1
|
Lin YC, Wang WC, Lee HL, Tsai JJ, Kao SH. House dust mite allergen Der f 2 drives IL-6 and GM-CSF expression in airway epithelial cells via p38 MAPK/NF-κB signaling. J Asthma 2024; 61:1449-1458. [PMID: 38748873 DOI: 10.1080/02770903.2024.2356685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Der f 2, a major allergen derived from Dermatophagoides farinae, is a leading cause of allergic asthma. IL-6 and GM-CSF play essential roles in the exacerbation of asthma. However, the mechanical act by which Der f 2 mediates the expression of IL-6, IL-8, and GM-CSF in airway epithelial cells remains incompletely elucidated. Herein, we aimed to explore the effect of Der f 2 on IL-6 and GM-CSF expression in the human airway epithelial cell BEAS-2B and A549. METHODS Recombinant Der f 2 (rDf2) was acquired using Pichia pastoris. BEAS-2B and A549 cells were used as cell model. The expression of genes and proteins and the involvement of the signaling cascade were assessed using RT-PCR, quantitative real-time PCR (qPCR), Western blotting, and ELISA, respectively. RESULTS Our findings showed that rDf2 significantly induced mRNA expression and protein production of IL-6 and GM-CSF in BEAS-2B and A549 cells. In contrast, rDf2 did not influence IL-8 expression or production in both cells. Mechanistic studies revealed that rDf2 triggered activation of the p38 MAPK and JNK. Inhibition of p38, but not JNK, significantly attenuated rDf2-induced IL-6 and GM-CSF expression and production. CONCLUSION This study demonstrates that Der f 2 promotes the expression and production of the pro-inflammatory cytokines IL-6 and GM-CSF in airway epithelial cells via activation of the p38 signaling pathway. These findings provide insights into the molecular mechanisms that Der f 2 may exacerbate airway inflammation.
Collapse
Affiliation(s)
- Yu-Cian Lin
- Division of Cardiovascular Surgery, Department of Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Wang
- Institute of Biochemistry and Biotechnology (Institute of Medicine), College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jaw-Ji Tsai
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Sverrild A, Cerps S, Nieto-Fontarigo JJ, Ramu S, Hvidtfeldt M, Menzel M, Kearley J, Griffiths JM, Parnes JR, Porsbjerg C, Uller L. Tezepelumab decreases airway epithelial IL-33 and T2-inflammation in response to viral stimulation in patients with asthma. Allergy 2024; 79:656-666. [PMID: 37846599 DOI: 10.1111/all.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Respiratory virus infections are main triggers of asthma exacerbations. Tezepelumab, an anti-TSLP mAb, reduces exacerbations in patients with asthma, but the effect of blocking TSLP on host epithelial resistance and tolerance to virus infection is not known. AIM To examine effects of blocking TSLP in patients with asthma on host resistance (IFNβ, IFNλ, and viral load) and on the airway epithelial inflammatory response to viral challenge. METHODS Bronchoalveolar lavage fluid (BALF, n = 39) and bronchial epithelial cells (BECs) were obtained from patients with uncontrolled asthma before and after 12 weeks of tezepelumab treatment (n = 13) or placebo (n = 13). BECs were cultured in vitro and exposed to the viral infection mimic poly(I:C) or infected by rhinovirus (RV). Alarmins, T2- and pro-inflammatory cytokines, IFNβ IFNλ, and viral load were analyzed by RT-qPCR and multiplex ELISA before and after stimulation. RESULTS IL-33 expression in unstimulated BECs and IL-33 protein levels in BALF were reduced after 12 weeks of tezepelumab. Further, IL-33 gene and protein levels decreased in BECs challenged with poly(I:C) after tezepelumab whereas TSLP gene expression remained unaffected. Poly(I:C)-induced IL-4, IL-13, and IL-17A release from BECs was also reduced with tezepelumab whereas IFNβ and IFNλ expression and viral load were unchanged. CONCLUSION Blocking TSLP with tezepelumab in vivo in asthma reduced the airway epithelial inflammatory response including IL-33 and T2 cytokines to viral challenge without affecting anti-viral host resistance. Our results suggest that blocking TSLP stabilizes the bronchial epithelial immune response to respiratory viruses.
