1
|
Marie N, Noble F. Oxycodone, an opioid like the others? Front Psychiatry 2023; 14:1229439. [PMID: 38152360 PMCID: PMC10751306 DOI: 10.3389/fpsyt.2023.1229439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 12/29/2023] Open
Abstract
The over-prescription of opioid analgesics is a growing problem in the field of addiction, which has reached epidemic-like proportions in North America. Over the past decade, oxycodone has gained attention as the leading opioid responsible for the North America opioid crisis. Oxycodone is the most incriminated drug in the early years of the epidemic of opioid use disorder in USA (roughly 1999-2016). The number of preclinical articles on oxycodone is rapidly increasing. Several publications have already compared oxycodone with other opioids, focusing mainly on their analgesic properties. The aim of this review is to focus on the genomic and epigenetic regulatory features of oxycodone compared with other opioid agonists. Our aim is to initiate a discussion of perceptible differences in the pharmacological response observed with these various opioids, particularly after repeated administration in preclinical models commonly used to study drug dependence potential.
Collapse
Affiliation(s)
| | - Florence Noble
- Université Paris Cité, CNRS, Inserm, Pharmacologie et Thérapies des Addictions, Paris, France
| |
Collapse
|
2
|
Kuhn BN, Cannella N, Crow AD, Roberts AT, Lunerti V, Allen C, Nall RW, Hardiman G, Woods LCS, Chung D, Ciccocioppo R, Kalivas PW. Novelty-induced locomotor behavior predicts heroin addiction vulnerability in male, but not female, rats. Psychopharmacology (Berl) 2022; 239:3605-3620. [PMID: 36112154 PMCID: PMC9632364 DOI: 10.1007/s00213-022-06235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022]
Abstract
RATIONALE The ongoing rise in opioid use disorder (OUD) has made it imperative to better model the individual variation within the human population that contributes to OUD vulnerability. Using animal models that capture such variation can be a useful tool. Individual variation in novelty-induced locomotion is predictive of substance use disorder (SUD) propensity. In this model, rats are characterized as high-responders (HR) or low-responders (LR) using a median split based on distance travelled during a locomotor test, and HR rats are generally found to exhibit a more SUD vulnerable behavioral phenotype. OBJECTIVES The HR/LR model has commonly been used to assess behaviors in male rats using psychostimulants, with limited knowledge of the predictive efficacy of this model in females or the use of an opioid as the reward. In the current study, we assessed several behaviors across the different phases of drug addiction (heroin taking, refraining, and seeking) in over 500 male and female heterogeneous stock rats run at two geographically separate locations. Rats were characterized as HRs or LRs within each sex for analysis. RESULTS Overall, females exhibit a more OUD vulnerable phenotype relative to males. Additionally, the HR/LR model was predictive of OUD-like behaviors in male, but not female rats. Furthermore, phenotypes did not differ in anxiety-related behaviors, reacquisition of heroin-taking, or punished heroin-taking behavior in either sex. CONCLUSIONS These results emphasize the importance of assessing females in models of individual variation in SUD and highlight limitations in using the HR/LR model to assess OUD propensity.
Collapse
Affiliation(s)
- Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, BSB 403-MSC 510, Charleston, SC, 29425, USA.
