1
|
Franke K, Li Z, Bal G, Zuberbier T, Babina M. Synergism between IL-33 and MRGPRX2/FcεRI Is Primarily Due to the Complementation of Signaling Modules, and Only Modestly Supplemented by Prolonged Activation of Selected Kinases. Cells 2023; 12:2700. [PMID: 38067128 PMCID: PMC10705352 DOI: 10.3390/cells12232700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Skin mast cells (MCs) express high levels of MRGPRX2, FcεRI, and ST2, and vigorously respond to their ligands when triggered individually. IL-33/ST2 also potently synergizes with other receptors, but the molecular underpinnings are poorly understood. Human skin-derived MCs were stimulated via different receptors individually or jointly in the presence/absence of selective inhibitors. TNF was quantified by ELISA. Signaling cascades were studied by immunoblot. TNF was stimulated by FcεRI ≈ ST2 > MRGPRX2. Surprisingly, neither FcεRI nor MRGPRX2 stimulation elicited NF-κB activation (IκB degradation, p65 phosphorylation) in stark contrast to IL-33. Accordingly, TNF production did not depend on NF-κB in FcεRI- or MRGPRX2-stimulated MCs, but did well so downstream of ST2. Conversely, ERK1/2 and PI3K were the crucial modules upon FcεRI/MRGPRX2 stimulation, while p38 was key to the IL-33-elicited route. The different signaling prerequisites were mirrored by their activation patterns with potent pERK/pAKT after FcεRI/MRGPRX2, but preferential induction of pp38/NF-κB downstream of ST2. FcεRI/MRGPRX2 strongly synergized with IL-33, and some synergy was still observed upon inhibition of each module (ERK1/2, JNK, p38, PI3K, NF-κB). IL-33's contribution to synergism was owed to p38 > JNK > NF-κB, while the partner receptor contributed through ERK > PI3K ≈ JNK. Concurrent IL-33 led to slightly prolonged pERK (downstream of MRGPRX2) or pAKT (activated by FcεRI), while the IL-33-elicited modules (pp38/NF-κB) remained unaffected by co-stimulation of FcεRI/MRGPRX2. Collectively, the strong synergistic activity of IL-33 primarily results from the complementation of highly distinct modules following co-activation of the partner receptor rather than by altered signal strength of the same modules.
Collapse
Affiliation(s)
- Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (K.F.); (Z.L.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
2
|
Song P, Peng G, Yue H, Ogawa T, Ikeda S, Okumura K, Ogawa H, Niyonsaba F. Candidalysin, a Virulence Factor of Candida albicans, Stimulates Mast Cells by Mediating Cross-Talk Between Signaling Pathways Activated by the Dectin-1 Receptor and MAPKs. J Clin Immunol 2022; 42:1009-1025. [PMID: 35420364 DOI: 10.1007/s10875-022-01267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Although mast cells (MCs) modulate the activity of effector cells during Candida albicans infection, their role in the pathogenesis of candidiasis remains unclear. Candidalysin, a C. albicans-derived peptide toxin, is a crucial factor in fungal infections. We aimed to investigate the effect of candidalysin on MC activation and the underlying molecular mechanism. METHODS Serum from candidalysin-immunized mice was used to measure candidalysin expression in patients infected with C. albicans. MC degranulation and migration were evaluated by β-hexosaminidase release assay and chemotaxis assay, respectively. EIA and ELISA were used to evaluate the production of eicosanoids and cytokines/chemokines, respectively. The production of nitric oxide (NO) was measured with a DAF-FM diacetate kit, while reactive oxygen species (ROS) production was analyzed by flow cytometry. MAPK activation was evaluated by Western blotting. RESULTS We detected high candidalysin expression in the lesions of patients infected with C. albicans, and the MC number was increased in these lesions. LL-37 colocalized with MCs in the lesions of candidiasis patients. Candidalysin-enhanced MC accumulation in mice and treating LAD2 and HMC-1 cells with candidalysin induced their degranulation, migration, and production of pro- and anti-inflammatory cytokines/chemokines, eicosanoids, ROS, NO, and LL-37. Interestingly, C. albicans strains lacking candidalysin failed to induce MC activation. Moreover, candidalysin increased dectin-1 expression, and the inhibition of dectin-1 decreased MC activation. Downstream dectin-1 signaling involved the MAPK pathways. CONCLUSION The finding that candidalysin causes cutaneous MC activation may improve our understanding of the role of MCs in the pathology of cutaneous C. albicans infection.
Collapse
Affiliation(s)
- Pu Song
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan.
| |
Collapse
|
3
|
Xie CC, Zhang BP, Wang HN, Li WY, Cai ZL, He Y, Ji K, Chen JJ. Flavoring agent dihydrocoumarin alleviates IgE-mediated mast cell activation and allergic inflammation. Food Funct 2022; 13:3621-3631. [PMID: 35262138 DOI: 10.1039/d2fo00190j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mast cells (MCs) are the main effector cells in the onset of high-affinity receptor for IgE (FcεRI)-mediated allergic diseases. The aim of this study was to test whether dihydrocoumarin (DHC), a food flavoring agent derived from Melilotus officinalis, can block IgE-induced MC activation effects and to examine the potential molecular mechanisms by which DHC affects MC activation. Rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin antigen, and treated with DHC. Western blot analyses were performed to detect the expression of signaling proteins. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine DHC effects on allergic reactions in vivo. DHC inhibited MC degranulation, as evidenced by reduced β-hexosaminidase activity and histamine levels, and reduced morphological changes associated with MC activation, namely cellular elongation and F-actin reorganization. DHC inhibited the activation of MAPK, NF-κB, and AP-1 pathways in IgE-activated MCs. Additionally, DHC could attenuate IgE/Ag-induced allergic reactions (dye extravasation and ear thickening) in PCA as well as OVA challenge-induced reactions in ASA mice (body temperature, serum histamine and IL-4 secretion changes). In conclusion, DHC suppressed MC activation. DHC may represent a new MC-suppressing treatment strategy for the treatment of IgE-mediated allergic diseases.
Collapse
Affiliation(s)
- Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Bo-Ping Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yong He
- Shenzhen University General Hospital, Shenzhen 518060, China.
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Natarajan K, Sundaramoorthy A, Shanmugam N. HnRNPK and lysine specific histone demethylase-1 regulates IP-10 mRNA stability in monocytes. Eur J Pharmacol 2021; 920:174683. [PMID: 34914972 DOI: 10.1016/j.ejphar.2021.174683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Altered mRNA metabolism is a feature of many inflammatory diseases. Post transcriptional regulation of interferon-γ-inducible protein (IP)-10 has been uncharacterized in diabetes conditions. RNA-affinity capture method and RNA immuno-precipitation revealed S100b treatment increased the binding of heterogeneous nuclear ribonucleoprotein (hnRNP)K to the IP-10 3'UTR and increased IP-10 mRNA accumulation. Luciferase activity assay using reporter plasmids showed involvement of IP-10 3'UTR. Knocking down of hnRNPK destabilized S100b induced IP-10 mRNA accumulation. S100b promoted the translocation of hnRNPK from nucleus to the cytoplasm and this was confirmed by phosphomimetic S284/353D mutant and non-phosphatable S284/353A hnRNPK mutant. S100b treatment demethylates hnRNPK at Lys219 by Lysine Specific Demethylase (LSD)-1. HnRNPKK219I, a demethylation defective mutant increased IP-10 mRNA stability. Apparently, triple mutant hnRNPKK219I/S284D/353D promoted IP-10 mRNA stability. Interestingly, knocking down LSD-1 abolished S100b induced IP-10 mRNA accumulation. These observations show for the first time that IP-10 mRNA stability is dynamically regulated by Lysine demethylation of hnRNPK by LSD-1. These results indicate that hnRNPK plays an important role in IP-10 mRNA stability induced by S100b which could exacerbate monocyte activation, relevant to the pathogenesis of diabetic complications like atherosclerosis.
