1
|
Chen HK, Hsieh YW, Hsu HY, Liu TY, Zhang YT, Lin CD, Tsai FJ. Increased risk of hearing loss associated with MT-RNR1 gene mutations: a real-world investigation among Han Taiwanese Population. BMC Med Genomics 2024; 17:155. [PMID: 38840095 PMCID: PMC11155076 DOI: 10.1186/s12920-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Previous studies have implicated inherited mutations in mitochondrial DNA (mtDNA) in sensorineural hearing loss (SNHL). However, the definitive association between mitochondrial 12S rRNA (MT-RNR1) variants and hearing loss in the population has not been well established, particularly in Asia. The objective of this retrospective cohort study was to assess the association between MT-RNR1 variants and the risk of SNHL in patients in Taiwan. METHODS The cohort included 306,068 participants from Taiwan between January 2003 and December 2020. Participants were classified based on genetic variants, particularly mitochondrial mutations (rs267606618, rs267606619, rs267606617). MT-RNR1 variant cases were matched 1:10 with non-mutant patients by age, gender, and visit year, excluding those with pre-existing hearing loss. The primary endpoint was SNHL, identified using specific ICD-TM codes with a 90% positive predictive value. Medication exposure history was determined via self-report or electronic medical records in the hospital. Cox proportional hazard regression models were used to assess the association between MT-RNR1 variants and hearing loss, adjusting for various covariates. Kaplan-Meier survival curves and log-rank tests compared hearing loss incidence between groups. RESULTS The mean age of the mtDNA variants group is 32.4 years, with a standard deviation of 19.2 years. The incidence density of hearing loss for the mutation group was 36.42 per 10,000 person-years (95% Confidence Interval [CI], 27.21-47.73), which was higher than the 23.77per 10,000 person-years (95% CI, 21.32-26.42) in the wild-type group (p = 0.0036). Additionally, diabetes mellitus was associated with an increased risk of developing SNHL in individuals with MT-RNR1 variants (adjusted hazard ratio = 1.76 [95% CI, 1.00-3.09], p < 0.05). CONCLUSION This study highlights the increased risk of hearing loss in patients carrying MT-RNR1 variants, particularly those with diabetes mellitus. Future research that integrates genetic and clinical data is crucial for developing more precise interventions to monitor and treat hearing loss in this vulnerable population.
Collapse
Affiliation(s)
- Hou-Kuang Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yow-Wen Hsieh
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hsing-Yu Hsu
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yuan Liu
- Million-person precision medicine initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ting Zhang
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Der Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Division of Pediatric Genetics, Children's Hospital of China Medical University, Taichung, Taiwan.
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
2
|
Zhou S, Chen M, Pei J, Zhang C, Ren X, Li J, Sa Y, Zhu B, Li Y. Distribution of mitochondrial MT-RNR1, MT-TL1, MT-TS1, MT-TK and MT-TE genes variants associated with hearing loss in Southwestern China. Int J Pediatr Otorhinolaryngol 2024; 181:111979. [PMID: 38739980 DOI: 10.1016/j.ijporl.2024.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Maternally inherited hearing loss has been associated with mitochondrial genes, including MT-RNR1, MT-TL1, MT-TS1, MT-TK and MT-TE. Among these genes, MT-RNR1 is known to be a hotspot for pathogenic variants related to aminoglycoside ototoxicity and nonsyndromic hearing loss. However, the frequency and spectrum of variants in these genes, particularly in multi-ethnic hearing loss patients from Southwestern China, are still not fully understood. METHODS In this study, we enrolled 460 hearing loss patients from various ethnic backgrounds (Han, Yi, Dai, Hani, etc.) in Southwestern China. Next-generation sequencing was used to analyze the mitochondrial MT-RNR1, MT-TL1, MT-TS1, MT-TK and MT-TE genes. Subsequently, bioinformatical methods were employed to evaluate the identified variants. RESULTS Among the patients with hearing loss, we identified 70 variants in MT-RNR1 (78.6 %, 55/70), MT-TL1 (4.3 %, 3/70), MT-TS1 (4.3 %, 3/70), MT-TK (7.1 %, 5/70) and MT-TE (5.7 %, 4/70) genes. We found that 15 variants were associated with hearing loss, including m.1555 A > G and m.1095 T > C. Additionally, we discovered three reported mitochondrial variants (m.676 G > A, m.7465 insC, and m.7474 A > G) newly correlated with hearing loss. Notably, certain pathogenic variants, such as m.1555 A > G, displayed non-consistent distributions among the multi-ethnic patients with hearing loss. Furthermore, the number of variants associated with hearing loss was higher in the Sinitic group (n = 181) and Tibeto-Burman group (n = 215) compared to the Kra-Dai group (n = 38) and Hmong-Mien group (n = 26). CONCLUSIONS This present study revealed the distribution of mitochondrial variants linked to hearing loss across various ethnic groups in Southwestern China. These data suggest a potential correlation between the distribution of mitochondrial variants associated with hearing loss and ethnic genetic backgrounds.
Collapse
Affiliation(s)
- Shiyu Zhou
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Menglan Chen
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiahong Pei
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Zhang
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaofei Ren
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jingyu Li
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaliang Sa
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Baosheng Zhu
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China; National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China.
| | - Yunlong Li
- Department of Medical Genetics, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China; National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Liu Z, Zhang H, Hong G, Bi X, Hu J, Zhang T, An Y, Guo N, Dong F, Xiao Y, Li W, Zhao X, Chu B, Guo S, Zhang X, Chai R, Fu X. Inhibition of Gpx4-mediated ferroptosis alleviates cisplatin-induced hearing loss in C57BL/6 mice. Mol Ther 2024; 32:1387-1406. [PMID: 38414247 PMCID: PMC11081921 DOI: 10.1016/j.ymthe.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.
Collapse
MESH Headings
- Animals
- Cisplatin/adverse effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Mice
- Hearing Loss/chemically induced
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Mice, Knockout
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Mice, Inbred C57BL
- Disease Models, Animal
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Reactive Oxygen Species/metabolism
- Lipid Peroxidation/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Ototoxicity/etiology
- Ototoxicity/metabolism
- Antineoplastic Agents/adverse effects
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Ziyi Liu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hanbing Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong 250012, China
| | - Guodong Hong
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jun Hu
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tiancheng Zhang
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Na Guo
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengyue Dong
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250102, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Zhang
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Renjie Chai
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Southeast University Shenzhen Research Institute, Shenzhen, Guangdong 518063, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
4
|
Sahara T, Kashio A, Kamogashira T, Ogata E, Akamatsu Y, Yamasoba T. Cochlear implantation for progressive hearing loss caused by an A8296G mutation in mitochondrial DNA. Auris Nasus Larynx 2024; 51:82-85. [PMID: 37573175 DOI: 10.1016/j.anl.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
Mitochondrial DNA mutations such as A3243G or A1555G are widely reported to cause hearing loss, but few reports exist on the A8296G mutation, which can also cause hearing loss. This report presents the case of a patient with the A8296G mutation and severe bilateral sensorineural hearing loss (SNHL) that progressed over two decades. The patient had no history of diabetes, but did have a family history of SNHL in her father and maternal grandmother. She was first diagnosed with SNHL at 45 years of age, and an A8296G mutation was found. The hearing threshold in the low-frequency range of the right ear was preserved at diagnosis, but eventually declined resulting in severe bilateral hearing loss by the age of 66 years, and cochlear implantation (CI) was performed in the left ear. The hearing threshold three months after CI was 25-45 dB HL, and the phoneme speech discrimination score in the left ear improved from 20% without CI to 74% with CI. SNHL patients with the A8295G mutation are good candidates for treatment with CI.
Collapse
Affiliation(s)
- Toshihito Sahara
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Akinori Kashio
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Erika Ogata
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yusuke Akamatsu
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
5
|
Guimaraes TACD, Arram E, Shakarchi AF, Georgiou M, Michaelides M. Inherited causes of combined vision and hearing loss: clinical features and molecular genetics. Br J Ophthalmol 2023; 107:1403-1414. [PMID: 36162969 DOI: 10.1136/bjo-2022-321790] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Combined vision and hearing loss, also known as dual sensory impairment, can occur in several genetic conditions, including ciliopathies such as Usher and Bardet-Biedl syndrome, mitochondrial DNA disorders and systemic diseases, such as CHARGE, Stickler, Waardenburg, Alport and Alstrom syndrome. The retinal phenotype may point to the diagnosis of such disorders. Herein, we aim to provide a comprehensive review of the molecular genetics and clinical features of the most common non-chromosomal inherited disorders to cause dual sensory impairment.
Collapse
Affiliation(s)
| | - Elizabeth Arram
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Ahmed F Shakarchi
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michalis Georgiou
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
6
|
Wu YT, Huang SC, Shiao YM, Syu WC, Wei YH, Hsu YC. Identification of new variants in MTRNR1 and MTRNR2 genes using whole mitochondrial genome sequencing in a Taiwanese family with MERRF (myoclonic epilepsy with ragged-red fibers) syndrome. Hear Res 2023; 438:108876. [PMID: 37683310 DOI: 10.1016/j.heares.2023.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Mitochondrial encephalomyopathy is a multi-system disorder mostly caused by inborn errors of the oxidative phosphorylation (OXPHOS) system and usually manifested as complex neurological disorder and muscle weakness. Myoclonic epilepsy with ragged-red fibers (MERRF) syndrome is one of the major subtypes of mitochondrial disease associated with the m.8344A>G mutation in mitochondrial tRNALys gene. In addition to the symptoms in central nervous and muscle systems, a portion of the patients may develop hearing loss, which has been linked to the genetic mutations of mitochondrial DNA (mtDNA) especially in the mitochondrial ribosome RNA (rRNA) gene. Despite a great number of studies focusing on the consequences of mtDNA mutations, the mechanism of pathogenesis of these overt diseases has remained unclear, and there is no specific and effective treatment for MERRF syndromes. In this study, we developed a high-quality mtDNA sequencing method by next generation sequencing technology to search for the additional pathogenic variations of mtDNA from skin fibroblasts of four members in a Taiwanese family with MERRF syndrome. Through uncovering the signatures of all mtDNA variants in the MERRF family, we identified novel mtDNA variants in the genes encoding mitochondrial 12S and 16S rRNAs. The finding from this study will give us further insight into the molecular mechanisms driving the phenotypic variability and timing of onset of the MERRF syndrome.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan
| | | | | | - Wei-Chi Syu
- Union Clinical Laboratory, Taipei 10665, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 25245, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
7
|
Michanski S, Henneck T, Mukhopadhyay M, Steyer AM, Gonzalez PA, Grewe K, Ilgen P, Gültas M, Fornasiero EF, Jakobs S, Möbius W, Vogl C, Pangršič T, Rizzoli SO, Wichmann C. Age-dependent structural reorganization of utricular ribbon synapses. Front Cell Dev Biol 2023; 11:1178992. [PMID: 37635868 PMCID: PMC10447907 DOI: 10.3389/fcell.2023.1178992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
In mammals, spatial orientation is synaptically-encoded by sensory hair cells of the vestibular labyrinth. Vestibular hair cells (VHCs) harbor synaptic ribbons at their presynaptic active zones (AZs), which play a critical role in molecular scaffolding and facilitate synaptic release and vesicular replenishment. With advancing age, the prevalence of vestibular deficits increases; yet, the underlying mechanisms are not well understood and the possible accompanying morphological changes in the VHC synapses have not yet been systematically examined. We investigated the effects of maturation and aging on the ultrastructure of the ribbon-type AZs in murine utricles using various electron microscopic techniques and combined them with confocal and super-resolution light microscopy as well as metabolic imaging up to 1 year of age. In older animals, we detected predominantly in type I VHCs the formation of floating ribbon clusters, mostly consisting of newly synthesized ribbon material. Our findings suggest that VHC ribbon-type AZs undergo dramatic structural alterations upon aging.
