1
|
Valdez-Cruz NA, Rosiles-Becerril D, Martínez-Olivares CE, García-Hernández E, Cobos-Marín L, Garzón D, López-Salas FE, Zavala G, Luviano A, Olvera A, Alagón A, Ramírez OT, Trujillo-Roldán MA. Oral administration of a recombinant modified RBD antigen of SARS-CoV-2 as a possible immunostimulant for the care of COVID-19. Microb Cell Fact 2024; 23:41. [PMID: 38321489 PMCID: PMC10848483 DOI: 10.1186/s12934-024-02320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Developing effective vaccines against SARS-CoV-2 that consider manufacturing limitations, equitable access, and acceptance is necessary for developing platforms to produce antigens that can be efficiently presented for generating neutralizing antibodies and as a model for new vaccines. RESULTS This work presents the development of an applicable technology through the oral administration of the SARS-CoV-2 RBD antigen fused with a peptide to improve its antigenic presentation. We focused on the development and production of the recombinant receptor binding domain (RBD) produced in E. coli modified with the addition of amino acids extension designed to improve antigen presentation. The production was carried out in shake flask and bioreactor cultures, obtaining around 200 mg/L of the antigen. The peptide-fused RBD and peptide-free RBD proteins were characterized and compared using SDS-PAGE gel, high-performance chromatography, and circular dichroism. The peptide-fused RBD was formulated in an oil-in-water emulsion for oral mice immunization. The peptide-fused RBD, compared to RBD, induced robust IgG production in mice, capable of recognizing the recombinant RBD in Enzyme-linked immunosorbent assays. In addition, the peptide-fused RBD generated neutralizing antibodies in the sera of the dosed mice. The formulation showed no reactive episodes and no changes in temperature or vomiting. CONCLUSIONS Our study demonstrated the effectiveness of the designed peptide added to the RBD to improve antigen immunostimulation by oral administration.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, 22860, Tijuana-Ensenada, Baja California, Mexico.
| | - Diego Rosiles-Becerril
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Constanza E Martínez-Olivares
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Laura Cobos-Marín
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Daniel Garzón
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, Mexico. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Francisco E López-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Guadalupe Zavala
- Unidad de Microscopia Electrónica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Axel Luviano
- Departamento de Genética del Desarrollo y Fisiologia Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Alejandro Olvera
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Alejandro Alagón
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Octavio T Ramírez
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, 22860, Tijuana-Ensenada, Baja California, Mexico.
| |
Collapse
|
2
|
Tovo P, Monti G, Daprà V, Montanari P, Calvi C, Alliaudi C, Sardo A, Galliano I, Bergallo M. Enhanced expression of endogenous retroviruses and of TRIM28 and SETDB1 in children with food allergy. Clin Transl Allergy 2022; 12:e12124. [PMID: 35344298 PMCID: PMC8967271 DOI: 10.1002/clt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background Human endogenous retroviruses (HERVs) represent 8% of our genome. They originate from ancestral infections and although no longer contagious they can regulate transcription of adjacent cellular genes, produce viral RNAs sensed as non‐self by pattern recognition receptors, and encode viral proteins, such as Syncytin (SYN) 1 and 2, that exhibit potent immunomodulatory properties. Based on this, HERVs have been studied and proposed as relevant cofactors in several chronic inflammatory and immune‐mediated diseases. HERV transcription is regulated by host TRIM28 and SET domain bifurcated histone lysine methyltransferase 1 (SETDB1), which in turn exert crucial regulatory functions on the host immune system. No studies explored the expression of HERVs, TRIM28, and SETDB1 in allergic patients. Methods We assessed, through a polymerase chain reaction real time Taqman amplification assay, the transcription levels of pol genes of HERV‐H, HERV‐K, HERV‐W, and of env genes of SYN1 and SYN2, as well as of TRIM28 and SETDB1 in whole blood from 32 children with IgE‐mediated food allergy, 19 with food protein‐induced enterocolitis syndrome (FPIES), and in healthy control children. Results The expression levels of pol genes of HERV‐H, ‐K, and ‐W were significantly enhanced in patients with IgE‐mediated FA or FPIES as compared to control subjects, while the mRNA concentrations of SYN1 and SYN2 were comparable in each group of children. Both TRIM28 and SETDB1 mRNA levels were significantly higher in allergic patients. Conclusions Given the influence of HERVs and of TRIM28 and SETDB1 on innate and adaptive immune responses, their transcriptional activation in children with food allergies suggest that they might play important roles in the development of these diseases.
Collapse
Affiliation(s)
- Pier‐Angelo Tovo
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Giovanna Monti
- Pediatric Allergy Unit Regina Margherita Children's Hospital Turin Italy
| | - Valentina Daprà
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Paola Montanari
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Cristina Calvi
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Carla Alliaudi
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Allegra Sardo
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health University of Turin Turin Italy
- Pediatric Laboratory Department of Pediatric Sciences and Public Health University of Turin Turin Italy
| |
Collapse
|
3
|
New R. Oral Delivery of Biologics via the Intestine. Pharmaceutics 2020; 13:E18. [PMID: 33374222 PMCID: PMC7824380 DOI: 10.3390/pharmaceutics13010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Biologics are currently one of the most promising avenues for therapeutic interventions in conditions such as metabolic disease, ageing and inflammatory disorders, and for chronic ailments, oral delivery of such medicines has for years been recognised as an important goal. Despite decades of intensive research, oral delivery of biologics is only just starting to prove feasible. There has been much talk about the barriers to uptake of biologics, and indeed, one function of the intestine is to prevent, in one way or another, passage of unwanted materials across the gut, and yet, grams of biological agents both large and small pass across the intestinal cell wall every day. This review first describes the functioning of the gut under normal circumstances, then identifies the principle biological mechanisms which have been harnessed successfully, to date, to achieve oral uptake, outlining the pros and cons of each approach. Examples with different biologics are given, and information on result of the latest clinical trials is provided, where available.
Collapse
Affiliation(s)
- Roger New
- Proxima Concepts Ltd., London NW1 0NH, UK;
- Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK
| |
Collapse
|
4
|
CELL THERAPY IN INFLAMMATORY BOWEL DISEASE. Pharmacol Res 2020; 163:105247. [PMID: 33069755 DOI: 10.1016/j.phrs.2020.105247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
In recent years, cell-based therapies have been explored in various immune-mediated inflammatory diseases, including inflammatory bowel disease (IBD). Cell therapy is the process of introducing new cells into an organism or tissue in order to treat a disease. The most studied cellular treatment in IBD was "stem cells-based therapy", which was explored according to different protocols in terms of type of donors, stem cells sources, study design and clinical endpoints. More recently, preliminary studies have also described the clinical use of "regulatory cells", which include T-reg and Tr1 cells, and "tolerogenic" dendritic cells. Finally, induced pluripotent stem cells are the subject of an intensive preclinical research program on animal models, including those related to colitis.
Collapse
|
5
|
Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. MICROBIOME 2020; 8:36. [PMID: 32169105 PMCID: PMC7071638 DOI: 10.1186/s40168-020-00821-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada.
| |
Collapse
|
6
|
Abstract
Many options now exist for constructing oral vaccines which, in experimental systems, have shown themselves to be able to generate highly effective immunity against infectious diseases. Their suitability for implementation in clinical practice, however, for prevention of outbreaks, particularly in low- and middle-income countries (LMIC), is not always guaranteed, because of factors such as cost, logistics and cultural and environmental conditions. This brief overview provides a summary of the various approaches which can be adopted, and evaluates them from a pharmaceutical point, taking into account potential regulatory issues, expense, manufacturing complexity, etc., all of which can determine whether a vaccine approach will be successful in the late stages of development. Attention is also drawn to problems arising from inadequate diet, which impacts upon success in stimulating effective immunity, and identifies the use of lipid-based carriers as a way to counteract the problem of nutritional deficiencies in vaccination campaigns.
