1
|
Saeed N, Valiante V, Kufs JE, Hillmann F. The isoprenyl chain length of coenzyme Q mediates the nutritional resistance of fungi to amoeba predation. mBio 2024; 15:e0034224. [PMID: 38747615 PMCID: PMC11237637 DOI: 10.1128/mbio.00342-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation. IMPORTANCE Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway.
Collapse
Affiliation(s)
- Nauman Saeed
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Biochemistry/Biotechnology, Faculty of Engineering, Wismar University of Applied Sciences Technology, Business and Design, Wismar, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Johann E Kufs
- Genome Engineering and Editing, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Falk Hillmann
- Biochemistry/Biotechnology, Faculty of Engineering, Wismar University of Applied Sciences Technology, Business and Design, Wismar, Germany
| |
Collapse
|
2
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
4
|
Staiano C, García-Corzo L, Mantle D, Turton N, Millichap LE, Brea-Calvo G, Hargreaves I. Biosynthesis, Deficiency, and Supplementation of Coenzyme Q. Antioxidants (Basel) 2023; 12:1469. [PMID: 37508007 PMCID: PMC10375973 DOI: 10.3390/antiox12071469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations.
Collapse
Affiliation(s)
- Carmine Staiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Lauren E Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
5
|
Hu M, Jiang Y, Xu JJ. Characterization of Arabidopsis thaliana Coq9 in the CoQ Biosynthetic Pathway. Metabolites 2023; 13:813. [PMID: 37512520 PMCID: PMC10385794 DOI: 10.3390/metabo13070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q, also known as ubiquinone, is a fat-soluble isoprene quinone that serves as a cofactor for numerous enzymes across all domains of life. However, the biosynthetic pathway for this important molecule in plants has been examined in only a limited number of studies. In yeast and mammals, Coq9, an isoprenoid-lipid-binding protein, is essential for CoQ biosynthesis. Previous studies showed that Arabidopsis thaliana Coq9 failed to complement the fission yeast Schizosaccharomyces pombe coq9 null mutant, and its function in plants remains unknown. In this study, we demonstrated that expression of Arabidopsis Coq9 rescued the growth of a yeast temperature-sensitive coq9 mutant and increased CoQ content. Phylogenetic analysis revealed that Coq9 is widely present in green plants. Green fluorescent protein (GFP) fusion experiments showed that Arabidopsis Coq9 is targeted to mitochondria. Disruption of the Coq9 gene in Arabidopsis results in lower amounts of CoQ. Our work suggests that plant Coq9 is required for efficient CoQ biosynthesis. These findings provide new insights into the evolution of CoQ biosynthesis in plants. The identification of Coq9 as a key player in CoQ biosynthesis in plants opens up new avenues for understanding the regulation of this important metabolic pathway.
Collapse
Affiliation(s)
- Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
6
|
Escamez S, Robinson KM, Luomaranta M, Gandla ML, Mähler N, Yassin Z, Grahn T, Scheepers G, Stener LG, Jansson S, Jönsson LJ, Street NR, Tuominen H. Genetic markers and tree properties predicting wood biorefining potential in aspen (Populus tremula) bioenergy feedstock. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:65. [PMID: 37038157 PMCID: PMC10088276 DOI: 10.1186/s13068-023-02315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Wood represents the majority of the biomass on land and constitutes a renewable source of biofuels and other bioproducts. However, wood is recalcitrant to bioconversion, raising a need for feedstock improvement in production of, for instance, biofuels. We investigated the properties of wood that affect bioconversion, as well as the underlying genetics, to help identify superior tree feedstocks for biorefining. RESULTS We recorded 65 wood-related and growth traits in a population of 113 natural aspen genotypes from Sweden ( https://doi.org/10.5061/dryad.gtht76hrd ). These traits included three growth and field performance traits, 20 traits for wood chemical composition, 17 traits for wood anatomy and structure, and 25 wood saccharification traits as indicators of bioconversion potential. Glucose release after saccharification with acidic pretreatment correlated positively with tree stem height and diameter and the carbohydrate content of the wood, and negatively with the content of lignin and the hemicellulose sugar units. Most of these traits displayed extensive natural variation within the aspen population and high broad-sense heritability, supporting their potential in genetic improvement of feedstocks towards improved bioconversion. Finally, a genome-wide association study (GWAS) revealed 13 genetic loci for saccharification yield (on a whole-tree-biomass basis), with six of them intersecting with associations for either height or stem diameter of the trees. CONCLUSIONS The simple growth traits of stem height and diameter were identified as good predictors of wood saccharification yield in aspen trees. GWAS elucidated the underlying genetics, revealing putative genetic markers for bioconversion of bioenergy tree feedstocks.
Collapse
Affiliation(s)
- Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Kathryn M Robinson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Mikko Luomaranta
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | | | - Niklas Mähler
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Zakiya Yassin
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | - Thomas Grahn
- RISE AB, Drottning Kristinas Väg 61 B, 114 28, Stockholm, Sweden
| | | | - Lars-Göran Stener
- The Forestry Research Institute of Sweden, Ekebo, 268 90, Svalöv, Sweden
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| |
Collapse
|
7
|
Teixeira A, Noronha H, Frusciante S, Diretto G, Gerós H. Biosynthesis of Chlorophyll and Other Isoprenoids in the Plastid of Red Grape Berry Skins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1873-1885. [PMID: 36652329 PMCID: PMC9896546 DOI: 10.1021/acs.jafc.2c07207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Despite current knowledge showing that fruits like tomato and grape berries accumulate different components of the light reactions and Calvin cycle, the role of green tissues in fruits is not yet fully understood. In mature tomato fruits, chlorophylls are degraded and replaced by carotenoids through the conversion of chloroplasts in chromoplasts, while in red grape berries, chloroplasts persist at maturity and chlorophylls are masked by anthocyanins. To study isoprenoid and lipid metabolism in grape skin chloroplasts, metabolites of enriched organelle fractions were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and the expression of key genes was evaluated by real-time polymerase chain reaction (PCR) in berry skins and leaves. Overall, the results indicated that chloroplasts of the grape berry skins, as with leaf chloroplasts, share conserved mechanisms of synthesis (and degradation) of important components of the photosynthetic machinery. Some of these components, such as chlorophylls and their precursors, and catabolites, carotenoids, quinones, and lipids have important roles in grape and wine sensory characteristics.
