1
|
Zhou Z, Zhi T, Zou J, Chen G. Transcriptome analysis to identify genes related to programmed cell death resulted from manipulating of BnaFAH ortholog by CRISPR/Cas9 in Brassica napus. Sci Rep 2024; 14:26389. [PMID: 39488592 PMCID: PMC11531537 DOI: 10.1038/s41598-024-77877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of the tyrosine degradation pathway. In this study, we isolated and characterized two homologous BnaFAH genes in Brassica napus L. variant Westar, and then used CRISPR/Cas9-mediated targeted mutagenesis to generate a series of transgene-free mutant lines either with single or double-null bnafah alleles. Among these mutant lines, the aacc (bnafah) double-null mutant line, rather than the aaCC (bnaa06fah) mutant line, exhibited programmed cell death (PCD) under short days (SD). Histochemical staining and content measurement confirmed that the accumulation of reactive oxygen species (ROS) in bnafah was significantly higher than that in bnaa06fah. To further elucidate the mechanism of PCD, we performed transcriptomic analyses of bnaa06fah and bnafah at different SD stages. A heatmap cluster of differentially expressed genes (DEGs) revealed that PCD may be related to various redox regulatory genes involved in antioxidant activity, ROS-responsive regulation and calcium signaling. Combined with the results of previous studies, our work revealed that the expression levels of BnaC04CAT2, BnaA09/C09SAL1, BnaA08/C08ACO2, BnaA07/C06ERO1, BnaA08ACA1, BnaC04BIK1, BnaA09CRK36 and BnaA03CPK4 were significantly different and that these genes might be candidate hub genes for PCD. Together, our results underscore the ability of different PCD phenotypes to alter BnaFAH orthologs through gene editing and further elucidated the molecular mechanisms of oxidative stress-induced PCD in plants.
Collapse
Affiliation(s)
- Zhou Zhou
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Tiantian Zhi
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China.
| | - Jie Zou
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Gang Chen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| |
Collapse
|
2
|
Gautrat P, Buti S, Romanowski A, Lammers M, Matton SEA, Buijs G, Pierik R. Phytochrome-dependent responsiveness to root-derived cytokinins enables coordinated elongation responses to combined light and nitrate cues. Nat Commun 2024; 15:8489. [PMID: 39353942 PMCID: PMC11445486 DOI: 10.1038/s41467-024-52828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.
Collapse
Affiliation(s)
- Pierre Gautrat
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Andrés Romanowski
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Michiel Lammers
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Guido Buijs
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Yang M, Min T, Manda T, Yang L, Hwarari D. Genomic Survey of LRR-RLK Genes in Eriobotrya japonica and Their Expression Patterns Responding to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2387. [PMID: 39273872 PMCID: PMC11397332 DOI: 10.3390/plants13172387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
The impact of global warming is increasing and thus exacerbating environmental stresses that affect plant yield and distribution, including the Eriobotrya japonica Lindl (Loquat tree). Eriobotrya japonica, a member of the Rosaceae family, is valued not only for its nutritious fruit but also for its medicinal purposes, landscape uses, and other pharmacological benefits. Nonetheless, the productivity of Eriobotrya japonica has raised a lot of concern in the wake of adverse environmental conditions. Understanding the characteristics of the LRR-RLK gene family in loquat is crucial, as these genes play vital roles in plant stress responses. In this study, 283 LRR-RLK genes were identified in the genome of E. japonica that were randomly positioned on 17 chromosomes and 24 contigs. The 283 EjLRR-RLK proteins clustered into 21 classes and subclasses in the phylogenetic analysis based on domain and protein arrangements. Further explorations in the promoter regions of the EjLRR-RLK genes showed an abundance of cis-regulatory elements that functioned in growth and development, phytohormone, and biotic and abiotic responses. Most cis-elements were present in the biotic and abiotic responses suggesting that the EjLRR-RLK genes are invested in regulating both biotic and abiotic stresses. Additional investigations into the responses of EjLRR-RLK genes to abiotic stress using the RT-qPCR revealed that EjLRR-RLK genes respond to abiotic stress, especially heat and salt stresses. Particularly, EjapXI-1.6 and EjapI-2.5 exhibited constant upregulation in all stresses analyzed, indicating that these may take an active role in regulating abiotic stresses. Our findings suggest the pivotal functions of EjLRR-RLK genes although additional research is still required. This research aims to provide useful information relating to the characterization of EjLRR-RLK genes and their responses to environmental stresses, establishing a concrete base for the following research.
Collapse
Affiliation(s)
- Mengqi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tian Min
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Teja Manda
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
6
|
Mu Z, Xu M, Manda T, Chen J, Yang L, Hwarari D. Characterization, evolution, and abiotic stress responses of leucine-rich repeat receptor-like protein kinases (LRR-RLK) in Liriodendron chinense. BMC Genomics 2024; 25:748. [PMID: 39085785 PMCID: PMC11292913 DOI: 10.1186/s12864-024-10560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. RESULT 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. CONCLUSION Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.
Collapse
Affiliation(s)
- Zhiying Mu
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Mingyue Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Teja Manda
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
7
|
Wang Y, Wu W, Zhong Y, Wang R, Hassan MU, Zhang S, Li X. Receptor-like cytoplasmic kinase 58 reduces tolerance of maize seedlings to low magnesium via promoting H 2O 2 over-accumulation. PLANT CELL REPORTS 2024; 43:195. [PMID: 39008098 DOI: 10.1007/s00299-024-03278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
KEY MESSAGE ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.
Collapse
Affiliation(s)
- Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenbin Wu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruifeng Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mahmood Ul Hassan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuaisong Zhang
- State Key Laboratory of Plant Environmental Resilience, Center for crop functional genomics and molecular breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Chang YL, Chang YC, Kurniawan A, Chang PC, Liou TY, Wang WD, Chuang HW. Employing Genomic Tools to Explore the Molecular Mechanisms behind the Enhancement of Plant Growth and Stress Resilience Facilitated by a Burkholderia Rhizobacterial Strain. Int J Mol Sci 2024; 25:6091. [PMID: 38892282 PMCID: PMC11172717 DOI: 10.3390/ijms25116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.
Collapse
Affiliation(s)
- Yueh-Long Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Yu-Cheng Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Andi Kurniawan
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
- Department of Agronomy, Brawijaya University, Malang 65145, Indonesia
| | - Po-Chun Chang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Ting-Yu Liou
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Wen-Der Wang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
9
|
Wang P, Wang D, Li Y, Li J, Liu B, Wang Y, Gao C. The transcription factor ThDOF8 binds to a novel cis-element and mediates molecular responses to salt stress in Tamarix hispida. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3171-3187. [PMID: 38400756 DOI: 10.1093/jxb/erae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Salt stress is a common abiotic factor that restricts plant growth and development. As a halophyte, Tamarix hispida is a good model plant for exploring salt-tolerance genes and regulatory mechanisms. DNA-binding with one finger (DOF) is an important transcription factor (TF) that influences and controls various signaling substances involved in diverse biological processes related to plant growth and development, but the regulatory mechanisms of DOF TFs in response to salt stress are largely unknown in T. hispida. In the present study, a newly identified Dof gene, ThDOF8, was cloned from T. hispida, and its expression was found to be induced by salt stress. Transient overexpression of ThDOF8 enhanced T. hispida salt tolerance by enhancing proline levels, and increasing the activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). These results were also verified in stably transformed Arabidopsis. Results from TF-centered yeast one-hybrid (Y1H) assays and EMSAs showed that ThDOF8 binds to a newly identified cis-element (TGCG). Expression profiling by gene chip analysis identified four potential direct targets of ThDOF8, namely the cysteine-rich receptor-like kinases genes, CRK10 and CRK26, and two glutamate decarboxylase genes, GAD41, and GAD42, and these were further verified by ChIP-quantitative-PCR, EMSAs, Y1H assays, and β-glucuronidase enzyme activity assays. ThDOF8 can bind to the TGCG element in the promoter regions of its target genes, and transient overexpression of ThCRK10 also enhanced T. hispida salt tolerance. On the basis of our results, we propose a new regulatory mechanism model, in which ThDOF8 binds to the TGCG cis-element in the promoter of the target gene CRK10 to regulate its expression and improve salt tolerance in T. hispida. This study provides a basis for furthering our understanding the role of DOF TFs and identifying other downstream candidate genes that have the potential for improving plant salt tolerance via molecular breeding.