| | | | - Ayteria D Crow
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, BSB 403-MSC 510, Charleston, SC, 29425, USA
| | - Analyse T Roberts
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, BSB 403-MSC 510, Charleston, SC, 29425, USA
| | | | - Carter Allen
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Rusty W Nall
- Department of Psychology, Jacksonville State University, Jacksonville, AL, USA
| | - Gary Hardiman
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, BSB 403-MSC 510, Charleston, SC, 29425, USA
| |
Collapse
|
3
|
Butelman ER, Chen CY, Lake KJ, Brown KG, Kreek MJ. Bidirectional influence of heroin and cocaine escalation in persons with dual opioid and cocaine dependence diagnoses. Exp Clin Psychopharmacol 2022; 30:31-38. [PMID: 33119382 PMCID: PMC8388238 DOI: 10.1037/pha0000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Persons with dual severe opioid and cocaine use disorders are at risk of considerable morbidity, and the bidirectional relationship of escalation of mu-opioid agonists and cocaine use is not well understood. The aim of this study was to examine the bidirectional relationship between escalation of heroin and cocaine use in volunteers dually diagnosed with opioid and cocaine dependence (OD + CD). Volunteers from New York with OD + CD (total n = 295; male = 182, female = 113; age ≥ 18 years) were interviewed with the Structured Clinical Interview for the DSM-IV Axis I Disorders and Kreek-McHugh-Schluger-Kellogg scales for dimensional measures of drug exposure, which also collect ages of 1st use and onset of heaviest use. Time of escalation was defined as age of onset of heaviest use minus age of 1st use in whole years. Times of escalation of heroin and cocaine were positively correlated in both men (Spearman r = .34, 95% confidence interval [CI: .17, .48], p < .0001) and women (Spearman r = .51, [.27, .50], p < .0001) volunteers. After we adjusted for demographic variables, a Cox regression showed that time of cocaine escalation was a predictor of time of heroin escalation (hazard ratio [HR] = 0.97, 95% CI [0.95, 0.99], p = .003). Another Cox regression showed that this relationship is bidirectional, because time of heroin escalation was also a predictor of time of cocaine escalation (HR = 0.98, [0.96-0.99], p = .016). In these adjusted models, gender was not a significant predictor of time of escalation of either heroin or cocaine. Therefore, escalation did not differ robustly by gender when adjusting for demographics and other major variables. Overall, rapid escalation of cocaine use was a predictor of rapid escalation of heroin use, and vice versa, in persons with dual severe opioid and cocaine use disorders. These findings suggest a shared vulnerability to rapid escalation of these 2 drugs in persons with dual severe opioid and cocaine use disorders. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
4
|
Chronic Fentanyl Self-Administration Generates a Shift toward Negative Affect in Rats during Drug Use. Brain Sci 2021; 11:brainsci11081064. [PMID: 34439683 PMCID: PMC8394963 DOI: 10.3390/brainsci11081064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Drug addiction is thought to be driven by negative reinforcement, and it is thought that a shift from positive affect upon initial exposure to negative affect after chronic exposure to a drug is responsible for maintaining self-administration (SA) in addicted individuals. This can be modeled in rats by analyzing ultrasonic vocalizations (USVs), a type of intraspecies communication indicative of affective state based on the frequency of the emission: calls in the 22 kHz range indicate negative affect, whereas calls in the 50 kHz range indicate positive affect. We employed a voluntary chronic, long-access model of fentanyl SA to analyze affective changes in the response to chronic fentanyl exposure. Male Sprague-Dawley rats self-administered either fentanyl (N = 7) or saline (N = 6) for 30 consecutive days and USVs were recorded at four different time points: the day before the first SA session (PRE), the first day of SA (T01), the last day of SA (T30), and the first day of abstinence (ABS). At T01, the ratio of 50 to 22 kHz calls was similar between the fentanyl and saline groups, but at T30, the ratio differed between groups, with the fentanyl group showing significantly fewer 50 kHz calls and more 22 kHz calls relative to saline animals. These results indicate a shift toward a negative affect during drug use after chronic exposure to fentanyl and support negative reinforcement as a main driving factor of opioid addiction.
Collapse
|
5
|
Oswald LM, Dunn KE, Seminowicz DA, Storr CL. Early Life Stress and Risks for Opioid Misuse: Review of Data Supporting Neurobiological Underpinnings. J Pers Med 2021; 11:315. [PMID: 33921642 PMCID: PMC8072718 DOI: 10.3390/jpm11040315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
A robust body of research has shown that traumatic experiences occurring during critical developmental periods of childhood when neuronal plasticity is high increase risks for a spectrum of physical and mental health problems in adulthood, including substance use disorders. However, until recently, relatively few studies had specifically examined the relationships between early life stress (ELS) and opioid use disorder (OUD). Associations with opioid use initiation, injection drug use, overdose, and poor treatment outcome have now been demonstrated. In rodents, ELS has also been shown to increase the euphoric and decrease antinociceptive effects of opioids, but little is known about these processes in humans or about the neurobiological mechanisms that may underlie these relationships. This review aims to establish a theoretical model that highlights the mechanisms by which ELS may alter opioid sensitivity, thereby contributing to future risks for OUD. Alterations induced by ELS in mesocorticolimbic brain circuits, and endogenous opioid and dopamine neurotransmitter systems are described. The limited but provocative evidence linking these alterations with opioid sensitivity and risks for OUD is presented. Overall, the findings suggest that better understanding of these mechanisms holds promise for reducing vulnerability, improving prevention strategies, and prescribing guidelines for high-risk individuals.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| | - Kelly E. Dunn
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21230, USA;
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Carla L. Storr
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| |
Collapse
|
6
|
Drug addiction co-morbidity with alcohol: Neurobiological insights. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:409-472. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Addiction is a chronic disorder that consists of a three-stage cycle of binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These stages involve, respectively, neuroadaptations in brain circuits involved in incentive salience and habit formation, stress surfeit and reward deficit, and executive function. Much research on addiction focuses on the neurobiology underlying single drug use. However, alcohol use disorder (AUD) can be co-morbid with substance use disorder (SUD), called dual dependence. The limited epidemiological data on dual dependence indicates that there is a large population of individuals suffering from addiction who are dependent on more than one drug and/or alcohol, yet dual dependence remains understudied in addiction research. Here, we review neurobiological data on neurotransmitter and neuropeptide systems that are known to contribute to addiction pathology and how the involvement of these systems is consistent or divergent across drug classes. In particular, we highlight the dopamine, opioid, corticotropin-releasing factor, norepinephrine, hypocretin/orexin, glucocorticoid, neuroimmune signaling, endocannabinoid, glutamate, and GABA systems. We also discuss the limited research on these systems in dual dependence. Collectively, these studies demonstrate that the use of multiple drugs can produce neuroadaptations that are distinct from single drug use. Further investigation into the neurobiology of dual dependence is necessary to develop effective treatments for addiction to multiple drugs.
