1
|
Niba PTN, Nji AM, Ali IM, Akam LF, Dongmo CH, Chedjou JPK, Fomboh CT, Nana WD, Oben OLA, Selly-Ngaloumo AA, Moyeh MN, Ngu JA, Ludovic AJ, Aboh PM, Ambani MCE, Omgba PAM, Kotcholi GB, Adzemye LM, Nna DRA, Douanla A, Ango Z, Ewane MS, Ticha JT, Tatah FM, Dinza G, Ndikum VN, Fosah DA, Bigoga JD, Alifrangis M, Mbacham WF. Effectiveness and safety of artesunate-amodiaquine versus artemether-lumefantrine for home-based treatment of uncomplicated Plasmodium falciparum malaria among children 6-120 months in Yaoundé, Cameroon: a randomized trial. BMC Infect Dis 2022; 22:166. [PMID: 35189818 PMCID: PMC8862275 DOI: 10.1186/s12879-022-07101-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Many studies have reported high efficacy and safety of artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) when administered under direct observation in Cameroon. There is paucity of data to support their continuous use in home-based treatment of uncomplicated Plasmodium falciparum malaria in Cameroon. Hence, this study aimed to assess the effectiveness and safety of AS-AQ versus AL for home-based treatment of uncomplicated P. falciparum malaria among children 6–120 months in Yaoundé, Cameroon. Methods A two-arm, open-label, randomized, controlled trial comparing the equivalence of AS-AQ (experimental group) and AL (control group) was carried out from May 2019 to April 2020 at two secondary hospitals in Yaoundé. Participants were randomized to receive either AS-AQ or AL. After the first dose, antimalarial drugs were given at home, rather than under direct observation by a study staff. The conventional on-treatment and post-treatment laboratory and clinical evaluations were not done until day 3 of the full antimalarial treatment course. The evaluation of effectiveness was mainly based on per protocol polymerase chain reaction adjusted adequate clinical and parasitological response (PP PCR adjusted ACPR) on day 28 post-treatment. Safety was based on assessment of adverse events (AEs) and severe adverse events (SAEs) from day 1 to day 28. Results A total of 242 children were randomized to receive AS-AQ (n = 114) and AL (n = 128). The PP PCR adjusted day 28 cure rates were [AS-AQ = 96.9% (95% CI, 91.2–99.4) versus AL = 95.5% (95% CI, 89.9–98.5), P = 0.797]. Expected mild to moderate adverse events were reported in both arms [AS-AQ = 83 (84.7%) versus AL = 99 (86.1%), P = 0.774]. The most common adverse events included: transient changes of hematologic indices and fever. Conclusions This study demonstrated that AS-AQ and AL are effective and safe for home management of malaria in Yaoundé. The evidence from this study supports the parallel use of the two drugs in routine practice. However, the findings from this study do not describe the likely duration of antimalarial effectiveness in holoendemic areas where multiple courses of treatment might be required. Trial registration: This study is a randomized controlled trial and it was retrospectively registered on 23/09/2020 at ClinicalTrials.gov with registration number NCT04565184. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07101-2.
Collapse
Affiliation(s)
- Peter Thelma Ngwa Niba
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Akindeh Mbuh Nji
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Innocent Mbulli Ali
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Lawrence Fonyonga Akam
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Cedric Hermann Dongmo
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Kengne Chedjou
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Calvino Tah Fomboh
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - William Dorian Nana
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Ornella Laetitia Ayem Oben
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Abdel Aziz Selly-Ngaloumo
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marcel N Moyeh
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Jude Achidi Ngu
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Ambassa Jean Ludovic
- District Medical Center, Minkoa-Meyos, Yaoundé, Cameroon.,District Hospital, Cité Verte, Yaoundé, Cameroon
| | | | | | | | | | | | | | - Adèle Douanla
- District Medical Center, Minkoa-Meyos, Yaoundé, Cameroon
| | - Ze Ango
- District Medical Center, Minkoa-Meyos, Yaoundé, Cameroon
| | | | - Joel Tewara Ticha
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Fritz Mbuh Tatah
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Golwa Dinza
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Valentine Nchafor Ndikum
- Department of Pharmacology and African Traditional Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Dorothy A Fosah
- National Malaria Control Program, Ministry of Public Health, Yaoundé, Cameroon
| | - Jude D Bigoga
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wilfred F Mbacham
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon. .,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon. .,Cameroon Coalition Against Malaria, P.O. Box 8094, Yaoundé, Cameroon.