Collapse
Affiliation(s)
- A Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - S Cerps
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J J Nieto-Fontarigo
- Department of Experimental Medicine, Lund University, Lund, Sweden
- BioLympho Research group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - S Ramu
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - M Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - M Menzel
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - J Kearley
- Bioscience, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J M Griffiths
- Translational Science and Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - J R Parnes
- Translational Medicine, Amgen, Thousand Oaks, California, USA
| | - C Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - L Uller
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
5
|
Shimizu S, Tojima I, Nakamura K, Arai H, Kouzaki H, Shimizu T. Nasal polyp fibroblasts (NPFs)-derived exosomes are important for the release of vascular endothelial growth factor from cocultured eosinophils and NPFs. Auris Nasus Larynx 2021; 49:407-414. [PMID: 34736807 DOI: 10.1016/j.anl.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Significant eosinophil infiltration and tissue remodeling are common characteristics of conditions associated with chronic airway inflammation, such as chronic rhinosinusitis with nasal polyp and bronchial asthma. This study was designed to elucidate the role of eosinophil-fibroblast interactions in tissue remodeling during chronic airway inflammation. METHODS Peripheral blood eosinophils or EoL-1 eosinophilic leukemia cells were cocultured with nasal polyp fibroblasts (NPFs). Coculture-induced release of exosomes, major components of extracellular vesicles (EVs), and a profibrotic cytokine, vascular endothelial growth factor (VEGF), were evaluated by enzyme-linked immunosorbent assay. RESULTS Eosinophil-NPF interactions stimulated the release of exosomes and VEGF into culture supernatants. Coculture-induced release of exosomes was stimulated earlier than VEGF release, at 3 h of incubation. The average size of the EVs released by NPFs was 133 ± 3.6 nm. NPF-derived EVs (exosome concentration: 25 pg/mL) significantly stimulated VEGF release from EoL-1 cells. Pretreatment of NPFs with exosome inhibitor, GW4869 or DMA attenuated the release of exosomes and VEGF from cocultured EoL-1 cells and NPFs. CONCLUSION The results of this study indicate that eosinophil-fibroblast interactions are important in the pathophysiology of tissue remodeling in eosinophil-predominant airway inflammation and that NPF-derived exosomes play a crucial role in the release of VEGF.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Ichiro Tojima
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Keigo Nakamura
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroyuki Arai
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hideaki Kouzaki
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
6
|
Luo Y, Chen H, Huang R, Wu Q, Li Y, He Y. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-κB signals in OVA-induced asthmatic mice. Pulm Pharmacol Ther 2021; 69:102049. [PMID: 34102301 DOI: 10.1016/j.pupt.2021.102049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/30/2021] [Indexed: 02/05/2023]
Abstract
Asthma is one of the most common respiratory diseases. Lack of response or poor adherence to corticosteroids demands the development of new drug candidates for asthma. Endogenous nucleosides could be potential options since uridine has been reported to have an anti-inflammatory effect in asthma model. However, its molecular pathways and whether other nucleosides have similar therapeutic effects remain untouched. Thus, we herein report our investigation into the anti-inflammatory effects of guanosine and uridine, and the related inner signaling pathways in asthma model. Present study shows that administration of guanosine or uridine can reduce lung inflammation in OVA-challenged mice. Total cell counts in BALF, cytokines such as IL-4, IL-6, IL-13, OVA-specific IgE and mRNA level of Cxcl1, Cxlc3, IL-17 and Muc5ac were decreased in asthmatic mice after treatment. Besides, the production of IL-6 in LPS/IFN-γ induced THP-1 cells was also decreased by both nucleosides. In vivo and in vitro expressions of key molecules in the MAPK and NF-κB pathways were reduced after the treatment of both compounds. These findings suggest that guanosine has a similar potential therapeutic value in asthma as uridine and they exert anti-inflammatory effects through suppression of the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Yujiao Luo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Qiong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
7
|
Coinfection with Porcine Circovirus Type 2 (PCV2) and Streptococcus suis Serotype 2 (SS2) Enhances the Survival of SS2 in Swine Tracheal Epithelial Cells by Decreasing Reactive Oxygen Species Production. Infect Immun 2020; 88:IAI.00537-20. [PMID: 32868342 DOI: 10.1128/iai.00537-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) and Streptococcus suis serotype 2 (SS2) clinical coinfection cases have been frequently detected. The respiratory epithelium plays a crucial role in host defense against a variety of inhaled pathogens. Reactive oxygen species (ROS) are involved in killing of bacteria and host immune response. The aim of this study is to assess whether PCV2 and SS2 coinfection in swine tracheal epithelial cells (STEC) affects ROS production and investigate the roles of ROS in bacterial survival and the inflammatory response. Compared to SS2 infection, PCV2/SS2 coinfection inhibited the activity of NADPH oxidase, resulting in lower ROS levels. Bacterial intracellular survival experiments showed that coinfection with PCV2 and SS2 enhanced SS2 survival in STEC. Pretreatment of STEC with N-acetylcysteine (NAC) also helps SS2 intracellular survival, indicating that PCV2/SS2 coinfection enhances the survival of SS2 in STEC through a decrease in ROS production. In addition, compared to SS2-infected STEC, PCV2/SS2 coinfection and pretreatment of STEC with NAC prior to SS2 infection both downregulated the expression of the inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β. Further research found that activation of p38/MAPK promoted the expression of inflammatory cytokines in SS2-infected STEC; however, PCV2/SS2 coinfection or NAC pretreatment of STEC inhibited p38 phosphorylation, suggesting that coinfection of STEC with PCV2 and SS2 weakens the inflammatory response to SS2 infection through reduced ROS production. Collectively, coinfection of STEC with PCV2 and SS2 enhances the intracellular survival of SS2 and weakens the inflammatory response through decreased ROS production, which might exacerbate SS2 infection in the host.