Collapse
Affiliation(s)
- Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325000, China
| | - Danni Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yongxi Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| |
Collapse
|
10
|
Liu H, Li X, Yin Z, Hu J, Xie L, Wu H, Han S, Li B, Zhang H, Li C, Li L, Zhang F, Tan G. Identification and characterization of the CRK gene family in the wheat genome and analysis of their expression profile in response to high temperature-induced male sterility. PeerJ 2024; 12:e17370. [PMID: 38737737 PMCID: PMC11086307 DOI: 10.7717/peerj.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Xiaoyi Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Zehui Yin
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Junmin Hu
- Jiaozuo Seed Management Station, Jiaozuo, Henan Province, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huifang Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
| | - Guangxuan Tan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| |
Collapse
|
11
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Zameer R, Alwutayd KM, Alshehri D, Mubarik MS, Li C, Yu C, Li Z. Identification of cysteine-rich receptor-like kinase gene family in potato: revealed StCRLK9 in response to heat, salt and drought stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23320. [PMID: 38723163 DOI: 10.1071/fp23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.
Collapse
Affiliation(s)
- Roshan Zameer
- School of Life Sciences, Henan University, Kaifeng, China
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Cheng Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chengde Yu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhifang Li
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Tian Y, Zeng H, Wu JC, Dai GX, Zheng HP, Liu C, Wang Y, Zhou ZK, Tang DY, Deng GF, Tang WB, Liu XM, Lin JZ. The zinc finger protein DHHC09 S-acylates the kinase STRK1 to regulate H2O2 homeostasis and promote salt tolerance in rice. THE PLANT CELL 2024; 36:919-940. [PMID: 38180963 PMCID: PMC10980341 DOI: 10.1093/plcell/koae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Soil salinity results in oxidative stress and heavy losses to crop production. The S-acylated protein SALT TOLERANCE RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (STRK1) phosphorylates and activates CATALASE C (CatC) to improve rice (Oryza sativa L.) salt tolerance, but the molecular mechanism underlying its S-acylation involved in salt signal transduction awaits elucidation. Here, we show that the DHHC-type zinc finger protein DHHC09 S-acylates STRK1 at Cys5, Cys10, and Cys14 and promotes salt and oxidative stress tolerance by enhancing rice H2O2-scavenging capacity. This modification determines STRK1 targeting to the plasma membrane or lipid nanodomains and is required for its function. DHHC09 promotes salt signaling from STRK1 to CatC via transphosphorylation, and its deficiency impairs salt signal transduction. Our findings demonstrate that DHHC09 S-acylates and anchors STRK1 to the plasma membrane to promote salt signaling from STRK1 to CatC, thereby regulating H2O2 homeostasis and improving salt stress tolerance in rice. Moreover, overexpression of DHHC09 in rice mitigates grain yield loss under salt stress. Together, these results shed light on the mechanism underlying the role of S-acylation in RLK/RLCK-mediated salt signal transduction and provide a strategy for breeding highly salt-tolerant rice.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Ji-Cai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Gao-Xing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - He-Ping Zheng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Zheng-Kun Zhou
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Dong-Ying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Guo-Fu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wen-Bang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Xuan-Ming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| | - Jian-Zhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, 410125, China
| |
Collapse
|
14
|
Chiang CY, Chang CH, Tseng TY, Nguyen VAT, Su PY, Truong TTT, Chen JY, Huang CC, Huang HJ. Volatile Compounds Emitted by Plant Growth-Promoting Fungus Tolypocladium inflatum GT22 Alleviate Copper and Pathogen Stress. PLANT & CELL PHYSIOLOGY 2024; 65:199-215. [PMID: 37951591 DOI: 10.1093/pcp/pcad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.
Collapse
Affiliation(s)
- Chih-Yun Chiang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tzu-Yun Tseng
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Van-Anh Thi Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Faculty of Technology, The University of Danang-Campus in Kontum, The University of Danang, 704 Phan Dinh Phung Street, Kontum City, Kontum Province, 580000 Vietnam
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Chung-Chih Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, R.O.C
| |
Collapse
|
15
|
Lv Y, Zhao Y, He Y, Wang J, Zheng Y, Chen X, Huang F, Liu J, Yu L. Synergistic effects of gamma-aminobutyric acid and melatonin on seed germination and cadmium tolerance in tomato. PLANT SIGNALING & BEHAVIOR 2023; 18:2216001. [PMID: 37302802 DOI: 10.1080/15592324.2023.2216001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 06/13/2023]
Abstract
The effects of exogenous γ-aminobutyric acid (GABA) and melatonin (MT) on tomato seed germination and shoot growth exposed to cadmium stress were investigated. On the one hand, treatment with MT (10-200 μM) or GABA (10-200 μM) alone could significantly relieve cadmium stress in tomato seedlings, which is reflected in increasing the germination rate, vigor index, fresh weight, dry weight and radicle lengths of tomato seeds, as well as the soluble content compared to the absence of exogenous treatment, and the alleviating effect reached the peak in the 200 µM GABA or 150 µM MT alone. On the other hand, exogenous MT and GABA showed synergistic effects on the germination of tomato seed under cadmium stress. Moreover, the application of 100 µM GABA combined with 100 µM MT markedly decreased the contents of Cd and MDA by upregulating the activities of antioxidant enzymes, thereby alleviating the toxic effect of cadmium stress on tomato seeds. Collectively, the combinational strategy showed significant positive effects on seed germination and cadmium stress resistance in tomato.
