels, leading to the production of more petals under these conditions. Our results underscore an interesting intron-mediated regulatory mechanism governing RcAG expression, enabling rose plants to perceive temperature cues and establish petal numbers.
Collapse
Affiliation(s)
- Jun Lu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weinan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Sun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhan Guo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Yu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufei Chang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changquan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs; Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Zheng SY, Guan BB, Yuan DY, Zhao QQ, Ge W, Tan LM, Chen SS, Li L, Chen S, Xu RM, He XJ. Dual roles of the Arabidopsis PEAT complex in histone H2A deubiquitination and H4K5 acetylation. MOLECULAR PLANT 2023; 16:1847-1865. [PMID: 37822080 DOI: 10.1016/j.molp.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.
Collapse
Affiliation(s)
- Si-Yao Zheng
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Bin-Bin Guan
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | | | - Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Kusová A, Steinbachová L, Přerovská T, Drábková LZ, Paleček J, Khan A, Rigóová G, Gadiou Z, Jourdain C, Stricker T, Schubert D, Honys D, Schrumpfová PP. Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions. PLANT MOLECULAR BIOLOGY 2023; 112:61-83. [PMID: 37118559 PMCID: PMC10167121 DOI: 10.1007/s11103-023-01348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
Telomere repeat binding proteins (TRBs) belong to a family of proteins possessing a Myb-like domain which binds to telomeric repeats. Three members of this family (TRB1, TRB2, TRB3) from Arabidopsis thaliana have already been described as associated with terminal telomeric repeats (telomeres) or short interstitial telomeric repeats in gene promoters (telo-boxes). They are also known to interact with several protein complexes: telomerase, Polycomb repressive complex 2 (PRC2) E(z) subunits and the PEAT complex (PWOs-EPCRs-ARIDs-TRBs). Here we characterize two novel members of the TRB family (TRB4 and TRB5). Our wide phylogenetic analyses have shown that TRB proteins evolved in the plant kingdom after the transition to a terrestrial habitat in Streptophyta, and consequently TRBs diversified in seed plants. TRB4-5 share common TRB motifs while differing in several others and seem to have an earlier phylogenetic origin than TRB1-3. Their common Myb-like domains bind long arrays of telomeric repeats in vitro, and we have determined the minimal recognition motif of all TRBs as one telo-box. Our data indicate that despite the distinct localization patterns of TRB1-3 and TRB4-5 in situ, all members of TRB family mutually interact and also bind to telomerase/PRC2/PEAT complexes. Additionally, we have detected novel interactions between TRB4-5 and EMF2 and VRN2, which are Su(z)12 subunits of PRC2.
Collapse
Affiliation(s)
- Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Paleček
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahamed Khan
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Rigóová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Zuzana Gadiou
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claire Jourdain
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Tino Stricker
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Dvořák Tomaštíková E, Yang F, Mlynárová K, Hafidh S, Schořová Š, Kusová A, Pernisová M, Přerovská T, Klodová B, Honys D, Fajkus J, Pecinka A, Schrumpfová PP. RUVBL proteins are involved in plant gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:325-337. [PMID: 36752686 DOI: 10.1111/tpj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Fen Yang
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Kristína Mlynárová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Božena Klodová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, CZ-165 02, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 00, Praha 2, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900, Olomouc, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
8
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
9
|
Nešpor Dadejová M, Franek M, Dvořáčková M. Laser microirradiation as a versatile system for probing protein recruitment and protein-protein interactions at DNA lesions in plants. THE NEW PHYTOLOGIST 2022; 234:1891-1900. [PMID: 35278223 DOI: 10.1111/nph.18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Plant protoplasts are generated by treatment with digestion enzymes, producing plant cells devoid of the cell wall and competent for efficient polyethylene glycol mediated transformation. This way fluorescently tagged proteins can be introduced to the protoplasts creating an excellent system to probe the localization and function of uncharacterized plant proteins in vivo. We implement the method of laser microirradiation to generate DNA lesions in Arabidopsis thaliana, which enables monitoring the recruitment and dynamics of the DNA repair factors as well as bimolecular fluorescence complementation assay to test transient, conditional interactions of proteins directly at sites of DNA damage. We demonstrate that laser microirradiation in protoplasts yields a physiological cellular response to DNA lesions, based on proliferating cell nuclear antigen (PCNA) redistribution in the nucleus and show that factors involved in DNA repair, such as MRE11 or PCNA are recruited to induced DNA lesions. This technique is relatively easy to adopt by other laboratories and extends the current toolkit of methods aimed to understand the details of DNA damage response in plants. The presented method is fast, flexible and facilitates work with different mutant backgrounds or even different species, extending the utility of the system.