Collapse
|
8
|
Zhu J, Dong J, Ji L, Jiang P, Leung TF, Liu D, Ng LG, Tsang MSM, Jiao D, Lam CWK, Wong CK. Anti-Allergic Inflammatory Activity of Interleukin-37 Is Mediated by Novel Signaling Cascades in Human Eosinophils. Front Immunol 2018; 9:1445. [PMID: 29988381 PMCID: PMC6023969 DOI: 10.3389/fimmu.2018.01445] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022] Open
Abstract
IL-1 family regulatory cytokine IL-37b can suppress innate immunity and inflammatory activity in inflammatory diseases. In this study, IL-37b showed remarkable in vitro suppression of inflammatory tumor necrosis factor-α, IL-1β, IL-6, CCL2, and CXCL8 production in the coculture of human primary eosinophils and human bronchial epithelial BEAS-2B cells with the stimulation of bacterial toll-like receptor-2 ligand peptidoglycan, while antagonizing the activation of intracellular nuclear factor-κB, PI3K–Akt, extracellular signal-regulated kinase 1/2, and suppressing the gene transcription of allergic inflammation-related PYCARD, S100A9, and CAMP as demonstrated by flow cytometry, RNA-sequencing, and bioinformatics. Results therefore elucidated the novel anti-inflammation-related molecular mechanisms mediated by IL-37b. Using the house dust mite (HDM)-induced humanized asthmatic NOD/SCID mice for preclinical study, intravenous administration of IL-37b restored the normal plasma levels of eosinophil activators CCL11 and IL-5, suppressed the elevated concentrations of Th2 and asthma-related cytokines IL-4, IL-6, and IL-13 and inflammatory IL-17, CCL5, and CCL11 in lung homogenate of asthmatic mice. Histopathological results of lung tissue illustrated that IL-37b could mitigate the enhanced mucus, eosinophil infiltration, thickened airway wall, and goblet cells. Together with similar findings using the ovalbumin- and HDM-induced allergic asthmatic mice further validated the therapeutic potential of IL-37b in allergic asthma. The above results illustrate the novel IL-37-mediated regulation of intracellular inflammation mechanism linking bacterial infection and the activation of human eosinophils and confirm the in vivo anti-inflammatory activity of IL-37b on human allergic asthma.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Jie Dong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Lu Ji
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Peiyong Jiang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Dehua Liu
- Institute of Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lai Guan Ng
- Singapore Immunology Network, Singapore, Singapore
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Delong Jiao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong.,Institute of Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
9
|
Lee YZ, Yap HM, Shaari K, Tham CL, Sulaiman MR, Israf DA. Blockade of Eosinophil-Induced Bronchial Epithelial-Mesenchymal Transition with a Geranyl Acetophenone in a Coculture Model. Front Pharmacol 2017; 8:837. [PMID: 29201006 PMCID: PMC5696322 DOI: 10.3389/fphar.2017.00837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is currently recognized as the main cellular event that contributes to airway remodeling. Eosinophils can induce EMT in airway epithelial cells via increased transforming growth factor (TGF)-β production. We assessed the effect of synthetic 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) upon eosinophil-induced EMT in a cellular model. The human eosinophil cell line EoL-1 was used to induce EMT in BEAS-2B human bronchial epithelial cells. The induction of EMT was dose-dependently suppressed following tHGA treatment in which the epithelial morphology and E-cadherin expression were not altered. Protein and mRNA expression of vimentin, collagen I and fibronectin in eosinophil-induced epithelial cells were also significantly suppressed by tHGA treatment. Following pathway analysis, we showed that tHGA suppressed eosinophil-induced activator protein-1-mediated TGF-β production by targeting c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. These findings corroborated previous findings on the ability of tHGA to inhibit experimental murine airway remodeling.
Collapse
Affiliation(s)
- Yu Z Lee
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Hui M Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Chau L Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Mohd R Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Daud A Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
10
|
Fan XY, Chen B, Lu ZS, Jiang ZF, Zhang SQ. Poly-L-Arginine Acts Synergistically with LPS to Promote the Release of IL-6 and IL-8 via p38/ERK Signaling Pathways in NCI-H292 Cells. Inflammation 2016; 39:47-53. [PMID: 26246181 DOI: 10.1007/s10753-015-0221-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Major basic protein (MBP) derived from activated eosinophil can exacerbate atopic asthma induced by lipopolysaccharide (LPS). The pharmacological function of MBP can be mimicked by poly-L-arginine (PLA), however, the potential signaling mechanisms of LPS-PLA-induced release of the inflammatory cytokines interleukin (IL)-6 and IL-8 remain unclear. In the present study, airway epithelia NCI-H292 cell lines were treated with LPS and/or PLA. We found that the expression levels of IL-6 and IL-8 induced by LPS-PLA were increased significantly compared with that in untreated cells. Meanwhile, the phosphorylation of p38 MAPK and ERK1/2 was also up-regulated dramatically by LPS-PLA, but this increase could be blocked by specific inhibitor. Importantly, blocking the phosphorylation of p38 MAPK and ERK1/2 reduced the expression levels of IL-6 and IL-8 as well. Collectively, LPS-PLA-induced release of IL-6 and IL-8 from NCI-H292 cells may be due to the synergistic activation of p38 MAPK and ERK1/2 signaling transduction pathways.