Collapse
Affiliation(s)
- Yiying Lv
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuansheng He
- Yunnan Tobacco Company Lincang Company, Lincang, Yunnan, China
| | - Jiming Wang
- Yunnan Tobacco Company Lincang Company, Lincang, Yunnan, China
| | - Yuanxian Zheng
- Yunnan Tobacco Company Lincang Company, Lincang, Yunnan, China
| | - Xiaolong Chen
- Henan China Tobacco Industry Co. Ltd, Zhengzhou, Henan, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agronomy, Kunming University, Kunming, China
| |
Collapse
|
16
|
Zhao M, Li M, Huang M, Liang C, Chen D, Hwang I, Zhang W, Wang M. The cysteine-rich receptor-like kinase CRK4 contributes to the different drought stress response between Columbia and Landsberg erecta. PLANT, CELL & ENVIRONMENT 2023; 46:3258-3272. [PMID: 37427814 DOI: 10.1111/pce.14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
The natural variation between Arabidopsis (Arabidopsis thaliana) ecotypes Columbia (Col) and Landsberg erecta (Ler) strongly affects abscisic acid (ABA) signalling and drought tolerance. Here, we report that the cysteine-rich receptor-like protein kinase CRK4 is involved in regulating ABA signalling, which contributes to the differences in drought stress tolerance between Col-0 and Ler-0. Loss-of-function crk4 mutants in the Col-0 background were less drought tolerant than Col-0, whereas overexpressing CRK4 in the Ler-0 background partially to completely restored the drought-sensitive phenotype of Ler-0. F1 plants derived from a cross between the crk4 mutant and Ler-0 showed an ABA-insensitive phenotype with respect to stomatal movement, along with reduced drought tolerance like Ler-0. We demonstrate that CRK4 interacts with the U-box E3 ligase PUB13 and enhances its abundance, thus promoting the degradation of ABA-INSENSITIVE 1 (ABI1), a negative regulator of ABA signalling. Together, these findings reveal an important regulatory mechanism for modulating ABI1 levels by the CRK4-PUB13 module to fine-tune drought tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mengdan Li
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Meng Huang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
17
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
18
|
Zeiner A, Colina FJ, Citterico M, Wrzaczek M. CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES: their evolution, structure, and roles in stress response and development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4910-4927. [PMID: 37345909 DOI: 10.1093/jxb/erad236] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Plant-specific receptor-like protein kinases (RLKs) are central components for sensing the extracellular microenvironment. CYSTEINE-RICH RLKs (CRKs) are members of one of the biggest RLK subgroups. Their physiological and molecular roles have only begun to be elucidated, but recent studies highlight the diverse types of proteins interacting with CRKs, as well as the localization of CRKs and their lateral organization within the plasma membrane. Originally the DOMAIN OF UNKNOWN FUNCTION 26 (DUF26)-containing extracellular region of the CRKs was proposed to act as a redox sensor, but the potential activating post-translational modification or ligands perceived remain elusive. Here, we summarize recent progress in the analysis of CRK evolution, molecular function, and role in plant development, abiotic stress responses, plant immunity, and symbiosis. The currently available information on CRKs and related proteins suggests that the CRKs are central regulators of plant signaling pathways. However, more research using classical methods and interdisciplinary approaches in various plant model species, as well as structural analyses, will not only enhance our understanding of the molecular function of CRKs, but also elucidate the contribution of other cellular components in CRK-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Zeiner
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Francisco J Colina
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
19
|
Zhang Y, Tian H, Chen D, Zhang H, Sun M, Chen S, Qin Z, Ding Z, Dai S. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. TRENDS IN PLANT SCIENCE 2023; 28:776-794. [PMID: 37105805 DOI: 10.1016/j.tplants.2023.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) belong to a large DUF26-containing receptor-like kinase (RLK) family. They play key roles in immunity, abiotic stress response, and growth and development. How CRKs regulate diverse processes is a long-standing question. Recent studies have advanced our understanding of the molecular mechanisms underlying CRK functions in Ca2+ influx, reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK) cascade activation, callose deposition, stomatal immunity, and programmed cell death (PCD). We review the CRK structure-function relationship with a focus on the roles of CRKs in immunity, the abiotic stress response, and the growth-stress tolerance tradeoff. We provide a critical analysis and synthesis of how CRKs control sophisticated regulatory networks that determine diverse plant phenotypic outputs.
Collapse
Affiliation(s)
- Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Daniel Chen
- MD Program of Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sixue Chen
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
20
|
Fang J, Chai Z, Huang R, Huang C, Ming Z, Chen B, Yao W, Zhang M. Receptor-like cytoplasmic kinase ScRIPK in sugarcane regulates disease resistance and drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1191449. [PMID: 37304725 PMCID: PMC10248867 DOI: 10.3389/fpls.2023.1191449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Introduction Receptor-like cytoplastic kinases (RLCKs) are known in many plants to be involved in various processes of plant growth and development and regulate plant immunity to pathogen infection. Environmental stimuli such as pathogen infection and drought restrict the crop yield and interfere with plant growth. However, the function of RLCKs in sugarcane remains unclear. Methods and results In this study, a member of the RLCK VII subfamily, ScRIPK, was identified in sugarcane based on sequence similarity to the rice and Arabidopsis RLCKs. ScRIPK was localized to the plasma membrane, as predicted, and the expression of ScRIPK was responsive to polyethylene glycol treatment and Fusarium sacchari infection. Overexpression of ScRIPK in Arabidopsis enhanced drought tolerance and disease susceptibility of seedlings. Moreover, the crystal structure of the ScRIPK kinase domain (ScRIPK KD) and the mutant proteins (ScRIPK-KD K124R and ScRIPK-KD S253A|T254A) were characterized in order to determine the activation mechanism. We also identified ScRIN4 as the interacting protein of ScRIPK. Discussion Our work identified a RLCK in sugarcane, providing a potential target for sugarcane responses to disease infection and drought, and a structural basis for kinase activation mechanisms.
Collapse
Affiliation(s)
- Jinlan Fang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhe Chai
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Run Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Cuilin Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Zhenhua Ming
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Wei Yao
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Ma Q, Niu C, Wang C, Chen C, Li Y, Wei M. Effects of differentially expressed microRNAs induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (Cucumis sativus L.). BMC Genomics 2023; 24:250. [PMID: 37165319 PMCID: PMC10173649 DOI: 10.1186/s12864-023-09337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Rootstocks can improve the chilling tolerance of grafted cucumbers, but their effectiveness varies. Rootstocks with strong de-blooming capacity may result in lower chilling tolerance of grafted cucumbers compared to those with weak de-blooming capacity, while also reducing the silicon absorption. However, it remains unclear whether this reduction in chilling tolerance is due to differences in rootstock genotypes or the reduction in silicon absorption. RESULTS The chilling tolerance of cucumber seedlings was improved by using rootstocks and silicon nutrition. Rootstocks had a more significant effect than silicon nutrition, and the weak de-blooming rootstock 'Yunnan figleaf gourd' was superior to the strong de-blooming rootstock 'Huangchenggen No. 2'. Compared to self-rooted cucumber, twelve miRNAs were regulated by two rootstocks, including seven identical miRNAs (novel-mir23, novel-mir26, novel-mir30, novel-mir37, novel-mir46, miR395a and miR398a-3p) and five different miRNAs (novel-mir32, novel-mir38, novel-mir65, novel-mir78 and miR397a). Notably, four of these miRNAs (novel-mir38, novel-mir65, novel-mir78 and miR397a) were only identified in 'Yunnan figleaf gourd'-grafted cucumbers. Furthermore, six miRNAs (miR168a-5p, miR390a-5p, novel-mir26, novel-mir55, novel-mir67 and novel-mir70) were found to be responsive to exogenous silicon. Target gene prediction for 20 miRNAs resulted in 520 genes. Functional analysis of these target genes showed that 'Yunnan figleaf gourd' improves the chilling tolerance of cucumber by regulating laccase synthesis and sulfate metabolism, while 'Huangchenggen No. 2' and exogenous silicon reduced chilling stress damage to cucumber by regulating ROS scavenging and protein protection, respectively. CONCLUSION Among the identified miRNAs, novel-mir46 and miR398a-3p were found in cucumbers in response to chilling stress and two types of rootstocks. However, no identical miRNAs were identified in response to chilling stress and silicon. In addition, the differential expression of novel-mir38, novel-mir65, novel-mir78 and miR397a may be one of the important reasons for the differences in chilling tolerance of grafted cucumbers caused by two types of rootstocks.
Collapse
Affiliation(s)
- Qiang Ma
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Chao Wang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Chunhua Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China
- State Key Laboratory of Crop Biology, Taian, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian, 271018, China.