Collapse
Affiliation(s)
- António Teixeira
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Noronha
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Sarah Frusciante
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Gianfranco Diretto
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Hernâni Gerós
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Su H, Jin L, Li M, Paré PW. Low temperature modifies seedling leaf anatomy and gene expression in Hypericum perforatum. FRONTIERS IN PLANT SCIENCE 2022; 13:1020857. [PMID: 36237502 PMCID: PMC9552896 DOI: 10.3389/fpls.2022.1020857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum, commonly known as St John's wort, is a perennial herb that produces the anti-depression compounds hypericin (Hyp) and hyperforin. While cool temperatures increase plant growth, Hyp accumulation as well as changes transcript profiles, alterations in leaf structure and genes expression specifically related to Hyp biosynthesis are still unresolved. Here, leaf micro- and ultra-structure is examined, and candidate genes encoding for photosynthesis, energy metabolism and Hyp biosynthesis are reported based on transcriptomic data collected from H. perforatum seedlings grown at 15 and 22°C. Plants grown at a cooler temperature exhibited changes in macro- and micro-leaf anatomy including thicker leaves, an increased number of secretory cell, chloroplasts, mitochondria, starch grains, thylakoid grana, osmiophilic granules and hemispherical droplets. Moreover, genes encoding for photosynthesis (64-genes) and energy (35-genes) as well as Hyp biosynthesis (29-genes) were differentially regulated with an altered growing temperature. The anatomical changes and genes expression are consistent with the plant's ability to accumulate enhanced Hyp levels at low temperatures.
Collapse
Affiliation(s)
- Hongyan Su
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbuck, TX, United States
| |
Collapse
|
9
|
Xu JJ, Hu M, Yang L, Chen XY. How plants synthesize coenzyme Q. PLANT COMMUNICATIONS 2022; 3:100341. [PMID: 35614856 PMCID: PMC9483114 DOI: 10.1016/j.xplc.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Coenzyme Q (CoQ) is a conserved redox-active lipid that has a wide distribution across the domains of life. CoQ plays a key role in the oxidative electron transfer chain and serves as a crucial antioxidant in cellular membranes. Our understanding of CoQ biosynthesis in eukaryotes has come mostly from studies of yeast. Recently, significant advances have been made in understanding CoQ biosynthesis in plants. Unique mitochondrial flavin-dependent monooxygenase and benzenoid ring precursor biosynthetic pathways have been discovered, providing new insights into the diversity of CoQ biosynthetic pathways and the evolution of phototrophic eukaryotes. We summarize research progress on CoQ biosynthesis and regulation in plants and recent efforts to increase the CoQ content in plant foods.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Mei Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Berger A, Latimer S, Stutts LR, Soubeyrand E, Block AK, Basset GJ. Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: An atypical node between specialized metabolism and primary metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102165. [PMID: 35026487 DOI: 10.1016/j.pbi.2021.102165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 05/23/2023]
Abstract
Ubiquinone (coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. Studies have shown that plants derive approximately a quarter of 4-hydroxybenzoate, which serves as the direct ring precursor of ubiquinone, from the catabolism of kaempferol. Biochemical and genetic evidence suggests that the release of 4-hydroxybenzoate from kaempferol is catalyzed by heme-dependent peroxidases and that 3-O-glycosylations of kaempferol act as a negative regulator of this process. These findings not only represent an atypical instance of primary metabolite being derived from specialized metabolism but also raise the question as to whether ubiquinone contributes to the ROS scavenging and signaling functions already established for flavonols.
Collapse
Affiliation(s)
- Antoine Berger
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren R Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, ARS, USDA, Gainesville, FL, 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Xu JJ, Zhang XF, Jiang Y, Fan H, Li JX, Li CY, Zhao Q, Yang L, Hu YH, Martin C, Chen XY. A unique flavoenzyme operates in ubiquinone biosynthesis in photosynthesis-related eukaryotes. SCIENCE ADVANCES 2021; 7:eabl3594. [PMID: 34878842 PMCID: PMC8654299 DOI: 10.1126/sciadv.abl3594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Coenzyme Q (CoQ) is an electron transporter in the mitochondrial respiratory chain, yet the biosynthetic pathway in eukaryotes remains only partially resolved. C6-hydroxylation completes the benzoquinone ring full substitution, a hallmark of CoQ. Here, we show that plants use a unique flavin-dependent monooxygenase (CoqF), instead of di-iron enzyme (Coq7) operating in animals and fungi, as a C6-hydroxylase. CoqF evolved early in eukaryotes and became widely distributed in photosynthetic and related organisms ranging from plants, algae, apicomplexans, and euglenids. Independent alternative gene losses in different groups and lateral gene transfer have ramified CoqF across the eukaryotic tree with predominance in green lineages. The exclusive presence of CoqF in Streptophyta hints at an association of the flavoenzyme with photoautotrophy in terrestrial environments. CoqF provides a phylogenetic marker distinguishing eukaryotes and represents a previously unknown target for drug design against parasitic protists.
Collapse
Affiliation(s)
- Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xiao-Fan Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yan Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Jian-Xu Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Latimer S, Keene SA, Stutts LR, Berger A, Bernert AC, Soubeyrand E, Wright J, Clarke CF, Block AK, Colquhoun TA, Elowsky C, Christensen A, Wilson MA, Basset GJ. A dedicated flavin-dependent monooxygenase catalyzes the hydroxylation of demethoxyubiquinone into ubiquinone (coenzyme Q) in Arabidopsis. J Biol Chem 2021; 297:101283. [PMID: 34626646 PMCID: PMC8559556 DOI: 10.1016/j.jbc.2021.101283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.
Collapse
Affiliation(s)
- Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA.
| | - Shea A Keene
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Lauren R Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Antoine Berger
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ann C Bernert
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Janet Wright
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, ARS, USDA, Gainesville, Florida, USA
| | - Thomas A Colquhoun
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alan Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
13
|
Meyer GW, Bahamon Naranjo MA, Widhalm JR. Convergent evolution of plant specialized 1,4-naphthoquinones: metabolism, trafficking, and resistance to their allelopathic effects. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:167-176. [PMID: 33258472 PMCID: PMC7853596 DOI: 10.1093/jxb/eraa462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/03/2020] [Indexed: 05/08/2023]
Abstract
Plant 1,4-naphthoquinones encompass a class of specialized metabolites known to mediate numerous plant-biotic interactions. This class of compounds also presents a remarkable case of convergent evolution. The 1,4-naphthoquinones are synthesized by species belonging to nearly 20 disparate orders spread throughout vascular plants, and their production occurs via one of four known biochemically distinct pathways. Recent developments from large-scale biology and genetic studies corroborate the existence of multiple pathways to synthesize plant 1,4-naphthoquinones and indicate that extraordinary events of metabolic innovation and links to respiratory and photosynthetic quinone metabolism probably contributed to their independent evolution. Moreover, because many 1,4-naphthoquinones are excreted into the rhizosphere and they are highly reactive in biological systems, plants that synthesize these compounds also needed to independently evolve strategies to deploy them and to resist their effects. In this review, we highlight new progress made in understanding specialized 1,4-naphthoquinone biosynthesis and trafficking with a focus on how these discoveries have shed light on the convergent evolution and diversification of this class of compounds in plants. We also discuss how emerging themes in metabolism-based herbicide resistance may provide clues to mechanisms plants employ to tolerate allelopathic 1,4-naphthoquinones.
