1
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
2
|
Krysko O, Teufelberger A, Van Nevel S, Krysko DV, Bachert C. Protease/antiprotease network in allergy: The role of Staphylococcus aureus protease-like proteins. Allergy 2019; 74:2077-2086. [PMID: 30888697 DOI: 10.1111/all.13783] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/10/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is being recognized as a major cofactor in atopic diseases such as atopic dermatitis, chronic rhinosinusitis with nasal polyps, and asthma. The understanding of the relationship between S aureus virulence factors and the immune system is continuously improving. Although the precise mechanism of the host's immune response adaptation to the variable secretion profile of S aureus strains continues to be a matter of debate, an increasing number of studies have reported on central effects of S aureus secretome in allergy. In this review, we discuss how colonization of S aureus modulates the innate and adaptive immune response, thereby predisposing the organism to allergic sensitization and disrupting immune tolerance in the airways of patients with asthma and chronic rhinosinusitis with nasal polyps. Next, we provide a critical overview of novel concepts dealing with S aureus in the initiation and persistence of chronic rhinosinusitis with nasal polyps and asthma. The role of the S aureus serine protease-like proteins in the initiation of a type 2 response and the contribution of the IL-33/ST2 signaling axis in allergic responses induced by bacterial allergens are discussed.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| | - Andrea Teufelberger
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| | - Sharon Van Nevel
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine National Research Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russian Federation
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair Ghent University Ghent Belgium
- Cancer Research Institute Ghent Ghent Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| |
Collapse
|
3
|
Varney VA, Nicholas A, Warner A, Sumar N. IgE-Mediated Systemic Anaphylaxis And Its Association With Gene Polymorphisms Of ACE, Angiotensinogen And Chymase. J Asthma Allergy 2019; 12:343-361. [PMID: 31632094 PMCID: PMC6790349 DOI: 10.2147/jaa.s213016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The renin-angiotensin system (RAS) protects the circulation against sudden falls in systemic blood pressure via generation of angiotensin II (AII). Previously, we demonstrated that patients with anaphylaxis involving airway angioedema and cardiovascular collapse (AACVS) had significantly increased "I" gene polymorphisms of the angiotensin-converting-enzymes (ACE). This is associated with lower serum ACE and AII levels and was not seen in anaphylaxis without collapse nor atopics and healthy controls. OBJECTIVES To examine the angiotensinogen (AGT-M235T) and chymase gene (CMA-1 A1903G) polymorphisms in these original subjects. METHOD 122 patients with IgE-mediated anaphylaxis, 119 healthy controls and 52 atopics had polymorphisms of the AGT gene and chymase gene examined by polymerase chain reactions and gel electrophoresis. Their previous ACE genotypes were included for the analysis. RESULTS AGT-MM genes (associated with low AGT levels) were significantly increased in anaphylaxis (Terr's classification). When combined with ACE, anaphylaxis showed increased MM/II gene pairing (p<0.0013) consistent with lower RAS activity. For chymase, there was increased pairing of MM/AG (p<0.005) and AG/II and AG/ID (p<0.0073) for anaphylaxis consistent with lower RAS activity. A tri-allelic ensemble of the 6 commonest gene combinations for the healthy controls and anaphylaxis confirmed this difference (p=0.0001); for anaphylaxis, genes were predominately MM/AG/II or ID, while healthy controls were DD/MT/AG or GG patterns. CONCLUSION Our gene polymorphisms show lower RAS activity for anaphylaxis especially AACVS. Animal models of anaphylaxis are focused on endothelial nitric oxide (eNO) which is shown to be the mediator of fatal shock and prevented by eNO-blockade. The interaction of AII and eNO controls the microcirculation in man. High serum AII levels reduce eNO activity, so higher RAS-activity could protect against shock. Our data shows low RAS activity in anaphylaxis especially AACVS, suggesting the influence of these genes on shock are via AII levels and its effects on eNO.
Collapse
Affiliation(s)
- VA Varney
- Department of Medicine, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - A Nicholas
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - A Warner
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - N Sumar
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| |
Collapse
|
4
|
Gür Çetinkaya P, Şahiner ÜM. Childhood atopic dermatitis: current developments, treatment approaches, and future expectations. Turk J Med Sci 2019; 49:963-984. [PMID: 31408293 PMCID: PMC7018348 DOI: 10.3906/sag-1810-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder of childhood. Underlying factors that contribute to AD are impaired epithelial barrier, alterations in the lipid composition of the skin, immunological imbalance including increased Th2/Th1 ratio, proinflammatory cytokines, decreased T regulatory cells, genetic mutations, and epigenetic alterations. Atopic dermatitis is a multifactorial disease with a particularly complicated pathophysiology. Discoveries to date may be considered the tip of the iceberg, and the increasing number of studies in this field indicate that there are many points to be elucidated in AD pathophysiology. In this review, we aimed to illustrate the current understanding of the underlying pathogenic mechanisms in AD, to evaluate available treatment options with a focus on recently discovered therapeutic agents, and to determine the personal, familial, and economic burdens of the disease, which are frequently neglected issues in AD. Currently available therapies only provide transient solutions and cannot fully cure the disease. However, advances in the understanding of the pathogenic mechanisms of the disease have led to the production of new treatment options, while ongoing drug trials also have had promising results.