- State Key Laboratory of Crop Biology, Taian, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian, 271018, China.
| |
Collapse
|
22
|
Kidokoro S, Konoura I, Soma F, Suzuki T, Miyakawa T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Clock-regulated coactivators selectively control gene expression in response to different temperature stress conditions in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2216183120. [PMID: 37036986 PMCID: PMC10120023 DOI: 10.1073/pnas.2216183120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/12/2023] [Indexed: 04/12/2023] Open
Abstract
Plants respond to severe temperature changes by inducing the expression of numerous genes whose products enhance stress tolerance and responses. Dehydration-responsive element (DRE)-binding protein 1/C-repeat binding factor (DREB1/CBF) transcription factors act as master switches in cold-inducible gene expression. Since DREB1 genes are rapidly and strongly induced by cold stress, the elucidation of the molecular mechanisms of DREB1 expression is vital for the recognition of the initial responses to cold stress in plants. A previous study indicated that the circadian clock-related MYB-like transcription factors REVEILLE4/LHY-CCA1-Like1 (RVE4/LCL1) and RVE8/LCL5 directly activate DREB1 expression under cold stress conditions. These RVEs function in the regulation of circadian clock-related gene expression under normal temperature conditions. They also activate the expression of HSF-independent heat-inducible genes under high-temperature conditions. Thus, there are thought to be specific regulatory mechanisms whereby the target genes of these transcription factors are switched when temperature changes are sensed. We revealed that NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED (LNK) proteins act as coactivators of RVEs in cold and heat stress responses in addition to regulating circadian-regulated genes at normal temperatures. We found that among the four Arabidopsis LNKs, LNK1 and LNK2 function under normal and high-temperature conditions, and LNK3 and LNK4 function under cold conditions. Thus, these LNK proteins play important roles in inducing specific genes under different temperature conditions. Furthermore, LNK3 and LNK4 are specifically phosphorylated under cold conditions, suggesting that phosphorylation is involved in their activation.
Collapse
Affiliation(s)
- Satoshi Kidokoro
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-8657, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa226-8502, Japan
| | - Izumi Konoura
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-8657, Japan
| | - Fumiyuki Soma
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-8657, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi487-8501, Japan
| | - Takuya Miyakawa
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-8657, Japan
| | - Masaru Tanokura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo156-8502, Japan
| |
Collapse
|
23
|
Zhou S, Luo Q, Nie Z, Wang C, Zhu W, Hong Y, Zhao J, Pei B, Ma W. CRK41 Modulates Microtubule Depolymerization in Response to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1285. [PMID: 36986973 PMCID: PMC10051889 DOI: 10.3390/plants12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Qiuling Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Changhui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baolei Pei
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
24
|
Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. PLANT PHYSIOLOGY 2023; 191:747-771. [PMID: 36315103 PMCID: PMC9806649 DOI: 10.1093/plphys/kiac508] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Daifu Ma
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
25
|
Rao X, Cheng N, Mathew IE, Hirschi KD, Nakata PA. Crucial role of Arabidopsis glutaredoxin S17 in heat stress response revealed by transcriptome analysis. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:58-70. [PMID: 36099929 DOI: 10.1071/fp22002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Heat stress can have detrimental effects on plant growth and development. However, the mechanisms by which the plant is able to perceive changes in ambient temperature, transmit this information, and initiate a temperature-induced response are not fully understood. Previously, we showed that heterologous expression of an Arabidopsis thaliana L. monothiol glutaredoxin AtGRXS17 enhances thermotolerance in various crops, while disruption of AtGRXS17 expression caused hypersensitivity to permissive temperature. In this study, we extend our investigation into the effect of AtGRXS17 and heat stress on plant growth and development. Although atgrxs17 plants were found to exhibit a slight decrease in hypocotyl elongation, shoot meristem development, and root growth compared to wild-type when grown at 22°C, these growth phenotypic differences became more pronounced when growth temperatures were raised to 28°C. Transcriptome analysis revealed significant changes in genome-wide gene expression in atgrxs17 plants compared to wild-type under conditions of heat stress. The expression of genes related to heat stress factors, auxin response, cellular communication, and abiotic stress were altered in atgrxs17 plants in response to heat stress. Overall, our findings indicate that AtGRXS17 plays a critical role in controlling the transcriptional regulation of plant heat stress response pathways.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Iny E Mathew
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Sarwar R, Li L, Yu J, Zhang Y, Geng R, Meng Q, Zhu K, Tan XL. Functional Characterization of the Cystine-Rich-Receptor-like Kinases ( CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. Int J Mol Sci 2022; 24:ijms24010511. [PMID: 36613954 PMCID: PMC9820174 DOI: 10.3390/ijms24010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn’t been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiang Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yijie Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rui Geng
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qingfeng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
The CRK5 and WRKY53 Are Conditional Regulators of Senescence and Stomatal Conductance in Arabidopsis. Cells 2022; 11:cells11223558. [PMID: 36428987 PMCID: PMC9688832 DOI: 10.3390/cells11223558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
In Arabidopsis thaliana, cysteine-rich receptor-like kinases (CRKs) constitute a large group of membrane-localized proteins which perceive external stimuli and transduce the signal into the cell. Previous reports based on their loss-of-function phenotypes and expression profile support their role in many developmental and stress-responsive pathways. Our study revealed that one member of this family, CRK5, acts as a negative regulator of leaf aging. Enrichment of the CRK5 promoter region in W-box cis-elements demonstrated that WRKY transcription factors control it. We observed significantly enhanced WRKY53 expression in crk5 and reversion of its early-senescence phenotype in the crk5 wrky53 line, suggesting a negative feedback loop between these proteins antagonistically regulating chlorophyll a and b contents. Yeast-two hybrid assay showed further that CRK5 interacts with several proteins involved in response to water deprivation or calcium signaling, while gas exchange analysis revealed a positive effect of CRK5 on water use efficiency. Consistent with that, the crk5 plants showed disturbed foliar temperature, stomatal conductance, transpiration, and increased susceptibility to osmotic stress. These traits were fully or partially reverted to wild-type phenotype in crk5 wrky53 double mutant. Obtained results suggest that WRKY53 and CRK5 are antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
Collapse
|
28
|
Malyukova LS, Koninskaya NG, Orlov YL, Samarina LS. Effects of exogenous calcium on the drought response of the tea plant ( Camellia sinensis (L.) Kuntze). PeerJ 2022; 10:e13997. [PMID: 36061747 PMCID: PMC9435517 DOI: 10.7717/peerj.13997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Background Drought is one of the major factors reducing the yield of many crops worldwide, including the tea crop (Camellia sinensis (L.) Kuntze). Calcium participates in most of cellular signaling processes, and its important role in stress detection and triggering a response has been shown in many crops. The aim of this study was to evaluate possible effects of calcium on the tea plant response to drought. Methods Experiments were conducted using 3-year-old potted tea plants of the best local cultivar Kolkhida. Application of ammonium nitrate (control treatment) or calcium nitrate (Ca treatment) to the soil was performed before drought induction. Next, a 7-day drought was induced in both groups of plants. The following physiological parameters were measured: relative electrical conductivity, pH of cell sap, and concentrations of cations, sugars, and amino acids. In addition, relative expression levels of 40 stress-related and crop quality-related genes were analyzed. Results Under drought stress, leaf electrolyte leakage differed significantly, indicating greater damage to cell membranes in control plants than in Ca-treated plants. Calcium application resulted in greater pH of cell sap; higher accumulation of tyrosine, methionine, and valine; and a greater Mg2+ content as compared to control plants. Drought stress downregulated most of the quality-related genes in both groups of tea plants. By contrast, significant upregulation of some genes was observed, namely CRK45, NAC26, TPS11, LOX1, LOX6, Hydrolase22, DREB26, SWEET2, GS, ADC, DHN2, GOLS1, GOLS3, and RHL41. Among them, three genes (LOX1, RHL41, and GOLS1) showed 2-3 times greater expression in Ca-treated plants than in control plants. Based on these results, it can be speculated that calcium affects galactinol biosynthesis and participates in the regulation of stomatal aperture not only through activation of abscisic-acid signaling but also through jasmonic-acid pathway activation. These findings clarify calcium-mediated mechanisms of drought defense in tree crops. Thus, calcium improves the drought response in the tea tree.