Collapse
Affiliation(s)
- R. R. C. New
- Middlesex UniversityHendon, LondonUK
- Vaxcine (UK) Limited, London Bioscience Innovation CentreLondonUK
| |
Collapse
|
7
|
Intestinal Barrier Function in Gluten-Related Disorders. Nutrients 2019; 11:nu11102325. [PMID: 31581491 PMCID: PMC6835310 DOI: 10.3390/nu11102325] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gluten-related disorders include distinct disease entities, namely celiac disease, wheat-associated allergy and non-celiac gluten/wheat sensitivity. Despite having in common the contact of the gastrointestinal mucosa with components of wheat and other cereals as a causative factor, these clinical entities have distinct pathophysiological pathways. In celiac disease, a T-cell mediate immune reaction triggered by gluten ingestion is central in the pathogenesis of the enteropathy, while wheat allergy develops as a rapid immunoglobulin E- or non-immunoglobulin E-mediated immune response. In non-celiac wheat sensitivity, classical adaptive immune responses are not involved. Instead, recent research has revealed that an innate immune response to a yet-to-be-defined antigen, as well as the gut microbiota, are pivotal in the development in this disorder. Although impairment of the epithelial barrier has been described in all three clinical conditions, its role as a potential pathogenetic co-factor, specifically in celiac disease and non-celiac wheat sensitivity, is still a matter of investigation. This article gives a short overview of the mucosal barrier of the small intestine, summarizes the aspects of barrier dysfunction observed in all three gluten-related disorders and reviews literature data in favor of a primary involvement of the epithelial barrier in the development of celiac disease and non-celiac wheat sensitivity.
Collapse
|
8
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
9
|
Li MY, Zhu M, Linghu EQ, Feng F, Zhu B, Wu C, Guo MZ. Interleukin-13 suppresses interleukin-10 via inhibiting A20 in peripheral B cells of patients with food allergy. Oncotarget 2018; 7:79914-79924. [PMID: 27825134 PMCID: PMC5346760 DOI: 10.18632/oncotarget.13107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
The regulatory B cells (Breg) are important in the body immunity. The differentiation process of Breg is not fully understood yet. Ubiquitin A20 has immune regulatory functions. This study aims to investigate the role of A20 in the regulation of interleukin (IL)-10 in B cells. In this study, B cells were isolated from the peripheral blood samples of healthy subjects and patients with food allergy (FA). The B cells were analyzed by flow cytometry, real time RT-PCR, Western blotting and chromatin immunoprecipitation. We observed that the frequency of Breg and the levels of A20 in B cells were markedly lower in FA patients than in healthy controls. In vitro deletion of A20 compromised the expression of IL-10. B cells in FA patients showed higher levels of histone deacetylase (HDAC)-11 than in healthy subjects. Exposure to IL-13 in the culture induced high levels of HDAC11 in B cells. IL-13 also repressed the expression of A20 in B cells, in which HDAC11 played a critical role via inducing the chromatin remoldeling at the IL-10 promoter locus. Mice with A20-deficient B cells are prone to FA. In summary, ubiquitin A20 can increase the IL-10 expression in B cells, which can be affected by the IL-13-induced HDAC11. To inhibit HDAC11 may have therapeutic potential for FA.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Gastroenterology and Hepatopathy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Zhu
- Department of Medical Oncology, Division of South Building, Chinese PLA General Hospital, Beijing, 100853, China
| | - En-Qiang Linghu
- Department of Gastroenterology and Hepatopathy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Command, Shenyang 110016, PR China
| | - Bing Zhu
- Liver Failure Treatment and Research Center, 302nd Military Hospital, Beijing 100039, China
| | - Cheng Wu
- Department of Digestive Endoscopy, Division of South Building, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ming-Zhou Guo
- Department of Gastroenterology and Hepatopathy, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
10
|
Jiang B, Zhang T, Liu F, Sun Z, Shi H, Hua D, Yang C. The co-stimulatory molecule B7-H3 promotes the epithelial-mesenchymal transition in colorectal cancer. Oncotarget 2017; 7:31755-71. [PMID: 27145365 PMCID: PMC5077974 DOI: 10.18632/oncotarget.9035] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
B7-H3, first recognized as a co-stimulatory molecule, is abnormally expressed in cancer tissues and is associated with cancer metastasis and a poor prognosis. However, as an initial event of metastasis, the relationship between the Epithelial-Mesenchymal Transition (EMT ) in cancer cells and B7-H3 has still not been investigated. In this study, we first analyzed B7-H3 expression by immunohistochemistry in colorectal cancer tissues. B7-H3 was expressed in the cancer cell membrane and was associated with the T stage of colorectal cancer; it also showed a positive correlation with MMP2 and MMP9 expression in cancer tissues. Over-expression of B7-H3 in SW480 cells allowed cancer cells to invade and metastasize more than the control cells, whereas invasion and metastasis capabilities were decreased after B7-H3 was knocked down in Caco-2 cells. We further showed that B7-H3 down-regulated the expression of E-cadherin and β-catenin and up-regulated N-cadherin and Vimentin expression, implying that B7-H3 promoted the EMT in colorectal cancer cells. We also checked another character of the EMT, the stemness of cancer cells. CD133, CD44 and Oct4 were significantly elevated after the SW480 cells were transfected with B7-H3 and reduced in Caco-2 cells after B7-H3 was inhibited. In subsequent studies, we proved that B7-H3 upregulated the expression of Smad1 via PI3K-Akt. In conclusion, B7-H3 promotes the EMT in colorectal cancer cells by activating the PI3K-Akt pathway and upregulating the expression of Smad1.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences/Cancer Center, Aviation General Hospital, Beijing, China
| | - Ting Zhang
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Fen Liu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhangzhang Sun
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hanping Shi
- Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences/Cancer Center, Aviation General Hospital, Beijing, China
| | - Dong Hua
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen Yang
- Department of Nuclear-Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Lee CR, Kwak Y, Yang T, Han JH, Park SH, Ye MB, Lee W, Sim KY, Kang JA, Kim YC, Mazmanian SK, Park SG. Myeloid-Derived Suppressor Cells Are Controlled by Regulatory T Cells via TGF-β during Murine Colitis. Cell Rep 2016; 17:3219-3232. [DOI: 10.1016/j.celrep.2016.11.062] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 01/07/2016] [Accepted: 11/20/2016] [Indexed: 12/15/2022] Open
|
12
|
Huang CH, Wang CC, Lin YC, Hori M, Jan TR. Oral administration with diosgenin enhances the induction of intestinal T helper 1-like regulatory T cells in a murine model of food allergy. Int Immunopharmacol 2016; 42:59-66. [PMID: 27886644 DOI: 10.1016/j.intimp.2016.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 02/02/2023]
Abstract
Although the development of T helper (Th)1-like regulatory T (Treg) cells under Th1 inflammatory conditions has been reported, the role of Th1-like Treg cells in Th2 allergic responses remains mostly unclear. We previously demonstrated that diosgenin, the major sapogenin contained in the Chinese yam, attenuated food allergy and augmented Th1 and Treg immune responses. In this study, we hypothesized that diosgenin may enhance the induction of Th1-like Treg cells in the gut of mice with food allergy. Ovalbumin (OVA)-sensitized BALB/c mice were gavaged daily with diosgenin and received repeatedly intragastric ovalbumin challenges to induce intestinal allergic responses. The induction of Foxp3+ Treg cells co-expressing Th1-type transcription factors, cytokines and chemokines in the intestine was examined, and the mRNA expression of the chemokines corresponding to Th1-like Treg cells was measured. Diosgenin administration increased the number of Foxp3+ Treg cells co-expressing Th1 markers, including CCR5, CXCR3, IFN-γ and T-bet in the intestine, and enhanced populations of Foxp3+IFN-γ+ and Foxp3+T-bet+ cells that expressed the regulatory cytokine IL-10 in the Peyer's patches. Diosgenin also augmented the intestinal expression of CXCR3, CCL3, and CXCL10. Concordantly, diosgenin increased the number of CXCR3+Foxp3+IL-10 cells in the Peyer's patches. Our data demonstrated the enhanced induction of Th1-like Treg cells in allergic mice treated with diosgenin, providing evidence to suggest a role for Th1-like Treg cells in diosgenin-mediated anti-allergic effects against Th2-type allergy.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chin Lin
- Department of Medicinal Botanicals and Health Applications, College of Biotechnology & Bio-resources, Dayeh University, Changhua, Taiwan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tong-Rong Jan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Zhang JG, Chen XJ, Liu T, Jiang SJ. FOXP3 + associated with the pro-inflammatory regulatory T and T helper 17 effector cells in asthma patients. Exp Ther Med 2016; 12:2753-2758. [PMID: 27703517 DOI: 10.3892/etm.2016.3662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
Asthma is a chronic bronchial inflammation that results to reversible incidence of airway obstruction and shortness of breath. Under normal circumstances, the lung immune system is maintained in a state of controlled inflammation, where balance exists between protective immunity mediated by effector cells and tolerance mediated by cells with regulatory function. Therefore, the inflammation observed in asthma patients may be caused by an imbalance between regulatory T (Treg) cells (CD4-positive with high expression of CD25 surface markers) and forkhead box P3 (FOXP3)-positive pro-inflammatory T helper 17 (Th17) cells. The aim of the present study was to evaluate whether reduced Treg cells and increased Th17 cells could be observed in the peripheral blood samples of asthma patients. As important markers of Treg cells, the expression levels of FOXP3 and interleukin (IL)-17a were analyzed via reverse trancription-quantitative polymerase chain reaction. The results indicated that the levels of cytokines that promote Th17 cells, including IL-6, IL-23 and TGF-β, were found to increase in the bronchoalveolar lavage fluid sample of asthma patients. However, the IL-10 level in the corresponding sample was much lower compared with that in control individuals. In conclusion, these results suggest that asthma associated with a reduced proportion of Treg and Th17 cells in the blood is characterized by the expression of pro-inflammatory cytokines that may be beneficial for the continuous generation of Th17 cells.