Collapse
Affiliation(s)
- Pınar Gür Çetinkaya
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Epidermal Expression of Filaggrin/Profilaggrin Is Decreased in Atopic Dermatitis: Reverse Association With Mast Cell Tryptase and IL-6 but Not With Clinical Severity. Dermatitis 2016; 26:260-7. [PMID: 26551604 DOI: 10.1097/der.0000000000000143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND A decrease in filaggrin expression contributes to the pathogenesis of atopic dermatitis (AD) and can be modified by inflammatory factors. OBJECTIVES The aim of this study was to determine the correlation of (pro)filaggrin (filaggrin and profilaggrin) expression with clinical severity in AD and with mast cell (MC) tryptase, chymase, and IL-6. METHODS Punch biopsies were collected from 17 patients with moderate-to-severe AD and from 10 psoriatic patients. Atopic dermatitis severity was measured using different clinical parameters. (Pro)filaggrin, MC tryptase, chymase, and IL-6 were stained using immunohistochemical, enzymehistochemical, and sequential double-staining methods. RESULTS (Pro)filaggrin expression was lower in the lesional than in the nonlesional granular layer in AD and was correlated negatively with itch severity but not with other severity parameters. (Pro)filaggrin expression was also decreased in the psoriatic lesions. In AD, (pro)filaggrin expression correlated negatively with the number of tryptase MCs in the nonlesional granular layer and with IL-6 MCs in both the nonlesional and lesional granular layers. CONCLUSION (Pro)filaggrin expression is decreased in AD and is reversely associated with MC tryptase and IL-6. However, it does not associate with disease severity, and it was also decreased in psoriasis.
Collapse
|
6
|
Yamada KD, Nishi H, Nakata J, Kinoshita K. Structural characterization of single nucleotide variants at ligand binding sites and enzyme active sites of human proteins. Biophys Physicobiol 2016; 13:157-163. [PMID: 27924270 PMCID: PMC5042176 DOI: 10.2142/biophysico.13.0_157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/10/2016] [Indexed: 12/15/2022] Open
Abstract
Functional sites on proteins play an important role in various molecular interactions and reactions between proteins and other molecules. Thus, mutations in functional sites can severely affect the overall phenotype. Progress of genome sequencing projects has yielded a wealth of information on single nucleotide variants (SNVs), especially those with less than 1% minor allele frequency (rare variants). To understand the functional influence of genetic variants at a protein level, we investigated the relationship between SNVs and protein functional sites in terms of minor allele frequency and the structural position of variants. As a result, we observed that SNVs were less abundant at ligand binding sites, which is consistent with a previous study on SNVs and protein interaction sites. Additionally, we found that non-rare variants tended to be located slightly apart from enzyme active sites. Examination of non-rare variants revealed that most of the mutations resulted in moderate changes of the physico-chemical properties of amino acids, suggesting the existence of functional constraints. In conclusion, this study shows that the mapping of genetic variants on protein structures could be a powerful approach to evaluate the functional impact of rare genetic variations.
Collapse
Affiliation(s)
- Kazunori D Yamada
- Graduate School of Information Sciences, Tohoku University, Miyagi 980-8597, Japan
| | - Hafumi Nishi
- Graduate School of Information Sciences, Tohoku University, Miyagi 980-8597, Japan
| | - Junichi Nakata
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi 980-8573, Japan
| | - Kengo Kinoshita
- Graduate School of Information Sciences, Tohoku University, Miyagi 980-8597, Japan; Tohoku Medical Megabank Organization, Tohoku University, Miyagi 980-8573, Japan; Institute of Development, Aging, and Cancer, Tohoku University, Miyagi 980-8575, Japan
| |
Collapse
|
7
|
Abstract
Introduction: Atopic dermatitis (AD) is a common skin disease. Although most patients are well served by existing therapies, a subset of patients with severe AD are still not adequately treated. An improved understanding of the pathogenic mechanisms behind the disease has led to the development of a range of potential new drugs for this indication. Areas covered: The authors provide a narrative review of the drugs in Phase II trials listed on Clinicaltrials.gov. The authors supplement this information with recently published literature located through PubMed. The main target of new treatments appears to be the inflammation process, whereas drugs aimed at reducing itching or increasing the barrier function are fewer to nonexistent. A wide range of drugs, including small molecules and antibodies, are being tested. Expert opinion: The focus on inflammation is not only driven by the limitations posed by our current understanding of biology, but also by the broader scope of these drugs, which may be used in other diseases. In alignment with the recent drug development of other dermatological diseases, antibodies directed at key molecules in the pathogenesis of AD appear to be the most promising.