| |
Collapse
|
2
|
Hughes E, Wallender E, Mohamed Ali A, Jagannathan P, Savic RM. Malaria PK/PD and the Role Pharmacometrics Can Play in the Global Health Arena: Malaria Treatment Regimens for Vulnerable Populations. Clin Pharmacol Ther 2021; 110:926-940. [PMID: 33763871 PMCID: PMC8518425 DOI: 10.1002/cpt.2238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease which disproportionately effects children and pregnant women. These vulnerable populations are often excluded from clinical trials resulting in one‐size‐fits‐all treatment regimens based on those established for a nonpregnant adult population. Pharmacokinetic/pharmacodynamic (PK/PD) models can be used to optimize dose selection as they define the drug exposure‐response relationship. Additionally, these models are able to identify patient characteristics that cause alterations in the expected PK/PD profiles and through simulations can recommend changes to dosing which compensate for the differences. In this review, we examine how PK/PD models have been applied to optimize antimalarial dosing recommendations for young children, including those who are malnourished, pregnant women, and individuals receiving concomitant therapies such as those for HIV treatment. The malaria field has had great success in utilizing PK/PD models as a foundation to update treatment guidelines and propose the next generation of dosing regimens to investigate in clinical trials. We propose how the malaria field can continue to use modeling to improve therapies by further integrating PK data into clinical studies and including data on drug resistance and host immunity in PK/PD models. Finally, we suggest that other disease areas can achieve similar success in applying pharmacometrics to improve outcomes by implementing three key principals.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Cao R, Hu H, Li Y, Wang X, Xu M, Liu J, Zhang H, Yan Y, Zhao L, Li W, Zhang T, Xiao D, Guo X, Li Y, Yang J, Hu Z, Wang M, Zhong W. Anti-SARS-CoV-2 Potential of Artemisinins In Vitro. ACS Infect Dis 2020; 6:2524-2531. [PMID: 32786284 PMCID: PMC7437450 DOI: 10.1021/acsinfecdis.0c00522] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/12/2022]
Abstract
The discovery of novel drug candidates with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) potential is critical for the control of the global COVID-19 pandemic. Artemisinin, an old antimalarial drug derived from Chinese herbs, has saved millions of lives. Artemisinins are a cluster of artemisinin-related drugs developed for the treatment of malaria and have been reported to have multiple pharmacological activities, including anticancer, antiviral, and immune modulation. Considering the reported broad-spectrum antiviral potential of artemisinins, researchers are interested in whether they could be used to combat COVID-19. We systematically evaluated the anti-SARS-CoV-2 activities of nine artemisinin-related compounds in vitro and carried out a time-of-drug-addition assay to explore their antiviral mode of action. Finally, a pharmacokinetic prediction model was established to predict the therapeutic potential of selected compounds against COVID-19. Arteannuin B showed the highest anti-SARS-CoV-2 potential with an EC50 of 10.28 ± 1.12 μM. Artesunate and dihydroartemisinin showed similar EC50 values of 12.98 ± 5.30 μM and 13.31 ± 1.24 μM, respectively, which could be clinically achieved in plasma after intravenous administration. Interestingly, although an EC50 of 23.17 ± 3.22 μM was not prominent among the tested compounds, lumefantrine showed therapeutic promise due to high plasma and lung drug concentrations after multiple dosing. Further mode of action analysis revealed that arteannuin B and lumefantrine acted at the post-entry step of SARS-CoV-2 infection. This research highlights the anti-SARS-CoV-2 potential of artemisinins and provides leading candidates for anti-SARS-CoV-2 drug research and development.
Collapse
Affiliation(s)
- Ruiyuan Cao
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Hengrui Hu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Yufeng Li
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Xi Wang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Mingyue Xu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Jia Liu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Huanyu Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Yunzheng Yan
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Lei Zhao
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Wei Li
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Tianhong Zhang
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
- Guoke Excellence
(Beijing) Medicine Technology Research Co., Ltd.,
Beijing 100176, P. R. China
| | - Dian Xiao
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Xiaojia Guo
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Yuexiang Li
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Jingjing Yang
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Zhihong Hu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Manli Wang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Wu Zhong
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| |
Collapse
|
4
|
Trasi NS, Bhujbal SV, Zemlyanov DY, Zhou QT, Taylor LS. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100052. [PMID: 32760909 PMCID: PMC7390794 DOI: 10.1016/j.ijpx.2020.100052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 11/26/2022]
Abstract
Amorphous solid dispersions (ASDs) of lumefantrine, which has low aqueous solubility, have been shown to improve bioavailability relative to crystalline formulations. Herein, the crystallization tendency and release properties of a variety of lumefantrine ASD granules, formed on a blend of microcrystalline cellulose and anhydrous lactose, prepared using a simple solvent evaporation method, were evaluated. Several polymers, a majority of which contained acidic moieties, and different drug loadings were assessed. Crystallinity as a function of time following exposure to stress storage conditions of 40 °C and 75% relative humidity was monitored for the various dispersions. Release testing was performed and ASD characteristics were further evaluated using infrared and X-ray photoelectron spectroscopy (XPS). A large difference in stability to crystallization was observed between the various ASDs, most notably depending on polymer chemistry. This could be largely rationalized based on the extent of drug-polymer interactions, specifically the degree of lumefantrine-polymer salt formation, which could be readily assessed with XPS spectroscopy. Lumefantrine release from the ASDs also varied considerably, whereby the best polymer for promoting physical stability did not lead to the highest extent of drug release. Several formulations led to concentrations above the amorphous solubility of lumefantrine, with the formation of nano-sized drug-rich aggregates. A balance between the ability of a given polymer to promote physical stability and drug release may need to be sought.