Collapse
Affiliation(s)
- George W Meyer
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Maria A Bahamon Naranjo
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Correspondence:
| |
Collapse
|
14
|
You MK, Lee YJ, Yu JS, Ha SH. The Predicted Functional Compartmentation of Rice Terpenoid Metabolism by Trans-Prenyltransferase Structural Analysis, Expression and Localization. Int J Mol Sci 2020; 21:E8927. [PMID: 33255547 PMCID: PMC7728057 DOI: 10.3390/ijms21238927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Most terpenoids are derived from the basic terpene skeletons of geranyl pyrophosphate (GPP, C10), farnesyl-PP (FPP, C15) and geranylgeranyl-PP (GGPP, C20). The trans-prenyltransferases (PTs) mediate the sequential head-to-tail condensation of an isopentenyl-PP (C5) with allylic substrates. The in silico structural comparative analyses of rice trans-PTs with 136 plant trans-PT genes allowed twelve rice PTs to be identified as GGPS_LSU (OsGGPS1), homomeric G(G)PS (OsGPS) and GGPS_SSU-II (OsGRP) in Group I; two solanesyl-PP synthase (OsSPS2 and 3) and two polyprenyl-PP synthases (OsSPS1 and 4) in Group II; and five FPSs (OsFPS1, 2, 3, 4 and 5) in Group III. Additionally, several residues in "three floors" for the chain length and several essential domains for enzymatic activities specifically varied in rice, potentiating evolutionarily rice-specific biochemical functions of twelve trans-PTs. Moreover, expression profiling and localization patterns revealed their functional compartmentation in rice. Taken together, we propose the predicted topology-based working model of rice PTs with corresponding terpene metabolites: GPP/GGPPs mainly in plastoglobuli, SPPs in stroma, PPPs in cytosol, mitochondria and chloroplast and FPPs in cytosol. Our findings could be suitably applied to metabolic engineering for producing functional terpene metabolites in rice systems.
Collapse
Affiliation(s)
- Min Kyoung You
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea; (Y.J.L.); (J.S.Y.)
| | | | | | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea; (Y.J.L.); (J.S.Y.)
| |
Collapse
|
15
|
Longer Ubiquinone Side Chains Contribute to Enhanced Farnesol Resistance in Yeasts. Microorganisms 2020; 8:microorganisms8111641. [PMID: 33114039 PMCID: PMC7690737 DOI: 10.3390/microorganisms8111641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Ubiquinones (UQ) are intrinsic lipid components of many membranes. Besides their role in electron-transfer reactions there is evidence for them acting as free radical scavengers, yet their other roles in biological systems have received little study. The dimorphic fungal pathogen Candida albicans secretes farnesol as both a virulence factor and a quorum-sensing molecule. Thus, we were intrigued by the presence of UQ9 isoprenologue in farnesol-producing Candida species while other members of this genera harbor UQ7 as their major electron carrier. We examined the effect of UQ side chain length in Saccharomyces cerevisiae and C. albicans with a view towards identifying the mechanisms by which C. albicans protects itself from the high levels of farnesol it secretes, levels that are toxic to many other fungi including S. cerevisiae. In this study, we identify UQ9 as the major UQ isoprenoid in C. albicans, regardless of growth conditions or cell morphology. A S. cerevisiae model yeast engineered to make UQ9 instead of UQ6 was 4-5 times more resistant to exogenous farnesol than the parent yeast and this resistance was accompanied by greatly reduced reactive oxygen species (ROS) production. The resistance provided by UQ9 is specific for farnesol in that it does not increase resistance to high salt (1M NaCl) or other oxidants (5 mM H2O2 or 1 mM menadione). Additionally, the protection provided by UQ9 appears to be structural rather than transcriptional; UQ9 does not alter key transcriptional responses to farnesol stress. Here, we propose a model in which the longer UQ side chains are more firmly embedded in the mitochondrial membrane making them harder to pry out, so that in the presence of farnesol they remain functional without producing excess ROS. C. albicans and Candida dubliniensis evolved to use UQ9 rather than UQ7 as in other Candida species or UQ6 as in S. cerevisiae. This adaptive mechanism highlights the significance of UQ side chains in farnesol production and resistance quite apart from being an electron carrier in the respiratory chain.
Collapse
|
16
|
Kahlau S, Schröder F, Freigang J, Laber B, Lange G, Passon D, Kleeßen S, Lohse M, Schulz A, von Koskull-Döring P, Klie S, Gille S. Aclonifen targets solanesyl diphosphate synthase, representing a novel mode of action for herbicides. PEST MANAGEMENT SCIENCE 2020; 76:3377-3388. [PMID: 32034864 DOI: 10.1002/ps.5781] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aclonifen is a unique diphenyl ether herbicide. Despite its structural similarities to known inhibitors of the protoporphyrinogen oxidase (e.g. acifluorfen, bifenox or oxadiazon), which result in leaf necrosis, aclonifen causes a different phenotype that is described as bleaching. This also is reflected by the Herbicide Resistance Action Committee (HRAC) classification that categorizes aclonifen as an inhibitor of pigment biosynthesis with an unknown target. RESULTS A comprehensive Arabidopsis thaliana RNAseq dataset comprising 49 different inhibitor treatments and covering 40 known target pathways was used to predict the aclonifen mode of action (MoA) by a random forest classifier. The classifier predicts for aclonifen a MoA within the carotenoid biosynthesis pathway similar to the reference compound norflurazon that inhibits the phytoene desaturase. Upon aclonifen treatment, the phytoene desaturation reaction is disturbed, resulting in a characteristic phytoene accumulation in vivo. However, direct enzyme inhibition by the herbicide was excluded for known herbicidal targets such as phytoene desaturase, 4-hydroxyphenylpyruvate dioxygenase and homogentisate solanesyltransferase. Eventually, the solanesyl diphosphate synthase (SPS), providing one of the two homogentisate solanesyltransferase substrate molecules, could be identified as the molecular target of aclonifen. Inhibition was confirmed using biochemical activity assays for the A. thaliana SPSs 1 and 2. Furthermore, a Chlamydomonas reinhardtii homolog was used for co-crystallization of the enzyme-inhibitor complex, showing that one inhibitor molecule binds at the interface between two protein monomers. CONCLUSION Solanesyl diphosphate synthase was identified as the target of aclonifen, representing a novel mode of action for herbicides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Jörg Freigang
- Crop Science Division, Structural Biology, Bayer AG, Monheim am Rhein, Germany
| | - Bernd Laber
- Crop Science Division, Weed Control, Bayer AG, Frankfurt am Main, Germany
| | - Gudrun Lange
- Crop Science Division, Computational Life Science, Bayer AG, Frankfurt am Main, Germany
| | | | | | | | - Arno Schulz
- Crop Science Division, Weed Control, Bayer AG, Frankfurt am Main, Germany
| | | | | | - Sascha Gille
- Crop Science Division, Weed Control, Bayer AG, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Arabidopsis 4-COUMAROYL-COA LIGASE 8 contributes to the biosynthesis of the benzenoid ring of coenzyme Q in peroxisomes. Biochem J 2020; 476:3521-3532. [PMID: 31688904 DOI: 10.1042/bcj20190688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the β-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the β-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate β-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the β-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m-2 s-1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.