Collapse
Affiliation(s)
- Kartiga Natarajan
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Arun Sundaramoorthy
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - Narkunaraja Shanmugam
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
5
|
Pokharel SM, Chiok K, Shil NK, Mohanty I, Bose S. Tumor Necrosis Factor-alpha utilizes MAPK/NFκB pathways to induce cholesterol-25 hydroxylase for amplifying pro-inflammatory response via 25-hydroxycholesterol-integrin-FAK pathway. PLoS One 2021; 16:e0257576. [PMID: 34551004 PMCID: PMC8457477 DOI: 10.1371/journal.pone.0257576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022] Open
Abstract
Exaggerated inflammatory response results in pathogenesis of various inflammatory diseases. Tumor Necrosis Factor-alpha (TNF) is a multi-functional pro-inflammatory cytokine regulating a wide spectrum of physiological, biological, and cellular processes. TNF induces Focal Adhesion Kinase (FAK) for various activities including induction of pro-inflammatory response. The mechanism of FAK activation by TNF is unknown and the involvement of cell surface integrins in modulating TNF response has not been determined. In the current study, we have identified an oxysterol 25-hydroxycholesterol (25HC) as a soluble extracellular lipid amplifying TNF mediated innate immune pro-inflammatory response. Our results demonstrated that 25HC-integrin-FAK pathway amplifies and optimizes TNF-mediated pro-inflammatory response. 25HC generating enzyme cholesterol 25-hydroxylase (C25H) was induced by TNF via NFκB and MAPK pathways. Specifically, chromatin immunoprecipitation assay identified binding of AP-1 (Activator Protein-1) transcription factor ATF2 (Activating Transcription Factor 2) to the C25H promoter following TNF stimulation. Furthermore, loss of C25H, FAK and α5 integrin expression and inhibition of FAK and α5β1 integrin with inhibitor and blocking antibody, respectively, led to diminished TNF-mediated pro-inflammatory response. Thus, our studies show extracellular 25HC linking TNF pathway with integrin-FAK signaling for optimal pro-inflammatory activity and MAPK/NFκB-C25H-25HC-integrin-FAK signaling network playing an essential role to amplify TNF dependent pro-inflammatory response. Thus, we have identified 25HC as the key factor involved in FAK activation during TNF mediated response and further demonstrated a role of cell surface integrins in positively regulating TNF dependent pro-inflammatory response.
Collapse
Affiliation(s)
- Swechha M. Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Kim Chiok
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Niraj K. Shil
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wang Z, Franke K, Zuberbier T, Babina M. Cytokine Stimulation via MRGPRX2 Occurs with Lower Potency than by FcεRI-aggregation but with Similar Dependence on the ERK1/2 Module in Human Skin Mast Cells. J Invest Dermatol 2021; 142:414-424.e8. [PMID: 34329659 DOI: 10.1016/j.jid.2021.07.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Skin mast cells (MCs) contribute to chronic dermatoses that partially rely on MC-derived cytokines. The discovery of MRGPRX2 explains MC-dependent symptoms independently of FcεRI-activation. Here, we investigated whether MRGPRX2 can elicit cytokines, determined its relative potency versus FcεRI and addressed the underlying mechanisms. MRGPRX2-activation by compound 48/80 or Substance P on skin MCs induced TNF-α, IL-8, IL-13, CCL1, CCL2 mRNA and protein, yet induction was typically reduced compared with FcεRI-crosslinking. Generally, cytokine secretion required de-novo-synthesis with maximum accumulation at ≈8 h. Addressing key kinases revealed robust, rapid (1 min), and lasting (30 min) phosphorylation of ERK1/2 following MRGPRX2-ligation, while pp38, and pAKT signals were weaker, and pJNK hardly detectable. The kinase spectrum following FcεRI-aggregation was comparable, but responses considerably delayed. The MEK/ERK pathway was essential for all cytokines examined and four inhibitors of this module gave complete suppression. Variable and weaker contribution was found for PI3K>JNK>p38. Strikingly, cytokine profiles and signaling prerequisites were similar for MRGPRX2 and FcεRI and likely mainly dictated by the MC subset. Collectively, in skin MCs, the physiological producers of MRGPRX2, agonist binding elicits cytokines, yet less efficiently than FcεRI-aggregation. MRGPRX2-associated inflammation may thus be less tissue-destructive than responses to allergic challenge.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kristin Franke
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Magda Babina
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
7
|
Fang X, Li J, Hao X, Zhang W, Zhong J, Zhu T, Liao R. Exosomes From Packed Red Cells Induce Human Mast Cell Activation and the Production of Multiple Inflammatory Mediators. Front Immunol 2021; 12:677905. [PMID: 34025676 PMCID: PMC8135094 DOI: 10.3389/fimmu.2021.677905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023] Open
Abstract
Most blood transfusion-related adverse reactions involve the immunologic responses of recipients to exogenous blood components. Extracellular vesicles isolated from packed red cells can affect the recipient’s immune system. Mast cells are traditionally known as effector cells for allergic transfusion reactions. However, growing evidence supports the notion that activated mast cells might disturb host innate immunologic responses. Exosomes are a type of extracellular vesicle. To determine the effect of exosomes on mast cells, we enriched exosomes derived from volunteer plasma (EXs-nor) and packed red cells (EXs-RBCs) using ultracentrifugation and incubated them with a human mast cell line (HMC-1). We found that EXs-RBC exposure increased the expression of tryptase-1 and prostaglandin D2, the production of multiple inflammatory mediators, and the levels of Toll-like receptor-3 (TLR-3) and phospho-mitogen-activated protein kinase (MAPK) in HMC-1 cells. MAPK inhibitors (SB203580, PD98059, and SP600125) and a TLR-3/dsRNA complex inhibitor reduced the EXs-RBC-stimulated production of inflammatory mediators in HMC-1 cells, whereas the TLR-3 agonist [poly (A:U)] elevated the production of these mediators. These results indicate that EXs-RBCs activate HMC-1 cells and elicit the production of multiple inflammatory mediators, partly via the TLR-3 and MAPK pathways. Mast cells activated by EXs-RBCs exhibit complex inflammatory properties and might play a potential role in transfusion-related adverse reactions.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, China
| | - Jingyi Li
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, China
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, China
| | - Jie Zhong
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, China
| | - Ren Liao
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, China
| |
Collapse
|
8
|
Franke K, Wang Z, Zuberbier T, Babina M. Cytokines Stimulated by IL-33 in Human Skin Mast Cells: Involvement of NF-κB and p38 at Distinct Levels and Potent Co-Operation with FcεRI and MRGPRX2. Int J Mol Sci 2021; 22:ijms22073580. [PMID: 33808264 PMCID: PMC8036466 DOI: 10.3390/ijms22073580] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
The IL-1 family cytokine IL-33 activates and re-shapes mast cells (MCs), but whether and by what mechanisms it elicits cytokines in MCs from human skin remains poorly understood. The current study found that IL-33 activates CCL1, CCL2, IL-5, IL-8, IL-13, and TNF-α, while IL-1β, IL-6, IL-31, and VEGFA remain unaffected in cutaneous MCs, highlighting that each MC subset responds to IL-33 with a unique cytokine profile. Mechanistically, IL-33 induced the rapid (1–2 min) and durable (2 h) phosphorylation of p38, whereas the phosphorylation of JNK was weaker and more transient. Moreover, the NF-κB pathway was potently activated, as revealed by IκB degradation, increased nuclear abundance of p50/p65, and vigorous phosphorylation of p65. The activation of NF-κB occurred independently of p38 or JNK. The induced transcription of the cytokines selected for further study (CCL1, CCL2, IL-8, TNF-α) was abolished by interference with NF-κB, while p38/JNK had only some cytokine-selective effects. Surprisingly, at the level of the secreted protein products, p38 was nearly as effective as NF-κB for all entities, suggesting post-transcriptional involvement. IL-33 did not only instruct skin MCs to produce selected cytokines, but it also efficiently co-operated with the allergic and pseudo-allergic/neurogenic activation networks in the production of IL-8, TNF-α, CCL1, and CCL2. Synergism was more pronounced at the protein than at the mRNA level and appeared stronger for MRGPRX2 ligands than for FcεRI. Our results underscore the pro-inflammatory nature of an acute IL-33 stimulus and imply that especially in combination with allergens or MRGPRX2 agonists, IL-33 will efficiently amplify skin inflammation and thereby aggravate inflammatory dermatoses.
Collapse
Affiliation(s)
- Kristin Franke
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Zhao Wang
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Magda Babina
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Correspondence: ; Tel.: +49-175-1649-539; Fax: +49-30-45051-8900
| |
Collapse
|
9
|
West PW, Bahri R, Garcia-Rodriguez KM, Sweetland G, Wileman G, Shah R, Montero A, Rapley L, Bulfone-Paus S. Interleukin-33 Amplifies Human Mast Cell Activities Induced by Complement Anaphylatoxins. Front Immunol 2021; 11:615236. [PMID: 33597949 PMCID: PMC7882629 DOI: 10.3389/fimmu.2020.615236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.