Collapse
Affiliation(s)
- Lyudmila S. Malyukova
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Natalia G. Koninskaya
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Yuriy L. Orlov
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow, Russia,Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Lidiia S. Samarina
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia,Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
29
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Song Y, Niu R, Yu H, Guo J, Du C, Zhang Z, Wei Y, Li J, Zhang S. OsSLA1 functions in leaf angle regulation by enhancing the interaction between OsBRI1 and OsBAK1 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1111-1127. [PMID: 35275421 DOI: 10.1111/tpj.15727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf angle is an important trait in plants. Here, we demonstrate that the leucine-rich repeat receptor-like kinase OsSLA1 plays an important role in leaf angle regulation in rice (Oryza sativa). OsSLA1 mutant plants exhibited a small leaf angle phenotype due to changes of adaxial cells in the lamina joint. GUS staining revealed that OsSLA1 was highly expressed in adaxial cells of the lamina joint. The OsSLA1 mutant plants were insensitive to exogenous epibrassinolide (eBL) and showed upregulated expression of DWARF and CPD, but downregulated expression of BU1, BUL1, and ILI1, indicating that brassinosteroid (BR) signal transduction was blocked. Fluorescence microscopy showed that OsSLA1 was localized to the plasma membrane and nearby periplasmic vesicles. Further study showed that OsSLA1 interacts with OsBRI1 and OsBAK1 via its intracellular domain and promotes the interaction between OsBRI1 and OsBAK1. In addition, phosphorylation experiments revealed that OsSLA1 does not possess kinase activity, but that it can be phosphorylated by OsBRI1 in vitro. Knockout of OsSLA1 in the context of d61 caused exacerbation of the mutant phenotype. These results demonstrate that OsSLA1 regulates leaf angle formation via positive regulation of BR signaling by enhancing the interaction of OsBRI1 with OsBAK1.
Collapse
Affiliation(s)
- Yajing Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruofan Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Hongli Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Chunhui Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zilun Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ying Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jiaxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Suqiao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
31
|
Rahman A, Sinha KV, Sopory SK, Sanan-Mishra N. Influence of virus-host interactions on plant response to abiotic stress. PLANT CELL REPORTS 2021; 40:2225-2245. [PMID: 34050797 DOI: 10.1007/s00299-021-02718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant-virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.
Collapse
Affiliation(s)
- Adeeb Rahman
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kumari Veena Sinha
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
32
|
Niu F, Jiang Q, Sun X, Hu Z, Wang L, Zhang H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1139-1147. [PMID: 34585661 DOI: 10.1071/fp20400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) affect gene expressions via a wide range of mechanisms and are considered important regulators of numerous essential biological processes, including abiotic stress responses. However, the biological functions of most lncRNAs are yet to be determined. Moreover, to date, no effective methods have been developed to study the function of plant lncRNAs. We previously discovered a salt stress-related lncRNA, lncRNA77580 in soybean (Glycine max L.). In this study, we cloned the full-length lncRNA77580 and found that it shows nuclear-specific localisation. Furthermore, we employed CRISPR/Cas9 technology to induce large DNA fragment deletions in lncRNA77580 in soybean using a dual-single guide RNA/Cas9 design. As a result, we obtained deletion mutant soybean roots with targeted genomic fragment deletion in lncRNA77580. Deletion and overexpression of lncRNA77580 were found to alter the expression of several neighboring protein-coding genes associated with the response to salt stress. The longer the deleted DNA fragment in lncRNA77580, the greater the influence on the expression of lncRNA77580 itself and neighboring genes. Collectively, the findings of this study revealed that large DNA fragment deletion in lncRNAs using the CRISPR/Cas9 system is a powerful method to obtain functional mutations of soybean lncRNAs that could benefit future research on lncRNA function in soybean.
Collapse
Affiliation(s)
- Fengjuan Niu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | | | - Xianjun Sun
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zheng Hu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lixia Wang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | | |
Collapse
|
33
|
Mou S, Meng Q, Gao F, Zhang T, He W, Guan D, He S. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper. BMC PLANT BIOLOGY 2021; 21:382. [PMID: 34412592 PMCID: PMC8375189 DOI: 10.1186/s12870-021-03150-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/28/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cysteine-rich receptor-like kinases (CRKs) represent a large subfamily of receptor-like kinases and play vital roles in diverse physiological processes in regulating plant growth and development. RESULTS CaCRK5 transcripts were induced in pepper upon the infection of Ralstonia solanacearum and treatment with salicylic acid. The fusions between CaCRK5 and green fluorescence protein were targeted to the plasma membrane. Suppression of CaCRK5 via virus-induced gene silencing (VIGS) made pepper plants significantly susceptible to R. solanacearum infection, which was accompanied with decreased expression of defense related genes CaPR1, CaSAR8.2, CaDEF1 and CaACO1. Overexpression of CaCRK5 increased resistance against R. solanacearum in Nicotiana benthamiana. Furthermore, electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with quantitative real-time PCR analysis revealed that a homeodomain zipper I protein CaHDZ27 can active the expression of CaCRK5 through directly binding to its promoter. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses suggested that CaCRK5 heterodimerized with the homologous member CaCRK6 on the plasma membrane. CONCLUSIONS Our data revealed that CaCRK5 played a positive role in regulating immune responses against R. solanacearum infection in pepper.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Qianqian Meng
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Feng Gao
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Tingting Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Weihong He
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
| |
Collapse
|
34
|
Genome-Wide Identification and Characterization of Cysteine-Rich Receptor-Like Protein Kinase Genes in Tomato and Their Expression Profile in Response to Heat Stress. DIVERSITY 2021. [DOI: 10.3390/d13060258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During plant growth, development and stress adaption, receptor-like protein kinases (RLKs) are essential components in perceiving and integrating extracellular stimuli and transmitting the signals to activate the downstream signaling pathways. Cysteine-rich receptor-like protein kinases (CRKs) are a large subfamily of RLKs and their roles in modulating plant disease resistance are well elucidated. However, the roles of CRKs in plant abiotic stress responses, especially heat stress, are largely unknown. In this study, 35 SlCRK genes were identified in tomato (Solanum lycopersicum) based on the multiple sequence alignment and phylogenetic relationships. SlCRK genes are tandemly distributed on seven chromosomes and have similar exon–intron organization and common conserved motifs. Various phytohormone responsive, stress responsive cis-regulatory elements and heat shock elements are predicted in the promoter regions of SlCRK genes. Transcriptome analysis of tomato fruits under heat stress revealed that most SlCRK genes were downregulated upon heat treatment. GO enrichment analyses of genes that were co-expressed with SlCRK members have identified various stress responses related and proteasomal protein catabolic process related genes, which may be involved in heat stress signaling. Overall, our results provide valuable information for further research on the roles of SlCRKs in response to abiotic stress, especially heat stress.
Collapse
|
35
|
Arellano-Villagómez FC, Guevara-Olvera L, Zuñiga-Mayo VM, E. Cerbantez-Bueno V, Verdugo-Perales M, R. Medina H, De Folter S, Acosta-García G. Arabidopsis cysteine-rich receptor-like protein kinase CRK33 affects stomatal density and drought tolerance. PLANT SIGNALING & BEHAVIOR 2021; 16:1905335. [PMID: 33769202 PMCID: PMC8143253 DOI: 10.1080/15592324.2021.1905335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 05/19/2023]
Abstract
Cysteine-rich receptor-like protein kinases (CRKs) are transmembrane proteins containing two domains of unknown function 26 (DUF26) RLKs in their ectodomain. Despite that CRKs control important aspects of plant development, only few proteins have functionally been characterized. In this work, we analyzed the function of CRK33 by characterizing two insertional lines. The stomatal density and stomatal index were decreased in crk33-2 and crk33-3 plants in comparison to wild-type plants, correlating with a decreased transpiration in transgenic plants and a higher drought tolerance. Furthermore, photosynthesis and stomatal conductance changed. Finally, all four stomata cell fate genes were upregulated, especially the expression of TMM and SPCH in the mutant background, suggesting a role for CRK33 in stomatal spacing.