Collapse
Affiliation(s)
- Jian-Guo Zhang
- Department of Respiratory Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China; Department of Critical Care Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Xiao-Juan Chen
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Tao Liu
- Department of Critical Care Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Shu-Juan Jiang
- Department of Respiratory Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
14
|
RETRACTED ARTICLE: Mouse models of intestinal inflammation and cancer. Arch Toxicol 2016; 90:2109-2130. [DOI: 10.1007/s00204-016-1747-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
|
15
|
Mårild K, Størdal K, Hagman A, Ludvigsson JF. Turner Syndrome and Celiac Disease: A Case-Control Study. Pediatrics 2016; 137:e20152232. [PMID: 26746404 DOI: 10.1542/peds.2015-2232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Turner syndrome (TS) is the most common sex chromosome abnormality in females. Previous research has indicated a high prevalence of celiac disease (CD) in TS, but data have mostly been limited to case series at tertiary centers. We aimed to examine the risk for CD in individuals with TS compared with the general population. METHODS This Swedish nationwide case-control study included individuals with CD and controls born in 1973-2006. The study consisted of 2 groups: (1) 7548 females with biopsy-verified CD (villous atrophy; Marsh stage 3) diagnosed until January 2008 according to histopathology report data from all 28 Swedish pathology departments and (2) 34 492 population-based controls matched by gender, age, calendar year of birth, and county of residence. TS, diagnosed by the end of 2009, was identified using prospectively recorded data from 3 nationwide health registries. Odds ratios (ORs) for CD were calculated using conditional logistic regression. RESULTS Of the 7548 females with CD, 20 had a diagnosis of TS (0.26%) compared with 21 of 34 492 controls (0.06%), corresponding to an OR of 3.29 (95% confidence interval [CI] 1.94-5.56) for CD in individuals with TS. The risk of CD in females with TS ranged from twofold (OR 2.16; 95% CI 0.91-5.11) in the first 5 years of life to a more than fivefold increase in females aged >10 years at CD diagnosis (OR 5.50; 95% CI 1.53-19.78). The association between TS and CD was largely unaffected by concurrent type 1 diabetes. CONCLUSIONS Females with TS are more likely to develop CD. This study supports active case-finding for CD in TS.
Collapse
Affiliation(s)
- Karl Mårild
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden;
| | - Ketil Størdal
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway; Department of Pediatrics, Østfold Hospital Trust, Fredrikstad, Norway
| | - Anna Hagman
- Department of Obstetrics and Gynecology, Norra Älvsborg Hospital, Trollhättan, Sweden; and
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| |
Collapse
|
16
|
NADH oxidase-dependent CD39 expression by CD8(+) T cells modulates interferon gamma responses via generation of adenosine. Nat Commun 2015; 6:8819. [PMID: 26549640 PMCID: PMC4667632 DOI: 10.1038/ncomms9819] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 10/07/2015] [Indexed: 12/22/2022] Open
Abstract
Interferon gamma (IFNγ)-producing CD8+ T cells (Tc1) play important roles in immunological disease. We now report that CD3/CD28-mediated stimulation of CD8+ T cells to generate Tc1 cells, not only increases IFNγ production but also boosts the generation of reactive oxygen species (ROS) and augments expression of CD39. Inhibition of NADPH oxidases or knockdown of gp91phox in CD8+ T cells abrogates ROS generation, which in turn modulates JNK and NFκB signalling with decreases in both IFNγ levels and CD39 expression. CD39+CD8+ T cells substantially inhibit IFNγ production by CD39−CD8+ T cells via the paracrine generation of adenosine, which is operational via adenosine type 2A receptors. Increases in numbers of CD39+CD8+ T cells and associated enhancements in ROS signal transduction are noted in cells from patients with Crohn's disease. Our findings provide insights into Tc1-mediated IFNγ responses and ROS generation and link these pathways to CD39/adenosine-mediated effects in immunological disease. The ectonucleotidase CD39 ultimately generates extracellular adenosine, modulating paracrine purinergic signaling. Here the authors show that IFNγ induction in CD8+ T cells is accompanied by NADH oxidase-dependent CD39 expression, which then inhibits IFNγ production in CD39-CD8+ T cells.
Collapse
|
17
|
Dondi A, Ricci G, Matricardi PM, Pession A. Fatal anaphylaxis to wheat after gluten-free diet in an adolescent with celiac disease. Allergol Int 2015; 64:203-5. [PMID: 25838102 DOI: 10.1016/j.alit.2014.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/29/2014] [Accepted: 11/03/2014] [Indexed: 01/24/2023] Open
|
18
|
Effect of a protein-free diet in the development of food allergy and oral tolerance in BALB/c mice. Br J Nutr 2015; 113:935-43. [PMID: 25759975 DOI: 10.1017/s0007114515000173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to investigate the effect of a protein-free diet in the induction of food allergy and oral tolerance in BALB/c mice. The experimental model used was mice that were fed, since weaning up to adulthood, a balanced diet in which all dietary proteins were replaced by amino acid diet (Aa). The absence of dietary proteins did not prevent the development of food allergy to ovalbumin (OVA) in these mice. However, Aa-fed mice produced lower levels of IgE, secretory IgA and cytokines. In addition, when compared with mice from control group, Aa-fed mice had a milder aversive reaction to the allergen measured by consumption of OVA-containing solution and weight loss during food allergy development. In addition, mice that did not have dietary proteins in their diets were less susceptible to induction of oral tolerance. One single oral administration was not enough to suppress specific serum Ig and IgG1 levels in the Aa-fed group, although it was efficient to induce suppression in the control group. The present results indicate that the stimulation by dietary proteins alters both inflammatory reactivity and regulatory immune reactivity in mice probably due to their effect in the maturation of the immune system.
Collapse
|
19
|
|
20
|
Qu B, Xin GR, Zhao LX, Xing H, Lian LY, Jiang HY, Tong JZ, Wang BB, Jin SZ. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration. PLoS One 2014. [PMID: 25309991 DOI: 10.137/journal.pone.0107891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). METHODS BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. RESULTS PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. CONCLUSION BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.
Collapse
Affiliation(s)
- Bo Qu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guo-Rong Xin
- Anorectal Department, The First Affiliated Hospital, JiaMuSi Medical University, JiaMuSi, China
| | - Li-Xia Zhao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hui Xing
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li-Ying Lian
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hai-Yan Jiang
- Infections Department, JiaMuSi Central Hospital, JiaMuSi, China
| | - Jia-Zhao Tong
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bei-Bei Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Qu B, Xin GR, Zhao LX, Xing H, Lian LY, Jiang HY, Tong JZ, Wang BB, Jin SZ. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration. PLoS One 2014; 9:e107891. [PMID: 25309991 PMCID: PMC4195572 DOI: 10.1371/journal.pone.0107891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). METHODS BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. RESULTS PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. CONCLUSION BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.