Collapse
Affiliation(s)
- Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Sweetland
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Georgia Wileman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rajesh Shah
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Angeles Montero
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Laura Rapley
- Adaptive Immunity, GlaxoSmithKline, Stevenage, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Silvia Bulfone-Paus,
| |
Collapse
|
10
|
The pseudo-allergic/neurogenic route of mast cell activation via MRGPRX2: discovery, functional programs, regulation, relevance to disease, and relation with allergic stimulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1097/itx.0000000000000032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Yousef M, Crozier RW, Hicks NJ, Watson CJ, Boyd T, Tsiani E, MacNeil AJ. Attenuation of allergen‐mediated mast cell activation by rosemary extract (
Rosmarinus officinalis
L.). J Leukoc Biol 2020; 107:843-857. [DOI: 10.1002/jlb.3a0320-434r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michael Yousef
- Department of Health Sciences Brock University St. Catharines Ontario Canada
| | - Robert W.E. Crozier
- Department of Health Sciences Brock University St. Catharines Ontario Canada
| | - Natalie J. Hicks
- Department of Health Sciences Brock University St. Catharines Ontario Canada
| | - Colton J.F. Watson
- Department of Health Sciences Brock University St. Catharines Ontario Canada
| | - Tylar Boyd
- Department of Health Sciences Brock University St. Catharines Ontario Canada
| | - Evangelia Tsiani
- Department of Health Sciences Brock University St. Catharines Ontario Canada
| | - Adam J. MacNeil
- Department of Health Sciences Brock University St. Catharines Ontario Canada
| |
Collapse
|
12
|
Wang Z, Guhl S, Franke K, Artuc M, Zuberbier T, Babina M. IL-33 and MRGPRX2-Triggered Activation of Human Skin Mast Cells-Elimination of Receptor Expression on Chronic Exposure, but Reinforced Degranulation on Acute Priming. Cells 2019; 8:cells8040341. [PMID: 30979016 PMCID: PMC6523246 DOI: 10.3390/cells8040341] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Clinically relevant exocytosis of mast cell (MC) mediators can be triggered by high-affinity IgE receptor (FcεRI)-aggregation (allergic route) or by the so-called pseudo-allergic pathway elicited via MAS-related G protein-coupled receptor-X2 (MRGPRX2). The latter is activated by drugs and endogenous neuropeptides. We recently reported that FcεRI-triggered degranulation is attenuated when human skin mast cells are chronically exposed to IL-33. Here, we were interested in the regulation of the MRGPRX2-route. Chronic exposure of skin MCs to IL-33 basically eliminated the pseudo-allergic/neurogenic route as a result of massive MRGPRX2 reduction. This downregulation seemed to partially require c-Jun N-terminal Kinase (JNK), but not p38, the two kinases activated by IL-33 in skin MCs. Surprisingly, however, JNK had a positive effect on MRGPRX2 expression in the absence of IL-33. This was evidenced by Accell®-mediated JNK knockdown and JNK inhibition. In stark contrast to the dampening effect upon prolonged exposure, IL-33 was able to prime for increased degranulation by MRGPRX2 ligands when administered directly before stimulation. This supportive effect depended on p38, but not on JNK activity. Our data reinforce the concept that exposure length dictates whether IL-33 will enhance or attenuate secretion. IL-33 is, thus, the first factor to acutely enhance MRGPRX2-triggered degranulation. Finally, we reveal that p38, rarely associated with MC degranulation, can positively affect exocytosis in a context-dependent manner.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Sven Guhl
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Kristin Franke
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Metin Artuc
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Magda Babina
- Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
13
|
Kong R, Kang OH, Seo YS, Zhou T, Kim SA, Shin DW, Kwon DY. MAPKs and NF‑κB pathway inhibitory effect of bisdemethoxycurcumin on phorbol‑12‑myristate‑13‑acetate and A23187‑induced inflammation in human mast cells. Mol Med Rep 2017; 17:630-635. [PMID: 29115448 DOI: 10.3892/mmr.2017.7852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/21/2017] [Indexed: 11/05/2022] Open
Abstract
Inflammation‑associated damage may occur in any tissue following infection, exposure to toxins, following ischemia, and in allergic and auto‑immune reactions. Inflammation may also result from mast cell degranulation induced by the intracellular calcium concentration. The inflammatory process may be inhibited by compounds that affect mast cells. Bisdemethoxycurcumin [1,7‑bis(4‑hydroxyphenyl) hepta‑1,6‑diene‑3,5‑dione, BDCM] is the active component of turmeric. It has anticancer, antioxidant and antibacterial properties. To investigate the molecular mechanism associated with the anti‑inflammatory activity of BDCM, human mast cell line 1 (HMC‑1) cells were treated with phorbol‑12‑myristate‑13‑acetate (PMA) and calcium ionophore A23187 (A23187) to induce the inflammatory process. Various HMC‑1 cells were pretreated with BDCM prior to stimulation of inflammation. BDCM inhibited the inflammation‑triggered production of cytokines including interleukin (IL)‑6, IL‑8, and tumor necrosis factor (TNF)‑α. BDCM inhibition extended to the gene level. In activated HMC‑1 cells, phosphorylation levels of extracellular signal‑regulated kinase, c‑jun N‑terminal kinase and p38 mitogen‑activated protein kinase were decreased by treatment with BDCM. BDCM also inhibited nuclear factor‑(NF)‑κB activation and IκB degradation. In conclusion, BDCM suppresses the expression of TNF‑α, IL‑8, and IL‑6 by inhibiting the NF‑κB and mitogen activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sang-A Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dong-Won Shin
- Department of Oriental Medicine Resources, College of Bio Industry Science, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
14
|
Bhaskar S, Helen A. Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem 2016; 423:53-65. [PMID: 27665434 DOI: 10.1007/s11010-016-2824-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/08/2016] [Indexed: 11/28/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that have a unique and essential function in innate immunity. The effect of quercetin on TLR-mediated downstream signaling mechanism and its effect on TLR-mediated MAP kinase and Akt pathways were studied in oxLDL-stimulated hPBMCs using specific inhibitors. The pretreatment of hPBMCs with specific TLR inhibitor, CLI-095, decreased the NF-κB nuclear translocation and TNF-α release by oxLDL. When the cells treated with inhibitor and quercetin together, the inhibition was more effective. The specific inhibitor for p38 MAPK, SB203580, reduced the phosphorylated p38 level and decreased the NF-κB activation and TNF-α release by oxLDL-challenged hPBMCs. This inhibitor showed enhanced inhibition when treated with quercetin together. The inhibitors for ERK1/2, PD98059, and for JNK, SP606125, also showed inhibitory effect on NF-κB activation and TNF-α release by oxLDL-simulated hPBMCs. Quercetin supplementation enhanced the inhibition of nuclear translocation of NF-κB and the release of cytokines. TLR4 inhibition study confirmed the downstream signaling mechanism mediated by NF-κB which is involved in the oxLDL-induced inflammatory response, and quercetin suppresses the cytokine, TNF-α release by modulating TLR-NF-κB signaling pathway. In addition to NF-κB signaling pathway, inflammation induced by oxLDL was also related to the activation of p38MAPK, ERK1/2 and JNK, and Akt pathways, and the protective effect of quercetin may be also related to the inhibition of activation of these pathways. Quercetin significantly downregulated the elevated mRNA expression of TLRs and cytokine TNF-α in HCD-fed atherosclerotic rats in vivo. As quercetin possesses inhibition on both TLR-NF-κB signaling pathway and TLR-mediated MAPK pathway, it is evident that it can be used as a therapeutic agent to ameliorate atherosclerotic inflammation. Since quercetin is the major flavonoid and forms the backbone of many other flavonoids and this study provides strong evidence that it has potent anti-inflammatory effect, quercetin may be a promising agent for the prevention and treatment of atherosclerosis and promote health by reducing harmful vascular inflammation.
Collapse
Affiliation(s)
- Shobha Bhaskar
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - A Helen
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
15
|
Chae HS, Kim YM, Chin YW. Atractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1. Molecules 2016; 21:molecules21091169. [PMID: 27598116 PMCID: PMC6274166 DOI: 10.3390/molecules21091169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 10/26/2022] Open
Abstract
Atractylodin is one of the major constituents of the rhizome of Atractylodes lancea, which is widely used in Korean traditional medicine as a remedy for the treatment of gastritis and gastric ulcers. Despite of a major constituent of widely used botanical to treat inflammatory responses little is known about anti-inflammatory effect of atractylodin in the human mast cell (HMC-1). Hence, we evaluated the effect of atractylodin on the release of IL-6, the involvement of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) and mitogen-activated protein kinases (MAPKs) in phorbol-12-myristate-13-acetate and A23187-induced HMC-1. In addition, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), phospholipase C (PLC) gamma 1, and AKT phosphorylation relevant to NPM-ALK signal pathway were assessed. IL-6 levels in the HMC-1 stimulated by phorbol-12-myristate-13-acetate and A23187 were apparently decreased by the treatment of atractylodin. Concurrently, atractylodin not only inhibited the phosphorylation of NPM-ALK, but also suppressed the phosphorylation of JAK2, STAT3, PLC gamma 1, and AKT. Furthermore, the activated mitogen-activated protein kinases (MAPKs) by phorbol-12-myristate-13-acetate and A23187 were inhibited by atractylodin. These results suggested that atractylodin might have a potential regulatory effect on inflammatory mediator expression through blockade of both the phosphorylation of MAPKs and the NPM-ALK signaling pathway.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| |
Collapse
|
16
|
An antimicrobial peptide with angiogenic properties, AG-30/5C, activates human mast cells through the MAPK and NF-κB pathways. Immunol Res 2015; 64:594-603. [DOI: 10.1007/s12026-015-8759-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Liu WN, Leung KN. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1. Biomed Rep 2015; 3:839-842. [PMID: 26623027 DOI: 10.3892/br.2015.517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and -9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells.