Collapse
Affiliation(s)
- Niraj S Trasi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sonal V Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
5
|
Mhamilawa LE, Ngasala B, Morris U, Kitabi EN, Barnes R, Soe AP, Mmbando BP, Björkman A, Mårtensson A. Parasite clearance, cure rate, post-treatment prophylaxis and safety of standard 3-day versus an extended 6-day treatment of artemether-lumefantrine and a single low-dose primaquine for uncomplicated Plasmodium falciparum malaria in Bagamoyo district, Tanzania: a randomized controlled trial. Malar J 2020; 19:216. [PMID: 32576258 PMCID: PMC7310382 DOI: 10.1186/s12936-020-03287-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) resistant Plasmodium falciparum represents an increasing threat to Africa. Extended ACT regimens from standard 3 to 6 days may represent a means to prevent its development and potential spread in Africa. Methods Standard 3-day treatment with artemether–lumefantrine (control) was compared to extended 6-day treatment and single low-dose primaquine (intervention); in a randomized controlled, parallel group, superiority clinical trial of patients aged 1–65 years with microscopy confirmed uncomplicated P. falciparum malaria, enrolled in Bagamoyo district, Tanzania. The study evaluated parasite clearance, including proportion of PCR detectable P. falciparum on days 5 and 7 (primary endpoint), cure rate, post-treatment prophylaxis, safety and tolerability. Clinical, and laboratory assessments, including ECG were conducted during 42 days of follow-up. Blood samples were collected for parasite detection (by microscopy and PCR), molecular genotyping and pharmacokinetic analyses. Kaplan–Meier survival analyses were done for both parasite clearance and recurrence. Results A total of 280 patients were enrolled, 141 and 139 in the control and intervention arm, respectively, of whom 121 completed 42 days follow-up in each arm. There was no difference in proportion of PCR positivity across the arms at day 5 (80/130 (61.5%) vs 89/134 (66.4%), p = 0.44), or day 7 (71/129 (55.0%) vs 70/134 (52.2%), p = 0.71). Day 42 microscopy determined cure rates (PCR adjusted) were 97.4% (100/103) and 98.3% (110/112), p = 0.65, in the control and intervention arm, respectively. Microscopy determined crude recurrent parasitaemia during follow-up was 21/121 (17.4%) in the control and 14/121 (11.6%) in the intervention arm, p = 0.20, and it took 34 days and 42 days in the respective arms for 90% of the patients to remain without recurrent parasitaemia. Lumefantrine exposure was significantly higher in intervention arm from D3 to D42, but cardiac, biochemical and haematological safety was high and similar in both arms. Conclusion Extended 6-day artemether–lumefantrine treatment and a single low-dose of primaquine was not superior to standard 3-day treatment for ACT sensitive P. falciparum infections but, importantly, equally efficacious and safe. Thus, extended artemether–lumefantrine treatment may be considered as a future treatment regimen for ACT resistant P. falciparum, to prolong the therapeutic lifespan of ACT in Africa. Trial registration ClinicalTrials.gov, NCT03241901. Registered July 27, 2017 https://clinicaltrials.gov/show/NCT03241901
Collapse
Affiliation(s)
- Lwidiko E Mhamilawa
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden. .,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eliford Ngaimisi Kitabi
- Office of Clinical Pharmacology, Division of Pharmacometrics, Food and Drugs Administration, Silver Spring, MD, USA
| | - Rory Barnes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aung Paing Soe
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bruno P Mmbando
- Tanga Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Mutagonda RF, Minzi OMS, Massawe SN, Asghar M, Färnert A, Kamuhabwa AAR, Aklillu E. Pregnancy and CYP3A5 Genotype Affect Day 7 Plasma Lumefantrine Concentrations. Drug Metab Dispos 2020; 47:1415-1424. [PMID: 31744845 DOI: 10.1124/dmd.119.088062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Pregnancy and pharmacogenetics variation alter drug disposition and treatment outcome. The objective of this study was to investigate the effect of pregnancy and pharmacogenetics variation on day 7 lumefantrine (LF) plasma concentration and therapeutic responses in malaria-infected women treated with artemether-lumefantrine (ALu) in Tanzania. A total of 277 (205 pregnant and 72 nonpregnant) women with uncomplicated Plasmodium falciparum malaria were enrolled. Patients were treated with ALu and followed up for 28 days. CYP3A4, CYP3A5, and ABCB1 genotyping were done. Day 7 plasma LF concentration and the polymerase chain reaction (PCR) - corrected adequate clinical and parasitological response (ACPR) at day 28 were determined. The mean day 7 plasma LF concentrations were significantly lower in pregnant women than nonpregnant women [geometric mean ratio = 1.40; 95% confidence interval (CI) of geometric mean ratio (1.119-1.1745), P < 0.003]. Pregnancy, low body weight, and CYP3A5*1/*1 genotype were significantly associated with low day 7 LF plasma concentration (P < 0.01). PCR-corrected ACPR was 93% (95% CI = 89.4-96.6) in pregnant women and 95.7% (95% CI = 90.7-100) in nonpregnant women. Patients with lower day 7 LF concentration had a high risk of treatment failure (mean 652 vs. 232 ng/ml, P < 0.001). In conclusion, pregnancy, low body weight, and CYP3A5*1 allele are significant predictors of low day 7 LF plasma exposure. In turn, lower day 7 LF concentration is associated with a higher risk of recrudescence. SIGNIFICANCE STATEMENT: This study reports a number of factors contributing to the lower day 7 lumefantrine (LF) concentration in women, which includes pregnancy, body weight, and CYP3A5*1/*1 genotype. It also shows that day 7 LF concentration is a main predictor of malaria treatment. These findings highlight the need to look into artemether-LF dosage adjustment in pregnant women so as to be able to maintain adequate drug concentration, which is required to reduce treatment failure rates in pregnant women.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Siriel N Massawe
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Muhammad Asghar
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Anna Färnert
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| | - Eleni Aklillu
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy (R.F.M., O.O.M.S.M., A.A.R.K.), and Department of Obstetrics and Gynecology, School of Medicine (S.N.M.), Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (M.A., A.F.); Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden (A.F.); and Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden (E.A.)