Collapse
|
18
|
Hivert G, Davidovich-Rikanati R, Bar E, Sitrit Y, Schaffer A, Dudareva N, Lewinsohn E. Prenyltransferases catalyzing geranyldiphosphate formation in tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110504. [PMID: 32540020 DOI: 10.1016/j.plantsci.2020.110504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Monoterpenes contribute either favorably or adversely to the flavor of tomato, yet modern tomato varieties generally lack monoterpenes in their fruit. The main immediate biosynthetic precursor of monoterpenes is geranyldiphosphate (GPP), produced by the action of GPP synthases (GPPSs). Plant GPPSs are often heteromeric enzymes consisting of a non-catalytic small subunit (GPPS.SSU) and a large subunit (GPPS.LSU), the latter similar to geranylgeranyldiphosphate synthases (GGPPSs) which generate longer prenylphosphate chains. We show here that LeGGPPS2, an enzyme previously reported to support carotenoid biosynthesis, can synthesize farnesyldiphosphate (FPP) and GPP in vitro, in addition to geranylgeranyldiphosphate, depending on the assay conditions. Moreover, GPP formation is favored in vitro by the interaction of LeGGPPS2 with GPPS.SSU from either Anthirrhinum majus (AmGPPS.SSU) or from a newly discovered GPPS.SSU ortholog present in the genome of M82 tomato. SlGPPS.SSU is not expressed in M82 tomato fruit but its orthologs are expressed in fruit of wild tomato relatives, such as Solanum pimpinelifollium and S. cheesmaniae that accumulate monoterpenes.
Collapse
Affiliation(s)
- Gal Hivert
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100001 Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Einat Bar
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yaron Sitrit
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Arthur Schaffer
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, P.O Box 6, Bet Dagan 50250, Israel
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1165, USA
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, The Volcani Center, P.O. Box 1021, Ramat Yishay, 30095, Israel; Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100001 Israel.
| |
Collapse
|
19
|
Teixeira A, Martins V, Frusciante S, Cruz T, Noronha H, Diretto G, Gerós H. Flavescence Dorée-Derived Leaf Yellowing in Grapevine ( Vitis vinifera L.) Is Associated to a General Repression of Isoprenoid Biosynthetic Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:896. [PMID: 32625230 PMCID: PMC7311760 DOI: 10.3389/fpls.2020.00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Flavescence dorée (FD), caused by the phytoplasma Candidatus Phytoplasma vitis, is a major threat to vineyard survival in different European grape-growing areas. It has been recorded in French vineyards since the mid-1950s, and rapidly spread to other countries. In Portugal, the phytoplasma was first detected in the DOC region of 'Vinhos Verdes' in 2006, and reached the central region of the country in 2009. The infection causes strong accumulation of carbohydrates and phenolics in the mesophyll cells and a simultaneous decrease of chlorophylls, events accompanied by a down regulation of genes and proteins involved in the dark and light-dependent reactions and stabilization of the photosystem II (PSII). In the present study, to better elucidate the basis of the leaf chlorosis in infected grapevine cv. Loureiro, we studied the isoprenoid transcript-metabolite correlation in leaves from healthy and FD-infected vines. Specifically, targeted metabolome revealed that twenty-one compounds (out of thirty-two), including chlorophylls, carotenoids, quinones and tocopherols, were reduced in response to FD-infection. Thereafter, and consistently with the biochemical data, qPCR analysis highlighted a severe FD-mediated repression in key genes involved in isoprenoid biosynthetic pathways. A more diverse set of changes, on the contrary, was observed in the case of ABA metabolism. Principal component analysis (PCA) of all identified metabolites clearly separated healthy from FD-infected vines, therefore confirming that the infection strongly alters the biosynthesis of grapevine isoprenoids; additionally, forty-four genes and metabolites were identified as the components mostly explaining the variance between healthy and infected samples. Finally, transcript-metabolite network correlation analyses were exploited to display the main hubs of the infection process, which highlighted a strong role of VvCHLG, VvVTE and VvZEP genes and the chlorophylls intermediates aminolevulunic acid and porphobilinogen in response to FD infection. Overall, results indicated that the FD infection impairs the synthesis of isoprenoids, through the repression of key genes involved in the biosynthesis of chlorophylls, carotenoids, quinones and tocopherols.
Collapse
Affiliation(s)
- António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira,
| | - Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Sarah Frusciante
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Telmo Cruz
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gianfranco Diretto
- Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
20
|
Functional Gene Network of Prenyltransferases in Arabidopsis thaliana. Molecules 2019; 24:molecules24244556. [PMID: 31842481 PMCID: PMC6943727 DOI: 10.3390/molecules24244556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.
Collapse
|
21
|
Liu M, Chen X, Wang M, Lu S. SmPPT, a 4-hydroxybenzoate polyprenyl diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza. PLANT CELL REPORTS 2019; 38:1527-1540. [PMID: 31471635 DOI: 10.1007/s00299-019-02463-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
SmPPT, which encodes 4-hydroxybenzoate polyprenyl diphosphate transferase involved in ubiquinone biosynthesis, confers salt tolerance to S. miltiorrhiza through enhancing the activities of POD and CAT to scavenge ROS. Ubiquinone (UQ), also known as coenzyme Q (CoQ), is a key electron transporter in the mitochondrial respiratory system. UQ is composed of a benzene quinone ring and a polyisoprenoid side chain. Attachment of polyisoprenoid side chain to the benzene quinone ring is a rate-limiting step catalyzed by 4-hydroxybenzoate polyprenyl diphosphate transferase (PPT). So far, only a few plant PPT-encoding genes have been functionally analyzed. Through genome-wide analysis and subsequent molecular cloning, a PPT-encoding gene, termed SmPPT, was identified from an economically and academically important medicinal model plant, Salvia miltiorrhiza. SmPPT contained many putative cis-elements associated with abiotic stresses in the promoter region and were responsive to PEG-6000 and methyl jasmonate treatments. The deduced SmPPT protein contains the PT_UbiA conserved domain of polyprenyl diphosphate transferase and an N-terminal mitochondria transit peptide. Transient expression assay of SmPPT-GFP fusion protein showed that SmPPT was mainly localized in the mitochondria. SmPPT could functionally complement coq2 mutation and catalyzed UQ6 production in yeast cells. Overexpression of SmPPT increased UQ production and enhanced salt tolerance in S. miltiorrhiza. Under salinity stress conditions, transgenic plants accumulated less H2O2 and malondialdehyde and exhibited higher peroxidase (POD) and catalase (CAT) activities compared with wild-type plants. It indicates that SmPPT confers salt tolerance to S. miltiorrhiza at least partially through enhancing the activities of POD and CAT to scavenge ROS.