Collapse
Affiliation(s)
- Bo Qu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guo-Rong Xin
- Anorectal Department, The First Affiliated Hospital, JiaMuSi Medical University, JiaMuSi, China
| | - Li-Xia Zhao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hui Xing
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li-Ying Lian
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hai-Yan Jiang
- Infections Department, JiaMuSi Central Hospital, JiaMuSi, China
| | - Jia-Zhao Tong
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bei-Bei Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Haas E, Rütgen BC, Gerner W, Richter B, Tichy A, Galler A, Bilek A, Thalhammer JG, Saalmüller A, Luckschander-Zeller N. Phenotypic characterization of canine intestinal intraepithelial lymphocytes in dogs with inflammatory bowel disease. J Vet Intern Med 2014; 28:1708-15. [PMID: 25250556 PMCID: PMC4895640 DOI: 10.1111/jvim.12456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 01/08/2023] Open
Abstract
Background Many dogs suffering from inflammatory bowel disease (IBD) are presented to veterinary clinics. These patients are diagnosed based on a history of chronic gastrointestinal signs and biopsy‐confirmed histopathologic intestinal inflammation. Intestinal intraepithelial lymphocytes (IEL) are part of the first line of defense in the gastrointestinal immune system. Alterations in IEL subsets may play a role in the pathogenesis of IBD. Hypothesis The aim of this study was to characterize the phenotypes of IEL in dogs with IBD compared with healthy control dogs. Animals Intestinal intraepithelial lymphocytes subpopulations of control dogs (n = 5) obtained from endoscopic biopsies (EB) were compared to those obtained from full thickness biopsies (FTB) on the same day. In addition, the phenotypes of IEL from FTB of control dogs (n = 10) were compared with EB of IBD dogs (n = 10). Each participant was scored clinically using the canine inflammatory bowel disease activity index (CIBDAI), and all samples were graded histopathologically. Three‐color flow cytometry of isolated IEL was performed using monoclonal antibodies against T‐ and B‐lymphocyte subpopulations. Results No significant differences in the composition of IEL subpopulations were found in control dogs based on method of biopsy. The IBD dogs had significantly higher CIBDAI and histopathologic scores compared with control dogs and their IEL contained a significantly higher frequency TCRγδ T‐cells. Conclusions and Clinical Importance Endoscopic biopsies provide suitable samples for 3‐color flow cytometry when studying canine intestinal IEL and IBD patients show significant changes of major T‐cell subsets compared to healthy control dogs.
Collapse
Affiliation(s)
- E Haas
- Department for Companion Animals and Horses, Small Animal Clinic, Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Myles IA. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J 2014; 13:61. [PMID: 24939238 PMCID: PMC4074336 DOI: 10.1186/1475-2891-13-61] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023] Open
Abstract
While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the mechanisms for the Western diet's impact on immune function. The manuscript reviews the impacts and mechanisms of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners, gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into our gut, our genes, and are passed to our offspring. While today's modern diet may provide beneficial protection from micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for allergic and auto-inflammatory disease.
Collapse
Affiliation(s)
- Ian A Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike Building 33, Room 2W10A, Bethesda, MD, 20892, Maryland.
| |
Collapse
|
24
|
Li AL, Meng XC, Huo GC, Duan CC, Zheng QL, Li D, Wang Y. The Th17/Treg imbalance in bovine β-lactoglobulin-sensitised mice. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Myles IA, Pincus NB, Fontecilla NM, Datta SK. Effects of parental omega-3 fatty acid intake on offspring microbiome and immunity. PLoS One 2014; 9:e87181. [PMID: 24489864 PMCID: PMC3906117 DOI: 10.1371/journal.pone.0087181] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
The "Western diet" is characterized by increased intake of saturated and omega-6 (n-6) fatty acids with a relative reduction in omega-3 (n-3) consumption. These fatty acids can directly and indirectly modulate the gut microbiome, resulting in altered host immunity. Omega-3 fatty acids can also directly modulate immunity through alterations in the phospholipid membranes of immune cells, inhibition of n-6 induced inflammation, down-regulation of inflammatory transcription factors, and by serving as pre-cursors to anti-inflammatory lipid mediators such as resolvins and protectins. We have previously shown that consumption by breeder mice of diets high in saturated and n-6 fatty acids have inflammatory and immune-modulating effects on offspring that are at least partially driven by vertical transmission of altered gut microbiota. To determine if parental diets high in n-3 fatty acids could also affect offspring microbiome and immunity, we fed breeding mice an n-3-rich diet with 40% calories from fat and measured immune outcomes in their offspring. We found offspring from mice fed diets high in n-3 had altered gut microbiomes and modestly enhanced anti-inflammatory IL-10 from both colonic and splenic tissue. Omega-3 pups were protected during peanut oral allergy challenge with small but measurable alterations in peanut-related serologies. However, n-3 pups displayed a tendency toward worsened responses during E. coli sepsis and had significantly worse outcomes during Staphylococcus aureus skin infection. Our results indicate excess parental n-3 fatty acid intake alters microbiome and immune response in offspring.
Collapse
Affiliation(s)
- Ian A. Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Nathan B. Pincus
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Natalia M. Fontecilla
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandip K. Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
Wright GP, Ehrenstein MR, Stauss HJ. Regulatory T-cell adoptive immunotherapy: potential for treatment of autoimmunity. Expert Rev Clin Immunol 2014; 7:213-25. [DOI: 10.1586/eci.10.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Miron N, Feldrihan V, Berindan-Neagoe I, Cristea V. The role of Staphylococcal enterotoxin A in achieving oral tolerance to myelin basic protein in adult mice. Immunol Invest 2013; 43:267-77. [PMID: 24354887 DOI: 10.3109/08820139.2013.868474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Oral tolerance is the biological process explaining the non-responsiveness of gut lymphoid tissue to intestinal content. Our study tested a new approach for the enhancement of oral tolerance to a multiple sclerosis-triggering auto-antigen-myelin basic protein, by its oral administration with the Staphylococcal enterotoxin A. METHODS Immune tolerance thus stimulated was assessed in adult BALB/c mice, by measuring different cytokines from the supernatant of mesenteric lymph nodes cells (IFN-γ, IL-4, IL-10, IL-17, and TGF-β), and in a SJL/E mouse model of experimental autoimmune encephalomyelitis, by evaluating the development of regulatory T cells in mesenteric lymph nodes and the clinical outcome of the intervention. RESULTS We obtained a significant rise in the levels of IL-10 and TGF-β compared with control and a significant decrease of IFN-γ, IL-4 (p < 0.05). Regulatory T cells were increased compared with control (p < 0.05). These results were attributable both to myelin basic protein and to Staphylococcal enterotoxin A. The clinical outcome of experimental autoimmune encephalomyelitis was influenced only by the administration of myelin basic protein. CONCLUSION In our experiment, Staphylococcal enterotoxin A enhanced the immune tolerance to myelin basic protein in the gut mucosa, but had no impact on the clinical evolution of experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Nicolae Miron
- Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu" , Cluj-Napoca , Romania
| | | | | | | |
Collapse
|
28
|
Myles IA, Fontecilla NM, Janelsins BM, Vithayathil PJ, Segre JA, Datta SK. Parental dietary fat intake alters offspring microbiome and immunity. THE JOURNAL OF IMMUNOLOGY 2013; 191:3200-9. [PMID: 23935191 DOI: 10.4049/jimmunol.1301057] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mechanisms underlying modern increases in prevalence of human inflammatory diseases remain unclear. The hygiene hypothesis postulates that decreased microbial exposure has, in part, driven this immune dysregulation. However, dietary fatty acids also influence immunity, partially through modulation of responses to microbes. Prior reports have described the direct effects of high-fat diets on the gut microbiome and inflammation, and some have additionally shown metabolic consequences for offspring. Our study sought to expand on these previous observations to identify the effects of parental diet on offspring immunity using mouse models to provide insights into challenging aspects of human health. To test the hypothesis that parental dietary fat consumption during gestation and lactation influences offspring immunity, we compared pups of mice fed either a Western diet (WD) fatty acid profile or a standard low-fat diet. All pups were weaned onto the control diet to specifically test the effects of early developmental fat exposure on immune development. Pups from WD breeders were not obese or diabetic, but still had worse outcomes in models of infection, autoimmunity, and allergic sensitization. They had heightened colonic inflammatory responses, with increased circulating bacterial LPS and muted systemic LPS responsiveness. These deleterious impacts of the WD were associated with alterations of the offspring gut microbiome. These results indicate that parental fat consumption can leave a "lard legacy" impacting offspring immunity and suggest inheritable microbiota may contribute to the modern patterns of human health and disease.