| |
Collapse
|
7
|
Salim M, Fraser-Miller SJ, Be Rziņš KR, Sutton JJ, Ramirez G, Clulow AJ, Hawley A, Beilles S, Gordon KC, Boyd BJ. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion. Mol Pharm 2020; 17:885-899. [PMID: 32011151 PMCID: PMC7054896 DOI: 10.1021/acs.molpharmaceut.9b01149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Techniques enabling in situ monitoring of drug solubilization and changes in the solid-state of the drug during the digestion of milk and milk-based formulations are valuable for predicting the effectiveness of such formulations in improving the oral bioavailability of poorly water-soluble drugs. We have recently reported the use of low-frequency Raman scattering spectroscopy (region of analysis <200 cm-1) as an analytical approach to probe solubilization of drugs during digestion in milk using ferroquine (SSR97193) as the model compound. This study investigates the wider utilization of this technique to probe the solubilization behavior of other poorly water-soluble drugs (halofantrine, lumefantrine, and clofazimine) in not only milk but also infant formula in the absence or presence of bile salts during in vitro digestion. Multivariate analysis was used to interpret changes to the spectra related to the drug as a function of digestion time, through tracking changes in the principal component (PC) values characteristic to the drug signals. Characteristic low-frequency Raman bands for all of the drugs were evident after dispersing the solid drugs in suspension form in milk and infant formula. The drugs were generally solubilized during the digestion of the formulations as observed previously for ferroquine and correlated with behavior determined using small-angle X-ray scattering (SAXS). A greater extent of drug solubilization was also generally observed in the infant formula compared to milk. However, in the case of the drug clofazimine, the correlation between low-frequency Raman scattering and SAXS was not clear, which may arise due to background interference from clofazimine being an intense red dye, which highlights a potential limitation of this new approach. Overall, the in situ monitoring of drug solubilization in milk and milk-based formulations during digestion can be achieved using low-frequency Raman scattering spectroscopy, and the information obtained from studying this spectral region can provide better insights into drug solubilization compared to the mid-frequency Raman region.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sara J Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ka Rlis Be Rziņš
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Joshua J Sutton
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3169, Australia
| | | | - Keith C Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
8
|
Statelova M, Goumas K, Fotaki N, Holm R, Symillides M, Reppas C, Vertzoni M. On the Design of Food Effect Studies in Adults for Extrapolating Oral Drug Absorption Data to Infants: an Exploratory Study Highlighting the Importance of Infant Food. AAPS JOURNAL 2019; 22:6. [DOI: 10.1208/s12248-019-0380-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
|
9
|
Chotsiri P, Denoeud‐Ndam L, Baudin E, Guindo O, Diawara H, Attaher O, Smit M, Guerin PJ, Doumbo OK, Wiesner L, Barnes KI, Hoglund RM, Dicko A, Etard J, Tarning J. Severe Acute Malnutrition Results in Lower Lumefantrine Exposure in Children Treated With Artemether-Lumefantrine for Uncomplicated Malaria. Clin Pharmacol Ther 2019; 106:1299-1309. [PMID: 31152555 PMCID: PMC6896236 DOI: 10.1002/cpt.1531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/08/2019] [Indexed: 01/28/2023]
Abstract
Severe acute malnutrition (SAM) has been reported to be associated with increased malaria morbidity in Sub-Saharan African children and may affect the pharmacology of antimalarial drugs. This population pharmacokinetic (PK)-pharmacodynamic study included 131 SAM and 266 non-SAM children administered artemether-lumefantrine twice daily for 3 days. Lumefantrine capillary plasma concentrations were adequately described by two transit-absorption compartments followed by two distribution compartments. Allometrically scaled body weight and an enzymatic maturation effect were included in the PK model. Mid-upper arm circumference was associated with decreased absorption of lumefantrine (25.4% decreased absorption per 1 cm reduction). Risk of recurrent malaria episodes (i.e., reinfection) were characterized by an interval-censored time-to-event model with a sigmoid maximum-effect model describing the effect of lumefantrine. SAM children were at risk of underexposure to lumefantrine and an increased risk of malaria reinfection compared with well-nourished children. Research on optimized regimens should be considered for malaria treatment in malnourished children.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | | | | | | | - Halimatou Diawara
- Malaria Research and Training CentreFaculty of Medicine Pharmacy and DentistryUniversity of BamakoBamakoMali
| | - Oumar Attaher
- Malaria Research and Training CentreFaculty of Medicine Pharmacy and DentistryUniversity of BamakoBamakoMali
| | - Michiel Smit
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Philippe J. Guerin
- WorldWide Antimalarial Resistance Network (WWARN)OxfordUK
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Ogobara K. Doumbo
- Malaria Research and Training CenterFaculté de Médecine et d'Odonto‐stomatologie et Faculté de PharmacieUniversité des Sciences Techniques et Technologies de BamakoBamakoMali
| | - Lubbe Wiesner
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Karen I. Barnes
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
- WorldWide Antimalarial Resistance Network (WWARN)OxfordUK
| | - Richard M. Hoglund
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Alassane Dicko
- Malaria Research and Training CenterFaculté de Médecine et d'Odonto‐stomatologie et Faculté de PharmacieUniversité des Sciences Techniques et Technologies de BamakoBamakoMali
| | - Jean‐Francois Etard
- EpicentreParisFrance
- TransVIHMI UMI 233Institut de recherche pour le développement (IRD)Inserm U 1175Montpellier 1 UniversityMontpellierFrance
| | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- WorldWide Antimalarial Resistance Network (WWARN)OxfordUK
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| |
Collapse
|
10
|