Collapse
Affiliation(s)
- Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Xiang Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
22
|
Cherian S, Ryu SB, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2041-2061. [PMID: 31150158 PMCID: PMC6790360 DOI: 10.1111/pbi.13181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.
Collapse
Affiliation(s)
- Sam Cherian
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Research & Development CenterDRB Holding Co. LTDBusanKorea
| | - Stephen Beungtae Ryu
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Katrina Cornish
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
23
|
Liu M, Ma Y, Du Q, Hou X, Wang M, Lu S. Functional Analysis of Polyprenyl Diphosphate Synthase Genes Involved in Plastoquinone and Ubiquinone Biosynthesis in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2019; 10:893. [PMID: 31354766 PMCID: PMC6629958 DOI: 10.3389/fpls.2019.00893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Polyprenyl diphosphate synthase (PPS) plays important roles in the biosynthesis of functionally important plastoquinone (PQ) and ubiquinone (UQ). However, only few plant PPS genes have been functionally characterized. Through genome-wide analysis, two PPS genes, termed SmPPS1 and SmPPS2, were identified from Salvia miltiorrhiza, an economically significant Traditional Chinese Medicine material and an emerging model medicinal plant. SmPPS1 and SmPPS2 belonged to different phylogenetic subgroups of plant trans-long-chain prenyltransferases and exhibited differential tissue expression and light-induced expression patterns. Computational prediction and transient expression assays showed that SmPPS1 was localized in the chloroplasts, whereas SmPPS2 was mainly localized in the mitochondria. SmPPS2, but not SmPPS1, could functionally complement the coq1 mutation in yeast cells and catalyzed the production of UQ-9 and UQ-10. Consistently, both UQ-9 and UQ-10 were detected in S. miltiorrhiza plants. Overexpression of SmPPS2 caused significant UQ accumulation in S. miltiorrhiza transgenics, whereas down-regulation resulted in decreased UQ content. Differently, SmPPS1 overexpression significantly elevated PQ-9 content in S. miltiorrhiza. Transgenic lines showing a down-regulation of SmPPS1 expression exhibited decreased PQ-9 level, abnormal chloroplast and trichome development, and varied leaf bleaching phenotypes. These results suggest that SmPPS1 is involved in PQ-9 biosynthesis, whereas SmPPS2 is involved in UQ-9 and UQ-10 biosynthesis.
Collapse
Affiliation(s)
- Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yimian Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Xuemin Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Latimer S, Li Y, Nguyen TTH, Soubeyrand E, Fatihi A, Elowsky CG, Block A, Pichersky E, Basset GJ. Metabolic reconstructions identify plant 3-methylglutaconyl-CoA hydratase that is crucial for branched-chain amino acid catabolism in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:358-370. [PMID: 29742810 DOI: 10.1111/tpj.13955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Collapse
Affiliation(s)
- Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Yubing Li
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Thuong T H Nguyen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Abdelhak Fatihi
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Christian G Elowsky
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, Florida, 32608, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
25
|
Andrade P, Caudepón D, Altabella T, Arró M, Ferrer A, Manzano D. Complex interplays between phytosterols and plastid development. PLANT SIGNALING & BEHAVIOR 2017; 12:e1387708. [PMID: 28990832 PMCID: PMC5703248 DOI: 10.1080/15592324.2017.1387708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/29/2017] [Indexed: 05/29/2023]
Abstract
Isoprenoids comprise the largest class of natural compounds and are found in all kinds of organisms. In plants, they participate in both primary and specialized metabolism, playing essential roles in nearly all aspects of growth and development. The enormous diversity of this family of compounds is extensively exploited for biotechnological and biomedical applications as biomaterials, biofuels or drugs. Despite their variety of structures, all isoprenoids derive from the common C5 precursor isopentenyl diphosphate (IPP). Plants synthesize IPP through two different metabolic pathways, the mevalonic acid (MVA) and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways that operate in the cytosol-RE and plastids, respectively. MEP-derived isoprenoids include important compounds for chloroplast function and as such, knock-out mutant plants affected in different steps of this pathway display important alterations in plastid structure. These alterations often lead to albino phenotypes and lethality at seedling stage. MVA knock-out mutant plants show, on the contrary, lethal phenotypes already exhibited at the gametophyte or embryo developmental stage. However, the recent characterization of conditional knock-down mutant plants of farnesyl diphosphate synthase (FPS), a central enzyme in cytosolic and mitochondrial isoprenoid biosynthesis, revealed an unexpected role of this pathway in chloroplast development and plastidial isoprenoid metabolism in post-embryonic stages. Upon FPS silencing, chloroplast structure is severely altered, together with a strong reduction in the levels of MEP pathway-derived major end products. This phenotype is associated to misregulation of genes involved in stress responses predominantly belonging to JA and Fe homeostasis pathways. Transcriptomic experiments and analysis of recent literature indicate that sterols are the cause of the observed alterations through an as yet undiscovered mechanism.