Collapse
|
7
|
Joshi DD, Puaud M, Fouyssac M, Belin‐Rauscent A, Everitt B, Belin D. The anterior insular cortex in the rat exerts an inhibitory influence over the loss of control of heroin intake and subsequent propensity to relapse. Eur J Neurosci 2020; 52:4115-4126. [DOI: 10.1111/ejn.14889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Dhaval D. Joshi
- Department of Psychology University of Cambridge Cambridge UK
| | - Mickaël Puaud
- Department of Psychology University of Cambridge Cambridge UK
| | - Maxime Fouyssac
- Department of Psychology University of Cambridge Cambridge UK
| | | | - Barry Everitt
- Department of Psychology University of Cambridge Cambridge UK
| | - David Belin
- Department of Psychology University of Cambridge Cambridge UK
| |
Collapse
|
8
|
Mei DS, Cai YJ, Wang FM, Ma BM, Liu HF, Zhou WH, Xu JP. Reciprocal Substitution Between Methamphetamine and Heroin in Terms of Reinforcement Effects in Rats. Front Psychiatry 2020; 11:750. [PMID: 32848928 PMCID: PMC7411143 DOI: 10.3389/fpsyt.2020.00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Heroin and methamphetamine are both popular illicit drugs in China. Previous clinical data showed that habitual users of either heroin or methamphetamine abuse the other drug for substitution in case of unavailability of their preferred drug. The present study aimed to observe whether heroin can substitute the methamphetamine reinforcement effect in rats, and vice versa. Rats were trained to self-administer heroin or methamphetamine (both 50 μg/kg/infusion) under an FR1 reinforcing schedule for 10 days. After having extracted the dose-effect curve of the two drugs, we administered methamphetamine at different doses (12.5-200 μg/kg/infusion) to replace heroin during the period of self-administration, and vice versa. The heroin dose-effect curve showed an inverted U-shaped trend, and the total intake dose of heroin significantly increased when the training dose increased from 50 to 100 or 200 μg/kg/infusion. Following replacement with methamphetamine, the total dose-effect curve shifted leftwards and upwards. By contrast, although the dose-effect curve of methamphetamine also showed an inverted U-shaped trend, the total dose of methamphetamine significantly decreased when the training dose decreased from 50 to 25 μg/kg/infusion; conversely, when the methamphetamine training dose increased, the total dose did not change significantly. The total dose-effect curve shifted rightwards after heroin was substituted with methamphetamine. Although heroin and methamphetamine had their own independent reward effects, low doses of methamphetamine can replace the heroin reward effect, while high doses of heroin can replace the methamphetamine reward effect. These results demonstrated that heroin and methamphetamine can substitute each other in terms of reinforcement effects in rats.