Candrinho B, Plucinski MM, Colborn JM, da Silva M, Mathe G, Dimene M, Chico AR, Castel-Branco AC, Brito F, Andela M, Ponce de Leon G, Saifodine A, Zulliger R. Quality of malaria services offered in public health facilities in three provinces of Mozambique: a cross-sectional study. Malar J 2019; 18:162. [PMID: 31060605 PMCID: PMC6503352 DOI: 10.1186/s12936-019-2796-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Fever associated with malaria is the leading cause of health care-seeking in Mozambique, yet there is limited evidence on the quality of malaria case management. This study evaluated the quality of malaria service provision offered in public health facilities in Mozambique. METHODS A cross-sectional assessment was conducted in April-May 2018 in three provinces of Mozambique: Maputo Province (low malaria burden), Cabo Delgado (high), and Zambézia (high). The study included all secondary and tertiary facilities and a random sample of primary facilities in each province. Data collection included exit interviews and re-examinations of 20 randomly selected outpatient service patients, interviews with up to five health care providers and the health facility director, a stockroom inventory and routine data abstraction. RESULTS A total of 319 health care providers and 1840 patients from 117 health facilities were included. Of these, 1325 patients (72%) had suspected malaria (fever/history of fever) and 550 (30%) had febrile, confirmed malaria with the highest burden in Cabo Delgado (43%), followed by Zambézia (34%) and Maputo Province (2%). Appropriate management of malaria cases, defined as testing malaria suspects and treating confirmed cases with the correct dose of anti-malarial, was highest in Zambézia and Cabo Delgado where 52% (95% CI 42-62) and 49% (42-57) of febrile malaria cases were appropriately managed, respectively. Only 14% (5-34) of febrile cases in Maputo Province were appropriately managed. The biggest gap in the malaria case management pathway was failure to test febrile patients, with only 46% of patients with this indication tested for malaria in Maputo Province. Additionally, anti-malarial treatment of patients with a negative malaria test result was common, ranging from 8% (2-23) in Maputo Province to 22% (14-32) of patients with a negative test in Zambézia. Only 58-62% of patients prescribed an anti-malarial correctly recited dosing instructions. Provider training and malaria knowledge was low outside of Zambézia and supervision rates were low in all provinces. Factors associated with correct case management varied by province and included patient age, facility type, treatment and testing availability, supervision, and training. CONCLUSION These findings underscore the need to strengthen provider testing of all patients with fever, provider adherence to negative test results, and effective counselling of patients across epidemiological settings in Mozambique.
Collapse
Affiliation(s)
- Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Mateusz M Plucinski
- United States President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mariana da Silva
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Guidion Mathe
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Mercia Dimene
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | | | | | | | - Marcel Andela
- Clinton Health Access Initiative, Maputo, Mozambique
| | - Gabriel Ponce de Leon
- United States President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Abuchahama Saifodine
- United States President's Malaria Initiative, United States Agency for International Development, Maputo, Mozambique
| | - Rose Zulliger
- United States President's Malaria Initiative, United States Centers for Disease Control and Prevention, Maputo, Mozambique.
| |
Collapse
|
11
|
Boyd BJ, Salim M, Clulow AJ, Ramirez G, Pham AC, Hawley A. The impact of digestion is essential to the understanding of milk as a drug delivery system for poorly water soluble drugs. J Control Release 2018; 292:13-17. [PMID: 30359667 PMCID: PMC6290171 DOI: 10.1016/j.jconrel.2018.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023]
Abstract
Milk has previously been considered as a potential lipid-based drug delivery system for poorly water soluble drugs but it has never gained significant attention. This is in part because relying on solubility in lipid-based formulations (in this case milk) does not provide a complete picture of the behavior of such systems upon digestion. Herein, we demonstrate using time resolved X-ray scattering that the digestion of milk is actually crucial to the solubilisation of a poorly water-soluble drug, halofantrine. Halofantrine was chosen because its behaviour in lipid-based formulations has been widely investigated and because of its close structural relationship to lumefantrine, an antimalarial drug of current interest for the treatment of paediatric malaria. The transformation of the drug from a crystalline solid form in suspension in milk, to a solubilised form as a direct consequence of lipolysis highlights that consideration of digestion of the milk lipids as a critical process that influences drug solubilisation and availability for absorption is vital.
Collapse
Affiliation(s)
- Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3169, Australia
| |
Collapse
|
12
|
Tchaparian E, Sambol NC, Arinaitwe E, McCormack SA, Bigira V, Wanzira H, Muhindo M, Creek DJ, Sukumar N, Blessborn D, Tappero JW, Kakuru A, Bergqvist Y, Aweeka FT, Parikh S. Population Pharmacokinetics and Pharmacodynamics of Lumefantrine in Young Ugandan Children Treated With Artemether-Lumefantrine for Uncomplicated Malaria. J Infect Dis 2016; 214:1243-51. [PMID: 27471317 PMCID: PMC5034953 DOI: 10.1093/infdis/jiw338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022] Open
Abstract
Background. The pharmacokinetics and pharmacodynamics of lumefantrine, a component of the most widely used treatment for malaria, artemether-lumefantrine, has not been adequately characterized in young children. Methods. Capillary whole-blood lumefantrine concentration and treatment outcomes were determined in 105 Ugandan children, ages 6 months to 2 years, who were treated for 249 episodes of Plasmodium falciparum malaria with artemether-lumefantrine. Results. Population pharmacokinetics for lumefantrine used a 2-compartment open model with first-order absorption. Age had a significant positive correlation with bioavailability in a model that included allometric scaling. Children not receiving trimethoprim-sulfamethoxazole with capillary whole blood concentrations <200 ng/mL had a 3-fold higher hazard of 28-day recurrent parasitemia, compared with those with concentrations >200 ng/mL (P = .0007). However, for children receiving trimethoprim-sulfamethoxazole, the risk of recurrent parasitemia did not differ significantly on the basis of this threshold. Day 3 concentrations were a stronger predictor of 28-day recurrence than day 7 concentrations. Conclusions. We demonstrate that age, in addition to weight, is a determinant of lumefantrine exposure, and in the absence of trimethoprim-sulfamethoxazole, lumefantrine exposure is a determinant of recurrent parasitemia. Exposure levels in children aged 6 months to 2 years was generally lower than levels published for older children and adults. Further refinement of artemether-lumefantrine dosing to improve exposure in infants and very young children may be warranted.