Collapse
Affiliation(s)
| | - Lorenzo Guevara-Olvera
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Víctor M. Zuñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
- Instituto de Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Mercedes Verdugo-Perales
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Humberto R. Medina
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| | - Stefan De Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro De Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, México
| | - Gerardo Acosta-García
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
- CONTACT Gerardo Acosta-García Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México/ITCelaya, Celaya, México
| |
Collapse
|
36
|
Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021048118. [PMID: 33649234 DOI: 10.1073/pnas.2021048118] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cold stress is an adverse environmental condition that affects plant growth, development, and crop productivity. Under cold stress conditions, the expression of numerous genes that function in the stress response and tolerance is induced in various plant species, and the dehydration-responsive element (DRE) binding protein 1/C-repeat binding factor (DREB1/CBF) transcription factors function as master switches for cold-inducible gene expression. Cold stress strongly induces these DREB1 genes. Therefore, it is important to elucidate the mechanisms of DREB1 expression in response to cold stress to clarify the perception and response of cold stress in plants. Previous studies indicated that the central oscillator components of the circadian clock, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), are involved in cold-inducible DREB1 expression, but the underlying mechanisms are not clear. We revealed that the clock-related MYB proteins REVEILLE4/LHY-CCA1-Like1 (RVE4/LCL1) and RVE8/LCL5 are quickly and reversibly transferred from the cytoplasm to the nucleus under cold stress conditions and function as direct transcriptional activators of DREB1 expression. We found that CCA1 and LHY suppressed the expression of DREB1s under unstressed conditions and were rapidly degraded specifically in response to cold stress, which suggests that they act as transcriptional repressors and indirectly regulate the cold-inducible expression of DREB1s We concluded that posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression. Our findings clarify the complex relationship between the plant circadian clock and the regulatory mechanisms of cold-inducible gene expression.
Collapse
|
37
|
Sun X, Cai X, Yin K, Gu L, Shen Y, Hu B, Wang Y, Chen Y, Zhu Y, Jia B, Sun M. Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:771-785. [PMID: 33160290 DOI: 10.1111/tpj.15072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 05/27/2023]
Abstract
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+ /CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a-1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liwei Gu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bingshuang Hu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
38
|
Samarina LS, Bobrovskikh AV, Doroshkov AV, Malyukova LS, Matskiv AO, Rakhmangulov RS, Koninskaya NG, Malyarovskaya VI, Tong W, Xia E, Manakhova KA, Ryndin AV, Orlov YL. Comparative Expression Analysis of Stress-Inducible Candidate Genes in Response to Cold and Drought in Tea Plant [ Camellia sinensis (L.) Kuntze]. Front Genet 2020; 11:611283. [PMID: 33424935 PMCID: PMC7786056 DOI: 10.3389/fgene.2020.611283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Cold and drought are two of the most severe threats affecting the growth and productivity of the tea plant, limiting its global spread. Both stresses cause osmotic changes in the cells of the tea plant by decreasing their water potential. To develop cultivars that are tolerant to both stresses, it is essential to understand the genetic responses of tea plant to these two stresses, particularly in terms of the genes involved. In this study, we combined literature data with interspecific transcriptomic analyses (using Arabidopsis thaliana and Solanum lycopersicum) to choose genes related to cold tolerance. We identified 45 stress-inducible candidate genes associated with cold and drought responses in tea plants based on a comprehensive homologous detection method. Of these, nine were newly characterized by us, and 36 had previously been reported. The gene network analysis revealed upregulated expression in ICE1-related cluster of bHLH factors, HSP70/BAM5 connected genes (hexokinases, galactinol synthases, SnRK complex, etc.) indicating their possible co-expression. Using qRT-PCR we revealed that 10 genes were significantly upregulated in response to both cold and drought in tea plant: HSP70, GST, SUS1, DHN1, BMY5, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3. SnRK1.2, HXK1/2, bHLH7/43/79/93 were specifically upregulated in cold, while RHL41, CAU1, Hydrolase22 were specifically upregulated in drought. Interestingly, the expression of CIP was higher in the recovery stage of both stresses, indicating its potentially important role in plant recovery after stress. In addition, some genes, such as DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22, were significantly positively correlated between the cold and drought responses. CBF1, GOLS1, HXK2, and HXK3, by contrast, showed significantly negative correlations between the cold and drought responses. Our results provide valuable information and robust candidate genes for future functional analyses intended to improve the stress tolerance of the tea plant and other species.
Collapse
Affiliation(s)
- Lidiia S Samarina
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandr V Bobrovskikh
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey V Doroshkov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Institute Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lyudmila S Malyukova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexandra O Matskiv
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Ruslan S Rakhmangulov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Natalia G Koninskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Valentina I Malyarovskaya
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Karina A Manakhova
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Alexey V Ryndin
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia
| | - Yuriy L Orlov
- Biotechnology Department, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Sochi, Russia.,Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
39
|
Xu W, Gao S, Song J, Yang Q, Wang T, Zhang Y, Zhang J, Li H, Yang C, Ye Z. NDW, encoding a receptor-like protein kinase, regulates plant growth, cold tolerance and susceptibility to Botrytis cinerea in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110684. [PMID: 33218645 DOI: 10.1016/j.plantsci.2020.110684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/29/2023]
Abstract
Plants utilize different mechanisms to respond and adapt to continuously changing environmental factors. Receptor-like protein kinases (RLKs) comprise one of the largest families of plant transmembrane signaling proteins, which play critical and diverse roles in plant growth, development, and stress response. Here, we identified the necrotic dwarf (ndw) mutant introgression line (IL) 6-2, which demonstrated stunting, leaf curl, and progressive necrosis at low temperatures. Based on map-based cloning and transgenic analysis, we determined that the phenotype of ndw mutant is caused by decreased expression of NDW, which encodes an RLK. NDW is a plasma membrane and cytoplasmic located protein. Overexpression of NDW can restore both of the semi-dwarf and necrotic phenotype in IL6-2 at low temperatures, further we found that NDW could significantly reduce susceptibility to Botrytis cinerea. On the contrary, knockdown NDW in M82 plants could increase the sensitivity to B. cinerea. Furthermore, transcriptional expression analysis showed that NDW affects the expression of genes related to the abscisic acid (ABA) signaling pathway. Taken together, these results indicate that NDW plays an important role in regulating plant growth, cold tolerance and mitigating susceptibility to Botrytis cinerea.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization (Xinjiang Production and Construction Crops), College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, Hubei, China
| | - Jianwen Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
40
|
Zhang H, Zhai N, Ma X, Zhou H, Cui Y, Wang C, Xu G. Overexpression of OsRLCK241 confers enhanced salt and drought tolerance in transgenic rice (Oryza sativa L.). Gene 2020; 768:145278. [PMID: 33166596 DOI: 10.1016/j.gene.2020.145278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) have been demonstrated to be involved in the regulation of growth, development, and pathogen responses in plants. However, the identity of RLCKs involved in abiotic tolerance remains elusive. In this study, we present data on OsRLCK241, a receptor-like cytoplasmic kinase that is induced by salt and drought stresses. Subcellular localization revealed the presence of an OsRLCK241-GFP fusion protein at the plasma membrane. Under normal conditions, we did not observe any measurable discrepancies between the development and growth of WT and OsRLCK241 transgenic plants. In OsRLCK241 transgenic plants, the overexpression of OsRLCK241 conferred improved tolerance to salt and drought stresses. OsRLCK241 expression improved ROS detoxification by enhancing the activities of ROS scavengers as well as the accumulation of compatible osmolytes to alleviate the osmotic stress evoked by salt and drought stresses. Additionally, several stress-responsive genes showed higher expression levels in OsRLCK241 transgenic plants upon exposure to salt and drought conditions. Collectively, our observations suggest that OsRLCK241 improved salt and drought tolerance in rice is mainly due to improved ROS detoxification, increased accumulation of osmolytes, and altered expression of stress-responsive genes.