Collapse
Affiliation(s)
- Xiao-Yun Fan
- Department of Pulmonology, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, Anhui, 230022, People's Republic of China.
| | - Bing Chen
- Department of Pulmonology, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Zhao-Shuang Lu
- Department of Pulmonology, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Zi-Feng Jiang
- Department of Pulmonology, The Geriatric Institute of Anhui, The First Affiliated Hospital of Anhui Medical University, Number 218, Jixi Road, Hefei, Anhui, 230022, People's Republic of China
| | - Sheng-Quan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Number 81, Meishan Road, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
11
|
Schuliga M. NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules 2015; 5:1266-83. [PMID: 26131974 PMCID: PMC4598751 DOI: 10.3390/biom5031266] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF)-kappaB (NF-κB), is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs), a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs) bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression). However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs) are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre (LHRC), Department Pharmacology and Therapeutics, University of Melbourne, Grattan St., Parkville 3010, Victoria, Australia.
| |
Collapse
|
12
|
Grodecki J, Short AR, Winter JO, Rao SS, Winter JO, Otero JJ, Lannutti JJ, Sarkar A. Glioma-astrocyte interactions on white matter tract-mimetic aligned electrospun nanofibers. Biotechnol Prog 2015; 31:1406-15. [PMID: 26081199 DOI: 10.1002/btpr.2123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/29/2015] [Indexed: 12/11/2022]
Abstract
Gliomas are highly invasive forms of brain cancer comprising more than 50% of brain tumor cases in adults, and astrocytomas account for ∼60-70% of all gliomas. As a result of multiple factors, including enhanced migratory properties and extracellular matrix remodeling, even with current standards of care, mean survival time for patients is only ∼12 months. Because glioblastoma multiforme (GBM) cells arise from astrocytes, there is great interest in elucidating the interactions of these two cell types in vivo. Previous work performed on two-dimensional assays (i.e., tissue culture plastic and Boyden chamber assays) utilizes substrates that lack the complexities of the natural microenvironment. Here, we employed a three-dimensional, electrospun poly-(caprolactone) (PCL) nanofiber system (NFS) to mimic some features of topographical properties evidenced in vivo. Co-cultures of human GBM cells and rat astrocytes, as performed on the NFS, showed a significant increase in astrocyte GFAP expression, particularly in the presence of extracellular matrix (ECM) deposited by GBM cells. In addition, GBM migration increased in the presence of astrocytes or soluble factors (i.e., conditioned media). However, the presence of fixed astrocytes acted as an antagonist, lowering GBM migration rates. This data suggests that astrocytes and GBM cells interact through a multitude of pathways, including soluble factors and direct contact. This work demonstrates the potential of the NFS to duplicate some topographical features of the GBM tumor microenvironment, permitting analysis of topographical effects in GBM migration.
Collapse
Affiliation(s)
- Joseph Grodecki
- Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Aaron R Short
- Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Jessica O Winter
- Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Shreyas S Rao
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - Jessica O Winter
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH
| | - José Javier Otero
- Dept. of Pathology, Division of Neuropathology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - John J Lannutti
- Dept. of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Atom Sarkar
- Dept. of Neurosurgery and Laboratory for Nanomedicine, Geisinger Health System, Danville, PA
| |
Collapse
|
13
|
Shimizu S, Kouzaki H, Ogawa T, Takezawa K, Tojima I, Shimizu T. Eosinophil-epithelial cell interactions stimulate the production of MUC5AC mucin and profibrotic cytokines involved in airway tissue remodeling. Am J Rhinol Allergy 2015; 28:103-9. [PMID: 24717945 DOI: 10.2500/ajra.2014.28.4018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Predominant eosinophil infiltration and tissue remodeling are common characteristics of chronic airway inflammation such as nasal polyposis and bronchial asthma. This study was designed to elucidate the role of eosinophils in tissue remodeling of chronic airway inflammation; eosinophil-epithelial interactions were examined by the coculture of airway epithelial cell line NCI-H292 with the eosinophilic cell line EoL-1 or with human blood eosinophils. METHODS The coculture-induced production of MUC5AC mucin, platelet-derived growth factor AB (PDGF-AB), vascular endothelial growth factor (VEGF), transforming growth factor (TGF) beta1, and interleukin-8 (IL-8) were evaluated by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. RESULTS Eosinophil-epithelial interactions significantly stimulated the secretion of MUC5AC, PDGF-AB, VEGF, TGF-beta1, and IL-8 in culture supernatants. The epidermal growth factor receptor tyrosine kinase inhibitor AG1478 inhibited the coculture-induced secretion of MUC5AC, PDGF-AB, VEGF, and IL-8. Neutralizing antibodies directed against TGF-alpha or amphiregulin and pan-metalloproteinase inhibitor GM6001 inhibited the coculture-induced secretion of MUC5AC and amphiregulin from the cocultured NCI-H292 cells. Coculture of NCI-H292 cells with peripheral blood eosinophils also significantly stimulated MUC5AC production. CONCLUSION The results of this study indicate that eosinophil-epithelial cell interactions are important in the pathogenesis of tissue remodeling of eosinophil-predominant airway inflammation such as occurs in nasal polyposis and bronchial asthma.