Collapse
Affiliation(s)
- Paola Andrade
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Daniel Caudepón
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Montserrat Arró
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - David Manzano
- Plant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Kim EH, Lee DW, Lee KR, Jung SJ, Jeon JS, Kim HU. Conserved Function of Fibrillin5 in the Plastoquinone-9 Biosynthetic Pathway in Arabidopsis and Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1197. [PMID: 28751900 PMCID: PMC5507956 DOI: 10.3389/fpls.2017.01197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/23/2017] [Indexed: 06/02/2023]
Abstract
Plastoquinone-9 (PQ-9) is essential for plant growth and development. Recently, we found that fibrillin5 (FBN5), a plastid lipid binding protein, is an essential structural component of the PQ-9 biosynthetic pathway in Arabidopsis. To investigate the functional conservation of FBN5 in monocots and eudicots, we identified OsFBN5, the Arabidopsis FBN5 (AtFBN5) ortholog in rice (Oryza sativa). Homozygous Osfbn5-1 and Osfbn5-2 Tos17 insertion null mutants were smaller than wild type (WT) plants when grown on Murashige and Skoog (MS) medium and died quickly when transplanted to soil in a greenhouse. They accumulated significantly less PQ-9 than WT plants, whereas chlorophyll and carotenoid contents were only mildly affected. The reduced PQ-9 content of the mutants was consistent with their lower maximum photosynthetic efficiency, especially under high light. Overexpression of OsFBN5 complemented the seedling lethal phenotype of the Arabidopsis fbn5-1 mutant and restored PQ-9 and PC-8 (plastochromanol-8) to levels comparable to those in WT Arabidopsis plants. Protein interaction experiments in yeast and mesophyll cells confirmed that OsFBN5 interacts with the rice solanesyl diphosphate synthase OsSPS2 and also with Arabidopsis AtSPS1 and AtSPS2. Our data thus indicate that OsFBN5 is the functional equivalent of AtFBN5 and also suggest that the SPSs-FBN5 complex for synthesis of the solanesyl diphosphate tail in PQ-9 is well conserved in Arabidopsis and rice.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Dae-Woo Lee
- Graduate School of Biotechnology, Kyung Hee UniversityYongin, South Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Su-Jin Jung
- Graduate School of Biotechnology, Kyung Hee UniversityYongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee UniversityYongin, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong UniversitySeoul, South Korea
| |
Collapse
|
27
|
Ong Q, Nguyen P, Thao NP, Le L. Bioinformatics Approach in Plant Genomic Research. Curr Genomics 2016; 17:368-78. [PMID: 27499685 PMCID: PMC4955030 DOI: 10.2174/1389202917666160331202956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/22/2022] Open
Abstract
The advance in genomics technology leads to the dramatic change in plant biology research. Plant biologists now easily access to enormous genomic data to deeply study plant high-density genetic variation at molecular level. Therefore, fully understanding and well manipulating bioinformatics tools to manage and analyze these data are essential in current plant genome research. Many plant genome databases have been established and continued expanding recently. Meanwhile, analytical methods based on bioinformatics are also well developed in many aspects of plant genomic research including comparative genomic analysis, phylogenomics and evolutionary analysis, and genome-wide association study. However, constantly upgrading in computational infrastructures, such as high capacity data storage and high performing analysis software, is the real challenge for plant genome research. This review paper focuses on challenges and opportunities which knowledge and skills in bioinformatics can bring to plant scientists in present plant genomics era as well as future aspects in critical need for effective tools to facilitate the translation of knowledge from new sequencing data to enhancement of plant productivity.
Collapse
Affiliation(s)
- Quang Ong
- Plant Abiotic Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Wang J, Zhao Y, Ray I, Song M. Transcriptome responses in alfalfa associated with tolerance to intensive animal grazing. Sci Rep 2016; 6:19438. [PMID: 26763747 PMCID: PMC4725929 DOI: 10.1038/srep19438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/02/2015] [Indexed: 01/15/2023] Open
Abstract
Tolerance of alfalfa (Medicago sativa L.) to animal grazing varies widely within the species. However, the molecular mechanisms influencing the grazing tolerant phenotype remain uncharacterized. The objective of this study was to identify genes and pathways that control grazing response in alfalfa. We analyzed whole-plant de novo transcriptomes from grazing tolerant and intolerant populations of M. sativa ssp. falcata subjected to grazing by sheep. Among the Gene Ontology terms which were identified as grazing responsive in the tolerant plants and differentially enriched between the tolerant and intolerant populations (both grazed), most were associated with the ribosome and translation-related activities, cell wall processes, and response to oxygen levels. Twenty-one grazing responsive pathways were identified that also exhibited differential expression between the tolerant and intolerant populations. These pathways were associated with secondary metabolite production, primary carbohydrate metabolic pathways, shikimate derivative dependent pathways, ribosomal subunit composition, hormone signaling, wound response, cell wall formation, and anti-oxidant defense. Sequence polymorphisms were detected among several differentially expressed homologous transcripts between the tolerant and intolerant populations. These differentially responsive genes and pathways constitute potential response mechanisms for grazing tolerance in alfalfa. They also provide potential targets for molecular breeding efforts to develop grazing-tolerant cultivars of alfalfa.
Collapse
Affiliation(s)
- Junjie Wang
- College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Zhao
- College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ian Ray
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
29
|
Liu M, Lu S. Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering. FRONTIERS IN PLANT SCIENCE 2016; 7:1898. [PMID: 28018418 PMCID: PMC5159609 DOI: 10.3389/fpls.2016.01898] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/30/2016] [Indexed: 05/04/2023]
Abstract
Plastoquinone (PQ) and ubiquinone (UQ) are two important prenylquinones, functioning as electron transporters in the electron transport chain of oxygenic photosynthesis and the aerobic respiratory chain, respectively, and play indispensable roles in plant growth and development through participating in the biosynthesis and metabolism of important chemical compounds, acting as antioxidants, being involved in plant response to stress, and regulating gene expression and cell signal transduction. UQ, particularly UQ10, has also been widely used in people's life. It is effective in treating cardiovascular diseases, chronic gingivitis and periodontitis, and shows favorable impact on cancer treatment and human reproductive health. PQ and UQ are made up of an active benzoquinone ring attached to a polyisoprenoid side chain. Biosynthesis of PQ and UQ is very complicated with more than thirty five enzymes involved. Their synthetic pathways can be generally divided into two stages. The first stage leads to the biosynthesis of precursors of benzene quinone ring and prenyl side chain. The benzene quinone ring for UQ is synthesized from tyrosine or phenylalanine, whereas the ring for PQ is derived from tyrosine. The prenyl side chains of PQ and UQ are derived from glyceraldehyde 3-phosphate and pyruvate through the 2-C-methyl-D-erythritol 4-phosphate pathway and/or acetyl-CoA and acetoacetyl-CoA through the mevalonate pathway. The second stage includes the condensation of ring and side chain and subsequent modification. Homogentisate solanesyltransferase, 4-hydroxybenzoate polyprenyl diphosphate transferase and a series of benzene quinone ring modification enzymes are involved in this stage. PQ exists in plants, while UQ widely presents in plants, animals and microbes. Many enzymes and their encoding genes involved in PQ and UQ biosynthesis have been intensively studied recently. Metabolic engineering of UQ10 in plants, such as rice and tobacco, has also been tested. In this review, we summarize and discuss recent research progresses in the biosynthetic pathways of PQ and UQ and enzymes and their encoding genes involved in side chain elongation and in the second stage of PQ and UQ biosynthesis. Physiological functions of PQ and UQ played in plants as well as the practical application and metabolic engineering of PQ and UQ are also included.