Collapse
Affiliation(s)
- Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Timo Henneck
- Biology Bachelor Program, University of Göttingen, Göttingen, Germany
| | - Mohona Mukhopadhyay
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Anna M. Steyer
- Electron Microscopy-City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Paola Agüi Gonzalez
- Department for Neuro-and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Katharina Grewe
- Department for Neuro-and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Peter Ilgen
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Soest, Germany
| | - Eugenio F. Fornasiero
- Department for Neuro-and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Stefan Jakobs
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
| | - Wiebke Möbius
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
- Electron Microscopy-City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Vogl
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Tina Pangršič
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O. Rizzoli
- Department for Neuro-and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Li Q, Cui C, Liao R, Yin X, Wang D, Cheng Y, Huang B, Wang L, Yan M, Zhou J, Zhao J, Tang W, Wang Y, Wang X, Lv J, Li J, Li H, Shu Y. The pathogenesis of common Gjb2 mutations associated with human hereditary deafness in mice. Cell Mol Life Sci 2023; 80:148. [PMID: 37178259 PMCID: PMC10182940 DOI: 10.1007/s00018-023-04794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Mutations in GJB2 (Gap junction protein beta 2) are the most common genetic cause of non-syndromic hereditary deafness in humans, especially the 35delG and 235delC mutations. Owing to the homozygous lethality of Gjb2 mutations in mice, there are currently no perfect mouse models carrying Gjb2 mutations derived from patients for mimicking human hereditary deafness and for unveiling the pathogenesis of the disease. Here, we successfully constructed heterozygous Gjb2+/35delG and Gjb2+/235delC mutant mice through advanced androgenic haploid embryonic stem cell (AG-haESC)-mediated semi-cloning technology, and these mice showed normal hearing at postnatal day (P) 28. A homozygous mutant mouse model, Gjb235delG/35delG, was then generated using enhanced tetraploid embryo complementation, demonstrating that GJB2 plays an indispensable role in mouse placenta development. These mice exhibited profound hearing loss similar to human patients at P14, i.e., soon after the onset of hearing. Mechanistic analyses showed that Gjb2 35delG disrupts the function and formation of intercellular gap junction channels of the cochlea rather than affecting the survival and function of hair cells. Collectively, our study provides ideal mouse models for understanding the pathogenic mechanism of DFNB1A-related hereditary deafness and opens up a new avenue for investigating the treatment of this disease.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Chong Cui
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Rongyu Liao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yanbo Cheng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Bowei Huang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Liqin Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Meng Yan
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jinan Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Jingjing Zhao
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Wei Tang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingyi Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | | | - Jun Lv
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
McQuate A, Knecht S, Raible DW. Activity regulates a cell type-specific mitochondrial phenotype in zebrafish lateral line hair cells. eLife 2023; 12:e80468. [PMID: 36912880 PMCID: PMC10129330 DOI: 10.7554/elife.80468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Hair cells of the inner ear are particularly sensitive to changes in mitochondria, the subcellular organelles necessary for energy production in all eukaryotic cells. There are over 30 mitochondrial deafness genes, and mitochondria are implicated in hair cell death following noise exposure, aminoglycoside antibiotic exposure, as well as in age-related hearing loss. However, little is known about the basic aspects of hair cell mitochondrial biology. Using hair cells from the zebrafish lateral line as a model and serial block-face scanning electron microscopy, we have quantifiably characterized a unique hair cell mitochondrial phenotype that includes (1) a high mitochondrial volume and (2) specific mitochondrial architecture: multiple small mitochondria apically, and a reticular mitochondrial network basally. This phenotype develops gradually over the lifetime of the hair cell. Disrupting this mitochondrial phenotype with a mutation in opa1 impacts mitochondrial health and function. While hair cell activity is not required for the high mitochondrial volume, it shapes the mitochondrial architecture, with mechanotransduction necessary for all patterning, and synaptic transmission necessary for the development of mitochondrial networks. These results demonstrate the high degree to which hair cells regulate their mitochondria for optimal physiology and provide new insights into mitochondrial deafness.
Collapse
Affiliation(s)
- Andrea McQuate
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology-HNS, University of WashingtonSeattleUnited States
| | - Sharmon Knecht
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - David W Raible
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology-HNS, University of WashingtonSeattleUnited States
| |
Collapse
|
11
|
Chou CW, Hsu YC. Current development of patient-specific induced pluripotent stem cells harbouring mitochondrial gene mutations and their applications in the treatment of sensorineural hearing loss. Hear Res 2023; 429:108689. [PMID: 36649664 DOI: 10.1016/j.heares.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Of all the human body's sensory systems, the auditory system is perhaps its most intricate. Hearing loss can result from even modest damage or cell death in the inner ear, and is the most common form of sensory loss. Human hearing is made possible by the sensory epithelium, the lateral wall, and auditory nerves. The most prominent functional cells in the sensory epithelium are outer hair cells (OHCs), inner hair cells (IHCs), and supporting cells. Different sound frequencies are processed by OHCs and IHCs in different cochlear regions, with those in the apex responsible for low frequencies and those in the basal region responsible for high frequencies. Hair cells can be damaged or destroyed by loud noise, aging process, genetic mutations, ototoxicity, infection, and illness. As such, they are a primary target for treating sensorineural hearing loss. Other areas known to affect hearing include spiral ganglion neurons (SGNs) in the auditory nerve. Age-related degradation of HCs and SGNs can also cause hearing loss. The aim of this review is to introduce the roles of mitochondria in human auditory system and the inner ear's main cell types and cellular functions, before going on to detail the likely health benefits of iPSC technology. We posit that patient-specific iPSCs with mitochondrial gene mutations will be an important aspect of regenerative medicine and will lead to significant progress in the treatment of SNHL.
Collapse
Affiliation(s)
- Chao-Wen Chou
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
12
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
13
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
14
|
Faria R, Albuquerque T, Neves AR, Sousa Â, Costa DRB. Nanotechnology to Correct Mitochondrial Disorders in Cancer Diseases. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Lysakowski A, Govindaraju AC, Raphael RM. Structural and functional diversity of mitochondria in vestibular/cochlear hair cells and vestibular calyx afferents. Hear Res 2022; 426:108612. [PMID: 36223702 DOI: 10.1016/j.heares.2022.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Mitochondria supply energy in the form of ATP to drive a plethora of cellular processes. In heart and liver cells, mitochondria occupy over 20% of the cellular volume and the major need for ATP is easily identifiable - i.e., to drive cross-bridge recycling in cardiac cells or biosynthetic machinery in liver cells. In vestibular and cochlear hair cells the overall cellular mitochondrial volume is much less, and mitochondria structure varies dramatically in different regions of the cell. The regional demands for ATP and cellular forces that govern mitochondrial structure and localization are not well understood. Below we review our current understanding of the heterogeneity of form and function in hair cell mitochondria. A particular focus of this review will be on regional specialization in vestibular hair cells, where large mitochondria are found beneath the cuticular plate in close association with the striated organelle. Recent findings on the role of mitochondria in hair cell death and aging are covered along with potential therapeutic approaches. Potential avenues for future research are discussed, including the need for integrated computational modeling of mitochondrial function in hair cells and the vestibular afferent calyx.
Collapse
Affiliation(s)
- Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, Chicago, IL 60605, USA.