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Liu Y, Shao LL, Pang W, Lan XM, Lu JX, Cong YL, Wang CB. Induction of adhesion molecule expression in co-culture of human bronchial epithelial cells and neutrophils suppressed by puerarin via down-regulating p38 mitogen-activated protein kinase and nuclear factor κB pathways. Chin J Integr Med 2015; 20:360-8. [PMID: 24122632 DOI: 10.1007/s11655-013-1515-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the expressions of adhesion molecules on human bronchial epithelial cells and neutrophils in co-culture system, assess the effects of puerarin on suppressing these adhesion molecules expressions, and explore the roles of two crucial signal-transduction elements p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa B (NF-κB) in modulating adhesion molecules expressions. METHODS Neutrophils and BEAS-2B cells (one human bronchial epithelial cell line) were co-cultured, and adhesion molecules expressions on cell surface were detected using flow cytometry. The mRNA levels of adhesion molecules were assessed by real-time quantitative polymerase chain reaction (real-time qPCR). Phosphorylated p38 MAPK and inhibitor κB were analyzed by Western blot. RESULTS In co-culture system, adhesion molecules expressions on BEAS-2B cells and neutrophils were enhanced significantly (P<0.05). Correspondingly, the mRNA levels of adhesion molecules were also increased greatly. Moreover, the pretreatment of peurarin obviously suppressed adhesion molecules expressions on cell surface. Furthermore, phosphorylated p38 MAPK and inhibitor κB in BEAS-2B cells and neutrophils were elevated in co-culture system, but decreased significantly after upon the treatment of peurarin (P<0.05). CONCLUSIONS Coculture boosted the interactions between human bronchial epithelial cells and neutrophils mimicking airway inflflammation, whereas peurarin decreased the expression of adhesion molecules on cell surface by suppressing the activities of p38 MAPK and NF-κB pathways, and exhibiting its anti-inflflammation activity.
Collapse
|
15
|
Perilla frutescens leaf extract inhibits mite major allergen Der p 2-induced gene expression of pro-allergic and pro-inflammatory cytokines in human bronchial epithelial cell BEAS-2B. PLoS One 2013; 8:e77458. [PMID: 24204835 PMCID: PMC3799690 DOI: 10.1371/journal.pone.0077458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022] Open
Abstract
Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE) on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2) and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38) and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens.
Collapse
|
16
|
Wong CK, Hu S, Leung KML, Dong J, He L, Chu YJ, Chu IMT, Qiu HN, Liu KYP, Lam CWK. NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma. Cell Mol Immunol 2013; 10:317-29. [PMID: 23524653 DOI: 10.1038/cmi.2012.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Key intracytosolic pattern recognition receptors of innate immunity against bacterial infections are nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We elucidated the NOD1 and NOD2-mediated activation of human eosinophils, the principal effector cells for allergic inflammation, upon interacting with human bronchial epithelial BEAS-2B cells in allergic asthma. Eosinophils constitutively expressed NOD1,2 but exhibited nonsignificant responses to release chemokines upon the stimulation by NOD1 ligand γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and NOD2 ligand muramyl dipeptide (MDP). However, iE-DAP and MDP could significantly upregulate cell surface expression of CD18 and intercellular adhesion molecule (ICAM)-1 on eosinophils and ICAM-1 on BEAS-2B cells, as well as induce chemokines CCL2 and CXCL8 release in the coculture system (all P<0.05). Both eosinophils and BEAS-2B cells were the main source for CXCL8 and CCL2 release in the coculture system upon iE-DAP or MDP stimulation. Direct interaction between eosinophils and BEAS-2B cells is responsible for CCL2 release, and soluble mediators are implicated in CXCL8 release. ERK and NF-κB play regulatory roles for the expression of adhesion molecules and chemokines in coculture. Treatment with NOD1,2 ligand could induce the subepithelial fibrosis and significantly enhance the serum concentration of total IgE, chemokine CCL5 for eosinophils and T helper type 2 (Th2) cells and asthma Th2 cytokine IL-13 in bronchoalveolar lavage fluid of ovalbumin-sensitized allergic asthmatic mice (all P<0.05). This study provides further evidence of bacterial infection-mediated activation of NOD1,2 in triggering allergic asthma via the activation of eosinophils interacting with bronchial epithelial cells at inflammatory airway.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jiao ZL, Li L, Zhao ZG, Liu D, Lin BW, Li HJ. Aqueous extracts of Ocimum grasstimum inhibits lipopolysaccharide-induced interleukin-6 and interleukin-8 expression in airway epithelial cell BEAS-2B. Chin J Integr Med 2012; 19:741-8. [DOI: 10.1007/s11655-012-1251-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Indexed: 02/07/2023]