Collapse
Affiliation(s)
- Kristina Sophie Ibler
- Roskilde Hospital, Department of Dermatology , Køgevej 7-13, 4000 Roskilde , Denmark +45 47322600 ; +45 47322699 ;
| | | |
Collapse
|
8
|
Orlowska-Baranowska E, Gora J, Baranowski R, Stoklosa P, Gadomska vel Betka L, Pedzich-Placha E, Milkowska M, Koblowska MK, Hryniewiecki T, Gaciong Z, Placha G. Association of the common genetic polymorphisms and haplotypes of the chymase gene with left ventricular mass in male patients with symptomatic aortic stenosis. PLoS One 2014; 9:e96306. [PMID: 24823657 PMCID: PMC4019480 DOI: 10.1371/journal.pone.0096306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/06/2014] [Indexed: 01/20/2023] Open
Abstract
We investigated the association between polymorphisms and haplotypes of the chymase 1 gene (CMA1) and the left ventricular mass index (LVM/BSA) in a large cohort of patients with aortic stenosis (AS). Additionally, the gender differences in cardiac remodeling and hypertrophy were analyzed. The genetic background may affect the myocardial response to pressure overload. In human cardiac tissue, CMA1 is involved in angiotensin II production and TGF-β activation, which are two major players in the pathogenesis of hypertrophy and fibrosis. Preoperative echocardiographic data from 648 patients with significant symptomatic AS were used. The LVM/BSA was significantly lower (p<0.0001), but relative wall thickness (RWT) was significantly higher (p = 0.0009) in the women compared with the men. The haplotypes were reconstructed using six genotyped polymorphisms: rs5248, rs4519248, rs1956932, rs17184822, rs1956923, and rs1800875. The haplotype h1.ACAGGA was associated with higher LVM/BSA (p = 9.84×10−5), and the haplotype h2.ATAGAG was associated with lower LVM/BSA (p = 0.0061) in men, and no significant differences were found in women. Two polymorphisms within the promoter region of the CMA1 gene, namely rs1800875 (p = 0.0067) and rs1956923 (p = 0.0015), influenced the value of the LVM/BSA in males. The polymorphisms and haplotypes of the CMA1 locus are associated with cardiac hypertrophy in male patients with symptomatic AS. Appropriate methods for the indexation of heart dimensions revealed substantial sex-related differences in the myocardial response to pressure overload.
Collapse
Affiliation(s)
| | - Jaroslaw Gora
- Department of Internal Medicine, Hypertension, and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | - Patrycjusz Stoklosa
- Department of Valvular Heart Diseases, Institute of Cardiology, Warsaw, Poland
| | - Lucja Gadomska vel Betka
- Department of Internal Medicine, Hypertension, and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Pedzich-Placha
- Department of Internal Medicine, Hypertension, and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | - Marta K. Koblowska
- Faculty of Biology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Hryniewiecki
- Department of Valvular Heart Diseases, Institute of Cardiology, Warsaw, Poland
| | - Zbigniew Gaciong
- Department of Internal Medicine, Hypertension, and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Placha
- Department of Internal Medicine, Hypertension, and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
9
|
Schäkel K, Döbel T, Bosselmann I. Future treatment options for atopic dermatitis – Small molecules and beyond. J Dermatol Sci 2014; 73:91-100. [DOI: 10.1016/j.jdermsci.2013.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 01/10/2023]
|
10
|
|
11
|
Generation of a new congenic mouse strain with enhanced chymase expression in mast cells. PLoS One 2013; 8:e84340. [PMID: 24391943 PMCID: PMC3877308 DOI: 10.1371/journal.pone.0084340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/13/2013] [Indexed: 01/28/2023] Open
Abstract
Mast cells are effector cells best known for their roles in IgE-associated allergy, but they also play a protective role in defense against pathogens. These cells express high levels of proteases including chymase, tryptase and carboxypeptidase. In the present study, we identified a congenic strain of C57BL/6 mice expressing an extraordinarily high level of chymases Mcp-2 and Mcp-4 in mast cells. The overexpression was associated with variant Mcp-2 and Mcp-4 genes originated from DBA/2 mice that also expressed high levels of the two enzymes. Real time PCR analysis revealed that Mcp-2 and Mcp-4 were selectively overexpressed as tryptases, Cpa3 and several other chymases were kept at normal levels. Reporter gene assays demonstrated that single-nucleotide polymorphisms (SNPs) in the promoter region of Mcp-2 gene may be partly responsible for the increased gene transcription. Our study provides a new model system to study the function of mast cell chymases. The data also suggest that expression of chymases differs considerably in different strains of mice and the increased chymase activity may be responsible for some unique phenotypes observed in DBA/2 mice.