| | | | | |
Collapse
|
16
|
Bin-Jumah MN, Gilani SJ, Alabbasi AF, Al-Abbasi FA, AlGhamdi SA, Alshehri OY, Alghamdi AM, Sayyed N, Kazmi I. Protective Effect of Fustin against Huntington's Disease in 3-Nitropropionic Treated Rats via Downregulation of Oxidative Stress and Alteration in Neurotransmitters and Brain-Derived Neurotrophic Factor Activity. Biomedicines 2022; 10:3021. [PMID: 36551777 PMCID: PMC9775313 DOI: 10.3390/biomedicines10123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Researchers have revealed that Rhus verniciflua heartwood, which contains fustin as an important component, possesses antioxidant-mediated, anti-mutagenic, and anti-rheumatoid arthritis characteristics. Additionally, out of the numerous plant-derived secondary metabolites, there are various research papers concentrating on flavonoids for potential advantages in neurological illnesses. The current study aims to assess the neuroprotective potential of fustin in rodents over 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like consequences. The efficacy of fustin 50 and 100 mg/kg was studied with multiple-dose administrations of 3-NPA, which experimentally induced HD-like symptoms in rats for 22 days. At the end of the study, several behavioral tests were performed including a beam walk, rotarod, and grip strength tests. Similarly, some biochemical parameters were assessed to support oxidative stress (reduced glutathione-GSH, superoxide dismutase-SOD, catalase-CAT, and malondialdehyde-MDA), alteration in neurotransmitters (gamma-aminobutyric acid-GABA-and glutamate), alteration in brain-derived neurotrophic factor activity, and nitrite levels. Additionally, pro-inflammatory parameters were carried out to evaluate the neuroinflammatory responses associated with streptozotocin such as TNF-α, IL-1β, and COX in the perfused brain. The fustin-treated group exhibited a significant restoration of memory function via modulation in behavioral activities. Moreover, 3-NPA altered biochemical, neurotransmitters, brain protein levels, and neuroinflammatory measures, which fustin efficiently restored. This is the first report demonstrating the efficacy of novel phytoconstituent fustin as a potential future candidate for the treatment of HD via offering neuroprotection by subsiding the oxidative and enzymatic activity in the 3-NPA experimental animal paradigm.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ohoud Y. Alshehri
- Department of Biochemistry, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, Uttar Pradesh, India
| | - Imran Kazmi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Özgedi K DD, Tokgöz Yılmaz S, Gürbüz BB, Si Vri HS, Sennaroğlu G. Does glutaric aciduria type 1 affect hearing function? Metab Brain Dis 2022; 37:2121-2132. [PMID: 35488943 DOI: 10.1007/s11011-022-00987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to evaluate audiological findings among patients with glutaric aciduria type 1 (GA-1). We used a large test battery for the audiological evaluation of 17 individuals with GA-1 (the study group) and 20 healthy individuals (the control group). Conventional audiometry (0.125-8 kHz), distortion product otoacoustic emissions (DPOAEs) (1, 1.5, 2, 3, 4, 6, and 8 kHz), contralateral suppression of otoacoustic emissions, and auditory brainstem response (ABR) ( 30, 50, 70 and 90 dB nHL) were measured for all participants (n = 37). Mild sensorineural hearing loss was found in 77.47% (n = 13) of the patients with GA-1, and normal hearing thresholds were seen in 23.53% (n = 4). There were three asymptomatic patients at the time of diagnosis [two developed mild mental motor retardation (MMR) and one developed severe MMR during the follow-up], one with a normal hearing threshold and two with mild hearing loss), and 14 symptomatic patients (three with normal hearing thresholds and 11 with mild hearing loss). Seven of the symptomatic patients diagnosed following an encephalopathic crisis required intensive care and showed significantly worse hearing thresholds than those without symptoms [20.86 ± 4.47 vs. 15.44 ± 3.96 decibel hearing level (dB HL), p = 0.039*], while five had mild-to-moderate hearing loss. Acute encephalopathic crisis had a negative effect on hearing function in the symptomatic patients. The emission and contralateral suppression amplitude values of the study group were significantly lower compared to the control group (p < 0.05). The I-V interpeak latency and absolute latencies of ABR waves I, III, and V of the study group were observed to be significantly prolonged and morphologically distorted compared to those of the control group (p < 0.05). Five patients had MMR, and three had moderate MMR; all eight had mild-to-moderate hearing loss. In addition, of the eight patients with mild MMR, four had mild hearing loss. In particular, the morphological findings of ABR waves were significantly worse in the patients with severe and moderate MMR (p < 0.05). There was a significant correlation between a macrocephaly history (12 patients) and hearing loss (p = 0.041*). Magnetic resonance imaging findings were evaluated in all the 17 patients with GA-1, and typical fronto-temporal atrophy and sylvian fissure enlargement were observed. Our findings support that GA-1 is associated with auditory impairment, primarily in symptomatic patients. Adequate audiological test battery evaluation is essential in this context, particularly for symptomatic patients with a history of encephalopathic crises.
Collapse
Affiliation(s)
- Dilek Demiral Özgedi K
- Health Sciences Faculty, Department of Speech Language Therapy, Lokman Hekim University, Söğütözü Mh. 2179 Cd. No: 6 Çankaya, 06510, Ankara, Turkey.
| | - Suna Tokgöz Yılmaz
- Health Sciences Faculty, Audiology Department, Ankara University, Ankara, Turkey
| | - Berrak Bilginer Gürbüz
- Faculty of Medicine, Department of Pediatrics, Metabolism Unit, Hacettepe University, Ankara, Turkey
| | - H Serap Si Vri
- Faculty of Medicine, Department of Pediatrics, Metabolism Unit, Hacettepe University, Ankara, Turkey
| | - Gonca Sennaroğlu
- Health Sciences Faculty, Audiology Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
19
|
van Kempen CMA, Beynon AJ, Smits JJ, Janssen MCH. A retrospective cohort study exploring the association between different mitochondrial diseases and hearing loss. Mol Genet Metab 2022; 135:333-341. [PMID: 35190254 DOI: 10.1016/j.ymgme.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Some pathogenic variants in mtDNA and nuclear DNA, affecting mitochondrial function, are associated with hearing loss. Behavioral and electrophysiological auditory performance are obtained from 62 patients, clinically diagnosed with different mitochondrial diseases (MD) using tone/speech audiometry and Auditory Brainstem Responses (ABR). Audiological variables (hearing loss type, pure tone average (PTA), interaural asymmetry, speech perception and brainstem neural conductivity) were analyzed and related to Newcastle Mitochondrial Disease Scale for Adults (NMDAS). In 35% of MDs, a mild to severe symmetrical sensorineural hearing loss (SNHL) was found. Patients with Maternally Inherited Diabetes and Deafness (MIDD) show significantly higher PTAs compared to other MDs. For all MDs, speech recognition scores were in accordance with their individual age- and gender-corrected tone audiometry, but ABR peak latencies were prolonged in patients with MIDD, Mitochondrial Encephalopathy Lactate acidosis and Stroke-like episodes (MELAS), Chronic Progressive External Ophthalmoplegia (CPEO) and Subacute necrotizing encephalopathy (Leigh). Correlations between NMDAS and audiological variables were low.
Collapse
Affiliation(s)
- Carlijn M A van Kempen
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands
| | - Andy J Beynon
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands.
| | - Jeroen J Smits
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Dept. Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboudumc Nijmegen, the Netherlands
| |
Collapse
|
20
|
Clinicopathological Features of Mitochondrial Nephropathy. Kidney Int Rep 2022; 7:580-590. [PMID: 35257070 PMCID: PMC8897298 DOI: 10.1016/j.ekir.2021.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The clinicopathologic characteristics of nephropathy associated with mitochondrial disease (MD) remain unknown. We retrospectively analyzed a cohort of patients with proteinuria, decreased glomerular filtration rate, or Fanconi syndrome who had a genetic mutation confirmed as the cause of MD, defined as mitochondrial nephropathy. Methods This nationwide survey included 757 nephrology sections throughout Japan, and consequently, data on 81 cases of mitochondrial nephropathy were collected. Results The most common renal manifestation observed during the disease course was proteinuria. Hearing loss was the most common comorbidity; a renal-limited phenotype was observed only in mitochondrial DNA (mtDNA) point mutation and COQ8B mutation cases. We found a median time delay of 6.0 years from onset of renal manifestations to diagnosis. Focal segmental glomerular sclerosis (FSGS) was the most common pathologic diagnosis. We then focused on 63 cases with the m.3243A>G mutation. The rate of cases with diabetes was significantly higher among adult-onset cases than among childhood-onset cases. Pathologic diagnoses were more variable in adult-onset cases, including diabetic nephropathy, nephrosclerosis, tubulointerstitial nephropathy, and minor glomerular abnormalities. During the median observation period of 11.0 years from the first onset of renal manifestations in patients with m.3243A>G, renal replacement therapy (RRT) was initiated in 50.8% of patients. Death occurred in 25.4% of the patients during the median observation period of 12.0 years. The median estimated glomerular filtration rate (eGFR) decline was 5.4 ml/min per 1.73 m2/yr in the cases, especially 8.3 ml/min per 1.73 m2/yr in FSGS cases, with m.3243A>G. Conclusion Here, we described the clinicopathologic features and prognosis of mitochondrial nephropathy using large-scale data.
Collapse
|
21
|
Heher P, Ganassi M, Weidinger A, Engquist EN, Pruller J, Nguyen TH, Tassin A, Declèves AE, Mamchaoui K, Grillari J, Kozlov AV, Zammit PS. Interplay between mitochondrial reactive oxygen species, oxidative stress and hypoxic adaptation in facioscapulohumeral muscular dystrophy: Metabolic stress as potential therapeutic target. Redox Biol 2022; 51:102251. [PMID: 35248827 PMCID: PMC8899416 DOI: 10.1016/j.redox.2022.102251] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by descending skeletal muscle weakness and wasting. FSHD is caused by mis-expression of the transcription factor DUX4, which is linked to oxidative stress, a condition especially detrimental to skeletal muscle with its high metabolic activity and energy demands. Oxidative damage characterises FSHD and recent work suggests metabolic dysfunction and perturbed hypoxia signalling as novel pathomechanisms. However, redox biology of FSHD remains poorly understood, and integrating the complex dynamics of DUX4-induced metabolic changes is lacking. Here we pinpoint the kinetic involvement of altered mitochondrial ROS metabolism and impaired mitochondrial function in aetiology of oxidative stress in FSHD. Transcriptomic analysis in FSHD muscle biopsies reveals strong enrichment for pathways involved in mitochondrial complex I assembly, nitrogen metabolism, oxidative stress response and hypoxia signalling. We found elevated mitochondrial ROS (mitoROS) levels correlate with increases in steady-state mitochondrial membrane potential in FSHD myogenic cells. DUX4 triggers mitochondrial membrane polarisation prior to oxidative stress generation and apoptosis through mitoROS, and affects mitochondrial health through lipid peroxidation. We identify complex I as the primary target for DUX4-induced mitochondrial dysfunction, with strong correlation between complex I-linked respiration and cellular oxygenation/hypoxia signalling activity in environmental hypoxia. Thus, FSHD myogenesis is uniquely susceptible to hypoxia-induced oxidative stress as a consequence of metabolic mis-adaptation. Importantly, mitochondria-targeted antioxidants rescue FSHD pathology more effectively than conventional antioxidants, highlighting the central involvement of disturbed mitochondrial ROS metabolism. This work provides a pathomechanistic model by which DUX4-induced changes in oxidative metabolism impair muscle function in FSHD, amplified when metabolic adaptation to varying O2 tension is required. Transcriptomics data from FSHD muscle indicates enrichment for disturbed mitochondrial pathways. Disturbed mitochondrial ROS metabolism correlates with mitochondrial membrane polarisation and myotube hypotrophy. DUX4-induced changes in mitochondrial function precede mitoROS generation and affect hypoxia signalling via complex I. FSHD is sensitive to environmental hypoxia, which increases ROS levels in FSHD myotubes. Hypotrophy in hypoxic FSHD myotubes is efficiently rescued with mitochondria-targeted antioxidants.