|
18
|
Chow AWM, Liang JFT, Wong JSC, Fu Y, Tang NLS, Ko WH. Polarized secretion of interleukin (IL)-6 and IL-8 by human airway epithelia 16HBE14o- cells in response to cationic polypeptide challenge. PLoS One 2010; 5:e12091. [PMID: 20711426 PMCID: PMC2920803 DOI: 10.1371/journal.pone.0012091] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/11/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The airway epithelium participates in asthmatic inflammation in many ways. Target cells of the epithelium can respond to a variety of inflammatory mediators and cytokines. Damage to the surface epithelium occurs following the secretion of eosinophil-derived, highly toxic cationic proteins. Moreover, the surface epithelium itself is responsible for the synthesis and release of cytokines that cause the selective recruitment, retention, and accumulation of various inflammatory cells. To mimic the damage seen during asthmatic inflammation, the bronchial epithelium can be challenged with highly charged cationic polypeptides such as poly-L-arginine. METHODOLOGY/PRINCIPAL FINDINGS In this study, human bronchial epithelial cells, 16HBE14o- cells, were "chemically injured" by exposing them to poly-l-arginine as a surrogate of the eosinophil cationic protein. Cytokine antibody array data showed that seven inflammatory mediators were elevated out of the 40 tested, including marked elevation in interleukin (IL)-6 and IL-8 secretion. IL-6 and IL-8 mRNA expression levels were elevated as measured with real-time PCR. Cell culture supernatants from apical and basolateral compartments were collected, and the IL-6 and IL-8 production was quantified with ELISA. IL-6 and IL-8 secretion by 16HBE14o- epithelia into the apical compartment was significantly higher than that from the basolateral compartment. Using specific inhibitors, the production of IL-6 and IL-8 was found to be dependent on p38 MAPK, ERK1/2 MAPK, and NF-kappaB pathways. CONCLUSIONS/SIGNIFICANCE The results clearly demonstrate that damage to the bronchial epithelia by poly-L-arginine stimulates polarized IL-6 and IL-8 secretion. This apically directed secretion of cytokines may play an important role in orchestrating epithelial cell responses to inflammation.
Collapse
Affiliation(s)
- Alison Wai-ming Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Jocelyn Feng-ting Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Janice Siu-chong Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Yan Fu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Nelson Leung-sang Tang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresource and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Wing-hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- KIZ/CUHK Joint Laboratory of Bioresource and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
- * E-mail:
| |
Collapse
|
19
|
Pistolic J, Cosseau C, Li Y, Yu J(J, Filewod NC, Gellatly S, Rehaume LM, Bowdish DM, Hancock RE. Host defence peptide LL-37 induces IL-6 expression in human bronchial epithelial cells by activation of the NF-kappaB signaling pathway. J Innate Immun 2008; 1:254-67. [PMID: 20375583 PMCID: PMC7312842 DOI: 10.1159/000171533] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/21/2008] [Indexed: 12/30/2022] Open
Abstract
LL-37, the only member of the cathelicidin family of cationic host defence peptides in humans, has been shown to mediate multiple immunomodulatory effects and as such is thought to be an important component of innate immune responses. A growing body of evidence indicates that LL-37 affects lung mucosal responses to pathogens through altered regulation of cell migration, proliferation, wound healing and cell apoptosis. These functions are consistent with LL-37 playing a role in regulating lung epithelial inflammatory responses; however, that role has not been clearly defined. In this report we have demonstrated that host defence peptide LL-37 induced cytokine (IL-6) and chemokine (CXCL-1/GRO-alpha and CXCL-8/IL-8) release from human bronchial epithelial cells. It was demonstrated that LL-37-mediated IL-6 release was time and dose dependent and that LL-37 up-regulated this pleiotropic cytokine at the transcriptional level. Using specific inhibitors it was shown that NF-kappaB signaling led to the LL-37-stimulated production of IL-6. LL-37 stimulation of airway epithelial cells activated NF-kappaB signaling, as demonstrated by the phosphorylation and degradation of Ikappa-Balpha, and consequent nuclear translocation of p65 and p50 NF-kappaB subunits. Furthermore this host defence peptide augmented flagellin-mediated cytokine production, indicating that LL-37 likely modulates Toll-like receptor 5-mediated responses.