Collapse
|
12
|
Tanaka T, Sugawara H, Maruoka H, Imajo S, Muto T. Discovery of novel series of 6-benzyl substituted 4-aminocarbonyl-1,4-diazepane-2,5-diones as human chymase inhibitors using structure-based drug design. Bioorg Med Chem 2013; 21:4233-49. [DOI: 10.1016/j.bmc.2013.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
13
|
Alysandratos K, Asadi S, Angelidou A, Zhang B, Sismanopoulos N, Yang H, Critchfield A, Theoharides TC. Neurotensin and CRH interactions augment human mast cell activation. PLoS One 2012; 7:e48934. [PMID: 23155429 PMCID: PMC3498358 DOI: 10.1371/journal.pone.0048934] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022] Open
Abstract
Stress affects immunity, but the mechanism is not known. Neurotensin (NT) and corticotropin-releasing hormone (CRH) are secreted under stress in various tissues, and have immunomodulatory actions. We had previously shown that NT augments the ability of CRH to increase mast cell-dependent skin vascular permeability in rodents. Here we show that NT triggered human mast cell degranulation and significantly augmented CRH-induced vascular endothelial growth factor (VEGF) release. Investigation of various signaling molecules indicated that only NF-κB activation was involved. These effects were blocked by pretreatment with the NTR antagonist SR48692. NT induced expression of CRH receptor-1 (CRHR-1), as shown by Western blot and FACS analysis. Interestingly, CRH also induced NTR gene and protein expression. These results indicate unique interactions among NT, CRH, and mast cells that may contribute to auto-immune and inflammatory diseases that worsen with stress.
Collapse
Affiliation(s)
- Konstantinos–Dionysios Alysandratos
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Allergy Clinical Research Center, Allergy Section, Attikon General Hospital, University of Athens Medical School, Athens, Greece
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shahrzad Asadi
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pharmacy, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Asimenia Angelidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Allergy Clinical Research Center, Allergy Section, Attikon General Hospital, University of Athens Medical School, Athens, Greece
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Bodi Zhang
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Division of Maternal/Fetal Medicine, Department of Obstetrics and Gynecology, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Nikolaos Sismanopoulos
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Allergy Clinical Research Center, Allergy Section, Attikon General Hospital, University of Athens Medical School, Athens, Greece
| | - Hailing Yang
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Agatha Critchfield
- Division of Maternal/Fetal Medicine, Department of Obstetrics and Gynecology, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Allergy Clinical Research Center, Allergy Section, Attikon General Hospital, University of Athens Medical School, Athens, Greece
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Biochemistry, Tufts University School, Boston, Massachusetts, United States of America
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, United States of America
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lee SI, Kim J, Han Y, Ahn K. A proposal: Atopic Dermatitis Organizer (ADO) guideline for children. Asia Pac Allergy 2011; 1:53-63. [PMID: 22053298 PMCID: PMC3206255 DOI: 10.5415/apallergy.2011.1.2.53] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/10/2011] [Indexed: 01/28/2023] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder in children, with a worldwide cumulative prevalence in children of 8-20%. The number of AD patients is beyond the level that can be dealt with at clinics and it is time to make an effort to reduce the number of AD patients in the community. Thus, caregivers and all persons involved with AD management, including health care providers, educators, technologists and medical policy makers, should understand the development and the management of AD. Although a number of guidelines such as Practical Allergy (PRACTALL) report have been developed and used, community understanding of these is low. This is probably because there are still remarkable differences in management practices between specialists and between countries and most of the reported guidelines have been prepared for physicians. From the viewpoint of providing a basis for a multidisciplinary team approach, easily comprehensible guidelines for organizing treatment of AD, i.e. an Atopic Dermatitis Organizer (ADO), are required. guidelines should be simple and well organized. We suggest an easy approach with a new classification of AD symptoms into early and/or progressive lesions in acute and/or chronic symptoms. The contents of this ADO guideline basically consist of 3 steps approaches: conservative management, topical anti-inflammatory therapy, and systemic anti-inflammatory therapy.