Collapse
Affiliation(s)
- Di-Sen Mei
- Neuropharmacology and Drug Discovery Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Yu-Jia Cai
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Fang-Min Wang
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Bao-Miao Ma
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Hui-Fen Liu
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China.,Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo University School of Medicine, Ningbo, China
| | - Wen-Hua Zhou
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China.,Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo University School of Medicine, Ningbo, China
| | - Jiang-Ping Xu
- Neuropharmacology and Drug Discovery Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2019; 164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
Abstract
Prescription opioids, such as oxycodone, are potent analgesics that are used to treat and manage pain. However, oxycodone is one of the most commonly abused prescription drugs. Finding an effective strategy to prevent prescription opioid use disorder is urgent. Orexin receptors (OrxR1 and OrxR2) have been implicated in the regulation of motivation, arousal, and stress, making them possible targets for the treatment of substance use disorder. To study the significance of environmental stimuli in maintaining the vulnerability to relapse to oxycodone use, resistance to the extinction of oxycodone-seeking behavior that was elicited by an oxycodone-related stimulus was examined. Rats were trained to self-administer oxycodone in the presence of a contextual/discriminative stimulus (SD). Using this procedure, the rats readily acquired oxycodone self-administration and exhibited increases in physical signs of opioid withdrawal. Following extinction, response-reinstating effects of re-exposure to the SD perseverated. We then tested whether OrxR blockade prevents oxycodone intake and relapse. The effects of the OrxR1 antagonist SB334867 and OrxR2 antagonist TCSOX229 on oxycodone self-administration were tested. SB334867 significantly decreased oxycodone self-administration, whereas TCSOX229 did not produce any effect. To investigate whether OrxR1 and OrxR2 blockade prevents oxycodone seeking, the rats were tested for the ability of SB334867 and TCSOX229 to prevent the SD-induced conditioned reinstatement of oxycodone-seeking behavior. SB334867 decreased oxycodone-seeking behavior, whereas TCSOX229 was ineffective. These results suggest that OrxR1 antagonism prevents excessive prescription opioid use and relapse and might be beneficial for the treatment of prescription opioid use disorder.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
Butelman ER, Chen CY, Brown KG, Kreek MJ. Escalation of drug use in persons dually diagnosed with opioid and cocaine dependence: Gender comparison and dimensional predictors. Drug Alcohol Depend 2019; 205:107657. [PMID: 31698322 PMCID: PMC6893149 DOI: 10.1016/j.drugalcdep.2019.107657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Persons dually diagnosed with opioid and cocaine dependence (OD + CD) present a clinical challenge and are at risk of morbidity and mortality. The time of escalation of heroin and cocaine exposure in persons with OD + CD remain understudied, and the influence of gender and other variables have not been examined. This observational study focused on the time of escalation of heroin and cocaine in volunteers with OD + CD, examining gender and exposure to other drugs (e.g., cannabis or alcohol) as predictors. Ages of first use and of onset of heaviest use of each drug were collected (in whole years). Time of escalation was defined as the interval between age of first use and onset of heaviest use. VOLUNTEERS sequentially ascertained adult volunteers recruited from the New York Metropolitan area, of which n = 297 were diagnosed with OD + CD. METHODS Instruments administered were the SCID-I diagnostic interview (DSM-IV criteria), BIS-11 impulsiveness scale, and KMSK scales, dimensional measures of maximal exposure to specific drugs. RESULTS In volunteers with OD + CD, ages of onset of heaviest use of cannabis (median age = 15) and alcohol (median age = 19) were in adolescence or emerging adulthood and preceded those for heroin and cocaine (median ages = 26 and 25, respectively). Maximal levels of cannabis and alcohol exposure were high, in volunteers with OD + CD. In adjusted Cox regressions, gender was not a significant predictor of time of heroin or cocaine escalation. However, more rapid time of alcohol escalation was a predictor of more rapid time of escalation of both heroin and cocaine, in volunteers with OD + CD.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York NY, United States.
| | - Carina Y Chen
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York NY, United States
| | - Kate G Brown
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York NY, United States
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, the Rockefeller University, New York NY, United States
| |
Collapse
|
11
|
Müller Ewald VA, De Corte BJ, Gupta SC, Lillis KV, Narayanan NS, Wemmie JA, LaLumiere RT. Attenuation of cocaine seeking in rats via enhancement of infralimbic cortical activity using stable step-function opsins. Psychopharmacology (Berl) 2019; 236:479-490. [PMID: 30003306 PMCID: PMC6330160 DOI: 10.1007/s00213-018-4964-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022]
Abstract
RATIONALE The infralimbic cortex (IL) and its downstream projection target the nucleus accumbens shell (NAshell) mediate the active suppression of cocaine-seeking behavior. Although an optogenetic approach would be beneficial for stimulating the IL and its efferents to study their role during reinstatement of cocaine seeking, the use of channelrhodopsin introduces significant difficulties, as optimal stimulation parameters are not known. OBJECTIVES The present experiments utilized a stable step-function opsin (SSFO) to potentiate endogenous activity in the IL and in IL terminals in the NAshell during cocaine-seeking tests to determine how these manipulations affect cocaine-seeking behaviors. METHODS Rats first underwent 6-h access cocaine self-administration followed by 21-27 days in the homecage. Rats then underwent cue-induced and cocaine-primed drug-seeking tests during which the optogenetic manipulation was given. The same rats then underwent extinction training, followed by cue-induced and cocaine-primed reinstatements. RESULTS Potentiation of endogenous IL activity did not significantly alter cue-induced or cocaine-primed drug seeking following the homecage period. However, following extinction training, enhancement of endogenous IL activity attenuated cue-induced reinstatement by 35% and cocaine-primed reinstatement by 53%. Stimulation of IL terminals in the NAshell did not consistently alter cocaine-seeking behavior. CONCLUSION These results suggest the utility of an SSFO-based approach for enhancing activity in a structure without driving specific patterns of neuronal firing. However, the utility of an SSFO-based approach for axon terminal stimulation remains unclear. Moreover, these results suggest that the ability of the IL to reduce cocaine seeking depends, at least in part, on rats first having undergone extinction training.