Collapse
Affiliation(s)
- Martina Nešpor Dadejová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
10
|
An JP, Xu RR, Liu X, Zhang JC, Wang XF, You CX, Hao YJ. Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1414-1430. [PMID: 33759251 DOI: 10.1111/tpj.15245] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 05/15/2023]
Abstract
Jasmonate (JA) induces the biosynthesis of anthocyanin and proanthocyanidin. MdMYB9 is essential for modulating the accumulation of both anthocyanin and proanthocyanidin in apple, but the molecular mechanism for induction of anthocyanin and proanthocyanidin biosynthesis by JA is unclear. In this study, we discovered an apple telomere-binding protein (MdTRB1) to be the interacting protein of MdMYB9. A series of biological assays showed that MdTRB1 acted as a positive modulator of anthocyanin and proanthocyanidin accumulation, and is dependent on MdMYB9. MdTRB1 interacted with MdMYB9 and enhanced the activation activity of MdMYB9 to its downstream genes. In addition, we found that the JA signaling repressor MdJAZ1 interacted with MdTRB1 and interfered with the interaction between MdTRB1 and MdMYB9, therefore negatively modulating MdTRB1-promoted biosynthesis of anthocyanin and proanthocyanidin. These results show that the JAZ1-TRB1-MYB9 module dynamically modulates JA-mediated accumulation of anthocyanin and proanthocyanidin. Taken together, our data further expand the functional study of TRB1 and provide insights for further studies of the modulation of anthocyanin and proanthocyanidin biosynthesis by JA.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Rui-Rui Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, 261061, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
11
|
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, Farrona S. Tidying-up the plant nuclear space: domains, functions, and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5160-5178. [PMID: 32556244 PMCID: PMC8604271 DOI: 10.1093/jxb/eraa282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova
de Lisboa, Oeiras, Portugal
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, Versailles, France
| | - Iva Mozgová
- Biology Centre of the Czech Academy of Sciences, České
Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de
Perpignan Via Domitia, Perpignan, France
| | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ahmet L Tek
- Agricultural Genetic Engineering Department, Niğde Ömer Halisdemir
University, Niğde, Turkey
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of
Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart,
Germany
| | - Paul Fransz
- University of Amsterdam, Amsterdam, The
Netherlands
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway,
Galway, Ireland
| |
Collapse
|
12
|
Sevilleno SS, Ju YH, Kim JS, Mancia FH, Byeon EJ, Cabahug RA, Hwang YJ. Cytogenetic analysis of Bienertia sinuspersici Akhani as the first step in genome sequencing. Genes Genomics 2020; 42:337-345. [PMID: 31902107 DOI: 10.1007/s13258-019-00908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND C4 plants are efficient in suppressing photorespiration and enhancing carbon gain as compared to C3 plants. Bienertia sinuspersici Akhani is one of the few species in the family Amaranthaceae that can perform C4 photosynthesis within individual chlorenchyma cells, without the conventional Kranz anatomy in its leaf. This plant is salt-tolerant and is well-adapted to thrive in hot and humid climates. To date, there have been no reported cytogenetic analyses yet on this species. OBJECTIVE This study aims to provide a cytogenetic analysis of B. sinuspersici as the first step in genome sequencing. METHODS Fluorescence in situ hybridization (FISH) karyotype analysis was conducted using the metaphase chromosomes of B. sinuspersici probed with 5S and 45S rDNA and Arabidopsis-type telomeric repeats. RESULTS Results of the cytogenetic analysis confirmed that B. sinuspersici has 2n = 2x = 18 consisting of nine pairs of metacentric chromosomes. Two loci of 45S rDNA were found on the distal regions of the short arm of chromosome 7. Nine loci of 5S rDNA were found in the pericentromeric regions of chromosomes 1, 3, 4, 6, and 8, which also colocalized with Arabidopsis-type telomeric repeats; while four loci in the interstitial regions of chromosome 5 and 8 can be observed. The single locus of 5S rDNA that was found in chromosome 8 appears to be hemizygous. CONCLUSION The FISH karyotype analysis, based on the combination of rDNAs, telomeric tandem repeat markers and C0t DNA chromosome landmarks, allowed efficient chromosome identification and provided useful information in characterizing the genome of B. sinuspersici.