Collapse
|
22
|
Rewiring cell signalling pathways in pathogenic mtDNA mutations. Trends Cell Biol 2021; 32:391-405. [PMID: 34836781 DOI: 10.1016/j.tcb.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
Collapse
|
23
|
Lu Y, Zhang M, Wei Q, Chen Z, Xing G, Yao J, Cao X. Disruption of Gprasp2 down-regulates Hedgehog signaling and leads to apoptosis in auditory cells. Biochem Biophys Res Commun 2021; 574:1-7. [PMID: 34418635 DOI: 10.1016/j.bbrc.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
GPRASP2 is implicated in nervous system diseases, tumors and immune inflammation. In our previous study, G protein-coupled receptor associated sorting protein 2 (GPRASP2) was identified as a novel causal gene for X-linked recessive syndromic hearing loss (SHL). However, the role of GPRASP2 in auditory function has not been elucidated. The Gprasp2-knockout (KO) mouse HEI-OC1 auditory cells were constructed using CRISPR/Cas9-mediated gene editing. RNA-sequencing (RNA-seq) was used to investigate the differentially expressed genes (DEGs) and DEGs-enriched signaling pathways, which was verified by Western blot. Flow cytometry assay was used to examine cell apoptosis. The cytological pathology was evaluated by laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). Mitochondrial damage was observed in Gprasp2-KO HEI-OC1 cells. RNA-seq analysis suggested that Gprasp2-KO was implicated in the apoptosis process, which could be mediated by Hedgehog (Hh) signaling pathway. The key molecules in Hh signaling pathway (Smo, Gli1, Gli2) were detected to be down-regulated in Gprasp2-KO HEI-OC1 cells. The differential expression of apoptosis molecules (Bcl2, Bax, Caspase-3/cleaved-Caspase-3) indicated that Gprasp2-KO induced apoptosis in HEI-OC1 cells. The treatment of smoothened agonist (Purmorphamine, PUR) activated the Hh-Gli signaling pathway and reduced apoptosis in Gprasp2-KO HEI-OC1 cells. This study revealed that Gprasp2-disruption inhibited Hh signaling pathway and led to cell apoptosis in HEI-OC1 cells, which might provide the potential molecular mechanism of GPRASP2 mutation associated with human SHL.
Collapse
Affiliation(s)
- Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Min Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China.
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
24
|
Maletzko A, Key J, Wittig I, Gispert S, Koepf G, Canet-Pons J, Torres-Odio S, West AP, Auburger G. Increased presence of nuclear DNAJA3 and upregulation of cytosolic STAT1 and of nucleic acid sensors trigger innate immunity in the ClpP-null mouse. Neurogenetics 2021; 22:297-312. [PMID: 34345994 PMCID: PMC8426249 DOI: 10.1007/s10048-021-00657-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.
Collapse
Affiliation(s)
- Antonia Maletzko
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Jana Key
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany.,Faculty of Biosciences, Goethe University, Altenhöferallee 1, 60438, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University, 60590, Frankfurt, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Gabriele Koepf
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M, University Health Science Center, Bryan, TX, 77807, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M, University Health Science Center, Bryan, TX, 77807, USA
| | - Georg Auburger
- Experimental Neurology, Medical School, Goethe University, 60590, Frankfurt, Germany.
| |
Collapse
|
25
|
Fu X, Wan P, Li P, Wang J, Guo S, Zhang Y, An Y, Ye C, Liu Z, Gao J, Yang J, Fan J, Chai R. Mechanism and Prevention of Ototoxicity Induced by Aminoglycosides. Front Cell Neurosci 2021; 15:692762. [PMID: 34211374 PMCID: PMC8239227 DOI: 10.3389/fncel.2021.692762] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 02/02/2023] Open
Abstract
Aminoglycosides, a class of clinically important drugs, are widely used worldwide against gram-negative bacterial infections. However, there is growing evidence that aminoglycosides can cause hearing loss or balance problems. In this article, we mainly introduce the main mechanism of ototoxicity induced by aminoglycosides. Genetic analysis showed that the susceptibility of aminoglycosides was attributable to mutations in mtDNA, especially A1555G and C1494T mutations in 12S rRNA. In addition, the overexpression of NMDA receptors and the formation of free radicals also play an important role. Understanding the mechanism of ototoxicity induced by aminoglycosides is helpful to develop new therapeutic methods to protect hearing. In this article, the prevention methods of ototoxicity induced by aminoglycosides were introduced from the upstream and downstream aspects.
Collapse
Affiliation(s)
- Xiaolong Fu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Peifeng Wan
- School of Life Science, Shandong University, Qingdao, China
| | - Peipei Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinpeng Wang
- The Key Laboratory of Animal Resistant Biology of Shandong, College of Life Science, Shandong Normal University, Jinan, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, China
| | - Chao Ye
- School of Life Science, Shandong University, Qingdao, China
| | - Ziyi Liu
- School of Life Science, Shandong University, Qingdao, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, China
| | - Jianming Yang
- Second Hospital of Anhui Medical University, Hefei, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Mitochondrial calcium uniporter is essential for hearing and hair cell preservation in congenic FVB/NJ mice. Sci Rep 2021; 11:9660. [PMID: 33958614 PMCID: PMC8102556 DOI: 10.1038/s41598-021-88841-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ regulates a wide range of cell processes, including morphogenesis, metabolism, excitotoxicity, and survival. In cochlear hair cells, the activation of mechano-electrical transduction and voltage-gated Ca2+ channels result in a large influx of Ca2+. The intracellular rise in Ca2+ is partly balanced by the mitochondria which rapidly uptakes Ca2+ via a highly selective channel comprised of the main pore-forming subunit, the mitochondrial Ca2+ uniporter (MCU), and associated regulatory proteins. MCU thus contributes to Ca2+ buffering, ensuring cytosolic homeostasis, and is posited to have a critical role in hair cell function and hearing. To test this hypothesis, Ca2+ homeostasis in hair cells and cochlear function were investigated in FVB/NJ mice carrying the knockout allele of Mcu (Mcu+/− or Mcu−/−). The Mcu knockout allele, which originated in C57BL/6 strain cosegregated along with Cdh23ahl allele to the FVB/NJ strain, due to the close proximity of these genes. Neither Mcu+/− nor Mcu−/− genotypes affected cochlear development, morphology, or Ca2+ homeostasis of auditory hair cells in the first two postnatal weeks. However, Mcu−/− mice displayed high-frequency hearing impairment as early as 3 weeks postnatal, which then progressed to profound hearing loss at all frequencies in about 6 months. In Mcu+/− mice, significantly elevated ABR thresholds were observed at 6 months and 9 months of age only at 32 kHz frequency. In three-month-old Mcu−/− mice, up to 18% of the outer hair cells and occasionally some inner hair cells were missing in the mid-cochlear region. In conclusion, mitochondrial Ca2+ uniporter is not required for the development of cochlea in mice, but is essential for hearing and hair cell preservation in congenic FVB/NJ mice.
Collapse
|
27
|
Hu H, Zhou P, Wu J, Lei W, Wang Y, Yang Y, Liu H. Genetic testing involving 100 common mutations for antenatal diagnosis of hereditary hearing loss in Chongqing, China. Medicine (Baltimore) 2021; 100:e25647. [PMID: 33907123 PMCID: PMC8084083 DOI: 10.1097/md.0000000000025647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT To understand the possible carrier status of genes associated with hereditary hearing loss (HHL) in the general population among local residents and to give genetic counseling for pregnant women.A total of 3541 subjects were recruited. We used multiplex PCR technology combined with next-generation sequencing technology to detect 100 hotspot mutations in 18 common deafness-related genes. The homozygous mutation screening results were verified using Sanger sequencing.Of the 3541 participants, 37 alleles of 8 deafness genes were detected. A total of 145 (4.09%) were found to be GJB2 gene mutation carriers, and the hotspot mutation was c.235delC (1.54%). Twenty three (0.65%) were found to be GJB3 gene mutation carriers. A total of 132 (3.37%) were found to be SLC26A4 gene mutation carriers, and the hotspot mutation was c.919-2A > G (0.49%). Forty four (1.24%) were found to be mitochondrial DNA mutation carriers. Sanger sequencing results verified that 2 cases were homozygous for the c.235delC mutation and that 1 case was homozygous for the c.754T > C mutation.Genetic testing for pregnant women and their partners allows early identification of the molecular etiology of hearing loss (HL). On the one hand, it could give genetic counseling for pregnant women, such as early diagnosis of delayed deafness and drug-susceptible deafness. On the other hand, it could be used to assess hearing conditions during pregnancy, leading to prevention and timely intervention for newborns.
Collapse
Affiliation(s)
- Hua Hu
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Peng Zhou
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Jiayan Wu
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Wei Lei
- CapitalBio Genomics Co., Ltd., Dongguan, China
| | - Yang Wang
- CapitalBio Genomics Co., Ltd., Dongguan, China
| | - Ying Yang
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | | |
Collapse
|
28
|
Spath K, Babariya D, Konstantinidis M, Lowndes J, Child T, Grifo JA, Poulton J, Wells D. Clinical application of sequencing-based methods for parallel preimplantation genetic testing for mitochondrial DNA disease and aneuploidy. Fertil Steril 2021; 115:1521-1532. [PMID: 33745725 DOI: 10.1016/j.fertnstert.2021.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To validate and apply a strategy permitting parallel preimplantation genetic testing (PGT) for mitochondrial DNA (mtDNA) disease and aneuploidy (PGT-A). DESIGN Preclinical test validation and case reports. SETTING Fertility centers. Diagnostics laboratory. PATIENTS Four patients at risk of transmitting mtDNA disease caused by m.8993T>G (Patients A and B), m.10191T>G (Patient C), and m.3243A>G (Patient D). Patients A, B, and C had affected children. Patients A and D displayed somatic heteroplasmy for mtDNA mutations. INTERVENTIONS Embryo biopsy, genetic testing, and uterine transfer of embryos predicted to be euploid and mutation-free. MAIN OUTCOME MEASURES Test accuracy, treatment outcomes, and mutation segregation. RESULTS Accuracy of mtDNA mutation quantification was confirmed. The test was compatible with PGT-A, and half of the embryos tested were shown to be aneuploid (16/33). Mutations were detected in approximately 40% of embryo biopsies from Patients A and D (10/24) but in none from Patients B and C (n = 29). Patients B and C had healthy children following PGT and natural conception, respectively. The m.8993T>G mutation displayed skewed segregation, whereas m.3243A>G mutation levels were relatively low and potentially impacted embryo development. CONCLUSIONS Considering the high aneuploidy rate, strategies providing a combination of PGT for mtDNA disease and aneuploidy may be advantageous compared with approaches that consider only mtDNA. Heteroplasmic women had a higher incidence of affected embryos than those with undetectable somatic mutant mtDNA but were still able to produce mutation-free embryos. While not conclusive, the results are consistent with the existence of mutation-specific segregation mechanisms occurring during oogenesis and possibly embryogenesis.