Collapse
Affiliation(s)
- Sang-Il Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | | | |
Collapse
|
15
|
Tan THT, Ellis JA, Saffery R, Allen KJ. The role of genetics and environment in the rise of childhood food allergy. Clin Exp Allergy 2011; 42:20-9. [DOI: 10.1111/j.1365-2222.2011.03823.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet 2011; 43:690-4. [PMID: 21666691 DOI: 10.1038/ng.851] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 05/10/2011] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis is a chronic, relapsing form of inflammatory skin disorder that is affected by genetic and environmental factors. We performed a genome-wide association study of atopic dermatitis in a Chinese Han population using 1,012 affected individuals (cases) and 1,362 controls followed by a replication study in an additional 3,624 cases and 12,197 controls of Chinese Han ethnicity, as well as 1,806 cases and 3,256 controls from Germany. We identified previously undescribed susceptibility loci at 5q22.1 (TMEM232 and SLC25A46, rs7701890, P(combined) = 3.15 × 10(-9), odds ratio (OR) = 1.24) and 20q13.33 (TNFRSF6B and ZGPAT, rs6010620, P(combined) = 3.0 × 10(-8), OR = 1.17) and replicated another previously reported locus at 1q21.3 (FLG, rs3126085, P(combined) = 5.90 × 10(-12), OR = 0.82) in the Chinese sample. The 20q13.33 locus also showed evidence for association in the German sample (rs6010620, P = 2.87 × 10(-5), OR = 1.25). Our study identifies new genetic susceptibility factors and suggests previously unidentified biological pathways in atopic dermatitis.
Collapse
|
17
|
Ogata A, Fujieda Y, Terakawa M, Muto T, Tanaka T, Maruoka H, Nagahira K, Fukuda Y, Tomimori Y, Watanabe N. Pharmacokinetic/pharmacodynamic analyses of chymase inhibitor SUN13834 in NC/Nga mice and prediction of effective dosage for atopic dermatitis patients. Int Immunopharmacol 2011; 11:1628-32. [PMID: 21642018 DOI: 10.1016/j.intimp.2011.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/29/2022]
Abstract
A chymase inhibitor SUN13834 has been shown to improve skin condition in animal models for atopic dermatitis. In the present study, effective dosages of SUN13834 for atopic dermatitis patients were predicted by pharmacokinetic/pharmacodynamic (PK/PD) analyses of SUN13834 in NC/Nga mice, which spontaneously develop atopic dermatitis-like skin lesions. For the PK/PD analyses, we utilized the minimum effective plasma concentration of unbound SUN13834 in late-phase reaction of trinitrochlorobenzene (TNCB)-induced biphasic dermatitis in mice, based on the assumption that the minimum effective plasma concentrations are the same among the two animal models. In late-phase reaction of biphasic dermatitis, SUN13834 was most effective when its plasma concentration was highest at the elicitation, and the minimum effective plasma concentration of unbound SUN13834 at the elicitation was calculated to be 0.13-0.2 ng/mL. Oral administration of SUN13834 improved dermatitis in NC/Nga mice at 15 mg/kg (twice a day; bid) and 30 mg/kg (once a day; qd), but not at 60 mg/kg (every other day; eod). At the three dosages, the duration times over the plasma level of 0.13-0.2 ng/mL were 16.1-20.3, 10.7-12.2 and 7.8-8.8h, respectively, suggesting an importance of maintenance of the minimum effective plasma concentration for at least about 10-12h. The clinical effective dosage predicted in this paper is also discussed in relation to a recently conducted Phase 2a study.
Collapse
Affiliation(s)
- Atsuto Ogata
- Asubio Pharma Co, Limited 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rodríguez E, Eyerich K, Weidinger S. Genetik häufiger chronisch-entzündlicher Hauterkrankungen. Hautarzt 2011; 62:107-18. [DOI: 10.1007/s00105-010-2053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Biagini Myers JM, Khurana Hershey GK. Eczema in early life: genetics, the skin barrier, and lessons learned from birth cohort studies. J Pediatr 2010; 157:704-14. [PMID: 20739029 PMCID: PMC2957505 DOI: 10.1016/j.jpeds.2010.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 04/22/2010] [Accepted: 07/06/2010] [Indexed: 12/17/2022]
Abstract
Eczema is a chronic inflammatory disorder of the skin that affects up to 30% of children. It often afflicts infants in the first few months of life and can be the first indicator of the atopic march. Recent results from birth cohort studies have uncovered novel information regarding genetic and environmental factors that promote the development of eczema. Birth cohort studies provide an optimal study design to elucidate these associations and prospectively track longitudinal data including exposure assessment and health outcomes from birth into early life and childhood. This is especially relevant for eczema given the age specific emergence of this disease. In this review, we will provide a general overview of pediatric eczema and discuss the important findings in the literature with respect to genetics and environmental exposures, highlighting those derived from birth cohort studies. Additionally, we will review how these relate to the atopic march, the hygiene hypothesis and the integrity of the skin barrier.