Collapse
Affiliation(s)
| | - Yoon Ha Ju
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jung Sun Kim
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Franklin Hinosa Mancia
- Department of Environmental Horticulture, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Eun Ju Byeon
- Genetics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Raisa Aone Cabahug
- Chromosome Research Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Yoon-Jung Hwang
- Department of Convergence Science, Sahmyook University, Seoul, 01795, Republic of Korea.
| |
Collapse
|
13
|
Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Res 2019; 28:7-17. [PMID: 31792795 DOI: 10.1007/s10577-019-09622-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.
Collapse
|
14
|
Ishii T, Schubert V, Khosravi S, Dreissig S, Metje‐Sprink J, Sprink T, Fuchs J, Meister A, Houben A. RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. THE NEW PHYTOLOGIST 2019; 222:1652-1661. [PMID: 30847946 PMCID: PMC6593734 DOI: 10.1111/nph.15720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/24/2019] [Indexed: 06/02/2023]
Abstract
Visualising the spatio-temporal organisation of the genome will improve our understanding of how chromatin structure and function are intertwined. We developed a tool to visualise defined genomic sequences in fixed nuclei and chromosomes based on a two-part guide RNA with a recombinant Cas9 endonuclease complex. This method does not require any special construct or transformation method. In contrast to classical fluorescence in situ hybridiaztion, RGEN-ISL (RNA-guided endonuclease - in situ labelling) does not require DNA denaturation, and therefore permits a better structural chromatin preservation. The application of differentially labelled trans-activating crRNAs allows the multiplexing of RGEN-ISL. Moreover, this technique is combinable with immunohistochemistry. Real-time visualisation of the CRISPR/Cas9-mediated DNA labelling process revealed the kinetics of the reaction. The broad range of adaptability of RGEN-ISL to different temperatures and combinations of methods has the potential to advance the field of chromosome biology.
Collapse
Affiliation(s)
- Takayoshi Ishii
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
- Arid Land Research Center (ALRC)Tottori University1390 HamasakaTottori680‐0001Japan
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Janina Metje‐Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Thorben Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| |
Collapse
|
15
|
Schořová Š, Fajkus J, Záveská Drábková L, Honys D, Schrumpfová PP. The plant Pontin and Reptin homologues, RuvBL1 and RuvBL2a, colocalize with TERT and TRB proteins in vivo, and participate in telomerase biogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:195-212. [PMID: 30834599 DOI: 10.1111/tpj.14306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 05/15/2023]
Abstract
Telomerase maturation and recruitment to telomeres is regulated by several telomerase- and telomere-associated proteins. Among a number of proteins, human Pontin and Reptin play critical roles in telomerase biogenesis. Here we characterized plant orthologues of Pontin and Reptin, RuvBL1 and RuvBL2a, respectively, and show association of Arabidopsis thaliana RuvBL1 (AtRuvBL1) with the catalytic subunit of telomerase (AtTERT) in the nucleolus in vivo. In contrast to mammals, interactions between AtTERT and AtRuvBL proteins in A. thaliana are not direct and they are rather mediated by one of the Arabidopsis thaliana Telomere Repeat Binding (AtTRB) proteins. We further show that plant orthologue of dyskerin, named AtCBF5, is indirectly associated with AtTRB proteins but not with the AtRuvBL proteins in the plant nucleus/nucleolus, and interacts with the Protection of telomere 1 (AtPOT1a) in the nucleolus or cytoplasmic foci. Our genome-wide phylogenetic analyses identify orthologues in RuvBL protein family within the plant kingdom. Dysfunction of AtRuvBL genes in heterozygous T-DNA insertion A. thaliana mutants results in reduced telomerase activity and indicate the involvement of AtRuvBL in plant telomerase biogenesis.