Collapse
Affiliation(s)
- Katharina Spath
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom.
| | - Dhruti Babariya
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom
| | | | - Jo Lowndes
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Oxford Fertility, Fertility Partnership, Oxford, United Kingdom
| | | | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom; Juno Genetics, Oxford, United Kingdom
| |
Collapse
|
29
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Zia N, Nikookam Y, Muzaffar J, Kullar P, Monksfield P, Bance M. Cochlear Implantation Outcomes in Patients with Mitochondrial Hearing Loss: A Systematic Review and Narrative Synthesis. J Int Adv Otol 2021; 17:72-80. [PMID: 33605225 DOI: 10.5152/iao.2020.9226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study's aim was to establish outcomes following cochlear implantation (CI) in patients with mitochondrial disorders associated with deafness. Systematic review and narrative synthesis. Databases searched: Medline, EMBASE, Web of Science, COCHRANE, and ClinicalTrials.gov. No limits on language or year of publication. Review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Searches identified 437 abstracts and 37 full text articles, of which 11 studies met the inclusion criteria reporting outcomes in a total of 17 patients. All implants achieved good hearing outcomes, and follow-up ranged between 1 week and 12 months. The methodological quality of the included studies was sufficient, scoring grades 3 to 4 using the Oxford Centre for Evidence Based Medicine grading system. All studies were retrospective and consisted of case reviews and case reports. All cases of CI showed positive outcomes in speech perception and detection. There is some qualitative evidence to suggest improvement in quality of life and satisfaction postoperatively. There was very limited information available on secondary outcomes such as surgical complications, quality of life, and method of cochlear implant insertion. The small sample size of our patient cohort and quality of studies suggests a need for large-scale studies with more robust methodology to assess the effectiveness of CI. There is a need for studies that assess other factors to be considered when counseling patients about cochlear implants, such as adverse events, surgical complications, and long-term benefits.
Collapse
Affiliation(s)
- Nawal Zia
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Yasmin Nikookam
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK;Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Kullar
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Monksfield
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Abstract
Emotional stress has accompanied humans since the dawn of time and has played an essential role not only in positive selection and adaptation to an ever-changing environment, but also in the acceleration or even initiation of many illnesses. The three main somatic mechanisms induced by stress are the hypothalamus-pituitary-adrenal axis (HPA axis), the sympathetic-adreno-medullar (SAM) axis, and the immune axis. In this chapter, the stress-induced mechanisms that can affect cochlear physiology are presented and discussed in the context of tinnitus generation and auditory neurobiology. It is concluded that all of the presented mechanisms need to be further investigated. It is advised that clinical practitioners ask patients about stressful events or chronic stress preceding the tinnitus onset and measure the vital signs. Finally, taking into account that tinnitus itself acts as a stressor, the implementation of anti-stress therapies for tinnitus treatment is recommended.
Collapse
|
32
|
Therapeutical Management and Drug Safety in Mitochondrial Diseases-Update 2020. J Clin Med 2020; 10:jcm10010094. [PMID: 33383961 PMCID: PMC7794679 DOI: 10.3390/jcm10010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial diseases (MDs) are a group of genetic disorders that may manifest with vast clinical heterogeneity in childhood or adulthood. These diseases are characterized by dysfunctional mitochondria and oxidative phosphorylation deficiency. Patients are usually treated with supportive and symptomatic therapies due to the absence of a specific disease-modifying therapy. Management of patients with MDs is based on different therapeutical strategies, particularly the early treatment of organ-specific complications and the avoidance of catabolic stressors or toxic medication. In this review, we discuss the therapeutic management of MDs, supported by a revision of the literature, and provide an overview of the drugs that should be either avoided or carefully used both for the specific treatment of MDs and for the management of comorbidities these subjects may manifest. We finally discuss the latest therapies approved for the management of MDs and some ongoing clinical trials.
Collapse
|
33
|
Kawashima T, Harai K, Fujita N, Takahashi R. Ninjinyoeito Has a Protective Effect on the Auditory Nerve and Suppresses the Progression of Age-Related Hearing Loss in Mice. Front Nutr 2020; 7:528864. [PMID: 33163504 PMCID: PMC7583632 DOI: 10.3389/fnut.2020.528864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/01/2020] [Indexed: 12/02/2022] Open
Abstract
Currently, there are limited reports available regarding the treatment and prevention of progressive age-related hearing loss. This is because age-related hearing loss is not a critical disease with direct fatalities and has several well-established countermeasures such as hearing aids and cochlear implants. This study evaluated the efficacy of Ninjinyoeito (NYT) in the treatment of age-related hearing loss. C57BL/6J mice were divided into three groups: baseline group, untreated group, and NYT-treated group, with the latter receiving NYT treatment for 2 months. The mice were fed with NYT extract mixed with 4% mouse normal chow. Hearing loss was confirmed by a reduction in intact cell density of the auditory nerve from the age of 5–7 months. The suppression of hearing loss with aging and decrease in the intact cell density of the auditory nerve were significant in mice fed with NYT for 2 months. NYT has been reported to improve blood flow and enhance mitochondrial activity and may exert its protective effects on spiral neurons through these mechanisms. There was no decrease in the size of the stria vascularis from the age of 5–7 months in C57BL/6J mice. The present model failed to reveal the effect of NYT on atrophy of the stria vascularis of the cochlear duct. In conclusion, NYT appears to have a protective effect on the auditory nerve and suppress the progression of age-related hearing loss by reducing age-related auditory nerve degeneration.
Collapse
Affiliation(s)
| | - Kenji Harai
- Kampo Research Laboratories, Kracie Pharma, Ltd., Tokyo, Japan
| | - Nina Fujita
- Kampo Research Laboratories, Kracie Pharma, Ltd., Tokyo, Japan
| | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma, Ltd., Tokyo, Japan
| |
Collapse
|
34
|
Kim MJ, Han C, White K, Park HJ, Ding D, Boyd K, Rothenberger C, Bose U, Carmichael P, Linser PJ, Tanokura M, Salvi R, Someya S. Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan. Exp Gerontol 2020; 141:111078. [PMID: 32866605 DOI: 10.1016/j.exger.2020.111078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Thioredoxin 2 (TXN2) is a small redox protein found in nearly all organisms. As a mitochondrial member of the thioredoxin antioxidant defense system, TXN2 interacts with peroxiredoxin 3 (PRDX3) to remove hydrogen peroxide. Accordingly, TXN2 is thought to play an important role in maintaining the appropriate mitochondrial redox environment and protecting the mitochondrial components against oxidative stress. In the current study, we investigated the effects of Txn2 haplodeficiency on cochlear antioxidant defenses, auditory function, and cochlear cell loss across the lifespan in wild-type (WT) and Txn2 heterozygous knockout (Txn2+/-) mice backcrossed onto CBA/CaJ mice, a well-established model of age-related hearing loss. Txn2+/- mice displayed a 58% decrease in TXN2 protein levels in the mitochondria of the inner ears compared to WT mice. However, Txn2 haplodeficiency did not affect the thioredoxin or glutathione antioxidant defense in both the mitochondria and cytosol of the inner ears of young mice. There were no differences in the levels of mitochondrial biogenesis markers, mitochondrial DNA content, or oxidative DNA and protein damage markers in the inner ears between young WT and Txn2+/- mice. In a mouse inner ear cell line, knockdown of Txn2 did not affect cell viability under hydrogen peroxide treatment. Consistent with the tissue and cell line results, there were no differences in hair cell loss or spiral ganglion neuron density between WT and Txn2+/- mice at 3-5 or 23-25 months of age. Furthermore, Txn2 haplodeficiency did not affect auditory brainstem response threshold, wave I latency, or wave I amplitude at 3-5, 15-16, or 23-25 months of age. Therefore, Txn2 haplodeficiency does not affect cochlear antioxidant defenses, accelerate degeneration of cochlear cells, or affect auditory function in mice across the lifespan.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Upal Bose
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Peter Carmichael
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Paul J Linser
- Whitney Laboratory, University of Florida, St Augustine, FL, USA
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Guo L, Wang X, Ji H. Clinical Phenotype and Genetic Features of a Pair of Chinese Twins with Kearns-Sayre Syndrome. DNA Cell Biol 2020; 39:1449-1457. [PMID: 32609007 DOI: 10.1089/dna.2019.5010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kearns-Sayre Syndrome (KSS) is a severe mitochondrial disorder involving the central nervous system, eyes, ears, skeletal muscles, and heart. The mitochondrial DNA (mtDNA) rearrangements, especially the deletions, are present in almost all KSS patients and considered as the disease-causing factor. However, the size and position of mtDNA deletions are distinct in different individuals. In this study, we report the case of a pair of Chinese twins with KSS. The twin patients revealed typical KSS clinical symptoms, including heart block, bilateral sensorineural hearing loss, progressive external ophthalmoplegia, exercise intolerance, proximal limb weakness, and endocrine disorders. Using long-range polymerase chain reactions (long-range PCR) and next-generation sequencing (NGS), the genetic features of the twin patients were investigated. A large 6600 bp mtDNA deletion, ranging from position 8702 to 15,302, was detected in both patients. To our knowledge, this kind of mtDNA deletion has never been described previously. Our study enriched the mutation spectrum of KSS and showed that NGS is a powerful tool for detecting mtDNA large variants.