Collapse
Affiliation(s)
- Hui Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xiang Ma
- Henan Vocational College of Agriculture, Zhengzhou 451450, China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yanchun Cui
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Chen Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Tanaka H, Muramoto N, Sugimoto H, Oda AH, Ohta K. Extended TAQing system for large-scale plant genome reorganization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2139-2150. [PMID: 32579240 DOI: 10.1111/tpj.14888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
We previously developed a large-scale genome restructuring technology called the TAQing system. It can induce genomic rearrangements by introducing transient and conditional formation of DNA double-strand breaks (DSBs) via heat activation of a restriction enzyme TaqI, which can cleave DNA at 5'-TCGA-3' sequences in the genome at higher temperatures (37-42°C). Such heat treatment sometimes confers lethal damage in certain plant species and TaqI cannot induce rearrangements in AT-rich regions. To overcome such problems we developed an extended TAQing (Ex-TAQing) system, which enables the use of a wider range of restriction enzymes active at standard plant-growing temperatures. We established the Ex-TAQing system using MseI that can efficiently cleave DNA at room temperature (at temperatures ranging from 22 to 25°C) and the 5'-TTAA-3' sequence which is highly abundant in the Arabidopsis genome. A synthetic intron-spanning MseI gene, which was placed downstream of a heat-shock-inducible promoter, was conditionally expressed upon milder heat treatment (33°C) to generate DSBs in Arabidopsis chromosomes. Genome resequencing revealed various types of genomic rearrangements, including copy number variations, translocation and direct end-joining at MseI cleavage sites. The Ex-TAQing system could induce large-scale rearrangements in diploids more frequently (17.4%, n = 23) than the standard TAQing system. The application of this system to tetraploids generated several strains with chromosomal rearrangements associated with beneficial phenotypes, such as high salinity stress tolerance and hypersensitivity to abscisic acid. We have developed the Ex-TAQing system, allowing more diverse patterns of genomic rearrangements, by employing various types of endonucleases and have opened a way to expand the capacity for artificial genome reorganization.
Collapse
Affiliation(s)
- Hidenori Tanaka
- Genome Engineering Program, Strategic Innovative Research-Domain, Toyota Central R&D Laboratories, Inc, Nagakute, Aichi, 480-1192, Japan
| | - Nobuhiko Muramoto
- Genome Engineering Program, Strategic Innovative Research-Domain, Toyota Central R&D Laboratories, Inc, Nagakute, Aichi, 480-1192, Japan
| | - Hiroki Sugimoto
- Genome Engineering Program, Strategic Innovative Research-Domain, Toyota Central R&D Laboratories, Inc, Nagakute, Aichi, 480-1192, Japan
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033, Japan
| |
Collapse
|
42
|
|
43
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
44
|
Gu J, Sun J, Liu N, Sun X, Liu C, Wu L, Liu G, Zeng F, Hou C, Han S, Zhen W, Wang D. A novel cysteine-rich receptor-like kinase gene, TaCRK2, contributes to leaf rust resistance in wheat. MOLECULAR PLANT PATHOLOGY 2020; 21:732-746. [PMID: 32196909 PMCID: PMC7170779 DOI: 10.1111/mpp.12929] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/04/2023]
Abstract
Leaf rust, caused by Puccinia triticina, is one of the most destructive fungal diseases in wheat production worldwide. The hypersensitive reaction (HR) is an important defence response against P. triticina infection. In this study, the physiological races 165 and 260 of P. triticina were combined with a line derived from the bread wheat cultivar Thatcher with the leaf rust resistance locus Lr26 to form compatible and incompatible combinations, respectively. Based on an RNA-Seq database of the interaction systems, a new wheat cysteine-rich receptor-like kinase gene, TaCRK2, is specifically induced and up-regulated in the incompatible combination. We identified that TaCRK2 was regulated in a Ca2+ -dependent manner. Knockdown of TaCRK2 by virus-induced gene silencing and RNAi leads to a dramatic increase in HR area and the number of haustorial mother cells at the single infection site. In addition, urediniospores, a P. triticina-specific pathogenic marker in compatible combinations, were observed on leaf surfaces of silenced plants at approximately 15 days after inoculation in the incompatible combination. Moreover, transcription levels of TaPR1, TaPR2, and TaPR5 were obviously reduced in TaCRK2-silenced plants. TaCRK2 overexpression in Nicotiana benthamiana induced strong HR-like cell death. Finally, transient expression of green fluorescent protein fused with TaCRK2 in N. benthamiana indicated that TaCRK2 localizes in the endoplasmic reticulum. Thus, TaCRK2 plays an important role in the resistance to P. triticina infection and has a positive regulation effect on the HR cell death process induced by P. triticina.
Collapse
Affiliation(s)
- Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Jiawei Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Na Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Xizhe Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | | | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Gang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| | - Wenchao Zhen
- Key Laboratory of Regulation and Control of Crop Growth of HebeiCollege of AgronomyHebei Agriculture UniversityBaodingChina
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyCollege of Life SciencesHebei Agriculture UniversityBaodingChina
| |
Collapse
|
45
|
Konopka-Postupolska D, Dobrowolska G. ABA perception is modulated by membrane receptor-like kinases. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1210-1214. [PMID: 32076729 PMCID: PMC7031077 DOI: 10.1093/jxb/erz531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article comments on: Shang Y, Yang D, Ha Y, Shin H-Y, Nam KH. 2020. RPK1 and BAK1 sequentially form complexes with OST1 to regulate ABA-induced stomatal closure. Journal of Experimental Botany 71, 1491–1502.
Collapse
Affiliation(s)
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
46
|
Pan J, Li Z, Wang Q, Yang L, Yao F, Liu W. An S-domain receptor-like kinase, OsESG1, regulates early crown root development and drought resistance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110318. [PMID: 31779898 DOI: 10.1016/j.plantsci.2019.110318] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 05/19/2023]
Abstract
Plant receptor-like kinase (RLKs) are serine/threonine protein kinases that play fundamental roles in development, innate immunity, and abiotic stress response. Here, we identified an S-domain receptor-like kinase OsESG1 from rice (Oryza sativa), and identified its involvement in early crown root (CR) development and drought response. The OsESG1 kinase domain possessed auto-phosphorylation activity and was able to phosphorylate MBP and His proteins. OsESG1 was expressed ubiquitously in all tissues that were examined, with relatively higher expression in the embryo. And it could be induced to express by treating with PEG, NaCl and ABA. Transgenic plants carrying anti-sense (AS) OsESG1 were generated by knockdown of OsESG1 expression. At the early seedling stage, AS lines had fewer CRs and shorter shoot compared with wild type (WT) plants. IAA flux and the genes' expressions of the auxin responsive and efflux carrier were infected in the AS lines. These results indicated that auxin signaling and polar auxin transport (PAT) were disrupted. The AS lines were more sensitive to osmotic stress compared to WT, and showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), lower activities of antioxidant enzymes, and impaired expressions of stress-related genes under PEG treatment. Results above suggested that OsESG1 may regulate CR initiation and development by controlling auxin response and distribution, and participate in stress response by regulating the activities of antioxidants and expressions of stress-regulated genes.