Collapse
Affiliation(s)
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA, Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
20
|
|
21
|
Barnes KC. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol 2010; 125:16-29.e1-11; quiz 30-1. [PMID: 20109730 DOI: 10.1016/j.jaci.2009.11.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 12/27/2022]
Abstract
A genetic basis for atopic dermatitis (AD) has long been recognized. Historic documents allude to family history of disease as a risk factor. Before characterization of the human genome, heritability studies combined with family-based linkage studies supported the definition of AD as a complex trait in that interactions between genes and environmental factors and the interplay between multiple genes contribute to disease manifestation. A summary of more than 100 published reports on genetic association studies through mid-2009 implicates 81 genes, in 46 of which at least 1 positive association with AD has been demonstrated. Of these, the gene encoding filaggrin (FLG) has been most consistently replicated. Most candidate gene studies to date have focused on adaptive and innate immune response genes, but there is increasing interest in skin barrier dysfunction genes. This review examines the methods that have been used to identify susceptibility genes for AD and how the underlying pathology of this disease has been used to select candidate genes. Current challenges and the potential effect of new technologies are discussed.
Collapse
Affiliation(s)
- Kathleen C Barnes
- Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview Circle, Room 3A.62, Baltimore, MD 21224, USA.
| |
Collapse
|
22
|
Renkonen J, Mattila P, Parviainen V, Joenväärä S, Toppila-Salmi S, Renkonen R. A network analysis of the single nucleotide polymorphisms in acute allergic diseases. Allergy 2010; 65:40-7. [PMID: 19796227 DOI: 10.1111/j.1398-9995.2009.02101.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Genetics of acute allergies has focused on identifying single nucleotide polymorphisms (SNPs) within genes relevant in the pathogenesis. In this study, we begin a systems biology analysis of the interconnectivity and biological functions of these genes, their transcripts and their corresponding proteins. METHODS The literature (Pubmed) was searched for SNPs within genes relevant in acute allergic diseases. The SNP-modified genes were converted to corresponding proteins and their protein-protein interactions were searched from six different databases. This interaction network was analysed with annotated vocabularies (ontologies), such as Gene Ontology, Reactome and Nature pathway interaction database. Time-series transcriptomics was performed with nasal epithelial cells obtained from allergic patients and their healthy control subjects. RESULTS A total of 39 genes with SNPs related to acute allergic diseases were found from a literature search. The corresponding proteins were then hooked into a large protein-protein interaction network with the help of various databases. Twenty-five SNP-related proteins had more than one interacting protein and a network contained 95 proteins, and 182 connections could be generated. This network was 10-fold enriched with protein kinases and proteins involved in the host-virus interaction compared with background human proteome. Finally, eight of the 95 nodes on our network displayed nasal epithelial transcriptomal regulation in a time-series analysis collected from birch allergic patients during the spring pollen season. CONCLUSIONS Signal transduction with special reference to host-virus interactions dominated in the allergy-related protein interaction network. Systems level analysis of allergy-related mutation can provide new insights into pathogenetic mechanisms of the diseases.
Collapse
Affiliation(s)
- J Renkonen
- Transplantation Laboratory & Infection Biology Research Program, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
23
|
Gene expression in canine atopic dermatitis and correlation with clinical severity scores. J Dermatol Sci 2009; 55:27-33. [PMID: 19394200 DOI: 10.1016/j.jdermsci.2009.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/27/2009] [Accepted: 03/20/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Canine atopic dermatitis (cAD) is a common condition in dogs that may be a naturally occurring model for human atopic dermatitis (hAD). Despite this, comparative research is limited, particularly into the genetic background of cAD. OBJECTIVES 1. Measure candidate gene expression in cAD skin using quantitative real time PCR (qPCR). 2. Correlate gene expression to clinical cAD scores (Canine Atopic Dermatitis Extent and Severity Index[CADESI]-03 and intradermal allergen test [IDT]). METHODS mRNA was extracted from biopsies of non-lesional and lesional skin from atopic dogs, and healthy skin from non-atopic dogs. Gene expression was quantified using qPCR, and compared between non-lesional atopic, lesional atopic and healthy skin. Gene expression in atopic skin was correlated with clinical severity (CADESI-03) and the number of positive reactions on an IDT. RESULTS Of the 20 quantified genes, 11 demonstrated statistically significant altered mRNA expression between atopic and healthy skin; dipeptidyl-peptidase-4 (DPP4), phosphatidylinositol-3,4,5-trisphosphate-5-phosphatase-2 (INPPL1), serine protease inhibitor kazal type-5 (SPINK5), sphingosine-1-phosphate lyase-1 (SGPL1), peroxisome proliferator-activated receptor gamma (PPARgamma), S100 calcium-binding protein A8 (S100A8), Plakophilin-2 (PKP2), Periostin (POSTN), Cullin4A, TNF-alpha and metalloproteinase inhibitor-1 (TIMP-1). Three genes correlated with CADESI-03: serum amyloid A 1 (SAA-1), S100A8, and PKP2; and four with IDT results: mast cell protease I (CMA1), SAA-1, S100A8 and SPINK5. CONCLUSION Genes with altered expression included those relevant to skin barrier formation and immune function, suggesting both are relevant in the pathogenesis of AD. Many of these genes reflect the proposed pathogenesis in hAD, supporting the use of dogs as a model for hAD. Furthermore, these genes may be considered suitable targets for future genetic and protein function studies in human and canine AD.