Collapse
Affiliation(s)
- Luo Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Otorhinolaryngology Department, Fudan University Eye & ENT Hospital, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine and Fudan University, Shanghai, People's Republic of China
| | - Xin Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, People's Republic of China
| | - Haiting Ji
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Otorhinolaryngology Department, Fudan University Eye & ENT Hospital, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine and Fudan University, Shanghai, People's Republic of China.,Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
36
|
Balsa E, Perry EA, Bennett CF, Jedrychowski M, Gygi SP, Doench JG, Puigserver P. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat Commun 2020; 11:2714. [PMID: 32483148 PMCID: PMC7264245 DOI: 10.1038/s41467-020-16423-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.
Collapse
Affiliation(s)
- Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
37
|
Andrews SJ, Fulton-Howard B, Patterson C, McFall GP, Gross A, Michaelis EK, Goate A, Swerdlow RH, Pa J. Mitonuclear interactions influence Alzheimer's disease risk. Neurobiol Aging 2020; 87:138.e7-138.e14. [PMID: 31784277 PMCID: PMC7205324 DOI: 10.1016/j.neurobiolaging.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
We examined the associations between mitochondrial DNA haplogroups (MT-hgs; mitochondrial haplotype groups defined by a specific combination of single nucleotide polymorphisms labeled as letters running from A to Z) and their interactions with a polygenic risk score composed of nuclear-encoded mitochondrial genes (nMT-PRS) with risk of dementia and age of onset (AOO) of dementia. MT-hg K (Odds ratio [OR]: 2.03 [95% CI: 1.04, 3.97]) and a 1 SD larger nMT-PRS (OR: 2.2 [95% CI: 1.68, 2.86]) were associated with elevated odds of dementia. Significant antagonistic interactions between the nMT-PRS and MT-hg K (OR: 0.45 [95% CI: 0.22, 0.9]) and MT-hg T (OR: 0.22 [95% CI: 0.1, 0.49]) were observed. Individual MT-hgs were not associated with AOO; however, a significant antagonistic interactions was observed between the nMT-PRS and MT-hg T (Hazard ratio: 0.62 [95% CI: 0.42, 0.91]) and a synergistic interaction between the nMT-PRS and MT-hg V (Hazard ratio: 2.28 [95% CI: 1.19, 4.35]). These results suggest that MT-hgs influence dementia risk and that variants in the nuclear and mitochondrial genome interact to influence the AOO of dementia.
Collapse
Affiliation(s)
- Shea J Andrews
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Patterson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - G Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Alden Gross
- Department of Epidemiology, JHSPH Center on Aging and Health, Baltimore, MD, USA
| | - Elias K Michaelis
- Higuchi Biosciences Center and Alzheimer's Disease Center, University of Kansas, Lawrence, KS, USA
| | - Alison Goate
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell H Swerdlow
- Department of Neurology, Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS, USA
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Ghafari N, Court R, Chirehwa MT, Wiesner L, Petersen L, Maartens G, Gumbo T, McIlleron H, Ramma L. Pharmacokinetics and other risk factors for kanamycin-induced hearing loss in patients with multi-drug resistant tuberculosis. Int J Audiol 2020; 59:219-223. [PMID: 31739701 PMCID: PMC7582222 DOI: 10.1080/14992027.2019.1690170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
Objective: The toxicity associated with the use of kanamycin includes irreversible hearing loss. There are limited data describing the relationship between hearing loss and kanamycin pharmacokinetics (PK). We explored the association of kanamycin PK with hearing loss in patients on MDR-TB treatment.Design: We prospectively recruited patients on kanamycin-based MDR-TB treatment in Cape Town. Hearing thresholds from 0.25 to 16 kHz were tested at baseline and at 4, 8 and 12 weeks. We determined kanamycin concentrations at steady-state in serial plasma samples over 10 h, and explored factors associated with hearing loss.Study sample: One hundred and two participants including 58 (56.9%) men had analysable audiometric data; median age was 34.9 years, 65 (63.7%) were HIV-positive, and 24 (23.5%) had been treated for MDR-TB previously.Results: Eighty-four participants (82.4%) developed hearing loss. We found a 3% (95% CI: 1-6%, p = 0.028) increased risk of cochleotoxicity for each 10 µg h/L increase in 0-10 h AUC.Conclusion: We describe a high incidence of hearing loss in MDR-TB patients treated with kanamycin, with higher AUC0-10 significantly associated with hearing loss.
Collapse
Affiliation(s)
- Nazanin Ghafari
- Department of Health & Rehabilitation Sciences, University of Cape Town, South Africa
| | - Richard Court
- Division of Clinical Pharmacology, University of Cape Town, South Africa
| | | | - Lubbe Wiesner
- Division of Clinical Pharmacology, University of Cape Town, South Africa
| | - Lucretia Petersen
- Department of Health & Rehabilitation Sciences, University of Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, University of Cape Town, South Africa
| | - Tawanda Gumbo
- Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, University of Cape Town, South Africa
| | - Lebogang Ramma
- Department of Health & Rehabilitation Sciences, University of Cape Town, South Africa
| |
Collapse
|
39
|
Handzel O, Ungar OJ, Lee DJ, Nadol JB. Temporal bone histopathology in MELAS syndrome. Laryngoscope Investig Otolaryngol 2020; 5:152-156. [PMID: 32128442 PMCID: PMC7042650 DOI: 10.1002/lio2.344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Describe the histopathology of the temporal bones in MELAS (myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) syndrome. The syndrome results from a known point mutation in mitochondrial DNA. METHODS Histopathology analysis of a pair of temporal bones from the oldest surviving MELAS syndrome temporal bone donor. Histopathologic findings were correlated with known premortem clinical data. RESULTS The inner ears showed severe but incomplete atrophy of the stria vascularis for the length of the cochleae. In contrast, the organ of Corti and inner hair cells appeared intact with some loss of outer hair cells. Other than moderate loss at the basal turn, spiral ganglion cells numbers were normal. The vestibular neuroepithelium was mostly normal with the exception of moderate degeneration of the macula sacculi and partial collapse of the saccular wall on the right. The cerebral cortex had infarct-like lesions with adjacent gliosis. CONCLUSION This is an analysis of the oldest patient with MELAS syndrome to date, an addition to only two previously published patients. It supports the notion that hearing loss is a result of dysfunction of the stria vascularis and not loss of hair cells or neurons. Patterns of vestibular pathology are in agreement to in-vivo measurements. These findings support auditory rehabilitation with cochlear implants and may be relevant to hearing loss due to other mitochondrial mutations. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Ophir Handzel
- Cochlear Implant Center, Department of Otolaryngology/Head, Neck & Maxillofacial SurgeryTel‐Aviv Sourasky Medical Center, Sackler Faculty of MedicineTel‐Aviv UniversityIsrael
| | - Omer J. Ungar
- Department of Otolaryngology/Head, Neck & Maxillofacial SurgeryTel‐Aviv Sourasky Medical Center, Sackler Faculty of MedicineTel‐Aviv UniversityIsrael
| | - Dan J. Lee
- Otopathology Laboratory, Department of Otolaryngology‐Head and Neck Surgery, Massachusetts Eye and EarHarvard Medical SchoolBostonMassachusetts
| | - Joseph B. Nadol
- Otopathology Laboratory, Department of Otolaryngology‐Head and Neck Surgery, Massachusetts Eye and EarHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
40
|
Chandrasekhar SS, Tsai Do BS, Schwartz SR, Bontempo LJ, Faucett EA, Finestone SA, Hollingsworth DB, Kelley DM, Kmucha ST, Moonis G, Poling GL, Roberts JK, Stachler RJ, Zeitler DM, Corrigan MD, Nnacheta LC, Satterfield L. Clinical Practice Guideline: Sudden Hearing Loss (Update). Otolaryngol Head Neck Surg 2020; 161:S1-S45. [PMID: 31369359 DOI: 10.1177/0194599819859885] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sudden hearing loss is a frightening symptom that often prompts an urgent or emergent visit to a health care provider. It is frequently but not universally accompanied by tinnitus and/or vertigo. Sudden sensorineural hearing loss affects 5 to 27 per 100,000 people annually, with about 66,000 new cases per year in the United States. This guideline update provides evidence-based recommendations for the diagnosis, management, and follow-up of patients who present with sudden hearing loss. It focuses on sudden sensorineural hearing loss in adult patients aged ≥18 years and primarily on those with idiopathic sudden sensorineural hearing loss. Prompt recognition and management of sudden sensorineural hearing loss may improve hearing recovery and patient quality of life. The guideline update is intended for all clinicians who diagnose or manage adult patients who present with sudden hearing loss. PURPOSE The purpose of this guideline update is to provide clinicians with evidence-based recommendations in evaluating patients with sudden hearing loss and sudden sensorineural hearing loss, with particular emphasis on managing idiopathic sudden sensorineural hearing loss. The guideline update group recognized that patients enter the health care system with sudden hearing loss as a nonspecific primary complaint. Therefore, the initial recommendations of this guideline update address distinguishing sensorineural hearing loss from conductive hearing loss at the time of presentation with hearing loss. They also clarify the need to identify rare, nonidiopathic sudden sensorineural hearing loss to help separate those patients from those with idiopathic sudden sensorineural hearing loss, who are the target population for the therapeutic interventions that make up the bulk of the guideline update. By focusing on opportunities for quality improvement, this guideline should improve diagnostic accuracy, facilitate prompt intervention, decrease variations in management, reduce unnecessary tests and imaging procedures, and improve hearing and rehabilitative outcomes for affected patients. METHODS Consistent with the American Academy of Otolaryngology-Head and Neck Surgery Foundation's "Clinical Practice Guideline Development Manual, Third Edition" (Rosenfeld et al. Otolaryngol Head Neck Surg. 2013;148[1]:S1-S55), the guideline update group was convened with representation from the disciplines of otolaryngology-head and neck surgery, otology, neurotology, family medicine, audiology, emergency medicine, neurology, radiology, advanced practice nursing, and consumer advocacy. A systematic review of the literature was performed, and the prior clinical practice guideline on sudden hearing loss was reviewed in detail. Key Action Statements (KASs) were updated with new literature, and evidence profiles were brought up to the current standard. Research needs identified in the original clinical practice guideline and data addressing them were reviewed. Current research needs were identified and delineated. RESULTS The guideline update group made strong recommendations for the following: (KAS 1) Clinicians should distinguish sensorineural hearing loss from conductive hearing loss when a patient first presents with sudden hearing loss. (KAS 7) Clinicians should educate patients with sudden sensorineural hearing loss about the natural history of the condition, the benefits and risks of medical interventions, and the limitations of existing evidence regarding efficacy. (KAS 13) Clinicians should counsel patients with sudden sensorineural hearing loss who have residual hearing loss and/or tinnitus about