Collapse
Affiliation(s)
- Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Byun MY, Cui LH, Lee H, Kim WT. Telomere association of Oryza sativa telomere repeat-binding factor like 1 and its roles in telomere maintenance and development in rice, Oryza sativa L. BMB Rep 2018. [PMID: 29936933 PMCID: PMC6283022 DOI: 10.5483/bmbrep.2018.51.11.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Telomeres are specialized nucleoprotein complexes that function to protect eukaryotic chromosomes from recombination and erosion. Several telomere binding proteins (TBPs) have been characterized in higher plants, but their detailed in vivo functions at the plant level are largely unknown. In this study, we identified and characterized OsTRFL1 (Oryza sativa Telomere Repeat-binding Factor Like 1) in rice, a monocot model crop. Although OsTRFL1 did not directly bind to telomere repeats (TTTAGGG)4in vitro, it was associated with telomeric sequences in planta. OsTRFL1 interacted with rice TBPs, such as OsTRBF1 and RTBP1, in yeast and plant cells as well as in vitro. Thus, it seems likely that the association of OsTRFL1 with other TBPs enables OsTRFL1 to bind to telomeres indirectly. T-DNA inserted OsTRFL1 knock-out mutant rice plants displayed significantly longer telomeres (6–25 kb) than those (5–12 kb) in wild-type plants, indicating that OsTRFL1 is a negative factor for telomere lengthening. The reduced levels of OsTRFL1 caused serious developmental defects in both vegetative and reproductive organs of rice plants. These results suggest that OsTRFL1 is an essential factor for the proper maintenance of telomeres and normal development of rice.
Collapse
Affiliation(s)
- Mi Young Byun
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
17
|
Dvořáčková M, Raposo B, Matula P, Fuchs J, Schubert V, Peška V, Desvoyes B, Gutierrez C, Fajkus J. Replication of ribosomal DNA in Arabidopsis occurs both inside and outside the nucleolus during S phase progression. J Cell Sci 2018; 131:jcs.202416. [PMID: 28483825 DOI: 10.1242/jcs.202416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ribosomal RNA genes (rDNA) have been used as valuable experimental systems in numerous studies. Here, we focus on elucidating the spatiotemporal organisation of rDNA replication in Arabidopsis thaliana To determine the subnuclear distribution of rDNA and the progression of its replication during the S phase, we apply 5-ethynyl-2'-deoxyuridine (EdU) labelling, fluorescence-activated cell sorting, fluorescence in situ hybridization and structured illumination microscopy. We show that rDNA is replicated inside and outside the nucleolus, where active transcription occurs at the same time. Nascent rDNA shows a maximum of nucleolar associations during early S phase. In addition to EdU patterns typical for early or late S phase, we describe two intermediate EdU profiles characteristic for mid S phase. Moreover, the use of lines containing mutations in the chromatin assembly factor-1 gene fas1 and wild-type progeny of fas1xfas2 crosses depleted of inactive copies allows for selective observation of the replication pattern of active rDNA. High-resolution data are presented, revealing the culmination of replication in the mid S phase in the nucleolus and its vicinity. Taken together, our results provide a detailed snapshot of replication of active and inactive rDNA during S phase progression.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Berta Raposo
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Petr Matula
- Department of Computer Graphics and Design, Faculty of Informatics, Masaryk University, Botanická 554/68a, Brno 60200, Czech Republic
| | - Joerg Fuchs
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Veit Schubert
- Breeding Research Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland D-06466, Germany
| | - Vratislav Peška
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic.,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic
| | - Bénédicte Desvoyes
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Crisanto Gutierrez
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Jiří Fajkus
- Laboratory of Molecular Complexes of Chromatin, Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, Brno 62500, Czech Republic .,Department of Cell Biology and Radiology, Institute of Biophysics ASCR, v.v.i., Královopolská 135, Brno 61265, Czech Republic.,Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czech Republic
| |
Collapse
|
18
|
Kalinina NO, Makarova S, Makhotenko A, Love AJ, Taliansky M. The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:132. [PMID: 29479362 PMCID: PMC5811523 DOI: 10.3389/fpls.2018.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA) synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribose)polymerase (PARP), which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Natalia O. Kalinina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Natalia O. Kalinina
| | - Svetlana Makarova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Antonida Makhotenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Michael Taliansky
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Michael Taliansky
| |
Collapse
|
19
|
Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A. Live-cell CRISPR imaging in plants reveals dynamic telomere movements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:565-573. [PMID: 28509419 PMCID: PMC5599988 DOI: 10.1111/tpj.13601] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 05/11/2023]
Abstract
Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells.