Collapse
|
24
|
Terakawa M, Fujieda Y, Tomimori Y, Muto T, Tanaka T, Maruoka H, Nagahira K, Ogata A, Nakatsuka T, Fukuda Y. Oral chymase inhibitor SUN13834 ameliorates skin inflammation as well as pruritus in mouse model for atopic dermatitis. Eur J Pharmacol 2008; 601:186-91. [PMID: 18996112 DOI: 10.1016/j.ejphar.2008.10.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 09/18/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022]
Abstract
Chymase is a chymotrypsin-like serine protease exclusively stored in secretory granules of mast cells and has been thought to participate in allergic diseases. It has already been shown that chymase inhibitor SUN13834 improves dermatitis in NC/Nga mice that spontaneously develop dermatitis resembling atopic dermatitis. In the present study, effect of chymase inhibitor SUN13834 on itch, the major feature of atopic dermatitis, was examined using a mouse dermatitis model induced by repeated topical application of 2,4-dinitrofluorobenzene (DNFB). Oral administration of SUN13834 once a day for 5 weeks inhibited not only skin swelling but accumulation of inflammatory cells including mast cells and eosinophils in the skin of the mice. In addition, SUN13834 also decreased significantly at 10 and 50 mg/kg the amount of scratching behavior induced by the DNFB challenge. This result indicates for the first time that mast cell chymase may be involved in itch induction. In conclusion, SUN13834 is thought to be useful as therapeutic agent for atopic dermatitis.
Collapse
Affiliation(s)
- Maki Terakawa
- Asubio Pharma Co., Limited, Biomedical Research Laboratories, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Kiyohara C, Tanaka K, Miyake Y. Genetic susceptibility to atopic dermatitis. Allergol Int 2008; 57:39-56. [PMID: 18209506 DOI: 10.2332/allergolint.r-07-150] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Indexed: 01/15/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder with an increasing prevalence in industrialized countries. AD belongs to the group of allergic disorders that includes food allergy, allergic rhinitis, and asthma. A multifactorial background for AD has been suggested, with genetic as well as environmental factors influencing disease development. Recent breakthroughs in genetic methodology have greatly augmented our understanding of the contribution of genetics to susceptibility to AD. A candidate gene association study is a general approach to identify susceptibility genes. Fifty three candidate gene studies (50 genes) have identified 19 genes associated with AD risk in at least one study. Significant associations between single nucleotide polymorphisms (SNPs) in chemokines (chymase 1-1903A > G), cytokines (interleukin13 Arg144Gln), cytokine receptors (interleukin 4 receptor 1727G > A) and SPINK 1258G > A have been replicated in more than one studies. These SNPs may be promising for identifying at-risk individuals. SNPs, even those not strongly associated with AD, should be considered potentially important because AD is a common disease. Even a small increase in risk can translate to a large number of AD cases. Consortia and international collaborative studies, which may maximize study efficacy and overcome the limitations of individual studies, are needed to help further illuminate the complex landscape of AD risk and genetic variations.
Collapse
Affiliation(s)
- Chikako Kiyohara
- Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
27
|
Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy 2007; 38:4-18. [PMID: 18031566 DOI: 10.1111/j.1365-2222.2007.02886.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mast cells have long been recognized for their role in the genesis of allergic inflammation; and more recently for their participation in innate and acquired immune responses. Mast cells reside within tissues including the skin and mucosal membranes, which interface with the external environment; as well as being found within vascularized tissues next to nerves, blood vessels and glandular structures. Mast cells have the capability of reacting both within minutes and over hours to specific stimuli, with local and systemic effects. Mast cells express the high affinity IgE receptor (FcepsilonRI) and upon aggregation of FcepsilonRI by allergen-specific IgE, mast cells release and generate biologically active preformed and newly synthesized mediators which are involved in many aspects of allergic inflammation. While mast cells have been well documented to be essential for acute allergic reactions, more recently the importance of mast cells in reacting through pattern recognition receptors in innate immune responses has become recognized. Moreover, as our molecular understanding of the mast cell has evolved, novel targets for modulation have been identified with promising therapeutic potential.