Collapse
|
30
|
Chen Q, Fan D, Wang G. Heteromeric Geranyl(geranyl) Diphosphate Synthase Is Involved in Monoterpene Biosynthesis in Arabidopsis Flowers. MOLECULAR PLANT 2015; 8:1434-7. [PMID: 25958235 DOI: 10.1016/j.molp.2015.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/06/2015] [Accepted: 05/03/2015] [Indexed: 05/24/2023]
Affiliation(s)
- Qingwen Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dongjie Fan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Ksas B, Becuwe N, Chevalier A, Havaux M. Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis. Sci Rep 2015; 5:10919. [PMID: 26039552 PMCID: PMC4454199 DOI: 10.1038/srep10919] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Plastoquinone-9 is known as a photosynthetic electron carrier to which has also been attributed a role in the regulation of gene expression and enzyme activities via its redox state. Here, we show that it acts also as an antioxidant in plant leaves, playing a central photoprotective role. When Arabidopsis plants were suddenly exposed to excess light energy, a rapid consumption of plastoquinone-9 occurred, followed by a progressive increase in concentration during the acclimation phase. By overexpressing the plastoquinone-9 biosynthesis gene SPS1 (solanesyl diphosphate synthase 1) in Arabidopsis, we succeeded in generating plants that specifically accumulate plastoquinone-9 and its derivative plastochromanol-8. The SPS1-overexpressing lines were much more resistant to photooxidative stress than the wild type, showing marked decreases in leaf bleaching, lipid peroxidation and PSII photoinhibition under excess light. Comparison of the SPS1 overexpressors with other prenyl quinone mutants indicated that the enhanced phototolerance of the former plants is directly related to their increased capacities for plastoquinone-9 biosynthesis.
Collapse
Affiliation(s)
- Brigitte Ksas
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Noëlle Becuwe
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Anne Chevalier
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| | - Michel Havaux
- CEA, IBEB, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France
- Aix-Marseille Université, F-13284 Marseille, France
| |
Collapse
|
32
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. PLoS One 2014; 9:e99038. [PMID: 24911838 PMCID: PMC4049637 DOI: 10.1371/journal.pone.0099038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/09/2014] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3–9) that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana) to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.
Collapse
|
34
|
Block A, Widhalm JR, Fatihi A, Cahoon RE, Wamboldt Y, Elowsky C, Mackenzie SA, Cahoon EB, Chapple C, Dudareva N, Basset GJ. The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis. THE PLANT CELL 2014; 26:1938-1948. [PMID: 24838974 PMCID: PMC4079360 DOI: 10.1105/tpc.114.125807] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch.
Collapse
Affiliation(s)
- Anna Block
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Joshua R Widhalm
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Abdelhak Fatihi
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Christian Elowsky
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Sally A Mackenzie
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Gilles J Basset
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
35
|
Kang JH, Gonzales-Vigil E, Matsuba Y, Pichersky E, Barry CS. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases. PLANT PHYSIOLOGY 2014; 164:80-91. [PMID: 24254315 PMCID: PMC3875827 DOI: 10.1104/pp.113.230466] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Isoprenoids are diverse compounds that have their biosynthetic origin in the initial condensation of isopentenyl diphosphate and dimethylallyl diphosphate to form C10 prenyl diphosphates that can be elongated by the addition of subsequent isopentenyl diphosphate units. These reactions are catalyzed by either cis-prenyltransferases (CPTs) or trans-prenyltransferases. The synthesis of volatile terpenes in plants typically proceeds through either geranyl diphosphate (C10) or trans-farnesyl diphosphate (C15), to yield monoterpenes and sesquiterpenes, respectively. However, terpene biosynthesis in glandular trichomes of tomato (Solanum lycopersicum) and related wild relatives also occurs via the cis-substrates neryl diphosphate (NPP) and 2Z,6Z-farnesyl diphosphate (Z,Z-FPP). NPP and Z,Z-FPP are synthesized by neryl diphosphate synthase1 (NDPS1) and Z,Z-farnesyl diphosphate synthase (zFPS), which are encoded by the orthologous CPT1 locus in tomato and Solanum habrochaites, respectively. In this study, comparative sequence analysis of NDPS1 and zFPS enzymes from S. habrochaites accessions that synthesize either monoterpenes or sesquiterpenes was performed to identify amino acid residues that correlate with the ability to synthesize NPP or Z,Z-FPP. Subsequent structural modeling, coupled with site-directed mutagenesis, highlighted the importance of four amino acids located within conserved domain II of CPT enzymes that form part of the second α-helix, for determining substrate and product specificity of these enzymes. In particular, the relative positioning of aromatic amino acid residues at positions 100 and 107 determines the ability of these enzymes to synthesize NPP or Z,Z-FPP. This study provides insight into the biochemical evolution of terpene biosynthesis in the glandular trichomes of Solanum species.
Collapse
|
36
|
Parmar SS, Jaiwal A, Dhankher OP, Jaiwal PK. Coenzyme Q10 production in plants: current status and future prospects. Crit Rev Biotechnol 2013; 35:152-64. [PMID: 24090245 DOI: 10.3109/07388551.2013.823594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.
Collapse
|
37
|
Block A, Fristedt R, Rogers S, Kumar J, Barnes B, Barnes J, Elowsky CG, Wamboldt Y, Mackenzie SA, Redding K, Merchant SS, Basset GJ. Functional modeling identifies paralogous solanesyl-diphosphate synthases that assemble the side chain of plastoquinone-9 in plastids. J Biol Chem 2013; 288:27594-27606. [PMID: 23913686 DOI: 10.1074/jbc.m113.492769] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It is a little known fact that plastoquinone-9, a vital redox cofactor of photosynthesis, doubles as a precursor for the biosynthesis of a vitamin E analog called plastochromanol-8, the physiological significance of which has remained elusive. Gene network reconstruction, GFP fusion experiments, and targeted metabolite profiling of insertion mutants indicated that Arabidopsis possesses two paralogous solanesyl-diphosphate synthases, AtSPS1 (At1g78510) and AtSPS2 (At1g17050), that assemble the side chain of plastoquinone-9 in plastids. Similar paralogous pairs were detected throughout terrestrial plant lineages but were not distinguished in the literature and genomic databases from mitochondrial homologs involved in the biosynthesis of ubiquinone. The leaves of the atsps2 knock-out were devoid of plastochromanol-8 and displayed severe losses of both non-photoactive and photoactive plastoquinone-9, resulting in near complete photoinhibition at high light intensity. Such a photoinhibition was paralleled by significant damage to photosystem II but not to photosystem I. In contrast, in the atsps1 knock-out, a small loss of plastoquinone-9, restricted to the non-photoactive pool, was sufficient to eliminate half of the plastochromanol-8 content of the leaves. Taken together, these results demonstrate that plastochromanol-8 originates from a subfraction of the non-photoactive pool of plastoquinone-9. In contrast to other plastochromanol-8 biosynthetic mutants, neither the single atsps knock-outs nor the atsps1 atsps2 double knock-out displayed any defects in tocopherols accumulation or germination.