Collapse
Affiliation(s)
- Jiaowen Pan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Zhen Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Qingguo Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Lianqun Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Fangyin Yao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| | - Wei Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| |
Collapse
|
47
|
Pelagio-Flores R, Muñoz-Parra E, Barrera-Ortiz S, Ortiz-Castro R, Saenz-Mata J, Ortega-Amaro MA, Jiménez-Bremont JF, López-Bucio J. The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses. PLANTA 2019; 251:2. [PMID: 31776759 DOI: 10.1007/s00425-019-03296-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
CRK28, a cysteine-rich receptor-like kinase, plays a role in root organogenesis and overall growth of plants and antagonizes abscisic acid response in seed germination and primary root growth. Receptor-like kinases (RLK) orchestrate development and adaptation to environmental changes in plants. One of the largest RLK groups comprises cysteine-rich receptor-like kinases (CRKs), for which the function of most members remains unknown. In this report, we show that the loss of function of CRK28 led to the formation of roots that are longer and more branched than the parental (Col-0) plantlets, and this correlates with an enhanced domain of the mitotic reporter CycB1:uidA in primary root meristems, whereas CRK28 overexpressing lines had the opposite phenotype, including slow root growth and reduced lateral root formation. Epidermal cell analyses revealed that crk28 mutants had reduced root hair length and increased trichome number, whereas 35S::CRK28 lines present primary roots with longer root hairs but lesser trichomes in leaves. The overall growth in soil of crk28 mutant and CRK28 overexpressing lines was reduced or enhanced, respectively, when compared to the parental (Col-0) seedlings, while germination, root growth and expression analyses of ABI3 and ABI5 further showed that CRK28 modulates ABA responses, which may be important to fine-tune plant morphogenesis. Our study unravels the participation of RLK signaling in root growth and epidermal cell differentiation.
Collapse
Affiliation(s)
- Ramón Pelagio-Flores
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Edith Muñoz-Parra
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, VER, Mexico
| | - Jorge Saenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n, Fracc. Filadelfia, 35010, Gómez Palacio, DGO, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B3, 58040, Morelia, MICH, Mexico.
| |
Collapse
|
48
|
Jia H, Li J, Zhang J, Sun P, Lu M, Hu J. The Salix psammophila SpRLCK1 involved in drought and salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:222-233. [PMID: 31586722 DOI: 10.1016/j.plaphy.2019.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) play critical roles in biotic and abiotic stress responses in plants. However, the functions of RLCKs from the desert shrub willow Salix psammophila have not been characterized. Here, we focused on the biological function of SpRLCK1, which was previously identified as a potential drought-related gene. Phylogenetic analysis and subcellular localization revealed that SpRLCK1 was a cytoplasmic-localized protein with a protein kinase domain and belonged to the RLCK VIIa subclass. Gene expression profile revealed that SpRLCK1 was predominantly expressed in the root, being consistent with the GUS staining of pSpRLCK1:GUS transgenic plants. Additionally, the expression of SpRLCK1 was significantly induced by drought and salt stresses. To verify the function of SpRLCK1, we generated its overexpressing transgenic lines in Arabidopsis thaliana. The SpRLCK1-overexpressing plants exhibited higher tolerance to drought and salt stresses, as evidenced by the higher survival rate, relative water content and antioxidant enzyme activity than those of wild-type plants. The SpRLCK1-overexpressing plants enhanced drought and salt tolerance by improving ROS-scavenging activities. A co-expression network for SpRLCK1 was constructed, and the expression analysis indicated that SpRLCK1 regulated the expression of a series of stress-related genes. Taken together, our results demonstrate that SpRLCK1 confers plant drought and salt tolerance through enhancing the activity of antioxidant enzymes and cooperating with stress-related genes.
Collapse
Affiliation(s)
- Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
49
|
Qin T, Tian Q, Wang G, Xiong L. LOWER TEMPERATURE 1 Enhances ABA Responses and Plant Drought Tolerance by Modulating the Stability and Localization of C2-Domain ABA-Related Proteins in Arabidopsis. MOLECULAR PLANT 2019; 12:1243-1258. [PMID: 31102784 DOI: 10.1016/j.molp.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 05/09/2023]
Abstract
Plasma membrane-associated abscisic acid (ABA) signal transduction is an integral part of ABA signaling. The C2-domain ABA-related (CAR) proteins play important roles in the recruitment of ABA receptors to the plasma membrane to facilitate ABA signaling. However, how CAR proteins are regulated remains unclear. In this study, we conducted a genetic screen for mutants with altered leaf transpiration and identified an uncharacterized protein, LOWER TEMPERATURE 1 (LOT1), which regulates the dynamic localization and stability of CAR proteins. The lot1 mutant had a lower leaf temperature as compared with the wild type due to higher transpiration. We found that LOT1 physically interacts with CAR9 , and ABA reduces LOT1-CAR9 interaction in the nucleus, likely via Ca2+, resulting in increased localization of CAR9 to the plasma membrane. We further found that the stability of CAR9 is affected by LOT1 less CAR9 proteins were accumulated and more were ubiquitinated in lot1. While the lot1, car9 and lot1 car9 mutants were hyposensitive to ABA, the hyposensitive phenotype of lot1 could be rescued by CAR9 overexpression. Collectively, our study reveals that LOT1 regulates plant tolerance to drought stress by affecting ABA signaling through regulating the stability and dynamic localization of CAR9.
Collapse
Affiliation(s)
- Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; Texas A&M Agrilife Research Center, Dallas, TX, USA
| | - Qiuzhen Tian
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guifeng Wang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Texas A&M Agrilife Research Center, Dallas, TX, USA; State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Ma Liu Shui, Hong Kong, China.
| |
Collapse
|
50
|
Sun M, Shen Y, Yin K, Guo Y, Cai X, Yang J, Zhu Y, Jia B, Sun X. A late embryogenesis abundant protein GsPM30 interacts with a receptor like cytoplasmic kinase GsCBRLK and regulates environmental stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:70-82. [PMID: 31128717 DOI: 10.1016/j.plantsci.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
A Glycine soja receptor like cytoplasmic kinase GsCBRLK was previously characterized as a positive regulator of salt tolerance. However, how GsCBRLK regulates stress responses remains obscure. Here, we report the interaction between GsCBRLK and a group 3 late embryogenesis abundant protein GsPM30, and suggest its role in stress responses. GsPM30 was found to physically associate with GsCBRLK through yeast two hybrid assays, which was verified by bimolecular fluorescence complementation analysis. Deletion analyses showed that the N-terminal variable domain of GsCBRLK was sufficient for GsPM30 interaction. Besides GsPM30, GsCBRLK could associate with several group 3 LEAs, of which the N-terminus sequences show high identity with GsPM30. Lower binding affinity or even no interaction was observed between GsCBRLK and other group 3 LEAs, which are less closely related to GsPM30. Furthermore, we observed that GsPM30 could localize surrounding the internal circumference of plant cells, as well as in cytoplasm and nucleus. In addition, GUS staining and quantitative real-time PCR results suggested the ubiquitous expression in different tissues and induced expression by NaCl and mannitol treatments for GsPM30. Consistently, GsPM30 overexpression in Arabidopsis caused increased tolerance to high salinity and dehydration/water deficit at both the young and adult seedling stages. Our results demonstrated the interaction between GsCBRLK and LEAs, and revealed the positive role of GsPM30 in stress responses.
Collapse
Affiliation(s)
- Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yongxia Guo
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Junkai Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|