Collapse
Affiliation(s)
- Victória A Müller Ewald
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA.
- W311 Seashore Hall, Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Benjamin J De Corte
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Subhash C Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
| | - Katherine V Lillis
- W311 Seashore Hall, Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Nandakumar S Narayanan
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - John A Wemmie
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
- W311 Seashore Hall, Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
12
|
Guillem K, Ahmed SH. A neuronal population code for resemblance between drug and nondrug reward outcomes in the orbitofrontal cortex. Brain Struct Funct 2018; 224:883-890. [PMID: 30539287 DOI: 10.1007/s00429-018-1809-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/01/2018] [Indexed: 02/01/2023]
Abstract
The orbitofrontal cortex (OFC) is implicated in choice and decision-making in both human and non-human animals. We previously identified in the rat OFC a mechanism that influences individual drug choices and preferences between a drug and a nondrug (i.e., sweet) outcome that is common across different types of drugs (cocaine and heroin). Importantly, this research also revealed some intriguing drug-specific differences. Notably, the size of non-selective OFC neurons that indiscriminately encode both the drug and the sweet outcomes varies as a function of the drug outcome available (cocaine or heroin). Here we tested the hypothesis that the relative size of the non-selective OFC population somehow represents the degree of resemblance between the drug and nondrug reward outcomes. We recorded OFC neuronal activity in vivo in the same individual rats while they were choosing between two outcomes with varying degrees of resemblance: high (two concentrations of sweet), intermediate (sweet versus heroin) and low (sweet versus cocaine). We found that the percentage of non-selective OFC neurons dramatically increased with the degree of resemblance between choice outcomes, from 26 to 62%. Overall, these findings reveal the existence of a neuronal population code for resemblance between different kinds of choice outcomes in the OFC.
Collapse
Affiliation(s)
- Karine Guillem
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 146 rue Léo-Saignat, 33000, Bordeaux, France. .,Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 146 rue Léo-Saignat, 33000, Bordeaux, France. .,Institut des Maladies Neurodégénératives, UMR CNRS 5293, Université de Bordeaux, 146 rue Léo Saignât, 33076, Bordeaux, France.
| | - Serge H Ahmed
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 146 rue Léo-Saignat, 33000, Bordeaux, France. .,Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 146 rue Léo-Saignat, 33000, Bordeaux, France. .,Institut des Maladies Neurodégénératives, UMR CNRS 5293, Université de Bordeaux, 146 rue Léo Saignât, 33076, Bordeaux, France.
| |
Collapse
|
13
|
Rubio FJ, Quintana-Feliciano R, Warren BL, Li X, Witonsky KFR, Valle FSD, Selvam PV, Caprioli D, Venniro M, Bossert JM, Shaham Y, Hope BT. Prelimbic cortex is a common brain area activated during cue-induced reinstatement of cocaine and heroin seeking in a polydrug self-administration rat model. Eur J Neurosci 2018; 49:165-178. [PMID: 30307667 DOI: 10.1111/ejn.14203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg per infusion, 3-hr/day, 18 day) or heroin (0.03 mg/kg per infusion) on alternating days (9 day for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex, dorsal striatum, nucleus accumbens, and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells was similar for the heroin and cocaine cue-activated neurons. Overall, the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.