Collapse
Affiliation(s)
- Ian A Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Natalia M Fontecilla
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Brian M Janelsins
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul J Vithayathil
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Julia A Segre
- Epithelial Biology Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
29
|
Qiu Y, Yang H. Effects of intraepithelial lymphocyte-derived cytokines on intestinal mucosal barrier function. J Interferon Cytokine Res 2013; 33:551-62. [PMID: 23692551 DOI: 10.1089/jir.2012.0162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mucosal surface of the gastrointestinal tract directly interacts with the mucosal lumen, which is continuously exposed to foreign antigens. Specialized intraepithelial lymphocytes (IELs), located between the basolateral surfaces of the epithelial cells, are important as the first line of defense against microbes as well as for their role in the maintenance of epithelial barrier homeostasis. Although IELs are mainly composed of T cells, they are phenotypically and functionally distinct from T cells in peripheral blood or the spleen. Not only are IELs stimulated by the antigens of the intestinal lumen but are they also stimulated by regulatory immune cells. The integrity of the intestinal mucosal barrier is closely tied to the IEL function. Cytokines produced by IELs modulate the cellular functions that trigger the downstream signaling pathways and mediate the barrier homeostasis. In this review, we will address the broad spectrum of cytokines that are derived from IELs and the functional regulation of these cytokines on the intestinal barrier.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| | | |
Collapse
|
30
|
Rabinowitz K, Mayer L. Working out mechanisms of controlled/physiologic inflammation in the GI tract. Immunol Res 2013; 54:14-24. [PMID: 22466933 DOI: 10.1007/s12026-012-8315-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mucosal immune system is distinct from its systemic counterpart by virtue of its enormous antigenic exposure (commensal flora, food antigen, pathogens). Despite this, the mucosal immune system maintains a response defined as controlled or physiologic inflammation. This is regulated by many different mechanisms, among which there are physical, cellular and soluble factors. Our laboratory has focused on unique Tregs in the gut controlled by, in one instance, intestinal epithelial cells that serve as non-professional antigen-presenting cells. We believe that intestinal epithelial cells, expressing classical and non-classical MHC molecules, serve to activate Tregs and thus maintain controlled or physiologic inflammation. In this review, we describe regulatory cytokines and T cells that are one part of the emphasis of our laboratory.
Collapse
Affiliation(s)
- Keren Rabinowitz
- Mount Sinai School of Medicine, Immunology Institute, 1425 Madison Avenue, Box 1089, New York, NY 10029, USA
| | | |
Collapse
|
31
|
Yu QM, Yu CD, Ling ZQ. Elevated circulating CD19+ lymphocytes predict survival advantage in patients with gastric cancer. Asian Pac J Cancer Prev 2013; 13:2219-24. [PMID: 22901197 DOI: 10.7314/apjcp.2012.13.5.2219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circulating lymphocyte subsets reflect the immunological status and might therefore be a prognostic indicator in cancer patients. Our aim was to evaluate the clinical significance of circulating lymphocyte subset in gastric cancer (GC) cases. METHODS A retrospective study on a prevalent cohort of 846 GC patients hospitalized at Hospital from Aug 2006 to Jul 2010 was conducted. We calculated the patient's disease free survival (DFS) after first hospital admission, and hazard ratios (HR) from the Cox proportional hazards model. RESULTS Our findings indicated a significantly decreased percentage of CD3+, and CD8+ cells, a significantly increased proportion of CD4+, CD19+, CD44+, CD25+, NK cells, and an increased CD4+/CD8+ ratio in GC patients as compared with healthy controls (all P<0.05). Alteration of lymphocyte subsets was positively correlated with sex, age, smoking, tumor stage and distant metastasis of GC patients (all P<0.05). Follow-up analysis indicated significantly higher DFS for patients with high circulating CD19+ lymphocytes compared to those with low CD19+ lymphocytes (P=0.037), with CD19+ showing an important cutoff of 7.91± 2.98%. CONCLUSION Circulating lymphocyte subsets in GC patients are significantly changed, and elevated CD19+ cells may predict a favorable survival.
Collapse
Affiliation(s)
- Qi-Ming Yu
- Zhejiang Cancer Research Institute, Hangzhou, China
| | | | | |
Collapse
|
32
|
Grizzi F, Bianchi P, Malesci A, Laghi L. Prognostic value of innate and adaptive immunity in colorectal cancer. World J Gastroenterol 2013; 19:174-84. [PMID: 23345940 PMCID: PMC3547568 DOI: 10.3748/wjg.v19.i2.174] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/12/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the major public health problems throughout the world. Originally depicted as a multi-step dynamical disease, CRC develops slowly over several years and progresses through cytologically distinct benign and malignant states, from single crypt lesions through adenoma, to malignant carcinoma with the potential for invasion and metastasis. Moving from histological observations since a long time, it has been recognized that inflammation and immunity actively participate in the pathogenesis, surveillance and progression of CRC. The advent of immunohistochemical techniques and of animal models has improved our understanding of the immune dynamical system in CRC. It is well known that immune cells have variable behavior controlled by complex interactions in the tumor microenvironment. Advances in immunology and molecular biology have shown that CRC is immunogenic and that host immune responses influence survival. Several lines of evidence support the concept that tumor stromal cells, are not merely a scaffold, but rather they influence growth, survival, and invasiveness of cancer cells, dynamically contributing to the tumor microenvironment, together with immune cells. Different types of immune cells infiltrate CRC, comprising cells of both the innate and adaptive immune system. A relevant issue is to unravel the discrepancy between the inhibitory effects on cancer growth exerted by the local immune response and the promoting effects on cancer proliferation, invasion, and dissemination induced by some types of inflammatory cells. Here, we sought to discuss the role played by innate and adaptive immune system in the local progression and metastasis of CRC, and the prognostic information that we can currently understand and exploit.
Collapse
|
33
|
Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Kopatys A, Demkow U. Th1, Th2, Th17, and Regulatory Cytokines in Children with Different Clinical Forms of Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 788:321-8. [DOI: 10.1007/978-94-007-6627-3_43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Avula LR, Knapen D, Buckinx R, Vergauwen L, Adriaensen D, Van Nassauw L, Timmermans JP. Whole-genome microarray analysis and functional characterization reveal distinct gene expression profiles and patterns in two mouse models of ileal inflammation. BMC Genomics 2012; 13:377. [PMID: 22866923 PMCID: PMC3599598 DOI: 10.1186/1471-2164-13-377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 07/18/2012] [Indexed: 12/16/2022] Open
Abstract
Background Although a number of intestinal inflammatory conditions pertain to the ileum, whole-genome gene expression analyses in animal models of ileal inflammation are lacking to date. Therefore, we aimed to identify and characterize alterations in gene expression in the acutely inflamed ileum of two murine models of intestinal inflammation, namely intestinal schistosomiasis and TNBS-induced ileitis, compared to healthy controls. To this end, we used whole-genome microarrays, followed by bioinformatics analyses to detect over-represented Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology categories. Results Following screening of almost all known mouse genes and transcripts represented on the array, intestinal schistosomiasis and TNBS-induced ileitis yielded 207 and 1417 differentially expressed genes, respectively, with only 30 overlapping concordantly changed genes. Functional category groups consisting of complement and coagulation cascades, extracellular matrix (ECM)-receptor interaction, Fc epsilon receptor I signaling pathways and protein activation cascade, cell adhesion categories were over-represented in the differential gene list of intestinal schistosomiasis. Antigen processing and presentation, cell adhesion molecules, ABC transporters, Toll-like receptor signaling pathways and response to chemical stimulus categories were over-represented in the differential gene list of TNBS-induced ileitis. Although cytokine-cytokine receptor interaction, intestinal immune network for IgA production, focal adhesion pathways and immune, inflammatory and defense response categories were over-represented in the differential gene lists of both inflammation models, the vast majority of the associated genes and changes were unique to each model. Conclusions This study characterized two models of ileal inflammation at a whole-genome level and outlined distinct gene expression profiles and patterns in the two models. The results indicate that intestinal schistosomiasis involves Th2 responses, complement activation, protein activation and enhanced ECM turnover, while TNBS-induced ileitis involves Th17 responses, defective antigen processing and presentation and altered Toll-like receptor-mediated responses. Signs of an impaired epithelial barrier are apparent in both inflammation models. Furthermore, the comprehensive differential gene list and functional groups provided by this study constitute an interesting starting point to explore new targets and extended functional networks dealing with small bowel inflammation.