Collapse
Affiliation(s)
- Jelena Pistolic
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Celine Cosseau
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Yuexin Li
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Jie (Jessie) Yu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Niall C.J. Filewod
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Shaan Gellatly
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Linda M. Rehaume
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| | - Dawn M.E. Bowdish
- Sir William Dunn School of Pathology, Universityof Oxford, Oxford, UK
| | - Robert E.W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
20
|
Tulic MK, Hurrelbrink RJ, Prêle CM, Laing IA, Upham JW, Le Souef P, Sly PD, Holt PG. TLR4 polymorphisms mediate impaired responses to respiratory syncytial virus and lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2007; 179:132-40. [PMID: 17579031 DOI: 10.4049/jimmunol.179.1.132] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe bronchiolitis following respiratory syncytial virus (RSV) infection occurs in only a small subset of infected infants and the basis for variations in disease severity is not understood. Innate immune responses to RSV are mediated by TLR-4, and the (299)Gly and (399)Ile alleles of the TLR4 gene have been linked epidemiologically with increased severity of RSV disease in children. We hypothesized that cellular immune responses to RSV mediated by these variant forms of the receptor are defective relative to responses mediated via the common form of the receptor. Human bronchial epithelial cells were transfected with TLR4 constructs encoding the common TLR4 gene sequence ((299)Asp/(399)Thr), or the (299)Gly or (399)Ile alleles, and cytokine responses to in vitro RSV challenge were analyzed in the different transfected cells. Follow-up studies compared RSV-induced responses in PBMC from children expressing these same TLR4 genotypes. Human bronchial epithelial expressing (299)Gly or (399)Ile displayed normal levels of intracellular TLR4 but failed to efficiently translocate the receptor to the cell surface. This was associated with reduced NF-kappaB signaling post-TLR4 engagement, reduced production of IFNs, IL-8, IL-10, IL-12p35, IL-18, and CCL8, and the absence of acute-phase TNF-alpha. These findings were mirrored by blunted PBMC responses to RSV in children expressing the same TLR4 variants. Compromised first-line defense against RSV at the airway-epithelial surface of children expressing these TLR4 variants may thus confer increased susceptibility to severe infections with this virus.
Collapse
Affiliation(s)
- Meri K Tulic
- Division of Cell Biology, Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, West Perth, WA 6872, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ip WK, Wong CK, Li MLY, Li PW, Cheung PFY, Lam CWK. Interleukin-31 induces cytokine and chemokine production from human bronchial epithelial cells through activation of mitogen-activated protein kinase signalling pathways: implications for the allergic response. Immunology 2007; 122:532-41. [PMID: 17627770 PMCID: PMC2266039 DOI: 10.1111/j.1365-2567.2007.02668.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interleukin-31 (IL-31) is a novel T-helper-lymphocyte-derived cytokine that plays an important role in allergic skin inflammation and atopic dermatitis. It has recently been implicated in bronchial inflammation. We investigated the functions and mechanisms of IL-31-induced activation of human bronchial epithelial cells. The gene and protein expressions of candidate cytokines/chemokines from IL-31-stimulated human bronchial epithelial BEAS-2B cells were first quantified by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The activity of different mitogen-activated protein kinases (MAPKs) in IL-31-stimulated BEAS-2B cells was assessed by Western blot. The IL-31 could significantly elevate the gene and protein expressions of epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1/CCL2) of BEAS-2B cells in both time-dependently and dose-dependently. Combination of IL-31 with either IL-4 or IL-13 further enhanced VEGF and CCL2 production while IL-31 could synergistically augment the release of EGF, VEGF, CCL2, IL-6 and IL-8 in cocultures of BEAS-2B cells and eosinophils. In addition, IL-31 could activate p38 MAPK, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) of BEAS-2B cells. Selective inhibitors of p38 MAPK (SB203580), ERK (PD98059), and JNK (SP600125) could differentially inhibit the production of EGF, VEGF and CCL2, thereby suggesting a role for MAPKs in IL-31 functions. In conclusion, the activation of MAPKs can be crucial for IL-31-mediated activation of bronchial epithelial cells, thereby providing an immunological role for IL-31 in bronchial inflammation, at least partly, via epithelial EGF, VEGF and CCL2 production.
Collapse
Affiliation(s)
- Wai K Ip
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | | | |
Collapse
|
22
|
Shida Y, Igawa T, Hakariya T, Sakai H, Kanetake H. p38MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion. Biochem Biophys Res Commun 2007; 353:744-9. [PMID: 17196171 DOI: 10.1016/j.bbrc.2006.12.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 12/13/2006] [Indexed: 11/27/2022]
Abstract
Increased levels of serum interleukin-6 (IL-6) are frequently observed in patients with advanced, hormone-refractory prostate cancer. However, the precise mechanism of IL-6 regulation is still largely unknown. Since prostate cancer gradually progresses to an androgen-independent state despite the stress caused by various therapeutic agents, we hypothesized the stress-activated protein kinases (SAPKs) involvement in androgen-independent growth or IL-6 secretion of prostate cancer cells. Using PC-3 and DU145 human prostate cancer cells, we analyzed the role of SAPKs in IL-6 mediated cell growth and found that the p38MAPK and JNK are involved in androgen-independent cancer cell growth. Furthermore, IL-6 secretion by PC-3 and DU145 cells was significantly suppressed by SAPKs inhibitor, especially by p38MAPK inhibitor SB203580, but not by JNK inhibitor SP600125 nor by MEK inhibitor, PD98059. These results raised the possibility that the IL-6 mediated androgen-independent proliferation of PC-3 and DU145 cells is regulated at least partly via SAPKs signaling pathway especially through p38MAPK activation.