Collapse
Affiliation(s)
- Eskouhie Tchaparian
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Nancy C Sambol
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | | | - Shelley A McCormack
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Victor Bigira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Mary Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Nitin Sukumar
- Yale School of Public Health, New Haven, Connecticut
| | | | - Jordan W Tappero
- Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
13
|
Reply to "no robust evidence of lumefantrine resistance". Antimicrob Agents Chemother 2016; 59:5867-8. [PMID: 26276896 DOI: 10.1128/aac.01355-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Influence of Food on Paediatric Gastrointestinal Drug Absorption Following Oral Administration: A Review. CHILDREN-BASEL 2015; 2:244-71. [PMID: 27417362 PMCID: PMC4928757 DOI: 10.3390/children2020244] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/26/2022]
Abstract
The objective of this paper was to review existing information regarding food effects on drug absorption within paediatric populations. Mechanisms that underpin food-drug interactions were examined to consider potential differences between adult and paediatric populations, to provide insights into how this may alter the pharmacokinetic profile in a child. Relevant literature was searched to retrieve information on food-drug interaction studies undertaken on: (i) paediatric oral drug formulations; and (ii) within paediatric populations. The applicability of existing methodology to predict food effects in adult populations was evaluated with respect to paediatric populations where clinical data was available. Several differences in physiology, anatomy and the composition of food consumed within a paediatric population are likely to lead to food-drug interactions that cannot be predicted based on adult studies. Existing methods to predict food effects cannot be directly extrapolated to allow predictions within paediatric populations. Development of systematic methods and guidelines is needed to address the general lack of information on examining food-drug interactions within paediatric populations.
Collapse
|
15
|
Tailoring a Pediatric Formulation of Artemether-Lumefantrine for Treatment of Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2015; 59:4366-74. [PMID: 26014953 DOI: 10.1128/aac.00014-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specially created pediatric formulations have the potential to improve the acceptability, effectiveness, and accuracy of dosing of artemisinin-based combination therapy (ACT) in young children, a patient group that is inherently vulnerable to malaria. Artemether-lumefantrine (AL) Dispersible is a pediatric formulation of AL that is specifically tailored for the treatment of children with uncomplicated Plasmodium falciparum malaria, offering benefits relating to efficacy, convenience and acceptance, accuracy of dosing, safety, sterility, stability, and a pharmacokinetic profile and bioequivalence similar to those of crushed and intact AL tablets. However, despite being the first pediatric antimalarial to meet World Health Organization (WHO) specifications for use in infants and children who are ≥5 kg in body weight and its inclusion in WHO Guidelines, there are few publications that focus on AL Dispersible. Based on a systematic review of the recent literature, this paper provides a comprehensive overview of the clinical experience with AL Dispersible to date. A randomized, phase 3 study that compared the efficacy and safety of AL Dispersible to those of crushed AL tablets in 899 African children reported high PCR-corrected cure rates at day 28 (97.8% and 98.5% for AL Dispersible and crushed tablets, respectively), and the results of several subanalyses of these data indicate that this activity is observed regardless of patient weight, food intake, and maximum plasma concentrations of artemether or its active metabolite, dihydroartemisinin. These and other clinical data support the continued use of pediatric antimalarial formulations in all children <5 years of age with uncomplicated malaria when accompanied by continued monitoring for the emergence of resistance.
Collapse
|
16
|
Anthony MP, Burrows JN, Duparc S, JMoehrle J, Wells TNC. The global pipeline of new medicines for the control and elimination of malaria. Malar J 2012; 11:316. [PMID: 22958514 PMCID: PMC3472257 DOI: 10.1186/1475-2875-11-316] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/21/2012] [Indexed: 12/03/2022] Open
Abstract
Over the past decade, there has been a transformation in the portfolio of medicines to combat malaria. New fixed-dose artemisinin combination therapy is available, with four different types having received approval from Stringent Regulatory Authorities or the World Health Organization (WHO). However, there is still scope for improvement. The Malaria Eradication Research agenda identified several gaps in the current portfolio. Simpler regimens, such as a single-dose cure are needed, compared with the current three-day treatment. In addition, new medicines that prevent transmission and also relapse are needed, but with better safety profiles than current medicines. There is also a big opportunity for new medicines to prevent reinfection and to provide chemoprotection. This study reviews the global portfolio of new medicines in development against malaria, as of the summer of 2012. Cell-based phenotypic screening, and 'fast followers' of clinically validated classes, mean that there are now many new classes of molecules starting in clinical development, especially for the blood stages of malaria. There remain significant gaps for medicines blocking transmission, preventing relapse, and long-duration molecules for chemoprotection. The nascent pipeline of new medicines is significantly stronger than five years ago. However, there are still risks ahead in clinical development and sustainable funding of clinical studies is vital if this early promise is going to be delivered.