Collapse
Affiliation(s)
- Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Simon Schiml
- Botanical InstituteKarlsruhe Institute of TechnologyPOB 698076049KarlsruheGermany
| | - Patrick Schindele
- Botanical InstituteKarlsruhe Institute of TechnologyPOB 698076049KarlsruheGermany
| | - Oda Weiss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Evgeny Gladilin
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Michael F. Mette
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
- Present address:
King Abdullah University of Science & TechnologyThuwal23955‐6900Saudi Arabia
| | - Holger Puchta
- Botanical InstituteKarlsruhe Institute of TechnologyPOB 698076049KarlsruheGermany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| |
Collapse
|
20
|
Pontvianne F, Carpentier MC, Durut N, Pavlištová V, Jaške K, Schořová Š, Parrinello H, Rohmer M, Pikaard CS, Fojtová M, Fajkus J, Sáez-Vásquez J. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome. Cell Rep 2016; 16:1574-1587. [PMID: 27477271 PMCID: PMC5279810 DOI: 10.1016/j.celrep.2016.07.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 07/03/2016] [Indexed: 11/27/2022] Open
Abstract
The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Marie-Christine Carpentier
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Nathalie Durut
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Veronika Pavlištová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Karin Jaške
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Šárka Schořová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | | | | | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Miloslava Fojtová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Fajkus
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| |
Collapse
|
21
|
Procházková Schrumpfová P, Schořová Š, Fajkus J. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell. FRONTIERS IN PLANT SCIENCE 2016; 7:851. [PMID: 27446102 PMCID: PMC4924339 DOI: 10.3389/fpls.2016.00851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/31/2016] [Indexed: 05/20/2023]
Abstract
Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Petra Procházková Schrumpfová,
| | - Šárka Schořová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i.Brno, Czech Republic
| |
Collapse
|
22
|
Schrumpfová PP, Vychodilová I, Hapala J, Schořová Š, Dvořáček V, Fajkus J. Telomere binding protein TRB1 is associated with promoters of translation machinery genes in vivo. PLANT MOLECULAR BIOLOGY 2016; 90:189-206. [PMID: 26597966 DOI: 10.1007/s11103-015-0409-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 05/24/2023]
Abstract
Recently we characterised TRB1, a protein from a single-myb-histone family, as a structural and functional component of telomeres in Arabidopsis thaliana. TRB proteins, besides their ability to bind specifically to telomeric DNA using their N-terminally positioned myb-like domain of the same type as in human shelterin proteins TRF1 or TRF2, also possess a histone-like domain which is involved in protein-protein interactions e.g., with POT1b. Here we set out to investigate the genome-wide localization pattern of TRB1 to reveal its preferential sites of binding to chromatin in vivo and its potential functional roles in the genome-wide context. Our results demonstrate that TRB1 is preferentially associated with promoter regions of genes involved in ribosome biogenesis, in addition to its roles at telomeres. This preference coincides with the frequent occurrence of telobox motifs in the upstream regions of genes in this category, but it is not restricted to the presence of a telobox. We conclude that TRB1 shows a specific genome-wide distribution pattern which suggests its role in regulation of genes involved in biogenesis of the translational machinery, in addition to its preferential telomeric localization.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivona Vychodilová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Hapala
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Šárka Schořová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vojtěch Dvořáček
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 61265, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 61265, Brno, Czech Republic.