Collapse
Affiliation(s)
- Francisco J Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Richard Quintana-Feliciano
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Brandon L Warren
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Xuan Li
- Neurobiology of Relapse Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Kailyn F R Witonsky
- Neurobiology of Relapse Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Frank Soto Del Valle
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Pooja V Selvam
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Daniele Caprioli
- Neurobiology of Relapse Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Marco Venniro
- Neurobiology of Relapse Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Jennifer M Bossert
- Neurobiology of Relapse Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Yavin Shaham
- Neurobiology of Relapse Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
14
|
Guillem K, Brenot V, Durand A, Ahmed SH. Neuronal representation of individual heroin choices in the orbitofrontal cortex. Addict Biol 2018; 23:880-888. [PMID: 28703355 DOI: 10.1111/adb.12536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/12/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
Abstract
Drug addiction is a harmful preference for drug use over and at the expense of other non-drug-related activities. We previously identified in the rat orbitofrontal cortex (OFC) a mechanism that influences individual preferences between cocaine use and an alternative action rewarded by a non-drug reward (i.e. sweet water). Here, we sought to test the generality of this mechanism to a different addictive drug, heroin. OFC neuronal activity was recorded while rats responded for heroin or the alternative non-drug reward separately or while they chose between the two. First, we found that heroin-rewarded and sweet water-rewarded actions were encoded by two non-overlapping OFC neuronal populations and that the relative size of the heroin population represented individual drug choices. Second, OFC neurons encoding the preferred action-which was the non-drug action in the large majority of individuals-progressively fired more than non-preferred action-coding neurons 1 second after the onset of choice trials and around 1 second before the preferred action was actually chosen, suggesting a pre-choice neuronal competition for action selection. Together with a previous study on cocaine choice, the present study on heroin choice reveals important commonalities in how OFC neurons encode individual drug choices and preferences across different classes of drugs. It also reveals some drug-specific differences in OFC encoding activity. Notably, the proportion of neurons that non-selectively encode both the drug and the non-drug reward was higher when the drug was heroin (present study) than when it was cocaine (previous study). We will discuss the potential functional significance of these commonalities and differences in OFC neuronal activity across different drugs for understanding drug choice.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux; Institut des Maladies Neurodégénératives; France
- CNRS; Institut des Maladies Neurodégénératives; France
| | - Viridiana Brenot
- Université de Bordeaux; Institut des Maladies Neurodégénératives; France
| | - Audrey Durand
- Université de Bordeaux; Institut des Maladies Neurodégénératives; France
- CNRS; Institut des Maladies Neurodégénératives; France
| | - Serge H. Ahmed
- Université de Bordeaux; Institut des Maladies Neurodégénératives; France
- CNRS; Institut des Maladies Neurodégénératives; France
| |
Collapse
|
15
|
How can we Improve on Modeling Nicotine Addiction to Develop Better Smoking Cessation Treatments? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:121-56. [PMID: 27055613 DOI: 10.1016/bs.irn.2016.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinically effective smoking cessation treatments are few in number, mainly varenicline, bupropion, and nicotine replacement therapy being prescribed by health organizations. Of the many compounds tested for smoking cessation, a good proportion fail in human trials despite positive findings in rodents. This chapter aims to cover the uses and some pit falls of current methodologies employed to discover clinical treatments in the laboratory. Complicating factors include the complex nature of genetics in tobacco smoking and the comorbidity associated with other psychiatric disorders, which has not been addressed fully in the rodent laboratory. This chapter reviews the evidence from intravenous nicotine self-administration studies and proposes modifications on how we can improve the validity of the animal models by incorporating clinically relevant factors considered to be critical in tobacco smoking. For example, choice procedures that incorporate alternative reinforcers, use of reinstatement models, and second-order schedules of reinforcement are proposed to have better scientific validity that may lead to better clinical outcomes. Furthermore, improved experimental methods will also improve our chances of discovering effective treatments that ultimately may mitigate the effects of tobacco smoking with regard to health worldwide.
Collapse
|
16
|
Madsen HB, Ahmed SH. Drug versus sweet reward: greater attraction to and preference for sweet versus drug cues. Addict Biol 2015; 20:433-44. [PMID: 24602027 DOI: 10.1111/adb.12134] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite the unique ability of addictive drugs to directly activate brain reward circuits, recent evidence suggests that drugs induce reinforcing and incentive effects that are comparable to, or even lower than some nondrug rewards. In particular, when rats have a choice between pressing a lever associated with intravenous cocaine or heroin delivery and another lever associated with sweet water delivery, most respond on the latter. This outcome suggests that sweet water is more reinforcing and attractive than either drug. However, this outcome may also be due to the differential ability of sweet versus drug levers to elicit Pavlovian feeding-like conditioned responses that can cause involuntary lever pressing, such as pawing and biting the lever. To test this hypothesis, rats first underwent Pavlovian conditioning to associate one lever with sweet water (0.2% saccharin) and a different lever with intravenous cocaine (0.25 mg) or heroin (0.01 mg). Choice between these two levers was then assessed under two operant choice procedures: one that permitted the expression of Pavlovian-conditioned lever press responses during choice, the other not. During conditioning, Pavlovian-conditioned lever press responses were considerably higher on the sweet lever than on either drug lever, and slightly greater on the heroin lever than on the cocaine lever. Importantly, though these differences in Pavlovian-conditioned behavior predicted subsequent preference for sweet water during choice, they were not required for its expression. Overall, this study confirms that rats prefer the sweet lever because sweet water is more reinforcing and attractive than cocaine or heroin.