Collapse
Affiliation(s)
- Wai Nam Liu
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kwok Nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| |
Collapse
|
18
|
Inhibitory Effects ofPaeonia suffruticosaon Allergic Reactions by Inhibiting the NF-kappaB/IkappaB-alpha Signaling Pathway and Phosphorylation of ERK in an Animal Model and Human Mast Cells. Biosci Biotechnol Biochem 2014; 74:1152-6. [DOI: 10.1271/bbb.90676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Kim YM, Chae HS, Lee EJ, Yang MH, Park JH, Yoon KD, Kim J, Ahn HC, Choi YH, Chin YW. A Citrus Flavonoid, 6-Demethoxytangeretin, Suppresses Production and Gene Expression of Interleukin-6 in Human Mast Cell-1 via Anaplastic Lymphoma Kinase and Mitogen-Activated Protein Kinase Pathways. Biol Pharm Bull 2014; 37:871-6. [DOI: 10.1248/bpb.b13-00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Young-Mi Kim
- College of Pharmacy and BK21 PLUS R-FIND Team, Dongguk University-Seoul
| | - Hee-Sung Chae
- College of Pharmacy and BK21 PLUS R-FIND Team, Dongguk University-Seoul
| | - Eun Joo Lee
- College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University
| | | | - Jin Hee Park
- Department of Biology Education, Faculty of Education, Seowon University
| | - Kee Dong Yoon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea
| | | | - Hee Chul Ahn
- College of Pharmacy and BK21 PLUS R-FIND Team, Dongguk University-Seoul
| | - Young Hee Choi
- College of Pharmacy and BK21 PLUS R-FIND Team, Dongguk University-Seoul
| | - Young-Won Chin
- College of Pharmacy and BK21 PLUS R-FIND Team, Dongguk University-Seoul
| |
Collapse
|
20
|
Adada MM, Orr-Gandy KA, Snider AJ, Canals D, Hannun YA, Obeid LM, Clarke CJ. Sphingosine kinase 1 regulates tumor necrosis factor-mediated RANTES induction through p38 mitogen-activated protein kinase but independently of nuclear factor κB activation. J Biol Chem 2013; 288:27667-27679. [PMID: 23935096 DOI: 10.1074/jbc.m113.489443] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 1 (SK1) produces the pro-survival sphingolipid sphingosine 1-phosphate and has been implicated in inflammation, proliferation, and angiogenesis. Recent studies identified TRAF2 as a sphingosine 1-phosphate target, implicating SK1 in activation of the NF-κB pathway, but the functional consequences of this connection on gene expression are unknown. Here, we find that loss of SK1 potentiates induction of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted; also known as CCL5) in HeLa cells stimulated with TNF-α despite RANTES induction being highly dependent on the NF-κB pathway. Additionally, we find that SK1 is not required for TNF-induced IKK phosphorylation, IκB degradation, nuclear translocation of NF-κB subunits, and transcriptional NF-κB activity. In contrast, loss of SK1 prevented TNF-induced phosphorylation of p38 MAPK, and inhibition of p38 MAPK, like SK1 knockdown, also potentiates RANTES induction. Finally, in addition to RANTES, loss of SK1 also potentiated the induction of multiple chemokines and cytokines in the TNF response. Taken together, these data identify a potential and novel anti-inflammatory function of SK1 in which chemokine levels are suppressed through SK1-mediated activation of p38 MAPK. Furthermore, in this system, activation of NF-κB is dissociated from SK1, suggesting that the interaction between these pathways may be more complex than currently thought.
Collapse
Affiliation(s)
- Mohamad M Adada
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - K Alexa Orr-Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina 29209
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794; Northport Veterans Affairs Medical Center, Northport, New York 11768
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York 11794; Northport Veterans Affairs Medical Center, Northport, New York 11768.
| | | |
Collapse
|
21
|
Komohara Y, Niino D, Saito Y, Ohnishi K, Horlad H, Ohshima K, Takeya M. Clinical significance of CD163⁺ tumor-associated macrophages in patients with adult T-cell leukemia/lymphoma. Cancer Sci 2013; 104:945-51. [PMID: 23557330 DOI: 10.1111/cas.12167] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/01/2022] Open
Abstract
In several malignant tumors including lymphoma, macrophages that infiltrate tumor tissues are called tumor-associated macrophages (TAMs). We discovered that TAMs, especially the CD163⁺ alternatively activated phenotype (M2), were closely involved with progression of adult T-cell leukemia/lymphoma (ATLL). We used CD68 (a pan-macrophage marker) and CD163 (an M2 marker) to immunostain 58 ATLL samples. Statistical analyses showed that a high number of CD68⁺ TAMs and an increased percentage of CD163⁺ cells among the TAMs were associated with a worse clinical prognosis; multivariate analysis indicated that the percentage of CD163⁺ cells was an independent prognostic factor. We also carried out in vitro coculture experiments with ATLL cell lines (ATN-1 and TL-Mor) and monocyte-derived macrophages and found that direct coculture with M2 macrophages significantly increased BrdU incorporation into ATLL cell lines. A cytokine array analysis showed that macrophage-derived soluble factors including C5a, tumor necrosis factor-α, growth-related oncogene-α, CCL1/I-309, and interleukin-6 stimulated ATLL cell lines. CD163 expression in macrophages was strongly induced by direct contact with ATN-1 cells, and downregulation of CD163 in macrophages significantly suppressed growth of cocultured ATN-1 cells. These results suggest that interaction between M2 macrophages and lymphoma cells may be an appropriate target in treatment of patients with ATLL.
Collapse
Affiliation(s)
- Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sohn Y, Han NY, Lee MJ, Cho HJ, Jung HS. [6]-Shogaol inhibits the production of proinflammatory cytokines via regulation of NF-κB and phosphorylation of JNK in HMC-1 cells. Immunopharmacol Immunotoxicol 2013; 35:462-70. [PMID: 23590633 DOI: 10.3109/08923973.2013.782318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
[6]-Shogaol is a major bioactive component of Zingiber officinale. Although [6]-shogaol has a number of pharmacological activities including antipyretic, analgesic, antitussive and anti-inflammatory effects, the specific mechanisms of its anti-allergic effects have not been studied. In this study, we present the effects of [6]-shogaol on mast cell-mediated allergic reactions in vivo and in vitro. Sprague-Dawley rats received intradermal injections of anti-DNP IgE was injected into dorsal skin sites. After 48 h, [6]-shogaol was administered orally 1 h prior to challenge with DNP-HSA in saline containing 4% Evans blue through the dorsal vein of the penis. In addition, rat peritoneal mast cells (RPMCs) were cultured and purified to investigate histamine release. In vitro, we evaluated the regulatory effects of [6]-shogaol on the level of inflammatory mediators in phorbol 12-myristate 13-acetate plus calcium ionomycin A23187-stimulated human mast cells (HMC-1). [6]-Shogaol reduced the passive cutaneous anaphylaxis reaction compared to the control group, and histamine release decreased significantly following the treatment of RPMCs with [6]-shogaol. In HMC-1 cells, [6]-shogaol inhibited the production of TNF-α, IL-6 and IL-8, as well as the activation of nuclear factor-κB (NF-κB) and phosphorylation of JNK in compound 48/80-induced HMC-1 cells. [6]-shogaol inhibited mast cell-mediated allergic reactions by inhibiting the release of histamine and the production of proinflammatory cytokines with the involvement of regulation of NF-κB and phosphorylation of JNK.
Collapse
Affiliation(s)
- Youngjoo Sohn
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Therapeutic effects of water soluble danshen extracts on atherosclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:623639. [PMID: 23401716 PMCID: PMC3562667 DOI: 10.1155/2013/623639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/09/2012] [Accepted: 12/24/2012] [Indexed: 12/03/2022]
Abstract
Danshen is a traditional Chinese medicine with many beneficial effects on cardiovascular diseases. The aim of this study was to evaluate the mechanisms responsible for the antiatherogenic effect of water soluble Danshen extracts (DEs). Rat vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs) were treated with DE. To evaluate the effects of DE in vivo, carotid balloon injury and tail vein thrombosis were induced in Sprague-Dawley (SD) rats and iliac artery stent was induced in New Zealand white rabbits. The inhibitory action of DE on platelet aggregation was confirmed with an impedance aggregometer. DE inhibited the production of reactive oxygen species, and the migration and proliferation of platelet-derived growth factor-BB stimulated VSMCs. Furthermore, DE prevented inflammation and apoptosis in HUVECs. Both effects of DE were reconfirmed in both rat models. DE treatment attenuated platelet aggregation in both in vivo and ex vivo conditions. Pretreatment with DE prevented tail vein thrombosis, which is normally induced by κ-carrageenan injection. Lastly, DE-treated rabbits showed decreased in-stent restenosis of stented iliac arteries. These results suggest that water soluble DE modulates key atherogenic events in VSMCs, endothelial cells, and platelets in both in vitro and in vivo conditions.