the possible benefits of audiologic rehabilitation and other supportive measures. These strong recommendations were modified from the initial clinical practice guideline for clarity and timing of intervention. The guideline update group made strong recommendations against the following: (KAS 3) Clinicians should not order routine computed tomography of the head in the initial evaluation of a patient with presumptive sudden sensorineural hearing loss. (KAS 5) Clinicians should not obtain routine laboratory tests in patients with sudden sensorineural hearing loss. (KAS 11) Clinicians should not routinely prescribe antivirals, thrombolytics, vasodilators, or vasoactive substances to patients with sudden sensorineural hearing loss. The guideline update group made recommendations for the following: (KAS 2) Clinicians should assess patients with presumptive sudden sensorineural hearing loss through history and physical examination for bilateral sudden hearing loss, recurrent episodes of sudden hearing loss, and/or focal neurologic findings. (KAS 4) In patients with sudden hearing loss, clinicians should obtain, or refer to a clinician who can obtain, audiometry as soon as possible (within 14 days of symptom onset) to confirm the diagnosis of sudden sensorineural hearing loss. (KAS 6) Clinicians should evaluate patients with sudden sensorineural hearing loss for retrocochlear pathology by obtaining magnetic resonance imaging or auditory brainstem response. (KAS 10) Clinicians should offer, or refer to a clinician who can offer, intratympanic steroid therapy when patients have incomplete recovery from sudden sensorineural hearing loss 2 to 6 weeks after onset of symptoms. (KAS 12) Clinicians should obtain follow-up audiometric evaluation for patients with sudden sensorineural hearing loss at the conclusion of treatment and within 6 months of completion of treatment. These recommendations were clarified in terms of timing of intervention and audiometry and method of retrocochlear workup. The guideline update group offered the following KASs as options: (KAS 8) Clinicians may offer corticosteroids as initial therapy to patients with sudden sensorineural hearing loss within 2 weeks of symptom onset. (KAS 9a) Clinicians may offer, or refer to a clinician who can offer, hyperbaric oxygen therapy combined with steroid therapy within 2 weeks of onset of sudden sensorineural hearing loss. (KAS 9b) Clinicians may offer, or refer to a clinician who can offer, hyperbaric oxygen therapy combined with steroid therapy as salvage therapy within 1 month of onset of sudden sensorineural hearing loss. DIFFERENCES FROM PRIOR GUIDELINE Incorporation of new evidence profiles to include quality improvement opportunities, confidence in the evidence, and differences of opinion Included 10 clinical practice guidelines, 29 new systematic reviews, and 36 new randomized controlled trials Highlights the urgency of evaluation and initiation of treatment, if treatment is offered, by emphasizing the time from symptom occurrence Clarification of terminology by changing potentially unclear statements; use of the term sudden sensorineural hearing loss to mean idiopathic sudden sensorineural hearing loss to emphasize that >90% of sudden sensorineural hearing loss is idiopathic sudden sensorineural hearing loss and to avoid confusion in nomenclature for the reader Changes to the KASs from the original guideline: KAS 1-When a patient first presents with sudden hearing loss, conductive hearing loss should be distinguished from sensorineural. KAS 2-The utility of history and physical examination when assessing for modifying factors is emphasized. KAS 3-The word "routine" is added to clarify that this statement addresses nontargeted head computerized tomography scan that is often ordered in the emergency room setting for patients presenting with sudden hearing loss. It does not refer to targeted scans, such as temporal bone computerized tomography scan, to assess for temporal bone pathology. KAS 4-The importance of audiometric confirmation of hearing status as soon as possible and within 14 days of symptom onset is emphasized. KAS 5-New studies were added to confirm the lack of benefit of nontargeted laboratory testing in sudden sensorineural hearing loss. KAS 6-Audiometric follow-up is excluded as a reasonable workup for retrocochlear pathology. Magnetic resonance imaging, computerized tomography scan if magnetic resonance imaging cannot be done, and, secondarily, auditory brainstem response evaluation are the modalities recommended. A time frame for such testing is not specified, nor is it specified which clinician should be ordering this workup; however, it is implied that it would be the general or subspecialty otolaryngologist. KAS 7-The importance of shared decision making is highlighted, and salient points are emphasized. KAS 8-The option for corticosteroid intervention within 2 weeks of symptom onset is emphasized. KAS 9-Changed to KAS 9A and 9B. Hyperbaric oxygen therapy remains an option but only when combined with steroid therapy for either initial treatment (9A) or salvage therapy (9B). The timing of initial therapy is within 2 weeks of onset, and that of salvage therapy is within 1 month of onset of sudden sensorineural hearing loss. KAS 10-Intratympanic steroid therapy for salvage is recommended within 2 to 6 weeks following onset of sudden sensorineural hearing loss. The time to treatment is defined and emphasized. KAS 11-Antioxidants were removed from the list of interventions that the clinical practice guideline recommends against using. KAS 12-Follow-up audiometry at conclusion of treatment and also within 6 months posttreatment is added. KAS 13-This statement on audiologic rehabilitation includes patients who have residual hearing loss and/or tinnitus who may benefit from treatment. Addition of an algorithm outlining KASs Enhanced emphasis on patient education and shared decision making with tools provided to assist in same.
Collapse
Affiliation(s)
- Sujana S Chandrasekhar
- 1 ENT & Allergy Associates, LLP, New York, New York, USA.,2 Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA.,3 Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Laura J Bontempo
- 6 University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Sandra A Finestone
- 8 Consumers United for Evidence-Based Healthcare, Baltimore, Maryland, USA
| | | | - David M Kelley
- 10 University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Steven T Kmucha
- 11 Gould Medical Group-Otolaryngology, Stockton, California, USA
| | - Gul Moonis
- 12 Columbia University Medical Center, New York, New York, USA
| | | | - J Kirk Roberts
- 12 Columbia University Medical Center, New York, New York, USA
| | | | | | - Maureen D Corrigan
- 15 American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| | - Lorraine C Nnacheta
- 15 American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| | - Lisa Satterfield
- 15 American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| |
Collapse
|
41
|
Wong HTC, Zhang Q, Beirl AJ, Petralia RS, Wang YX, Kindt K. Synaptic mitochondria regulate hair-cell synapse size and function. eLife 2019; 8:e48914. [PMID: 31609202 PMCID: PMC6879205 DOI: 10.7554/elife.48914] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cells in the ear utilize specialized ribbon synapses. These synapses are defined by electron-dense presynaptic structures called ribbons, composed primarily of the structural protein Ribeye. Previous work has shown that voltage-gated influx of Ca2+ through CaV1.3 channels is critical for hair-cell synapse function and can impede ribbon formation. We show that in mature zebrafish hair cells, evoked presynaptic-Ca2+ influx through CaV1.3 channels initiates mitochondrial-Ca2+ (mito-Ca2+) uptake adjacent to ribbons. Block of mito-Ca2+ uptake in mature cells depresses presynaptic-Ca2+ influx and impacts synapse integrity. In developing zebrafish hair cells, mito-Ca2+ uptake coincides with spontaneous rises in presynaptic-Ca2+ influx. Spontaneous mito-Ca2+ loading lowers cellular NAD+/NADH redox and downregulates ribbon size. Direct application of NAD+ or NADH increases or decreases ribbon size respectively, possibly acting through the NAD(H)-binding domain on Ribeye. Our results present a mechanism where presynaptic- and mito-Ca2+ couple to confer proper presynaptic function and formation.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Genetically Modified
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Cell Size
- Embryo, Nonmammalian
- Evoked Potentials, Auditory/physiology
- Eye Proteins/chemistry
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Isradipine/pharmacology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- NAD/metabolism
- Oxidation-Reduction
- Protein Binding
- Protein Interaction Domains and Motifs
- Ruthenium Compounds/pharmacology
- Synapses/drug effects
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission
- Zebrafish
- Zebrafish Proteins/agonists
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Hiu-tung C Wong
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
- National Institutes of Health-Johns Hopkins University Graduate Partnership ProgramNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Qiuxiang Zhang
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ronald S Petralia
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ya-Xian Wang
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Katie Kindt
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
42
|
Sarah B, Btissam B, Ibtissam H, Youssef R, Nabil A, Hassan N, Lahcen A, Abdelaziz R, Abdeljalil M. [Screening for ocular involvement in deaf children]. Pan Afr Med J 2019; 33:174. [PMID: 31565135 PMCID: PMC6756820 DOI: 10.11604/pamj.2019.33.174.17771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/21/2019] [Indexed: 11/11/2022] Open
Abstract
L'association de la surdité aux troubles visuels est fréquente. Ces troubles vont de simple anomalie de la réfraction jusqu'à la maladie grave qui peut constituer un handicap. D'où l'intérêt d'un dépistage précoce. L'objectif de cette étude est de montrer l'importance de la collaboration multidisciplinaire et la nécessité de l'examen ophtalmologique chez chaque enfant présentant une surdité à travers cette étude prospective. Il s'agit d'une étude prospective monocentrique colligeant 200 enfants suivis pour hypoacousie de janvier 2014 à janvier 2015. Chaque enfant a bénéficié d'un examen ophtalmologique complet; examen ORL; et un examen général. Cent cinquante-cinq dossiers ont été colligés. Une atteinte oculaire était constatée chez 47 patients soit 30,4% des enfants. Elle est bilatérale chez 45patients. Les principales étiologies étaient syndromiques (syndrome d'Usher (8cas), syndrome de Waardenbourg (5 cas), syndrome d'Alport (3 cas), syndrome de Wolfram (2 cas), syndrome de Goldenar (3 cas), syndrome de Cogan (3 cas), syndrome de Fracheschetti (1 cas), syndrome de Charge (1 cas), syndrome otomandibulaire (1 cas), syndrome de Stickler (1 cas), syndrome d'Alstrom (1 cas), syndrome de Refsum (1 cas), syndrome de Susac (1 cas) et KID syndrome (1 cas)). Le dépistage de l'atteinte oculaire a permis de raccourcir le délai d'attente pour implant cochléaire de 9 mois à 3 mois. Les atteintes oculo auditives sont très nombreuses du fait de la similitude embryologique et cellulaire de ces deux organes, notamment la rétine et l'oreille interne. Le diagnostic de ces atteintes est facilité par l'existence d'une dysmorphie faciale, en revanche, il reste difficile lorsqu'il existe que les atteintes neurosensorielles visuelles et auditives. La précocité du diagnostic des atteintes oculo auditives permet un meilleur développement psychomoteur et une insertion sociale optimale. Donc la prise en charge pluridisciplinaire précoce est nécessaire afin de permettre la meilleure rééducation psychomotrice, orthophonique et visuelle.