Collapse
Affiliation(s)
- Heather B. Madsen
- Institut des Maladies Neurodégénératives; Université de Bordeaux; France
- Institut des Maladies Neurodégénératives; CNRS; France
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| | - Serge H. Ahmed
- Institut des Maladies Neurodégénératives; Université de Bordeaux; France
- Institut des Maladies Neurodégénératives; CNRS; France
| |
Collapse
|
17
|
Tunstall BJ, Riley AL, Kearns DN. Drug specificity in drug versus food choice in male rats. Exp Clin Psychopharmacol 2014; 22:364-72. [PMID: 24886157 PMCID: PMC4156291 DOI: 10.1037/a0037019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although different classes of drug differ in their mechanisms of reinforcement and effects on behavior, little research has focused on differences in self-administration behaviors maintained by users of these drugs. Persistent drug choice despite available reinforcement alternatives has been proposed to model behavior relevant to addiction. The present study used a within-subjects procedure, where male rats (Long-Evans, N = 16) were given a choice between cocaine (1.0 mg/kg/infusion) and food (a single 45-mg grain pellet) or between heroin (0.02 mg/kg/infusion) and food in separate phases (drug order counterbalanced). All rats were initially trained to self-administer each drug, and the doses used were based on previous studies showing that small subsets of rats tend to prefer drug over food reinforcement. The goal of the present study was to determine whether rats that prefer cocaine would also prefer heroin. Choice sessions consisted of 2 forced-choice trials with each reinforcer, followed by 14 free-choice trials (all trials separated by 10-min intertrial interval). Replicating previous results, small subsets of rats preferred either cocaine (5 of the 16 rats) or heroin (2 of the 16 rats) to the food alternative. Although 1 of the 16 rats demonstrated a preference for both cocaine and heroin to the food alternative, there was no relationship between degree of cocaine and heroin preference in individual rats. The substance-specific pattern of drug preference observed suggests that at least in this animal model, the tendencies to prefer cocaine or heroin in preference to a nondrug alternative are distinct behavioral phenomena.
Collapse
|
18
|
Cannella N, Halbout B, Uhrig S, Evrard L, Corsi M, Corti C, Deroche-Gamonet V, Hansson AC, Spanagel R. The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology 2013; 38:2048-56. [PMID: 23624743 PMCID: PMC3746689 DOI: 10.1038/npp.2013.106] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 01/16/2023]
Abstract
Medication development for cocaine-addicted patients is difficult, and many promising preclinical candidates have failed in clinical trials. One reason for the difficulty in translating preclinical findings to the human condition is that drug testing is typically conducted in behavioral procedures in which animals do not show addiction-like traits. Recently, a DSM-IV-based animal model has been developed that allows studying the transition to an addiction-like behavior. Changes in synaptic plasticity are involved in the transition to cocaine addiction. In particular, it has been shown that metabotropic glutamate receptor 2/3 (mGluR2/3)-mediated long-term depression is suppressed in the prelimbic cortex in addict-like rats. We therefore hypothesized that cocaine-seeking in addict-like rats could be treated with an mGluR2/3 agonist. Indeed, addict-like rats that were treated systemically with the mGluR2/3 agonist LY379268 (0, 0.3, and 3 mg/kg) showed a pronounced reduction in cue-induced reinstatement of cocaine-seeking. In an attempt to dissect the role played by mGluR2 and mGluR3 in cue-induced reinstatement, we analyzed the mRNA expression patterns in several relevant brain areas but did not find any significant differences between cocaine addict-like and non-addict-like rats, suggesting that the behavioral differences observed are due to translational rather than transcriptional regulation. Another possibility to study the contributions of mGluR2 and mGluR3 in mediating addictive-like behavior is the use of knockout models. Because mGluR2 knockouts cannot be used in operant procedures due to motoric impairment, we only tested mGluR3 knockouts. These mice did not differ from controls in reinstatement, suggesting that mGluR2 receptors are critical in mediating addictive-like behavior.