Collapse
Affiliation(s)
- Anna Block
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Rikard Fristedt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Sara Rogers
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Jyothi Kumar
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Brian Barnes
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Joshua Barnes
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Christian G Elowsky
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Sally A Mackenzie
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Kevin Redding
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Gilles J Basset
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
38
|
Gutensohn M, Orlova I, Nguyen TTH, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:351-63. [PMID: 23607888 DOI: 10.1111/tpj.12212] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 05/20/2023]
Abstract
Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.
Collapse
Affiliation(s)
- Michael Gutensohn
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Beck G, Coman D, Herren E, Ruiz-Sola MA, Rodríguez-Concepción M, Gruissem W, Vranová E. Characterization of the GGPP synthase gene family in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 82:393-416. [PMID: 23729351 DOI: 10.1007/s11103-013-0070-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/05/2013] [Indexed: 05/06/2023]
Abstract
Geranylgeranyl diphosphate (GGPP) is a key precursor of various isoprenoids that have diverse functions in plant metabolism and development. The annotation of the Arabidopsis thaliana genome predicts 12 genes to encode geranylgeranyl diphosphate synthases (GGPPS). In this study we analyzed GGPPS activity as well as the subcellular localization and tissue-specific expression of the entire protein family in A. thaliana. GGPPS2 (At2g18620), GGPPS3 (At2g18640), GGPPS6 (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 (At4g36810) showed GGPPS activity in Escherichia coli, similar to activities reported earlier for GGPPS1 (At1g49530) and GGPPS4 (At2g23800) (Zhu et al. in Plant Cell Physiol 38(3):357-361, 1997a; Plant Mol Biol 35(3):331-341, b). GGPPS12 (At4g38460) did not produce GGPP in E. coli. Based on DNA sequence analysis we propose that GGPPS5 (At3g14510) is a pseudogene. GGPPS-GFP (green fluorescent protein) fusion proteins of the ten functional GGPP synthases localized to plastids, mitochondria and the endoplasmic reticulum, with the majority of the enzymes located in plastids. Gene expression analysis using quantitative real time-PCR, GGPPS promoter-GUS (β-glucuronidase) assays and publicly available microarray data revealed a differential spatio-temporal expression of GGPPS genes. The results suggest that plastids and mitochondria are key subcellular compartments for the synthesis of ubiquitous GGPP-derived isoprenoid species. GGPPS11 and GGPPS1 are the major isozymes responsible for their biosynthesis. All remaining paralogs, encoding six plastidial isozymes and two cytosolic isozymes, were expressed in specific tissues and/or at specific developmental stages, suggesting their role in developmentally regulated isoprenoid biosynthesis. Our results show that of the 12 predicted GGPPS encoded in the A. thaliana genome 10 are functional proteins that can synthesize GGPP. Their specific subcellular location and differential expression pattern suggest subfunctionalization in providing GGPP to specific tissues, developmental stages, or metabolic pathways.
Collapse
Affiliation(s)
- Gilles Beck
- Department of Biology, Plant Biotechnology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Comparative genomics approaches to understanding and manipulating plant metabolism. Curr Opin Biotechnol 2013; 24:278-84. [DOI: 10.1016/j.copbio.2012.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
|
41
|
Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA, Klein SE, Pichersky E. The tomato cis-prenyltransferase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:640-52. [PMID: 23134568 DOI: 10.1111/tpj.12063] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 05/22/2023]
Abstract
cis-prenyltransferases (CPTs) are predicted to be involved in the synthesis of long-chain polyisoprenoids, all with five or more isoprene (C5) units. Recently, we identified a short-chain CPT, neryl diphosphate synthase (NDPS1), in tomato (Solanum lycopersicum). Here, we searched the tomato genome and identified and characterized its entire CPT gene family, which comprises seven members (SlCPT1-7, with NDPS1 designated as SlCPT1). Six of the SlCPT genes encode proteins with N-terminal targeting sequences, which, when fused to GFP, mediated GFP transport to the plastids of Arabidopsis protoplasts. The SlCPT3-GFP fusion protein was localized to the cytosol. Enzymatic characterization of recombinant SlCPT proteins demonstrated that SlCPT6 produces Z,Z-FPP, and SlCPT2 catalyzes the formation of nerylneryl diphosphate while SlCPT4, SlCPT5 and SlCPT7 synthesize longer-chain products (C25-C55). Although no in vitro activity was demonstrated for SlCPT3, its expression in the Saccharomyces cerevisiae dolichol biosynthesis mutant (rer2) complemented the temperature-sensitive growth defect. Transcripts of SlCPT2, SlCPT4, SlCPT5 and SlCPT7 are present at low levels in multiple tissues, SlCPT6 is exclusively expressed in red fruit and roots, and SlCPT1, SlCPT3 and SlCPT7 are highly expressed in trichomes. RNAi-mediated suppression of NDPS1 led to a large decrease in β-phellandrene (which is produced from neryl diphosphate), with greater reductions achieved with the general 35S promoter compared to the trichome-specific MKS1 promoter. Phylogenetic analysis revealed CPT gene families in both eudicots and monocots, and showed that all the short-chain CPT genes from tomato (SlCPT1, SlCPT2 and SlCPT6) are closely linked to terpene synthase gene clusters.
Collapse
Affiliation(s)
- Tariq A Akhtar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Functional characterization of long-chain prenyl diphosphate synthases from tomato. Biochem J 2013; 449:729-40. [DOI: 10.1042/bj20120988] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The electron transfer molecules plastoquinone and ubiquinone are formed by the condensation of aromatic head groups with long-chain prenyl diphosphates. In the present paper we report the cloning and characterization of two genes from tomato (Solanum lycopersicum) responsible for the production of solanesyl and decaprenyl diphosphates. SlSPS (S. lycopersicum solanesyl diphosphate synthase) is targeted to the plastid and both solanesol and plastoquinone are associated with thylakoid membranes. A second gene [SlDPS (S. lycopersicum solanesyl decaprenyl diphosphate synthase)], encodes a long-chain prenyl diphosphate synthase with a different subcellular localization from SlSPS and can utilize geranyl, farnesyl or geranylgeranyl diphosphates in the synthesis of C45 and C50 prenyl diphosphates. When expressed in Escherichia coli, SlSPS and SlDPS extend the prenyl chain length of the endogenous ubiquinone to nine and ten isoprene units respectively. In planta, constitutive overexpression of SlSPS elevated the plastoquinone content of immature tobacco leaves. Virus-induced gene silencing showed that SlSPS is necessary for normal chloroplast structure and function. Plants silenced for SlSPS were photobleached and accumulated phytoene, whereas silencing SlDPS did not affect leaf appearance, but impacted on primary metabolism. The two genes were not able to complement silencing of each other. These findings indicate a requirement for two long-chain prenyl diphosphate synthases in the tomato.
Collapse
|