Collapse
|
24
|
Bąbolewska E, Witczak P, Pietrzak A, Brzezińska-Błaszczyk E. Different potency of bacterial antigens TLR2 and TLR4 ligands in stimulating mature mast cells to cysteinyl leukotriene synthesis. Microbiol Immunol 2012; 56:183-90. [PMID: 22233438 DOI: 10.1111/j.1348-0421.2012.00426.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of study was to compare the potency of different bacterial antigens to induce rat mature mast cell to cysteinyl leukotriene (cysLT) generation. We examined Toll-like receptor (TLR)2 agonists, i.e. lipoteichoic acid (LTA) Staphylococcus faecalis, Streptococcus pyogenes, Bacillus subtilis and Staphylococcus aureus, lipoarabinomannan (LAM) Mycobacterium smegmatis, peptydoglican (PGN) Staphylococcus aureus, as well as TLR4 agonists, i.e. lipopolysaccharide (LPS) Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enteritidis, Pophyromonas gingivalis and Escherichia coli. We also estimated the effect of tumor necrosis factor (TNF)-, interleukin (IL)-6-, CCL5-, and IL-10-priming on mast cell cysLT synthesis following bacterial antigen activation. We found that all bacterial antigens activated mast cells to cysLT generation; however, the extent of cysLT release in response to stimulation varied. Out of the examined antigens LPS P. gingivalis exhibited the highest potency, as it induced cysLT generation acting at a very low concentration (10(-4) ng/mL). Other LPSs affected mast cells at higher (up to 10(5) -fold) concentrations. LTAs were the most effective at concentrations of 5 × 10(2) ng/mL, while LAM and PGN stimulated mast cells to maximal cysLT generation at concentrations as high as 10(5) ng/mL. Anti-TLR2 and anti-TLR4 antibodies, as well as nuclear factor κB (NF-κB) inhibitor significantly diminished cysLT generation in response to bacterial antigen stimulation. Priming with TNF, IL-6 and CCL5 did not affect bacterial antigen-induced cysLT generation, while IL-10-pretreatment caused significant decrease in cysLT synthesis by mast cells. These observations might have a great pathophysiological importance; inasmuch cysLTs strongly influence the development and intensity of inflammation during bacterial infection.
Collapse
Affiliation(s)
- Edyta Bąbolewska
- Department of Experimental Immunology, Medical University of Łódź, Łódź, Poland
| | | | | | | |
Collapse
|
25
|
Toda M, Kuo CH, Borman SK, Richardson RM, Inoko A, Inagaki M, Collins A, Schneider K, Ono SJ. Evidence that formation of vimentin mitogen-activated protein kinase (MAPK) complex mediates mast cell activation following FcεRI/CC chemokine receptor 1 cross-talk. J Biol Chem 2012; 287:24516-24. [PMID: 22613718 DOI: 10.1074/jbc.m111.319624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence points to cross-talk between FcεRI and CC chemokine receptor (CCR)-mediated signaling pathways in mast cells. Here, we propose that vimentin, a protein comprising type III intermediate filament, participates in such cross-talk for CCL2/monocyte chemotactic protein 1 (MCP-1) production in mast cells, which is a mechanism for allergic inflammation. Co-stimulation via FcεRI, using IgE/antigen, and CCR1, using recombinant CCL3/macrophage inflammatory protein-1α (MIP-1α), increased expression of phosphorylated, disassembled, and soluble vimentin in rat basophilic leukemia (RBL)-2H3 cells expressing human CCR1 (RBL-CCR1 cells) and bone marrow-derived murine mast cells, both models of mucosal type mast cells. Furthermore, co-stimulation enhanced production of CCL2 as well as phosphorylation of MAPK. Treating the cells with p38 MAPK inhibitor SB203580, but not with MEK inhibitor PD98058, reduced CCL2 production, suggesting that p38 MAPK, but not ERK1/2, plays a critical role in the chemokine production. Immunoprecipitation analysis showed that vimentin interacts with phosphorylated ERK1/2 and p38 MAPKs in the co-simulated cells. Preventing disassembly of the vimentin by aggregating vimentin filaments using β,β'-iminodipropionitrile reduced the interaction of vimentin with phosphorylated MAPKs as well as CCL2 production in the cells. Taken together, disassembled vimentin interacting with phosphorylated p38 MAPK could mediate CCL2 production in mast cells upon FcεRI and CCR1 activation.
Collapse
Affiliation(s)
- Masako Toda
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45221-0097,USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mast cells promote the growth of Hodgkin's lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib. Leukemia 2012; 26:2269-76. [PMID: 22430634 DOI: 10.1038/leu.2012.81] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hodgkin's lymphoma is frequently associated with mast cell infiltration that correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear. Here, we report that mast cells promote the growth of Hodgkin's tumor by modifying the tumor microenvironment. A transplantation assay shows that primary murine mast cells accelerate tumor growth by established Hodgkin's cell lines, and promote marked neovascularization and fibrosis. Both mast cells and Hodgkin's cells were sensitive to bortezomib, but mast cells were more resistant to bortezomib. However, bortezomib inhibited degranulation, PGE(2)-induced rapid release of CCL2, and continuous release of vascular endothelial growth factor-A from mast cells even at the concentration that did not induce cell death. Bortezomib-treated mast cells lost the ability to induce neovasculization and fibrosis, and did not promote the growth of Hodgkin tumor in vivo. These results provide further evidence supporting causal relationships between inflammation and tumor growth, and demonstrate that bortezomib can target the tumor microenvironment.
Collapse
|
27
|
Cao J, Ren G, Gong Y, Dong S, Yin Y, Zhang L. Bronchial epithelial cells release IL-6, CXCL1 and CXCL8 upon mast cell interaction. Cytokine 2011; 56:823-31. [DOI: 10.1016/j.cyto.2011.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 08/04/2011] [Accepted: 09/19/2011] [Indexed: 10/15/2022]
|
28
|
Human mast cell line-1 (HMC-1) cells transfected with FcεRIα are sensitive to IgE/antigen-mediated stimulation demonstrating selectivity towards cytokine production. Int Immunopharmacol 2011; 11:1002-11. [DOI: 10.1016/j.intimp.2011.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/31/2011] [Accepted: 02/15/2011] [Indexed: 11/19/2022]
|
29
|
Zhang Q, Chen N, Qiu W, Xu X, Wang D, Tsao PS, Jin H. Asymmetric dimethylarginine impairs fibrinolytic activity in human umbilical vein endothelial cells via p38 MAPK and NF-κB pathways. Thromb Res 2011; 128:42-6. [PMID: 21429569 DOI: 10.1016/j.thromres.2011.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Asymmetric dimethylarginine (ADMA) is a potent endogenous inhibitor of nitric oxide (NO) synthase. An increased synthesis and/or a reduced catabolism of ADMA might contribute to the onset and progression of thrombosis. The present study was designed to evaluate the effect of ADMA on fibrinolytic factors in endothelial cells, and to investigate the cellular mechanisms. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of ADMA for various periods; Then HUVECs were preincubated with NO precursor (L-arginine), MAPK inhibitors, or NF-κB inhibitor (PDTC) before ADMA treatment to repeat the experiment. Protein levels of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1), and NF-κB activity were measured by ELISA; mRNA levels of tPA and PAI-1 were assayed by qRT-PCR; The activation of MAPK was characterized by western blot analysis. RESULTS (1) ADMA decreased tPA antigen levels in time- and concentration-dependent manners, with the maximum effect of 30 μmol/L ADMA for 48h (control 109.01 ± 4.15 ng/ml vs ADMA 86.76 ± 5.95 ng/ml, p<0.01); (2) 30 μmol/L ADMA elevated antigen levels of PAI-1 in a time-dependent manner, with the maximum effect of 30 μmol/L ADMA for 48 h (control 2721.12 ± 278.02 ng/ml vs. ADMA 3435.78 ± 22.33ng/ml, p<0.05); (3) ADMA reduced tPA mRNA levels and increased PAI-1 mRNA levels; (4) L-arginine, SB203580 (p38 MAPK inhibitor) and PDTC attenuated the effects of ADMA on tPA and PAI-1 significantly. (5) ADMA induced a rapid phosphorylation of p38 MAPK, and stimulated NF-κB activity greatly. CONCLUSIONS ADMA may accelerate thrombosis development by impairing fibrinolytic activity in vascular via inhibiting nitric oxide production and then activating its downstream p38 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Qin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Kang KH, Kim CH. Inhibitory Effect of Rehmannia Glutinosa Pharmacopuncture Solution on β-hexosaminidase Release and Cytokine Production via FcεRI signaling in RBL-2H3 Cells. J Pharmacopuncture 2011. [DOI: 10.3831/kpi.2011.14.2.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
31
|
He S, Zhang H, Chen H, Yang H, Huang T, Chen Y, Lin J, Wang F, Chen X, Li TL, Yang P. Expression and release of IL-29 by mast cells and modulation of mast cell behavior by IL-29. Allergy 2010; 65:1234-41. [PMID: 20337614 DOI: 10.1111/j.1398-9995.2010.02349.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The role of interleukin (IL)-29 in innate immunity has been recognized recently, and it is regarded as a potent bioactive molecule. However, little is known about its role in the pathogenesis of allergy. Because mast cells are recognized as primary effector cells of allergy, we investigated the potential relationship between IL-29 and mast cells in this study. OBJECTIVE To examine the expression of IL-29 in mast cells and the influence of IL-29 on mast cell mediator release and accumulation. METHODS Expression of IL-29 in mast cells was determined by double-labeling immunohistochemistry and flow cytometry analysis. Mast cell cell-line was cultured to examine the mediator release, and mouse peritoneal model was employed to observe the mast cell accumulation. RESULTS Large proportions of mast cells expressing IL-29 were localized in human tissue including the colon, tonsil and lung. Mast cells can release substantial quantity of IL-29 upon challenge with proteolytic allergens. Extrinsic IL-29 provoked IL-4 and IL-13 release from mast cell line P815 cells through PI3K/Akt and (JAK)/STAT3 signaling pathways, but failed to induce mast cell histamine release from human mast cells. Extrinsic IL-29 also induced mast cell infiltration in mouse peritoneum by a CD18- and ICAM1-dependent mechanism. CONCLUSION Mast cell-derived IL-29 has the potential to be involved in the pathogenesis of allergic inflammation.