Collapse
Affiliation(s)
- Leela Rani Avula
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Guthrie GJK, Roxburgh CSD, Horgan PG, McMillan DC. Does interleukin-6 link explain the link between tumour necrosis, local and systemic inflammatory responses and outcome in patients with colorectal cancer? Cancer Treat Rev 2012; 39:89-96. [PMID: 22858249 DOI: 10.1016/j.ctrv.2012.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 02/07/2023]
Abstract
Cancer-associated inflammation has been identified as a key determinant of disease progression and survival in colorectal cancer. In particular, it has been consistently reported that both the local and systemic inflammatory responses play an important role in determining outcome in colorectal cancer. Given the importance of cancer-associated inflammation, up-regulation or attenuation of these respective inflammatory responses may be important for progression and survival in colorectal cancer. Recent work has focused on the inter-relationships between the tumour and these key inflammatory processes. In particular, tumour necrosis has been reported to be associated with decreased local inflammatory infiltrate and with elevated markers of systemic inflammation in colorectal cancer and has been proposed as a potential link between the systemic and local inflammatory responses. Thus there is increasing interest in the potential biochemical mediators of this link. In this review we examine the evidence for IL-6 in the natural history of colorectal cancer and its relationship with tumour necrosis and the local and systemic inflammatory responses. There is now good evidence that tumour concentrations of IL-6 have been directly associated with increased necrosis, proliferation, differentiation and vascular invasion, while circulating concentrations of IL-6 are directly associated with T-stage, CRP concentrations and poorer survival. Also, interleukin-6 and down-stream pathways, such as the JAK/STAT pathway, have emerged as important factors in the modulation of cancer-associated inflammation. Therefore, IL-6 has emerged as a key mediator of the relationship between tumour necrosis, local and systemic inflammatory responses and outcome in patients with colorectal cancer.
Collapse
Affiliation(s)
- Graeme J K Guthrie
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK.
| | | | | | | |
Collapse
|
36
|
Phenotypical and functional analysis of intraepithelial lymphocytes from small intestine of mice in oral tolerance. Clin Dev Immunol 2012; 2012:208054. [PMID: 22400033 PMCID: PMC3287057 DOI: 10.1155/2012/208054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/14/2011] [Indexed: 01/21/2023]
Abstract
In this work, we evaluated the effects of administration of OVA on phenotype and function of intraepithelial lymphocytes (IELs) from small intestine of transgenic (TGN) DO11.10 and wild-type BALB/c mice. While the small intestines from BALB/c presented a well preserved structure, those from TGN showed an inflamed aspect. The ingestion of OVA induced a reduction in the number of IELs in small intestines of TGN, but it did not change the frequencies of CD8+ and CD4+ T-cell subsets. Administration of OVA via oral + ip increased the frequency of CD103+ cells in CD4+ T-cell subset in IELs of both BALB/c and TGN mice and elevated its expression in CD8β+ T-cell subset in IELs of TGN. The frequency of Foxp3+ cells increased in all subsets in IELs of BALB/c treated with OVA; in IELs of TGN, it increased only in CD25+ subset. IELs from BALB/c tolerant mice had lower expression of all cytokines studied, whereas those from TGN showed high expression of inflammatory cytokines, especially of IFN-γ, TGF-β, and TNF-α. Overall, our results suggest that the inability of TGN to become tolerant may be related to disorganization and altered proportions of inflammatory/regulatory T cells in its intestinal mucosa.
Collapse
|
37
|
Takakubo Y, Konttinen YT. Immune-regulatory mechanisms in systemic autoimmune and rheumatic diseases. Clin Dev Immunol 2011; 2012:941346. [PMID: 22110541 PMCID: PMC3207139 DOI: 10.1155/2012/941346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/06/2011] [Accepted: 08/18/2011] [Indexed: 02/07/2023]
Abstract
Systemic autoimmune and rheumatic diseases (SAIRDs) are thought to develop due to the failure of autoimmune regulation and tolerance. Current therapies, such as biologics, have improved the clinical results of SAIRDs; however, they are not curative treatments. Recently, new discoveries have been made in immune tolerance and inflammation, such as tolerogenic dendritic cells, regulatory T and B cells, Th 17 cells, inflammatory and tolerogenic cytokines, and intracellular signaling pathways. They lay the foundation for the next generation of the therapies beyond the currently used biologic therapies. New drugs should target the core processes involved in disease mechanisms with the aim to attain complete cure combined with safety and low costs compared to the biologic agents. Re-establishment of autoimmune regulation and tolerance in SAIRDs by the end of the current decade should be the final and realistic target.
Collapse
Affiliation(s)
- Yuya Takakubo
- Department of Medicine, Biomedicum Helsinki, University of Helsinki, PO Box 700, Haartmaninkatu 8, 00029 HUS, Finland.
| | | |
Collapse
|
38
|
Brandtzaeg P. The gut as communicator between environment and host: immunological consequences. Eur J Pharmacol 2011; 668 Suppl 1:S16-32. [PMID: 21816150 DOI: 10.1016/j.ejphar.2011.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 12/18/2022]
Abstract
During human evolution, the mucosal immune system developed two anti-inflammatory mechanisms: immune exclusion by secretory antibodies (SIgA and SIgM) to control epithelial colonization of microorganisms and inhibit penetration of harmful substances; and immunosuppression to counteract local and peripheral hypersensitivity against innocuous antigens such as food proteins. The latter function is referred to as oral tolerance when induced via the gut. Similar mechanisms also control immunity to commensal bacteria. The development of immune homeostasis depends on "windows of opportunity" where adaptive and innate immunities are coordinated by antigen-presenting cells; their function is not only influenced by microbial products but also by dietary constituents, including vitamin A and lipids like polyunsaturated omega-3 fatty acids. These factors can in several ways exert beneficial effects on the immunophenotype of the infant. Also breast milk provides immune-modulating factors and SIgA antibodies - reinforcing the gut barrier. Mucosal immunity is most abundantly expressed in the gut, and the intestinal mucosa of an adult contains at least 80% of the body's activated B cells - terminally differentiated to plasmablasts and plasma cells (PCs). Most mucosal PCs produce dimeric IgA which is exported by secretory epithelia expressing the polymeric Ig receptor (pIgR), also called membrane secretory component (SC). Immune exclusion is therefore performed mainly by SIgA. Notably, pIgR knockout mice which lack SIgs show increased uptake of food and microbial antigens and they have a hyper-reactive immune system with disposition for anaphylaxis; but this untoward development is counteracted by cognate oral tolerance induction as a homeostatic back-up mechanism.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Centre for Immune Regulation, University of Oslo, and Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
39
|
Abstract
Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
40
|
Deschoolmeester V, Baay M, Lardon F, Pauwels P, Peeters M. Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. CANCER MICROENVIRONMENT 2011; 4:377-92. [PMID: 21618031 DOI: 10.1007/s12307-011-0068-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/19/2011] [Indexed: 12/14/2022]
Abstract
There is growing evidence that both local and systemic inflammatory responses play an important role in the progression of a variety of solid tumors. Colorectal cancer (CRC) results from the cumulative effect of sequential genetic alterations, leading to the expression of tumor-associated antigens possibly inducing a cellular anti-tumor immune response. It is well recognized that cytotoxic lymphocytes (CTLs) constitute one of the most important effector mechanisms of anti-tumor-immunity. However, their potential prognostic influence in CRC remains controversial. In addition, other key players like natural killer cells, tumor associated macrophages and regulatory T cells play an important role in the immune attack against CRC and need further investigation. This review will mainly focus on the role of the adaptive immune system in CRC and particularly in regard to microsatellite instability.