Collapse
Affiliation(s)
- Melinda P Anthony
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Joerg JMoehrle
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| | - Timothy NC Wells
- Medicines for Malaria Venture (MMV), 20 rte de Pré-Bois 1215, Geneva, Switzerland
| |
Collapse
|
17
|
Bassat Q, González R, Machevo S, Nahum A, Lyimo J, Maiga H, Mårtensson A, Bashraheil M, Ouma P, Ubben D, Walter V, Nwaiwu O, Kipkeu C, Lefèvre G, Ogutu B, Menéndez C. Similar efficacy and safety of artemether-lumefantrine (Coartem®) in African infants and children with uncomplicated falciparum malaria across different body weight ranges. Malar J 2011; 10:369. [PMID: 22176931 PMCID: PMC3305670 DOI: 10.1186/1475-2875-10-369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/16/2011] [Indexed: 11/10/2022] Open
Abstract
Background Artemisinin-based combination therapy, including artemether-lumefantrine (AL), is currently recommended for the treatment of uncomplicated Plasmodium falciparum malaria. The objectives of the current analysis were to compare the efficacy and safety of AL across different body weight ranges in African children, and to examine the age and body weight relationship in this population. Methods Efficacy, safety and pharmacokinetic data from a randomized, investigator-blinded, multicentre trial of AL for treatment of acute uncomplicated P. falciparum malaria in infants and children in Africa were analysed according to body weight group. Results The trial included 899 patients (intent-to-treat population 886). The modified intent-to-treat (ITT) population (n = 812) comprised 143 children 5 to < 10 kg, 334 children 10 to < 15 kg, 277 children 15 to < 25 kg, and 58 children 25 to < 35 kg. The 28-day PCR cure rate, the primary endpoint, was comparable across all four body weight groups (97.2%, 98.9%, 97.8% and 98.3%, respectively). There were no clinically relevant differences in safety or tolerability between body weight groups. In the three AL body weight dosing groups (5 to < 15 kg, 15 to < 25 kg and 25 to < 35 kg), 80% of patients were aged 10-50 months, 46-100 months and 90-147 months, respectively. Conclusion Efficacy of AL in uncomplicated falciparum malaria is similar across body weight dosing groups as currently recommended in the label with no clinically relevant differences in safety or tolerability. AL dosing based on body weight remains advisable.
Collapse
Affiliation(s)
- Quique Bassat
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pharmacokinetic and pharmacodynamic characteristics of a new pediatric formulation of artemether-lumefantrine in African children with uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 2011; 55:3994-9. [PMID: 21670177 DOI: 10.1128/aac.01115-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetic and pharmacodynamic properties of a new pediatric formulation of artemether-lumefantrine, dispersible tablet, were determined within the context of a multicenter, randomized, parallel-group study. In an exploratory approach, we compared a new pediatric formulation with the tablet formulation administered crushed in the treatment of African children with uncomplicated Plasmodium falciparum malaria. Patients were randomized to 3 different dosing groups (weights of 5 to <15 kg, 15 and <25 kg, and 25 to <35 kg). Treatment was administered twice daily over 3 days. Plasma concentrations of artemether and its active metabolite, dihydroartemisinin (DHA), were determined at 1 and 2 h after the first dose of dispersible (n = 91) and crushed (n = 93) tablets. A full pharmacokinetic profile of lumefantrine was reconstituted on the basis of 310 (dispersible tablet) and 315 (crushed tablet) plasma samples, collected at 6 different time points (1 sample per patient). Dispersible and crushed tablets showed similar artemether and DHA maximum concentrations in plasma (C(max)) for the different body weight groups, with overall means of 175 ± 168 and 190 ± 168 ng/ml, respectively, for artemether and 64.7 ± 58.1 and 63.7 ± 65.0 ng/ml, respectively, for DHA. For lumefantrine, the population C(max) were 6.3 μg/ml (dispersible tablet) and 7.7 μg/ml (crushed tablet), whereas the areas under the concentration-time curves from time zero to the time of the last quantifiable plasma concentration measured were 574 and 636 μg · h/ml, respectively. For both formulations, descriptive quintile analyses showed no apparent association between artemether/DHA C(max) and parasite clearance time or between the lumefantrine C(max) and the occurrence of adverse events or corrected QT interval changes. The results suggest that the dispersible tablet provides adequate systemic exposure to artemether, DHA, and lumefantrine in African children with uncomplicated P. falciparum malaria.