Collapse
Affiliation(s)
- Shaoheng He
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shefler I, Salamon P, Reshef T, Mor A, Mekori YA. T Cell-Induced Mast Cell Activation: A Role for Microparticles Released from Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4206-12. [DOI: 10.4049/jimmunol.1000409] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Atractylodes japonica Koidzumi inhibits the production of proinflammatory cytokines through inhibition of the NF-kappaB/IkappaB signal pathway in HMC-1 human mast cells. Arch Pharm Res 2010; 33:843-51. [PMID: 20607488 DOI: 10.1007/s12272-010-0606-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 12/16/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
The rhizome of Atractylodes japonica Koidzumi (AJK) has been used in traditional medicine for treatment of arthritis, bronchitis and respiratory infectious disease, whereas its effects on inflammatory reactions have not been unknown recently. In this study, the effects of AJK on allergic inflammation and its signaling were investigated in the induced human mast cells and animal model. This study showed that ethanol extract of AJK interestingly suppressed the production and mRNA expression of TNF-alpha, IL-6 and IL-8, as important inflammatory cytokines. Furthermore, AJK inhibited the nuclear translocation of nuclear factor (NF)-kappaB through inhibition of the phosphorylation of IB-kappa, which was additionally elucidated by NF-kappaB promoter-mediated luciferase activity. In addition, the phosphorylation of ERK was increased in pretreatment with AJK, whereas there was no change in JNK and p38 MAPK. However, AJK showed no effects on anti-DNP IgE-mediated in vivo PCA reaction and histamine release, as key events of mast cell-mediated immediate allergic reactions. These results suggest that AJK might be involved in not early-phase but transition to late-phase reactions of allergic inflammation and could modulate through other signal pathways. Taken together, AJK could be used as a treatment for mast cell mediated late-phase/chronic allergic inflammatory reactions.
Collapse
|
34
|
Guhl S, Babina M, Neou A, Zuberbier T, Artuc M. Mast cell lines HMC-1 and LAD2 in comparison with mature human skin mast cells--drastically reduced levels of tryptase and chymase in mast cell lines. Exp Dermatol 2010; 19:845-7. [PMID: 20545757 DOI: 10.1111/j.1600-0625.2010.01103.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To circumvent the costly isolation procedure associated with tissue mast cells (MC), two human MC lines, i.e. HMC-1 and LAD2, are frequently employed, but their relation to mature MC is unknown. Here, we quantitatively assessed their expression of MC markers in direct comparison to skin MC (sMC). sMC expressed all lineage markers at highest and HMC-1 cells at lowest levels. LAD2 cells expressed comparable high-affinity IgE receptor alpha (FcepsilonRIalpha) and FcepsilonRIgamma but less FcepsilonRIbeta than sMC and displayed slightly reduced, but robust FcepsilonRI-mediated histamine release. Only minor differences were found for total histamine content and c-Kit expression. Huge, and to this level unexpected, differences were found for MC tryptase and chymase, with sMC >>> LAD2 > HMC-1. Taken together, HMC-1 cells represent very immature malignantly transformed MC, whereas LAD2 cells can be considered intermediately differentiated. Because of the minute levels of MC proteases, MC lines can serve as surrogates of tissue MC to a limited degree only.
Collapse
|
35
|
Jalili A, Pashenkov M, Kriehuber E, Wagner C, Nakano H, Stingl G, Wagner SN. Induction of Targeted Cell Migration by Cutaneous Administration of a DNA Vector Encoding a Biologically Active Chemokine CCL21. J Invest Dermatol 2010; 130:1611-23. [DOI: 10.1038/jid.2010.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Kim DY, Jeoung D, Ro JY. Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2010; 185:273-83. [PMID: 20511559 DOI: 10.4049/jimmunol.1000991] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells in the CNS participate in the pathophysiology of chronic neurodegenerative inflammatory diseases. This study aimed to investigate the signaling pathway of mast cells activated in an environment cocultured with astrocytes and to explore the role of their colocalization in brain of experimental allergic encephalomyelitis. Human mast cell line-1 cells and human U87 glioblastoma cell lines (U87) or mouse bone marrow-derived mast cells and mouse cerebral cortices-derived astrocytes were cocultured. Intracellular Ca(2+) was measured by confocal microscopy; histamine by fluorometric analyzer; leukotrienes by ELISA; small GTPases, protein kinase Cs, MAPK, c-kit, CD40, and CD40L by Western blot; NF-kappaB and AP-1 by EMSA; cytokines by RT-PCR; and colocalization of mast cells and astrocytes in brain by immunohistochemistry. Mast cells cocultured with astrocytes showed time-dependent increases in intracellular Ca(2+) levels, release of histamine and leukotrienes, and cytokine production. Mast cells or astrocytes showed enhanced surface expression of CD40L and CD40, respectively, during coculture. Mast cells cocultured with astrocytes induced small GTPases (Rac1/2, cdc42), protein kinase Cs, MAPK, NF-kappaB, and AP-1 activities. These changes were blocked by anti-CD40 Ab pretreatment or CD40 small interfering RNA. Mast cells increased in the thalamus of experimental allergic encephalomyelitis model, particularly colocalized with astrocytes in the thalamic border region of the habenula. In conclusion, the data suggest that activation of mast cells cocultured with astrocytes induces release of mediators by small GTPases/Ca(2+) influx through CD40-CD40L interactions to participate in the pathophysiology of chronic neurodegenerative inflammatory diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Dae Yong Kim
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|
37
|
Lim KT. Inhibitory effect of glycoprotein isolated from Opuntia ficus-indica var. saboten MAKINO on activities of allergy-mediators in compound 48/80-stimulated mast cells. Cell Immunol 2010; 264:78-85. [PMID: 20510397 DOI: 10.1016/j.cellimm.2010.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/02/2010] [Accepted: 05/04/2010] [Indexed: 11/15/2022]
Abstract
The present study was performed to investigate the anti-allergy potentials of glycoprotein (90kDa) isolated from Opuntia ficus-indica var. saboten MAKINO (OFI glycoprotein) in vivo (ICR mice) and in vitro (RBL-2H3 cells). At first, to know whether the OFI glycoprotein has an inhibitory ability for allergy in vivo, we evaluated the activities of allergy-related factors such as histamine and beta-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in compound 48/80 (8 ml/kg BW)-treated ICR mice. After that, we studied to found the effect for anti-allergy in vitro such as nuclear factor kappa B (NF-kappaB) and inducible nitric oxide synthase (iNOS), extracellular signal-regulated kinase (ERK) 1/2, arachidonic acid, and cyclooxygenase-2 (COX-2) in compound 48/80 (5 microg/ml)-treated RBL-2H3 cells. Our results showed that the OFI glycoprotein (5 mg/kg) inhibited histamine and beta-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in mice serum. Also OFI glycoprotein (25 microg/ml) has suppressive effects on the expression of MAPK (ERK1/2), and on protein expression of anti-allergic proteins (iNOS and COX-2). Thus, we speculate that the OFI glycoprotein is an example of natural compound that blocks anti-allergic signal transduction pathways.