Collapse
Affiliation(s)
- Vanessa Deschoolmeester
- Laboratory of Cancer Research and Clinical Oncology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium,
| | | | | | | | | |
Collapse
|
41
|
Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa. Immunobiology 2011; 216:1085-93. [PMID: 21676485 DOI: 10.1016/j.imbio.2011.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/11/2011] [Accepted: 05/07/2011] [Indexed: 11/22/2022]
Abstract
Aging is reported to be associated with decline in oral tolerance induction, which is initiated at the intestinal mucosal surface. Herein, we examined the effect of aging in T cells and cytokines at the intestinal mucosa that might be involved in oral tolerance induction. Frequencies of regulatory-type IEL subsets such as TCRγδ(+) and TCRαβ(+)CD8αα(+) were lower in aged mice. Mucosal CD4(+)CD25(+)Foxp3(+) and CD4(+)LAP(+) T cells increased with aging but activated CD44(+)CD4(+) mucosal T cells also augmented. Production of TGF-β and IL-10 in the small intestine of old mice was reduced. Moreover, the ability of mucosal dendritic cells of aged mice to stimulate TGF-β secretion and differentiation of CD4(+)LAP(+) T cells in co-culture studies also declined with aging. Reduction in these regulatory-type cytokines and T cells may help to explain the decline in susceptibility to oral induction during aging. However, not all mucosal regulatory elements were altered by aging and CD4(+)CD25(+)Foxp3(+) T cells were especially resistant to changes. Persistence of some mechanisms of regulation may play a critical role in maintaining mucosal homeostasis during aging.
Collapse
|
42
|
Garden O, Pinheiro D, Cunningham F. All creatures great and small: regulatory T cells in mice, humans, dogs and other domestic animal species. Int Immunopharmacol 2011; 11:576-88. [DOI: 10.1016/j.intimp.2010.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/01/2010] [Indexed: 12/12/2022]
|
43
|
Krogulska A, Borowiec M, Polakowska E, Dynowski J, Młynarski W, Wasowska-Królikowska K. FOXP3, IL-10, and TGF-β genes expression in children with IgE-dependent food allergy. J Clin Immunol 2011; 31:205-15. [PMID: 21107665 PMCID: PMC3105233 DOI: 10.1007/s10875-010-9487-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/03/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND Regulatory T cells (Tregs) have an essential role in tolerance and immune regulation. However, few and controversial data have been published to date on the role and number of these cells in food allergic children. The forkhead/winged-helix transcription factor box protein 3 (FOXP3) is considered the most reliable marker for Tregs. OBJECTIVE This study aims to investigate the FOXP3, interleukin (IL)-10, and transforming growth factor (TGF-β) genes expression in children with IgE-dependent food allergy. MATERIAL AND METHODS The study group consisted of 54 children with IgE-dependent food allergy (FA) and a control group of 26 non-atopic healthy children. The diagnosis of FA was established using questionnaires, clinical criteria, skin prick tests, serum sIgE antibodies (UniCAP 100 Pharmacia Upjohn), and a double-blind placebo control food challenge. In order to assess gene expression, the isolation of nucleated cells was performed using Histopaque-1077 (Sigma-Aldrich, Germany). The concentration of RNA obtained was measured using a super-sensitive NanoDrop ND1000 spectrophotometer (Thermo Scientific, USA). A reverse transcription reaction was performed using a commercially available set of High Capacity cDNA Archive Kit (Applied Biosystems, USA). Analysis have been carried out in the genetic analyzer 7900HT Real-Time PCR (Applied Biosystems, USA). RESULTS The average level of the FOXP3 gene expression in the studied group was 2.19 ± 1.16 and in the control group 2.88 ± 1.66 (p = 0.03). The average level of IL10 mRNA expression in the study group was 13.6 ± 1.07 and was significantly lower than corresponding values in the control group 14.3 ± 1.1 (p = 0.01). There were no significant differences in the average level of the TGF-β mRNA expression in the study group (3.4 ± 0.4) and controls (3.5 ± 0.3; p > 0.05). The FOXP3 gene expression was the highest in children who acquired tolerance to food (3.54 ± 0.75), lower in heated allergen-tolerant children (2.43 ± 0.81), and the lowest in heated allergen-reactive children (1.18 ± 0.5; p = 0.001 control vs heated allergen reactive; p = 0.005 heated allergen tolerant vs heated allergen reactive; p = 0.001 outgrown vs heated allergen reactive). The significant tendency toward lower total IgE levels with a higher FOXP3 mRNA expression was detected (n = 54; Pearson r = -0.4393; p = 0.001). CONCLUSIONS Children with FA showed statistically significant lower level of the FOXP3 and IL10 gene expression than healthy children. Children acquiring tolerance to the food show significantly higher levels of the FOXP3 gene expression than children with active FA. The correlation between the level of FOXP3 and total IgE was detected.
Collapse
Affiliation(s)
- Aneta Krogulska
- Department of Pediatric Allergology, Gastroenterology and Nutrition, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
44
|
Immune phenotype of children with newly diagnosed and gluten-free diet-treated celiac disease. Dig Dis Sci 2011; 56:792-8. [PMID: 20683660 DOI: 10.1007/s10620-010-1363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/15/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent data suggest the involvement of both the adaptive and the innate immune system in celiac disease (CD). However, little is known about the immune phenotype of children with CD and its alteration upon dietary intervention. AIMS We characterized the prevalence of major interacting members of the adaptive and innate immune system in peripheral blood of newly diagnosed children with CD and tested its alteration with the improvement of clinical signs after the introduction of gluten-free diet (GFD). METHODS Peripheral blood was taken from ten children with biopsy-proven CD at the time of diagnosis and after the resolution of clinical symptoms following GFD. As controls, 15 children with functional abdominal pain were enrolled. The prevalence of the cells of adaptive and innate immunity was measured with labeled antibodies against surface markers and intracellular FoxP3 using a flow cytometer. RESULTS Patients with CD were found to have lower T helper, Th1 and natural killer (NK), NKT and invariant NKT cell prevalence and with higher prevalence of activated CD4(+) cells, myeloid dendritic cells (DC) and Toll-like receptor (TLR) 2 and TLR-4 positive DCs and monocytes compared to controls. After resolution of symptoms on GFD, the majority of these changes normalized, although the prevalence of NK and NKT cell, DC and TLR-2 expressing DCs and monocytes remained abnormal. CONCLUSIONS The immune phenotype in childhood CD indicates the implication of both adaptive and innate immune system. The normalization of immune abnormalities occurs on GFD, but the kinetics of this process probably differs among different cell types.
Collapse
|
45
|
Marcondes Rezende M, Hassing I, Bol-Schoenmakers M, Bleumink R, Boon L, van Bilsen J, Pieters R. CD4(+) CD25(+) T regulatory cells do not transfer oral tolerance to peanut allergens in a mouse model of peanut allergy. Clin Exp Allergy 2011; 41:1324-33. [PMID: 21338425 DOI: 10.1111/j.1365-2222.2010.03662.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recent studies have implicated CD4(+) CD25(+) regulatory T cells (nTregs) in the maintenance of tolerance to oral antigens and in the regulation of the food allergic IgE response. OBJECTIVE The objective was to assess if nTregs can transfer allergen-specific oral tolerance to naïve, non-TCR transgenic mice and regulate peanut extract (PE)-specific hypersensitivity responses. Additionally, the role of the regulatory cytokines IL-10 and TGF-β in the modulation of peanut-allergic sensitization was studied. METHODS CD25-enriched T cells from PE-tolerant mice were adoptively transferred to recipient mice, which were subsequently sensitized to PE. Depletion of CD25(+) cells and neutralization of IL-10 and TGF-β were compared in a CH3/HeOuJ mouse model of peanut-allergic sensitization. RESULTS Transfer of CD25(+) Tregs-enriched cell populations did not affect the PE-specific cytokine production or PE-specific antibody levels compared with control mice but interestingly resulted in a decrease of mast cell responsiveness. On the contrary, transfer of CD25(+) Tregs-depleted cells caused an increase in non-specific cytokine production, in the absence of changes in PE-specific responses. TGF-β neutralization resulted even in a larger increase in spontaneous release of all cytokines measured (IL-4, IL-5, IL-10, IL-13, and IFN-γ), but surprisingly also to a higher PE-specific Th2-associated (IL-4, IL-5, IL-13) cytokine production compared with depletion of CD25 cells or neutralization of IL-10. Similarly, depletion of CD25 cells and TGF-β neutralization but not of IL-10 neutralization lead to an increase in PE-specific antibody levels and elevated mast cell degranulation following a PE challenge. CONCLUSIONS AND CLINICAL RELEVANCE We conclude that CD4(+) CD25(+) Tregs from non-transgenic-tolerant mice cannot transfer specific oral tolerance of exogenous antigens to naïve mice and are more involved in general immune suppressive mechanisms. However, we found evidence that TGF-β secreting Tregs (Th3) may play an important role.