Collapse
Affiliation(s)
- J M Brown
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
28
|
Watanabe N, Tomimori Y, Terakawa M, Ishiwata K, Wada A, Muto T, Tanaka T, Maruoka H, Nagahira K, Nakatsuka T, Fukuda Y. Oral administration of chymase inhibitor improves dermatitis in NC/Nga mice. J Invest Dermatol 2007; 127:971-3. [PMID: 17255959 DOI: 10.1038/sj.jid.5700708] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Abstract
Mast cells (MCs) are traditionally thought of as a nuisance for its host, for example, by causing many of the symptoms associated with allergic reactions. In addition, recent research has put focus on MCs for displaying harmful effects during various autoimmune disorders. On the other hand, MCs can also be beneficial for its host, for example, by contributing to the defense against insults such as bacteria, parasites, and snake venom toxins. When the MC is challenged by an external stimulus, it may respond by degranulation. In this process, a number of powerful preformed inflammatory "mediators" are released, including cytokines, histamine, serglycin proteoglycans, and several MC-specific proteases: chymases, tryptases, and carboxypeptidase A. Although the exact effector mechanism(s) by which MCs carry out their either beneficial or harmful effects in vivo are in large parts unknown, it is reasonable to assume that these mediators may contribute in profound ways. Among the various MC mediators, the exact biological function of the MC proteases has for a long time been relatively obscure. However, recent progress involving successful genetic targeting of several MC protease genes has generated powerful tools, which will enable us to unravel the role of the MC proteases both in normal physiology as well as in pathological settings. This chapter summarizes the current knowledge of the biology of the MC proteases.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, The Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
30
|
Kruit A, Grutters JC, Ruven HJT, Sato H, Izumi T, Nagai S, Welsh KI, du Bois RM, van den Bosch JMM. Chymase Gene (CMA1) Polymorphisms in Dutch and Japanese Sarcoidosis Patients. Respiration 2006; 73:623-33. [PMID: 16446531 DOI: 10.1159/000091190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 10/26/2005] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Chymase is released from mast cells following activation. Evidence suggests that chymase plays an important role in tissue injury and remodeling of the lungs, heart and skin. OBJECTIVE We postulated that chymase gene (CMA1) polymorphisms are associated with pulmonary fibrosis in Dutch and with cardiac and skin involvement in Japanese sarcoidosis patients. PATIENTS AND METHODS Dutch (n = 153) and Japanese (n = 122) sarcoidosis patients with controls (Dutch, n = 309; Japanese, n = 111) were studied. Pulmonary involvement in Dutch patients as well as clinical manifestations in Japanese patients was evaluated for association with five CMA1 polymorphisms. RESULTS The CMA1 polymorphisms were not associated with disease susceptibility in either population, or with radiographic evolution in the Dutch or with cardiac or skin involvement in the Japanese patients. The -526 T allele was associated with a lower iVC in Dutch patients. CONCLUSIONS The CMA1 polymorphisms studied do not contribute to disease susceptibility in Japanese or Dutch sarcoidosis patients. CMA1 polymorphisms do not influence radiographic evolution in Dutch sarcoidosis patients, nor do they predispose to cardiac or skin involvement in Japanese patients. However, the association between CMA1 -526 C/T and iVC in the Dutch patients suggests that chymase may modify the functional outcome of pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Adrian Kruit
- Department of Pulmonology, Heart Lung Centre Utrecht, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Akdis CA, Akdis M, Bieber T, Bindslev-Jensen C, Boguniewicz M, Eigenmann P, Hamid Q, Kapp A, Leung DYM, Lipozencic J, Luger TA, Muraro A, Novak N, Platts-Mills TAE, Rosenwasser L, Scheynius A, Simons FER, Spergel J, Turjanmaa K, Wahn U, Weidinger S, Werfel T, Zuberbier T. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. Allergy 2006; 61:969-87. [PMID: 16867052 DOI: 10.1111/j.1398-9995.2006.01153.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are remarkable differences in the diagnostic and therapeutic management of atopic dermatitis practiced by dermatologists and pediatricians in different countries. Therefore, the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology nominated expert teams who were given the task of finding a consensus to serve as a guideline for clinical practice in Europe as well as in North America. The consensus report is part of the PRACTALL initiative, which is endorsed by both academies.
Collapse
Affiliation(s)
- C A Akdis
- The Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|