Collapse
Affiliation(s)
- Kye-Taek Lim
- Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwang-ju 300, Yongbong-Dong 500-757, Republic of Korea.
| |
Collapse
|
38
|
Glycyrrhetinic acid inhibits ICAM-1 expression via blocking JNK and NF-kappaB pathways in TNF-alpha-activated endothelial cells. Acta Pharmacol Sin 2010; 31:546-53. [PMID: 20418897 DOI: 10.1038/aps.2010.34] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIM To investigate the effects of glycyrrhetinic acid (GA), an active component extracted from the root of Glycyrrhizae glabra, on the expression of intercellular adhesion molecule-1 (ICAM-1) in tumor necrosis factor-alpha (TNF-alpha)-activated human umbilical vein endothelial cells (HUVEC). METHODS ICAM-1 mRNA and protein levels were detected using RT-PCR and cell enzyme-linked immunosorbent assays. The adherence of human monocytic THP-1 cells labeled with [(3)H]thymidine to HUVEC was determined by counting radioactivity with a scintillation counter. The activation of mitogen-activated protein kinases as well as the degradation of I kappaB and nuclear factor-kappaB (NF-kappaB) or phospho-c-Jun in the nucleus were detected by western blots. NF-kappaB binding activity was detected using electrophoretic mobility shift assay. RESULTS GA (50 and 100 micromol/L) significantly inhibits TNF-alpha-induced ICAM-1 mRNA and protein expressions, as well as THP-1 cell adhesiveness in HUVEC. GA selectively inhibited TNF-alpha-activated signal pathway of c-Jun N-terminal kinase (JNK), without affecting extracellular signal-regulated kinase 1/2 and p38. Furthermore, GA apparently inhibited I kappaB/NF-kappaB signaling system by preventing I kappaB degradation, NF-kappaB translocation, and NF-kappaB/DNA binding activity. Finally, pretreatment with GA or the inhibitors of NF-kappaB, JNK, and p38 reduced the ICAM-1 protein expression induced by TNF-alpha. CONCLUSION GA inhibits TNF-alpha-stimulated ICAM-1 expression, leading to a decrease in adherent monocytes to HUVEC. This inhibition is attributed to GA interruption of both JNK/c-Jun and I kappaB/NF-kappaB signaling pathways, which decrease activator protein-1 (AP-1) and NF-kappaB mediated ICAM-1 expressions. The results suggest that GA may provide a beneficial effect in treating vascular diseases associated with inflammation, such as atherosclerosis.
Collapse
|
39
|
Lee J, Lim KT. Inhibitory effect of phytoglycoprotein (24kDa) on allergy-related factors in compound 48/80-induced mast cells in vivo and in vitro. Int Immunopharmacol 2010; 10:591-9. [PMID: 20188214 DOI: 10.1016/j.intimp.2010.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 01/04/2023]
Abstract
Mast cells are involved in immediate allergic reactions such as asthma, allergic rhinitis, and atopic dermatitis. Allergic reactions caused by extracellular allergens such as xenobiotics may become a critical problem in living circumstances. Recently, we isolated and purified glycoprotein from Zanthoxylum piperitum DC fruit (ZPDC), and demonstrated that ZPDC glycoprotein (5-20mg/kg, 25-100mug/ml) has an inhibitory effect on allergy-related mediators in the compound 48/80-treated BALB/c and human mast cells (HMC-1 cells). Our results obtained from this study showed that ZPDC glycoprotein (10mg/kg) inhibited interleukin-4 (IL-4), immunoglobulin E (IgE), and histamine are released in mouse serum. Also, ZPDC glycoprotein (50mug/ml) attenuated the degranulation of mast cells, intracellular Ca(2+) levels, and the activities of phosphorylation of p38 mitogen-activated protein kinase (MAPK), nuclear factor (NF)-kappaB (p50 and p65), and cyclooxygenase-2 (COX-2) in the HMC-1 cells. Taken together, we speculate that the ZPDC glycoprotein might be one component found in natural products that has the ability to prevent dysfunction in the immune system caused by several different allergens.
Collapse
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea
| | | |
Collapse
|
40
|
Kataoka TR, Kumanogoh A, Bandara G, Metcalfe DD, Gilfillan AM. CD72 negatively regulates KIT-mediated responses in human mast cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:2468-75. [PMID: 20100931 DOI: 10.4049/jimmunol.0902450] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIT activation, through binding of its ligand, stem cell factor, is crucial for normal mast cell growth, differentiation, and survival. Furthermore, KIT may also contribute to mast cell homing and cytokine generation. Activating mutations in KIT lead to the dysregulated mast cell growth associated with the myeloproliferative disorder, mastocytosis. We investigated the potential of downregulating such responses through mast cell inhibitory receptor activation. In this study, we report that the B cell-associated ITIM-containing inhibitory receptor, CD72, is expressed in human mast cells. Ligation of CD72 with the agonistic Ab, BU40, or with recombinant human CD100 (rCD100), its natural ligand, induced the phosphorylation of CD72 with a resulting increase in its association with the tyrosine phosphatase SH2 domain-containing phosphatase-1. This, in turn, resulted in an inhibition of KIT-induced phosphorylation of Src family kinases and extracellular-regulated kinases (ERK1/2). As a consequence of these effects, KIT-mediated mast cell proliferation, chemotaxis, and chemokine production were significantly reduced by BU40 and rCD100. Furthermore, BU40 and rCD100 also downregulated the growth of the HMC1.2 human mast cell line. Thus, targeting CD72 may provide a novel approach to the suppression of mast cell disease such as mastocytosis.
Collapse
Affiliation(s)
- Tatsuki R Kataoka
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
41
|
Ramesh TP, Kim YD, Kwon MS, Jun CD, Kim SW. Swiprosin-1 Regulates Cytokine Expression of Human Mast Cell Line HMC-1 through Actin Remodeling. Immune Netw 2009; 9:274-84. [PMID: 20157615 PMCID: PMC2816961 DOI: 10.4110/in.2009.9.6.274] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 01/13/2023] Open
Abstract
Background Swiprosin-1 was identified in human CD8+ lymphocytes, mature B cells and non-lymphonoid tissue. We have recently reported that swiprosin-1 is expressed in mast cells and up-regulated in both in vitro and in vivo. Methods The expression of cytokines and swiprosin-1 were determined by by real time PCR and conventional PCR. Pharmacological inhibitors were treated to investigate potential mechanism of swiprosin-1 in mast cell activation. Actin content was evaluated by confocal microscopy and flow cytometry. Results The swiprosin-1 augmented PMA/A23187-induced expression of cytokines and release of histamine. However, knock-down of swiprosin-1 showed only a modest effect on PMA/A23187-induced cytokine expression, suggesting that swiprosin-1 has gain-of-function characteristics. Swiprosin-1 was found in microvilli-like membrane protrusions and highly co-localized with F-actin. Importantly, either disruption of actin by cytochalasin B or inhibition of PI3 kinase, an enzyme involved in actin remodeling, by wortmannin blocked cytokine expression only in swiprosin-1-overexpressing
cells. Conclusion These results suggest that swiprosin-1 modulates mast cell activation potentially through actin regulation.
Collapse
Affiliation(s)
- T P Ramesh
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | |
Collapse
|
42
|
Thylur RP, Kim YD, Kwon MS, Oh HM, Kwon HK, Kim SH, Im SH, Chun JS, Park ZY, Jun CD. Swiprosin-1 is expressed in mast cells and up-regulated through the protein kinase CβI/η pathway. J Cell Biochem 2009; 108:705-15. [DOI: 10.1002/jcb.22307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Silver MR, Margulis A, Wood N, Goldman SJ, Kasaian M, Chaudhary D. IL-33 synergizes with IgE-dependent and IgE-independent agents to promote mast cell and basophil activation. Inflamm Res 2009; 59:207-18. [PMID: 19763788 DOI: 10.1007/s00011-009-0088-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/21/2009] [Accepted: 08/23/2009] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Mast cell and basophil activation contributes to inflammation, bronchoconstriction, and airway hyperresponsiveness in asthma. Because IL-33 expression is inflammation inducible, we investigated IL-33-mediated effects in concert with both IgE-mediated and IgE-independent stimulation. METHODS Because the HMC-1 mast cell line can be activated by GPCR and RTK signaling, we studied the effects of IL-33 on these pathways. The IL-33- and SCF-stimulated HMC-1 cells were co-cultured with human lung fibroblasts and airway smooth muscle cells in a collagen gel contraction assay. IL-33 effects on IgE-mediated activation were studied in primary mast cells and basophils. RESULT IL-33 synergized with adenosine, C5a, SCF, and NGF receptor activation. IL-33-stimulated and SCF-stimulated HMC-1 cells demonstrated enhanced collagen gel contraction when cultured with fibroblasts or smooth muscle cells. IL-33 also synergized with IgE receptor activation of primary human mast cells and basophils. CONCLUSION IL-33 amplifies inflammation in both IgE-independent and IgE-dependent responses.