| |
Collapse
|
23
|
Identification and Characterization of 40 Isolated Rehmannia glutinosa MYB Family Genes and Their Expression Profiles in Response to Shading and Continuous Cropping. Int J Mol Sci 2015; 16:15009-30. [PMID: 26147429 PMCID: PMC4519885 DOI: 10.3390/ijms160715009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
The v-myb avian myeloblastosis viral oncogene homolog (MYB) superfamily constitutes one of the most abundant groups of transcription factors (TFs) described in plants. To date, little is known about the MYB genes in Rehmannia glutinosa. Forty unique MYB genes with full-length cDNA sequences were isolated. These 40 genes were grouped into five categories, one R1R2R3-MYB, four TRFL MYBs, four SMH MYBs, 25 R2R3-MYBs, and six MYB-related members. The MYB DNA-binding domain (DBD) sequence composition was conserved among proteins of the same subgroup. As expected, most of the closely related members in the phylogenetic tree exhibited common motifs. Additionally, the gene structure and motifs of the R. glutinosa MYB genes were analyzed. MYB gene expression was analyzed in the leaf and the tuberous root under two abiotic stress conditions. Expression profiles showed that most R. glutinosa MYB genes were expressed in the leaf and the tuberous root, suggesting that MYB genes are involved in various physiological and developmental processes in R. glutinosa. Seven MYB genes were up-regulated in response to shading in at least one tissue. Two MYB genes showed increased expression and 13 MYB genes showed decreased expression in the tuberous root under continuous cropping. This investigation is the first comprehensive study of the MYB gene family in R. glutinosa.
Collapse
|
24
|
Dvořáčková M, Fojtová M, Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:18-37. [PMID: 25752316 DOI: 10.1111/tpj.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/03/2023]
Abstract
Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
25
|
Connecting the dots of RNA-directed DNA methylation in Arabidopsis thaliana. Chromosome Res 2014; 22:225-40. [PMID: 24846724 DOI: 10.1007/s10577-014-9425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Noncoding RNAs are the rising stars of genome regulation and are crucial to an organism's metabolism, development, and defense. One of their most notable functions is its ability to direct epigenetic modifications through small RNA molecules to specific genomic regions, ensuring transcriptional regulation, proper genome organization, and maintenance of genome integrity. Here, we review the current knowledge of the spatial organization of the Arabidopsis thaliana RNA-directed DNA methylation pathway within the cell nucleus, which, while known to be essential for the proper establishment of epigenetic modifications, remains poorly understood. We will also discuss possible future cytological approaches that have the potential of unveiling functional insights into how small RNA-directed epigenetics is regulated through the spatiotemporal regulation of its major components within the cell.
Collapse
|
26
|
Procházková Schrumpfová P, Vychodilová I, Dvořáčková M, Majerská J, Dokládal L, Schořová Š, Fajkus J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:770-81. [PMID: 24397874 PMCID: PMC4282523 DOI: 10.1111/tpj.12428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 05/19/2023]
Abstract
Although telomere-binding proteins constitute an essential part of telomeres, in vivo data indicating the existence of a structure similar to mammalian shelterin complex in plants are limited. Partial characterization of a number of candidate proteins has not identified true components of plant shelterin or elucidated their functional mechanisms. Telomere repeat binding (TRB) proteins from Arabidopsis thaliana bind plant telomeric repeats through a Myb domain of the telobox type in vitro, and have been shown to interact with POT1b (Protection of telomeres 1). Here we demonstrate co-localization of TRB1 protein with telomeres in situ using fluorescence microscopy, as well as in vivo interaction using chromatin immunoprecipitation. Classification of the TRB1 protein as a component of plant telomeres is further confirmed by the observation of shortening of telomeres in knockout mutants of the trb1 gene. Moreover, TRB proteins physically interact with plant telomerase catalytic subunits. These findings integrate TRB proteins into the telomeric interactome of A. thaliana.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- *For correspondence (e-mails or )
| | - Ivona Vychodilová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republicv.v.i, Královopolská 135, Brno, CZ, 61265, Czech Republic
| | - Jana Majerská
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- †Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de LausanneStation 19, 1015, Lausanne, Switzerland
| | - Ladislav Dokládal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republicv.v.i, Královopolská 135, Brno, CZ, 61265, Czech Republic
| | - Šárka Schořová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Functional Genomics and Proteomics, CEITEC National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityKamenice 5, Brno, CZ, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republicv.v.i, Královopolská 135, Brno, CZ, 61265, Czech Republic
- *For correspondence (e-mails or )
| |
Collapse
|
27
|
Zachová D, Fojtová M, Dvořáčková M, Mozgová I, Lermontova I, Peška V, Schubert I, Fajkus J, Sýkorová E. Structure-function relationships during transgenic telomerase expression in Arabidopsis. PHYSIOLOGIA PLANTARUM 2013; 149:114-26. [PMID: 23278240 DOI: 10.1111/ppl.12021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 05/11/2023]
Abstract
Although telomerase (EC 2.7.7.49) is important for genome stability and totipotency of plant cells, the principles of its regulation are not well understood. Therefore, we studied subcellular localization and function of the full-length and truncated variants of the catalytic subunit of Arabidopsis thaliana telomerase, AtTERT, in planta. Our results show that multiple sites in AtTERT may serve as nuclear localization signals, as all the studied individual domains of the AtTERT were targeted to the nucleus and/or the nucleolus. Although the introduced genomic or cDNA AtTERT transgenes display expression at transcript and protein levels, they are not able to fully complement the lack of telomerase functions in tert -/- mutants. The failure to reconstitute telomerase function in planta suggests a more complex telomerase regulation in plant cells than would be expected based on results of similar experiments in mammalian model systems.