Collapse
|
19
|
Ngasala BE, Malmberg M, Carlsson AM, Ferreira PE, Petzold MG, Blessborn D, Bergqvist Y, Gil JP, Premji Z, Mårtensson A. Effectiveness of artemether-lumefantrine provided by community health workers in under-five children with uncomplicated malaria in rural Tanzania: an open label prospective study. Malar J 2011; 10:64. [PMID: 21410954 PMCID: PMC3065443 DOI: 10.1186/1475-2875-10-64] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 03/16/2011] [Indexed: 01/23/2023] Open
Abstract
Background Home-management of malaria (HMM) strategy improves early access of anti-malarial medicines to high-risk groups in remote areas of sub-Saharan Africa. However, limited data are available on the effectiveness of using artemisinin-based combination therapy (ACT) within the HMM strategy. The aim of this study was to assess the effectiveness of artemether-lumefantrine (AL), presently the most favoured ACT in Africa, in under-five children with uncomplicated Plasmodium falciparum malaria in Tanzania, when provided by community health workers (CHWs) and administered unsupervised by parents or guardians at home. Methods An open label, single arm prospective study was conducted in two rural villages with high malaria transmission in Kibaha District, Tanzania. Children presenting to CHWs with uncomplicated fever and a positive rapid malaria diagnostic test (RDT) were provisionally enrolled and provided AL for unsupervised treatment at home. Patients with microscopy confirmed P. falciparum parasitaemia were definitely enrolled and reviewed weekly by the CHWs during 42 days. Primary outcome measure was PCR corrected parasitological cure rate by day 42, as estimated by Kaplan-Meier survival analysis. This trial is registered with ClinicalTrials.gov, number NCT00454961. Results A total of 244 febrile children were enrolled between March-August 2007. Two patients were lost to follow up on day 14, and one patient withdrew consent on day 21. Some 141/241 (58.5%) patients had recurrent infection during follow-up, of whom 14 had recrudescence. The PCR corrected cure rate by day 42 was 93.0% (95% CI 88.3%-95.9%). The median lumefantrine concentration was statistically significantly lower in patients with recrudescence (97 ng/mL [IQR 0-234]; n = 10) compared with reinfections (205 ng/mL [114-390]; n = 92), or no parasite reappearance (217 [121-374] ng/mL; n = 70; p ≤ 0.046). Conclusions Provision of AL by CHWs for unsupervised malaria treatment at home was highly effective, which provides evidence base for scaling-up implementation of HMM with AL in Tanzania.
Collapse
Affiliation(s)
- Billy E Ngasala
- Malaria Research, Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Creek D, Bigira V, Arinaitwe E, Wanzira H, Kakuru A, Tappero J, Kamya MR, Dorsey G, Sandison TG. Increased risk of early vomiting among infants and young children treated with dihydroartemisinin-piperaquine compared with artemether-lumefantrine for uncomplicated malaria. Am J Trop Med Hyg 2010; 83:873-5. [PMID: 20889882 DOI: 10.4269/ajtmh.2010.10-0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are highly efficacious antimalarial therapies in Africa. However, there are limited data regarding the tolerability of these drugs in young children. We used data from a randomized control trial in rural Uganda to compare the risk of early vomiting (within one hour of dosing) for children 6-24 months of age randomized to receive DP (n = 240) or AL (n = 228) for treatment of uncomplicated malaria. Overall, DP was associated with a higher risk of early vomiting than AL (15.1% versus 7.1%; P = 0.007). The increased risk of early vomiting with DP was only present among breastfeeding children (relative risk [RR] = 3.35, P = 0.001) compared with children who were not breastfeeding (RR = 1.03, P = 0.94). Age less than 18 months was a risk factor for early vomiting independent of treatment (RR = 3.27, P = 0.02). Our findings indicate that AL may be better tolerated than DP among young breastfeeding children treated for uncomplicated malaria.
Collapse
Affiliation(s)
- Darren Creek
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Okiro EA, Alegana VA, Noor AM, Snow RW. Changing malaria intervention coverage, transmission and hospitalization in Kenya. Malar J 2010; 9:285. [PMID: 20946689 PMCID: PMC2972305 DOI: 10.1186/1475-2875-9-285] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reports of declining incidence of malaria disease burden across several countries in Africa suggest that the epidemiology of malaria across the continent is in transition. Whether this transition is directly related to the scaling of intervention coverage remains a moot point. METHODS Paediatric admission data from eight Kenyan hospitals and their catchments have been assembled across two three-year time periods: September 2003 to August 2006 (pre-scaled intervention) and September 2006 to August 2009 (post-scaled intervention). Interrupted time series (ITS) models were developed adjusting for variations in rainfall and hospital use by surrounding communities to show changes in malaria hospitalization over the two periods. The temporal changes in factors that might explain changes in disease incidence were examined sequentially for each hospital setting, compared between hospital settings and ranked according to plausible explanatory factors. RESULTS In six out of eight sites there was a decline in Malaria admission rates with declines between 18% and 69%. At two sites malaria admissions rates increased by 55% and 35%. Results from the ITS models indicate that before scaled intervention in September 2006, there was a significant month-to-month decline in the mean malaria admission rates at four hospitals (trend P < 0.05). At the point of scaled intervention, the estimated mean admission rates for malaria was significantly less at four sites compared to the pre-scaled period baseline. Following scaled intervention there was a significant change in the month-to-month trend in the mean malaria admission rates in some but not all of the sites. Plausibility assessment of possible drivers of change pre- versus post-scaled intervention showed inconsistent patterns however, allowing for the increase in rainfall in the second period, there is a suggestion that starting transmission intensity and the scale of change in ITN coverage might explain some but not all of the variation in effect size. At most sites where declines between observation periods were documented admission rates were changing before free mass ITN distribution and prior to the implementation of ACT across Kenya. CONCLUSION This study provides evidence of significant within and between location heterogeneity in temporal trends of malaria disease burden. Plausible drivers for changing disease incidence suggest a complex combination of mechanisms, not easily measured retrospectively.
Collapse
Affiliation(s)
- Emelda A Okiro
- Malaria Public Health & Epidemiology Group, Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute/Wellcome Trust Research Programme, 00100 GPO, Nairobi, Kenya.
| | | | | | | |
Collapse
|