Collapse
Affiliation(s)
- M Marcondes Rezende
- Institute for Risk Assessment Sciences, Immunotoxicology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Miron N, Miron MM. Staphylococcal enterotoxin A: a candidate for the amplification of physiological immunoregulatory responses in the gut. Microbiol Immunol 2011; 54:769-77. [PMID: 21091986 DOI: 10.1111/j.1348-0421.2010.00280.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcal enterotoxin A (SEA) is one of the bacterial products tested for modulation of unwanted immune responses. Of all the staphylococcal enterotoxins, SEA is the most potent stimulator of T cells. When administered orally, SEA acts as a superantigen (SA), producing unspecific stimulation of intra-epithelial lymphocytes (IELs) in the intestinal mucosa. This stimulation results in amplification of the normal local immunologic responses, which are mainly regulatory. This amplification is based on increased local production of IFN-γ by IELs, which acts on the nearby enterocytes. As a result, the enterocytes produce large amounts of tolerosomes, cellular corpuscles which detach themselves from the basal poles of the enterocytes and contain antigenic peptides that are conditioned to be interpreted as tolerogenic by the gut immune system. Tolerosomes are physiologically produced as a response to dietary peptides; it is already known that enterocytes posses the molecular mechanisms for processing peptides in a similar manner to lymphocytes. The fate of tolerosomes is not precisely known, but it seems that they merge with intestinal dendritic cells, conveying to them the information that orally administered peptides must be interpreted as tolerogens. SEA can stimulate this mechanism, thus favoring the development of tolerance to peptides/proteins administered subsequently via the oral route. This characteristic of SEA might be useful in therapy for regulating immune responses. The present paper reviews the current status of research regarding the impact of SEA on the enteric immune system and its potential use in the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Nicolae Miron
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj, Romania.
| | | |
Collapse
|
47
|
Abstract
Dendritic cells (DCs) play a pivotal role in regulating the balance between immunity and tolerance of the immune system. Recent advancements in DC biology and techniques for manipulating the function of these cells have shown their immense therapeutic potential for treating a variety of immune disorders. Theoretically, antigen-specific tolerogenic DCs can be generated in vitro and delivered to patients to correct the dysfunctional immune responses that attack their own tissues or over-react to innocuous foreign antigens. However, DCs are a heterogeneous population of cells with differences in cell surface makers, differentiation pathways and functions. Studies are needed to examine which subset of DCs can be used for what type of applications. Furthermore, most of the information on tolerogenic DCs has been obtained from animal models and translational studies are needed to examine how a DC therapeutic strategy can be implemented clinically to modulate immunity.
Collapse
Affiliation(s)
- Jim Hu
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada.
| | | |
Collapse
|
48
|
Abstract
While the normal inflammatory cascade is self-limiting and crucial for host protection against invading pathogens and in the repair of damaged tissue, a wealth of evidence suggests that chronic inflammation is the engine driving carcinogenesis. Over a period of almost 150 years the link between inflammation and cancer development has been well established. In this chapter we discuss the fundamental concepts and mechanisms behind normal inflammation as it pertains to wound healing. We further discuss the association of inflammation and its role in carcinogenesis, highlighting the different stages of cancer development, namely tumour initiation, promotion and progression. With both the innate and adaptive arms of the immune system being central to the inflammatory process, we examine the role of a number of immune effectors in contributing to the carcinogenic process. In addition, we highlight the influences of host genetics in altering cancer risk.
Collapse
Affiliation(s)
- Stephen G Maher
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland.
| | | |
Collapse
|
49
|
Duggan S, Prichard D, Kirca M, Kelleher D. Inherited Syndromes Predisposing to Inflammation and GI Cancer. Recent Results Cancer Res 2011; 185:35-50. [PMID: 21822818 DOI: 10.1007/978-3-642-03503-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancers arising within the gastrointestinal (GI) tract are commonly associated with an immune component at their inception and later in their maintenance. While many of the immune factors and immune cell types surrounding these lesions have been highlighted, the underlying pre-dispositions in immunesupported carcinogenesis are not well characterised. Inherited Mendelian GI disorders such as polyposis syndromes, while classically due to germline mutations in non-immune genes, commonly demonstrate alterations in key immune and inflammatory genes. In some cases immune based therapies have been shown to provide at least some benefit in animal models of these syndromes. The advent of genome wide association studies has begun to powerfully examine the genetic nature of complex non-Mendelian GI diseases highlighting polymorphisms within immune related genes and their potential to provide the niche in which GI cancers may originate. Here in the role in which Mendelian and non-Mendelian genetics of immune related factors supporting GI malignancy will be presented and discussed.
Collapse
Affiliation(s)
- Shane Duggan
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
50
|
Robbin MG, Wagner B, Noronha LE, Antczak DF, de Mestre AM. Subpopulations of equine blood lymphocytes expressing regulatory T cell markers. Vet Immunol Immunopathol 2010; 140:90-101. [PMID: 21208665 DOI: 10.1016/j.vetimm.2010.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 02/04/2023]
Abstract
Several distinct T lymphocyte subpopulations with immunoregulatory activity have been described in a number of mammalian species. This study performed a phenotypic analysis of cells expressing regulatory T cell (Treg) markers in the peripheral blood of a cohort of 18 horses aged 6 months to 23 years, using antibodies to both intracellular and cell surface markers, including Forkhead box P3 (FOXP3), CD4, CD8, CD25, interferon gamma (IFNγ) and interleukin 10 (IL-10). In peripheral blood, a mean of 2.2 ± 0.2% CD4+ and 0.5 ± 0.1% CD8+ lymphocytes expressed FOXP3. The mean percentage of CD4+FOXP3+ cells was found to be significantly decreased in horses 15 years and older (1.5%) as compared to horses 6 years and younger (2.7%), but did not differ between females and males and ponies and horses. Activation of peripheral blood mononuclear cells by pokeweed mitogen resulted in induction of CD25 and FOXP3 expression by CD4+ cells, with peak expression noted after 48 and 72 h in culture respectively. Activated CD4+FOXP3+ cells expressed IFNγ (35% of FOXP3+ cells) or IL-10 (9% FOXP3+ cells). Cell sorting was performed to determine FOXP3 expression by CD4(+)CD25(-), CD4(+)CD25(dim) and CD4(+)CD25(high) subpopulations. Immediately following sorting, the percentage of CD4+FOXP3+ cells was higher within the CD4(+)CD25(high) population (22.7-26.3%) compared with the CD4(+)CD25(dim) (17% cells) but was similar within the CD4(+)CD25(dim) and CD4(+)CD25(high) cells after resting in IL-2 (9-14%). Fewer than 2% of cells in the CD4(+)CD25(-) population expressed FOXP3. These results demonstrate heterogeneity in equine lymphocyte subsets that express molecules associated with regulatory T cells. CD4+FOXP3+ cells are likely to represent natural Tregs, with CD4+FOXP3+IL-10+ cells representing either activated natural Tregs or inducible Tregs, and CD4+FOXP3+IFNγ+ cells likely to represent activated Th1 cells.
Collapse
Affiliation(s)
- Melissa G Robbin
- The Royal Veterinary College, Department Veterinary Basic Sciences, Royal College Street, London, NW1 0TU, United Kingdom
| | | | | | | | | |
Collapse
|