Collapse
Affiliation(s)
- Dagmar Zachová
- Faculty of Science and Central European Institute of Technology, Masaryk University, CZ-61137, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li J, He S, Zhang L, Hu Y, Yang F, Ma L, Huang J, Li L. Telomere and 45S rDNA sequences are structurally linked on the chromosomes in Chrysanthemum segetum L. PROTOPLASMA 2012; 249:207-15. [PMID: 21537919 DOI: 10.1007/s00709-011-0279-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 04/18/2011] [Indexed: 05/24/2023]
Abstract
Some reports have shown that nucleolar organizer regions are located at the telomeric region and have a structural connection with telomeres at the cellular level in many organisms. In this study, we found that all 45S ribosomal DNA (rDNA) signals were located at telomeric regions on the chromosomes in Chrysanthemum segetum L., and the 45S rDNA showed distinct signal patterns on different metaphase chromosome spreads. The bicolor fluorescence in situ hybridization experiment on the extended fibers revealed that telomere repeats were structurally connected with or interspersed into rDNA sequences. The close cytological structure relation between rDNA and telomere sequences led us to use PCR with combinations of the telomere primer and the rDNA primer to obtain some fragments, which were flanked by different rDNA and telomere primer sequences. One representative clone CHS2 contains closely connected rDNA and telomere sequences, suggesting that the telomere sequence invaded into the conserved rDNA sequence. In addition, the sequences of some PCR clones were flanked by the single telomeric primer sequence or the rDNA primer sequence. These results suggested that homologous recombination occurred between tandem repeat units of rDNA sequences or telomere repeats at the chromosome terminus.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Moriguchi R, Ohata K, Kanahama K, Takahashi H, Nishiyama M, Kanayama Y. Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1927-1933. [PMID: 21683470 DOI: 10.1016/j.jplph.2011.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 05/30/2023]
Abstract
Tomato (Solanum lycopersicum L.) plants were transformed with an antisense construct of a cDNA encoding tomato telomere-binding protein (LeTBP1) to describe the role of a telomere-binding protein at the whole plant level. Fruit size decreased corresponding to the degree of suppression of LeTBP1 expression. This inhibition of fruit development was likely due to a decrease in the number of seeds in the LeTBP1 antisense plants. Pollen fertility and pollen germination rate decreased in accordance with the degree of suppression of LeTBP1 expression. Ovule viability was also reduced in the LeTBP1 antisense plants. Although plant height was somewhat reduced in the antisense plants compared to the control plants, the number and weight of leaves were unaffected by LeTBP1 suppression. The number and morphology of flowers were also normal in the antisense plants. These indicate that reduced fertility in the antisense plants is not an indirect effect of altered vegetative growth. LeTBP1 expression was sensitive to temperature stress in wild-type plants. We conclude that LeTBP1 plays a critical role in seed and fruit development rather than vegetative growth and flower formation.
Collapse
Affiliation(s)
- Ryo Moriguchi
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|