Collapse
Affiliation(s)
| | | | - Hajji Ibtissam
- Service d'Ophtalmologie, CHU Mohammed VI, Marrakech, Maroc
| | | | - Albab Nabil
- Service d'Ophtalmologie, CHU Mohammed VI, Marrakech, Maroc
| | - Nouri Hassan
- Service d'ORL, CHU Mohammed VI, Marrakech, Maroc
| | | | | | | |
Collapse
|
43
|
Increased burden of mitochondrial DNA deletions and point mutations in early-onset age-related hearing loss in mitochondrial mutator mice. Exp Gerontol 2019; 125:110675. [PMID: 31344454 DOI: 10.1016/j.exger.2019.110675] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in a variety of age-related neurodegenerative diseases, including age-related hearing loss (AHL). In the current study, we investigated the roles of mtDNA deletions and point mutations in AHL in mitochondrial mutator mice (Polgmut/mut) that were backcrossed onto CBA/CaJ mice, a well-established model of late-onset AHL. mtDNA deletions accumulated significantly with age in the inner ears of Polgmut/mut mice, while there were no differences in mtDNA deletion frequencies in the inner ears between 5 and 17 months old Polg+/+ mice or 5 months old Polg+/+ and Polgmut/mut mice. mtDNA deletions also accumulated significantly in the inner ears of CBA/CaJ mice during normal aging. In contrast, 5 months old Polgmut/mut mice displayed a 238-fold increase in mtDNA point mutation frequencies in the inner ears compared to age-matched Polg+/+ mice, but there were no differences in mtDNA point mutation frequencies in the inner ears between 5 and 17 months old Polgmut/mut mice. Seventeen-month-old Polgmut/mut mice also displayed early-onset severe hearing loss associated with a significant reduction in neural output of the cochlea, while age-matched Polg+/+ mice displayed little or no hearing impairment. Consistent with the physiological and mtDNA deletion test result, 17-month-old Polgmut/mut mice displayed a profound loss of spiral ganglion neurons in the cochlea. Thus, our data suggest that a higher burden of mtDNA point mutations from a young age and age-related accumulation of mtDNA deletions likely contribute to early-onset AHL in mitochondrial mutator mice.
Collapse
|
44
|
Lesus J, Arias K, Kulaga J, Sobkiv S, Patel A, Babu V, Kambalyal A, Patel M, Padron F, Mozaffari P, Jayakumar A, Ghatalah L, Laban N, Bahari R, Perkins G, Lysakowski A. Why study inner ear hair cell mitochondria? HNO 2019; 67:429-433. [PMID: 30969353 DOI: 10.1007/s00106-019-0662-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In several systems of the body (muscle, liver, nerves), new studies have examined the internal structure of mitochondria and brought to light striking new findings about how mitochondria are constructed and how their structure affects cell function. In the inner ear field, however, we have little structural knowledge about hair cell and supporting cell mitochondria, and virtually none about mitochondrial subtypes or how they function in health and disease. The need for such knowledge is discussed in this short review.
Collapse
Affiliation(s)
- J Lesus
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA
| | - K Arias
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - J Kulaga
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA
| | - S Sobkiv
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Patel
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA
| | - V Babu
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - A Kambalyal
- Dept. of Economics, University of Illinois at Chicago, Chicago, IL, USA
| | - M Patel
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - F Padron
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - P Mozaffari
- Dept. of Economics, University of Illinois at Chicago, Chicago, IL, USA
| | - A Jayakumar
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - L Ghatalah
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - N Laban
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - R Bahari
- Dept. of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - G Perkins
- National Center for Microscopy and Imaging Research (NCMIR), University of California, San Diego, La Jolla, CA, USA
| | - A Lysakowski
- Dept. of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, 60612, Chicago, IL, USA. .,Dept. of Otolaryngology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
45
|
Khatami S, Rokni-Zadeh H, Mohsen-Pour N, Biglari A, Changi-Ashtiani M, Shahrooei M, Shahani T. Whole exome sequencing identifies both nuclear and mitochondrial variations in an Iranian family with non-syndromic hearing loss. Mitochondrion 2019; 46:321-325. [DOI: 10.1016/j.mito.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 05/12/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
|
46
|
Fujimoto C, Yamasoba T. Mitochondria-Targeted Antioxidants for Treatment of Hearing Loss: A Systematic Review. Antioxidants (Basel) 2019; 8:E109. [PMID: 31022870 PMCID: PMC6523236 DOI: 10.3390/antiox8040109] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
- Department of Otolaryngology, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo 102-8798, Japan.
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
47
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
48
|
Pickett SB, Raible DW. Water Waves to Sound Waves: Using Zebrafish to Explore Hair Cell Biology. J Assoc Res Otolaryngol 2019; 20:1-19. [PMID: 30635804 DOI: 10.1007/s10162-018-00711-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Although perhaps best known for their use in developmental studies, over the last couple of decades, zebrafish have become increasingly popular model organisms for investigating auditory system function and disease. Like mammals, zebrafish possess inner ear mechanosensory hair cells required for hearing, as well as superficial hair cells of the lateral line sensory system, which mediate detection of directional water flow. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of hair cell biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired hair cell dysfunction. Here, we provide an overview of this literature, highlighting some of the particular advantages of using zebrafish to investigate hearing and hearing loss.
Collapse
Affiliation(s)
- Sarah B Pickett
- Department of Biological Structure, University of Washington, Health Sciences Building H-501, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195-7420, USA
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific Street, Box 357270, Seattle, WA, 98195-7270, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Health Sciences Building H-501, 1959 NE Pacific Street, Box 357420, Seattle, WA, 98195-7420, USA.
- Graduate Program in Neuroscience, University of Washington, 1959 NE Pacific Street, Box 357270, Seattle, WA, 98195-7270, USA.
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Box 357923, Seattle, WA, 98195-7923, USA.
| |
Collapse
|
49
|
Pickett SB, Thomas ED, Sebe JY, Linbo T, Esterberg R, Hailey DW, Raible DW. Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells. eLife 2018; 7:38062. [PMID: 30596476 PMCID: PMC6345563 DOI: 10.7554/elife.38062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair cells are thought to be energetically demanding cells, how mitochondria respond to these demands and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, we found that mitochondrial calcium flux and oxidation are regulated by mechanotransduction and demonstrate that hair cell activity has both acute and long-term consequences on mitochondrial function. We tested whether variation in mitochondrial activity reflected differences in the vulnerability of hair cells to the toxic drug neomycin. We observed that susceptibility did not correspond to the acute level of mitochondrial activity but rather to the cumulative history of that activity.
Collapse
Affiliation(s)
- Sarah B Pickett
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Eric D Thomas
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Joy Y Sebe
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, United States
| | - Robert Esterberg
- Department of Biological Structure, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Dale W Hailey
- Department of Biological Structure, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, United States.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| |
Collapse
|
50
|
Bianco A, Bisceglia L, De Caro MF, Galeandro V, De Bonis P, Tullo A, Zoccolella S, Guerriero S, Petruzzella V. Leber's hereditary optic neuropathy, intellectual disability and epilepsy presenting with variable penetrance associated to the m.3460G >A mutation and a heteroplasmic expansion of the microsatellite in MTRNR1 gene - case report. BMC MEDICAL GENETICS 2018; 19:129. [PMID: 30053855 PMCID: PMC6062935 DOI: 10.1186/s12881-018-0644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/12/2018] [Indexed: 01/07/2023]
Abstract
Background Leber’s hereditary optic neuropathy (LHON) associated with mutations in mitochondrial DNA (mtDNA) typically manifests only optic nerve involvement but in some patients may develop additional neurological complications. The cause of this association is not clear. Case presentation We present a case of a 24-year-old male with a history of subacute, painless, and rapidly progressive bilateral vision loss. We performed ophthalmological, neurological and neuropsychological investigations in the proband and his LHON family. The proband showed optic neuropathy, epilepsy, migraine, and intellectual disability; all the maternal relatives did not manifest optic neuropathy but a moderate to severe intellectual disability. Genetic screening revealed a novel association of the LHON m.3460G > A primary mutation with the m.T961delT + C(n)ins within the mitochondrial encoded 12S RNA (MTRNR1) gene which segregates with the intellectual disability through the maternal branch of the family. We also found a significant increase of mtDNA content in all the unaffected homo/heteroplasmic mutation carriers with respect to either affected or control subjects. Conclusion This is the first case reporting the co-segregation of a mutation in MTRNR1 gene with a LHON primary mutation, which may be a risk factor of the extraocular signs complicating LHON phenotype. In addition, the data herein reported, confirmed that the key factor modulating the penetrance of optic atrophy in the family is the amount of mtDNA. Electronic supplementary material The online version of this article (10.1186/s12881-018-0644-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angelica Bianco
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi Aldo Moro, Piazza G. Cesare, 70124, Bari, Italy
| | - Luigi Bisceglia
- Ospedale Casa Sollievo della Sofferenza IRCCS, UOC Genetica Medica, San Giovanni Rotondo, Italy
| | - Maria Fara De Caro
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi Aldo Moro, Piazza G. Cesare, 70124, Bari, Italy
| | - Valeria Galeandro
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi Aldo Moro, Piazza G. Cesare, 70124, Bari, Italy
| | - Patrizia De Bonis
- Ospedale Casa Sollievo della Sofferenza IRCCS, UOC Genetica Medica, San Giovanni Rotondo, Italy
| | - Apollonia Tullo
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, IBIOM - CNR - Via G, Amendola 165/A, 70126, Bari, Italy
| | - Stefano Zoccolella
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi Aldo Moro, Piazza G. Cesare, 70124, Bari, Italy
| | - Silvana Guerriero
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi Aldo Moro, Piazza G. Cesare, 70124, Bari, Italy
| | - Vittoria Petruzzella
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi Aldo Moro, Piazza G. Cesare, 70124, Bari, Italy.
| |
Collapse
|