Collapse
Affiliation(s)
- Yohei Shida
- Division of Nephro-Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | |
Collapse
|
23
|
Matsuyama W, Mitsuyama H, Ono M, Shirahama Y, Higashimoto I, Osame M, Arimura K. Discoidin domain receptor 1 contributes to eosinophil survival in an NF-kappaB-dependent manner in Churg-Strauss syndrome. Blood 2006; 109:22-30. [PMID: 16968898 DOI: 10.1182/blood-2006-04-015206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Churg-Strauss syndrome (CSS) is a systemic disease that shows marked eosinophilia along with eosinophil infiltration in the tissue. Prolonged eosinophil survival plays an important role in the pathogenesis of CSS; however, its detailed molecular mechanism remains unclear. Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase, and its ligand is collagen. DDR1 was expressed in human leukocytes and fibroblasts, and it plays an important role in leukocyte cytokine production and fibroblast survival in an NF-kappaB-dependent manner. In this study, we examined in vitro and in vivo eosinophil DDR1 expression and its function in CSS patients. The expression level of DDR1 was significantly higher in the eosinophils of CSS patients, and the predominant isoform was DDR1b. Immunohistochemical findings revealed that the tissue-infiltrating eosinophils expressed endogenous DDR1. In CSS patients, DDR1 activation inhibited Fas agonistic antibody-induced apoptosis and up-regulated Fas agonistic antibody-induced cytokine production of eosinophils in an NF-kappaB-dependent manner. Suppression of DDR1 expression in the eosinophils by using RNA interference and addition of the DDR1-blocking protein abolished these effects. We propose that DDR1 contributes to the eosinophil survival in the tissue microenvironment of CSS and that it might be involved in the development of CSS.
Collapse
Affiliation(s)
- Wataru Matsuyama
- Division of Respiratory Medicine, Respiratory and Stress Care Center, Kagoshima University Hospital, Kagoshima 890-8520, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wong CK, Wang CB, Li MLY, Ip WK, Tian YP, Lam CWK. Induction of adhesion molecules upon the interaction between eosinophils and bronchial epithelial cells: involvement of p38 MAPK and NF-kappaB. Int Immunopharmacol 2006; 6:1859-71. [PMID: 17052676 DOI: 10.1016/j.intimp.2006.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/17/2006] [Accepted: 08/03/2006] [Indexed: 11/20/2022]
Abstract
Eosinophils are principal effector cells of inflammation in allergic asthma, characterized by their infiltration and accumulation at inflammatory sites mediated by chemokine eotaxin, and interaction with adhesion molecules expressed on bronchial epithelial cells. In this study, tumor necrosis factor (TNF)-alpha and/or the interaction of eosinophils and bronchial epithelial BEAS-2B cells were found to up-regulate the cell surface expression of adhesion molecules intercellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 on BEAS-2B cells, and ICAM-1 and leukocyte function-associated antigen-1 (LFA-1) on eosinophils. Interaction of eosinophils and BEAS-2B cells could induce the release of granulocyte macrophage colony-stimulating factor (GM-CSF) and activate both p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappaB activities in BEAS-2B cells but only NF-kappaB activity in eosinophils. Both proteasome inhibitor MG-132 and selective p38 MAPK inhibitor SB 203580 could significantly decrease the expression of ICAM-1 on BEAS-2B cells and CD18 on eosinophils upon co-culture with or without TNF-alpha treatment. However, the expression of VCAM-1 on BEAS-2B cells was only up-regulated by TNF-alpha-induced NF-kappaB activity. The interaction of eosinophils and bronchial epithelial cells therefore plays an important role in the up-regulation of adhesion molecules on eosinophils and epithelial cells via differential intracellular signalling pathways during allergic inflammation.
Collapse
Affiliation(s)
- C K Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | | | |
Collapse
|
25
|
Sun XC, Li WB, Li QJ, Zhang M, Xian XH, Qi J, Jin RL, Li SQ. Limb ischemic preconditioning induces brain ischemic tolerance via p38 MAPK. Brain Res 2006; 1084:165-74. [PMID: 16631139 DOI: 10.1016/j.brainres.2006.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 01/26/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
It has been reported that limb ischemic preconditioning (LIP) could induce brain ischemic tolerance. In the present study, we investigated the role of p38 MAPK in the induction of brain ischemic tolerance by observing expression of phosphorylated p38 (p-p38) MAPK in the hippocampus after LIP and the effect of p38 MAPK inhibitor SB 203580 on the protection of LIP against delayed neuronal death (DND) in the CA1 hippocampus induced normally by brain ischemic insult. The results of Flow cytometry and Western blotting showed that expression of p-p38 MAPK initially increased at 6 h after LIP compared with sham group in the CA1 hippocampus. The increases reached peak at 12 h and lasted to 24 h after LIP. Expression of p-p38 MAPK was also increased in the CA3/dentate gyrus (DG) regions after LIP, but the beginning and peaking times were 1 and 3 days after LIP, which were relatively later than those in the CA1. Histological evaluation showed that LIP protected the CA1 hippocampal pyramidal neurons against DND induced by global brain ischemic insult for 8 min, suggesting the occurrence of brain ischemic tolerance. Pretreatment with SB 203580 at 30 min before LIP effectively blocked the ischemic tolerance induced by LIP. Together, it could be concluded that activation of p38 MAPK played an important role in the brain ischemic tolerance induced by LIP, and that components of the p38 MAPK cascade might be targets to modify neuronal survival in ischemic tolerance.
Collapse
Affiliation(s)
- Xiao-Cai Sun
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | | | |
Collapse
|