Collapse
Affiliation(s)
- Matthew R Silver
- Inflammation Research, Wyeth, 200 Cambridge Park Drive, Cambridge, MA, 02140, USA
| | | | | | | | | | | |
Collapse
|
44
|
Nagai K, Takahashi Y, Mikami I, Fukusima T, Oike H, Kobori M. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes. Br J Pharmacol 2009; 158:907-19. [PMID: 19702784 DOI: 10.1111/j.1476-5381.2009.00365.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. EXPERIMENTAL APPROACH HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-kappaB and MAP kinases (MAPKs) in activated HMC-1 cells. KEY RESULTS Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-kappaB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. CONCLUSIONS AND IMPLICATIONS Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-kappaB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells.
Collapse
Affiliation(s)
- K Nagai
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Hong MH, Kim JH, Lee SY, Go HY, Kim JH, Shin YC, Kim SH, Ko SG. Early antiallergic inflammatory effects of Rhus verniciflua
stokes on human mast cells. Phytother Res 2009; 24:288-94. [DOI: 10.1002/ptr.2941] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Thompson WL, Van Eldik LJ. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkB and MAPK dependent pathways in rat astrocytes [corrected]. Brain Res 2009; 1287:47-57. [PMID: 19577550 DOI: 10.1016/j.brainres.2009.06.081] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/20/2009] [Accepted: 06/24/2009] [Indexed: 12/14/2022]
Abstract
The chemokines CCL2 and CCL7 are upregulated in the brain during several neurodegenerative and acute diseases associated with infiltration of peripheral leukocytes. Astrocytes can respond to inflammatory cytokines like IL-1beta and TNF-alpha by producing chemokines. This study aims to test the ability of IL-1beta and TNF-alpha to stimulate CCL2 and CCL7 protein production in rat astrocyte cultures, and to elucidate signaling pathways involved in the cytokine-stimulated chemokine upregulation. Astrocytes were stimulated with IL-1beta or TNF-alpha, and CCL2 and CCL7 levels determined by ELISA. Our results show that IL-1beta and TNF-alpha each stimulate production of the chemokines CCL2 and CCL7 in astrocytes in a concentration- and time-dependent manner, with CCL2 showing a more rapid and robust response to the cytokine treatment than CCL7. As a first step to determine the signaling pathways involved in CCL2 and CCL7 upregulation, we stimulated astrocytes with IL-1beta or TNF-alpha in the presence of selective inhibitors of MAPK pathways (SB203580 and SB202190 for p38, SP600125 for JNK, and U0126 for ERK) or NFkappaB pathways (MG-132 and SC-514). We found that NFkappaB pathways are important for the cytokine-stimulated CCL2 and CCL7 production, whereas MAPK pathways involving p38 and JNK, but not ERK, may also contribute but to a lesser extent. These data document for the first time that CCL7 protein production can be stimulated in astrocytes by cytokines, and that the upregulation may involve NFkappaB- and p38/JNK-regulated pathways. In addition, our results suggest that CCL2 and CCL7 share similarities in the signaling pathways necessary for their upregulation.
Collapse
Affiliation(s)
- Wendy L Thompson
- Department of Cell and Molecular Biology, and Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
47
|
Selander C, Engblom C, Nilsson G, Scheynius A, Andersson CL. TLR2/MyD88-dependent and -independent activation of mast cell IgE responses by the skin commensal yeast Malassezia sympodialis. THE JOURNAL OF IMMUNOLOGY 2009; 182:4208-16. [PMID: 19299719 DOI: 10.4049/jimmunol.0800885] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Atopic eczema (AE) is a chronic inflammatory skin disease. Approximately 50% of adult AE patients have allergen-specific IgE reactivity to the skin commensal yeast Malassezia spp. Due to the ruptured skin barrier in AE, it is likely that Malassezia can come into contact with mast cells, which are known to be involved in AE. We therefore hypothesized that Malassezia spp. can activate mast cells. Bone marrow-derived mast cells (BMMCs) were generated from wild type, TLR2, TLR4, and MyD88 gene-deleted mice and cocultured with Malassezia sympodialis extract. We recorded that M. sympodialis induced release of cysteinyl leukotrienes in a dose-dependent manner in nonsensitized and IgE-anti-trinitrophenyl-sensitized BMMCs, respectively, with three times higher levels in the latter type of cells. IgE-sensitized BMMCs also responded by degranulation as assessed by release of beta-hexosaminidase, increased MCP-1 production through a MyD88-independent pathway, and activated phosphorylation of the MAPK ERK1/2. Furthermore, M. sympodialis enhanced the degranulation of IgE receptor cross-linked wild-type BMMCs and altered the IL-6 release dose-dependently. This degranulation was independent of TLR2, TLR4, and MyD88, whereas the IL-6 production was dependent on the TLR2/MyD88 pathway and MAPK signaling. In conclusion, M. sympodialis extract can activate nonsensitized and IgE-sensitized mast cells to release inflammatory mediators, to enhance the IgE-mediated degranulation of mast cells, and to modulate MAPK activation and by signaling through the TLR2/MyD88 pathway to modify the IL-6 production of IgE receptor cross-linked mast cells. Collectively, these findings indicate that M. sympodialis can activate mast cells and might thus exacerbate the inflammatory response in AE.
Collapse
Affiliation(s)
- Christine Selander
- Department of Medicine Solna, Karolinska Institutet and University Hospital Solna, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Chan B, Yuan HT, Ananth Karumanchi S, Sukhatme VP. Receptor tyrosine kinase Tie-1 overexpression in endothelial cells upregulates adhesion molecules. Biochem Biophys Res Commun 2008; 371:475-9. [PMID: 18448073 DOI: 10.1016/j.bbrc.2008.04.091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Tie-1 is an endothelial specific cell surface protein whose biology remains poorly understood. Using an overexpression system in vitro, we examined whether Tie-1 activity in endothelial cells in vitro would elicit a proinflammatory response. We found that when overexpressed in endothelial cells in vitro, Tie-1 is tyrosine-phosphorylated. We also showed that Tie-1 upregulates VCAM-1, E-selectin, and ICAM-1, partly through a p38-dependent mechanism. Interestingly, upregulation of VCAM-1 and E-selectin by Tie-1 is significantly higher in human aortic endothelial cells than in human umbilical vein endothelial cells. Additionally, attachment of cells of monocytic lineage to endothelial cells is also enhanced by Tie-1 expression. Collectively, our data show that Tie-1 has a proinflammatory property and may play a role in the endothelial inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Barden Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RW 563, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
49
|
Brzezińska-Błaszczyk E, Pietrzak A, Misiak-Tłoczek AH. Tumor necrosis factor (TNF) is a potent rat mast cell chemoattractant. J Interferon Cytokine Res 2008; 27:911-9. [PMID: 18052723 DOI: 10.1089/jir.2006.0158] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well known that mast cell number increases in local tissues under different pathophysiologic conditions, although the humoral factors that stimulate local mast cell accumulation within tissues are not yet well known. Taking into account that tumor necrosis factor (TNF) influences tissue mast cell activity in various ways, the aim of the present study was to investigate the chemotactic activity of TNF for rat peritoneal mast cells. We have found that TNF induces mast cell migratory response in a dose-dependent manner, even in the absence of extracellular matrix (ECM) proteins. Significant migration was observed at concentrations of TNF as low as approximately 3 fM; higher TNF concentrations caused significant inhibition of spontaneous mast cell migration. In the presence of ECM proteins, TNF induced migration of mast cells in a biphasic manner, with peaks of migration occurring at approximately 0.3 fM and approximately 60 pM (in the presence of fibronectin) and at approximately 0.6 fM and approximately 600 pM (in the presence of laminin). Under the same experimental conditions, RANTES induced dose-dependent mast cell migration, and the optimal concentration of this chemokine for maximal migration was approximately 13 nM. The mast cell migratory response to lower concentrations of TNF was chemotactic and to higher TNF concentrations was due to chemokinesis. TNF-induced mast cell migration was completely blocked by neutralizing anti-TNF and anti-TNFR1 antibodies. The tyrosine kinase inhibitor, genistein, significantly abrogated mast cell migration toward TNF. Additionally, we have documented that TNF does not induce degranulation of rat mast cells. Taken together, our results indicate that TNF serves as an extremely potent chemotactic factor for rat mast cells that would cause accumulation of these cells at the site of diverse pathophysiologic conditions accompanied by inflammation.
Collapse
|
50
|
Salamon P, Shoham NG, Puxeddu I, Paitan Y, Levi-Schaffer F, Mekori YA. Human mast cells release oncostatin M on contact with activated T cells: Possible biologic relevance. J Allergy Clin Immunol 2008; 121:448-455.e5. [DOI: 10.1016/j.jaci.2007.08.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 11/30/2022]
|