Collapse
Affiliation(s)
- Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Briac Halbout
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Uhrig
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lionel Evrard
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Mauro Corsi
- Aptuit, Medicine Research Centre, Verona, Italy
| | | | - Veronique Deroche-Gamonet
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, Bordeaux, France,Université de Bordeaux, Bordeaux, France
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Abstract
Epidemiological research shows that the proportion of drug users who become addicted to heroin is higher than to cocaine. Here we tested whether this difference could be due to a difference in the addiction liability between the two drugs. Addiction liability was assessed under a discrete-trials choice procedure by measuring the proportion of rats that prefer the drug over a potent alternative reward (ie, water sweetened with saccharin). Previous research on choice between self-administration of i.v. cocaine or sweet water showed that the proportion of cocaine-preferring rats remains relatively low and invariable (ie, 15%), even after extended drug access and regardless of past drug consumption (ie, total drug use before choice testing). By contrast, the present study shows that under similar choice conditions, the proportion of heroin-preferring rats considerably increases with extended heroin access (6-9 h per day for several weeks) and with past heroin consumption, from 11 to 51% at the highest past drug consumption level. At this level, the proportion of drug-preferring rats was about three times higher with heroin than with cocaine (51% vs 15%). This increase in the rate of heroin preference after extended heroin access persisted even after recovery from acute heroin withdrawal. Overall, these findings show that choice procedures are uniquely sensitive to different drugs and suggest that heroin is more addictive than cocaine. This higher addiction liability may contribute to explain why more drug users become addicted to heroin than to cocaine in epidemiological studies.
Collapse
|
20
|
Davis C. From passive overeating to "food addiction": a spectrum of compulsion and severity. ISRN OBESITY 2013; 2013:435027. [PMID: 24555143 PMCID: PMC3901973 DOI: 10.1155/2013/435027] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
A psychobiological dimension of eating behaviour is proposed, which is anchored at the low end by energy intake that is relatively well matched to energy output and is reflected by a stable body mass index (BMI) in the healthy range. Further along the continuum are increasing degrees of overeating (and BMI) characterized by more severe and more compulsive ingestive behaviours. In light of the many similarities between chronic binge eating and drug abuse, several authorities have adopted the perspective that an apparent dependence on highly palatable food-accompanied by emotional and social distress-can be best conceptualized as an addiction disorder. Therefore, this review also considers the overlapping symptoms and characteristics of binge eating disorder (BED) and models of food addiction, both in preclinical animal studies and in human research. It also presents this work in the context of the modern and "toxic" food environment and therein the ubiquitous triggers for over-consumption. We complete the review by providing evidence that what we have come to call "food addiction" may simply be a more acute and pathologically dense form of BED.
Collapse
Affiliation(s)
- Caroline Davis
- Kinesiology & Health Sciences, Faculty of Health, York University, 343 Bethune College, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
21
|
Abstract
It is increasingly recognized that studying drug taking in laboratory animals does not equate to studying genuine addiction, characterized by loss of control over drug use. This has inspired recent work aimed at capturing genuine addiction-like behavior in animals. In this work, we summarize empirical evidence for the occurrence of several DSM-IV-like symptoms of addiction in animals after extended drug use. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, increased motivation for drugs, preference for drugs over nondrug rewards, and resistance to punishment. The fact that addiction-like behavior can occur and be studied in animals gives us the exciting opportunity to investigate the neural and genetic background of drug addiction, which we hope will ultimately lead to the development of more effective treatments for this devastating disorder.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | | |
Collapse
|
22
|
Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci 2011; 12:685-700. [PMID: 21971065 DOI: 10.1038/nrn3104] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The publication of the psychomotor stimulant theory of addiction in 1987 and the finding that addictive drugs increase dopamine concentrations in the rat mesolimbic system in 1988 have led to a predominance of psychobiological theories that consider addiction to opiates and addiction to psychostimulants as essentially identical phenomena. Indeed, current theories of addiction - hedonic allostasis, incentive sensitization, aberrant learning and frontostriatal dysfunction - all argue for a unitary account of drug addiction. This view is challenged by behavioural, cognitive and neurobiological findings in laboratory animals and humans. Here, we argue that opiate addiction and psychostimulant addiction are behaviourally and neurobiologically distinct and that the differences have important implications for addiction treatment, addiction theories and future research.
Collapse
Affiliation(s)
- Aldo Badiani
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|