1
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
2
|
Shahin-Kaleybar B, Niazi A, Afsharifar A, Nematzadeh G, Yousefi R, Retzl B, Hellinger R, Muratspahić E, Gruber CW. Isolation of Cysteine-Rich Peptides from Citrullus colocynthis. Biomolecules 2020; 10:E1326. [PMID: 32948080 PMCID: PMC7565491 DOI: 10.3390/biom10091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
The plant Citrullus colocynthis, a member of the squash (Cucurbitaceae) family, has a long history in traditional medicine. Based on the ancient knowledge about the healing properties of herbal preparations, plant-derived small molecules, e.g., salicylic acid, or quinine, have been integral to modern drug discovery. Additionally, many plant families, such as Cucurbitaceae, are known as a rich source for cysteine-rich peptides, which are gaining importance as valuable pharmaceuticals. In this study, we characterized the C. colocynthis peptidome using chemical modification of cysteine residues, and mass shift analysis via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. We identified the presence of at least 23 cysteine-rich peptides in this plant, and eight novel peptides, named citcol-1 to -8, with a molecular weight between ~3650 and 4160 Da, were purified using reversed-phase high performance liquid chromatography (HPLC), and their amino acid sequences were determined by de novo assignment of b- and y-ion series of proteolytic peptide fragments. In silico analysis of citcol peptides revealed a high sequence similarity to trypsin inhibitor peptides from Cucumis sativus, Momordica cochinchinensis, Momordica macrophylla and Momordica sphaeroidea. Using genome/transcriptome mining it was possible to identify precursor sequences of this peptide family in related Cucurbitaceae species that cluster into trypsin inhibitor and antimicrobial peptides. Based on our analysis, the presence or absence of a crucial Arg/Lys residue at the putative P1 position may be used to classify these common cysteine-rich peptides by functional properties. Despite sequence homology and the common classification into the inhibitor cysteine knot family, these peptides appear to have diverse and additional bioactivities yet to be revealed.
Collapse
Affiliation(s)
- Behzad Shahin-Kaleybar
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
- Department of Plant Biotechnology, Shiraz University, Shiraz 7144165186, Iran;
| | - Ali Niazi
- Department of Plant Biotechnology, Shiraz University, Shiraz 7144165186, Iran;
| | - Alireza Afsharifar
- Department of Plant Protection, Shiraz University, Shiraz 7144165186, Iran;
| | | | - Reza Yousefi
- Department of Biology, Shiraz University, Shiraz 7194684795, Iran;
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| |
Collapse
|
3
|
Hellinger R, Gruber CW. Peptide-based protease inhibitors from plants. Drug Discov Today 2019; 24:1877-1889. [PMID: 31170506 PMCID: PMC6753016 DOI: 10.1016/j.drudis.2019.05.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
Proteases have an important role in homeostasis, and dysregulation of protease function can lead to pathogenesis. Therefore, proteases are promising drug targets in cancer, inflammation, and neurodegenerative disease research. Although there are well-established pharmaceuticals on the market, drug development for proteases is challenging. This is often caused by the limited selectivity of currently available lead compounds. Proteinaceous plant protease inhibitors are a diverse family of (poly)peptides that are important to maintain physiological homeostasis and to serve the innate defense machinery of the plant. In this review, we provide an overview of the diversity of plant peptide- and protein-based protease inhibitors (PIs), provide examples of such compounds that target human proteases, and discuss opportunities for these molecules in protease drug discovery and development.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Christian W Gruber
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Mong SK, Cochran FV, Yu H, Graziano Z, Lin YS, Cochran JR, Pentelute BL. Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 2017; 56:5720-5725. [PMID: 28952732 DOI: 10.1021/acs.biochem.7b00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.
Collapse
Affiliation(s)
- Surin K Mong
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Frank V Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Hongtao Yu
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Zachary Graziano
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Kuznetsova SS, Kolesanova EF, Talanova AV, Veselovsky AV. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:353-68. [PMID: 27562989 DOI: 10.18097/pbmc20166204353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given.
Collapse
Affiliation(s)
| | | | - A V Talanova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
6
|
Synthetic Cystine-Knot Miniproteins - Valuable Scaffolds for Polypeptide Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:121-44. [PMID: 27236555 DOI: 10.1007/978-3-319-32805-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Peptides with the cystine-knot architecture, often termed knottins, are promising scaffolds for biomolecular engineering. These unique molecules combine diverse bioactivities with excellent structural, thermal, and proteolytical stability. Being different in the composition and structure of their amino acid backbone, knottins share the same core element, namely cystine knot, which is built by six cysteine residues forming three disulfides upon oxidative folding. This motif ensures a notably rigid framework that highly tolerates both rational and combinatorial changes in the primary structure. Being accessible through recombinant production and total chemical synthesis, cystine-knot miniproteins can be endowed with novel bioactivities by variation of surface-exposed loops and incorporation of non-natural elements within their non-conserved regions towards the generation of tailor-made peptidic compounds. In this chapter the topology of cystine-knot peptides, their synthesis and applications for diagnostics and therapy is discussed.
Collapse
|
7
|
Guo Y, Sun DM, Wang FL, He Y, Liu L, Tian CL. Diaminodiacid Bridges to Improve Folding and Tune the Bioactivity of Disulfide-Rich Peptides. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Guo Y, Sun D, Wang F, He Y, Liu L, Tian C. Diaminodiacid Bridges to Improve Folding and Tune the Bioactivity of Disulfide‐Rich Peptides. Angew Chem Int Ed Engl 2015; 54:14276-81. [DOI: 10.1002/anie.201500699] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/07/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ye Guo
- Tsinghua‐Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
| | - De‐Meng Sun
- Tsinghua‐Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
| | - Feng‐Liang Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China)
| | - Yao He
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027 (China)
| | - Lei Liu
- Tsinghua‐Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
| | - Chang‐Lin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230027 (China)
| |
Collapse
|
9
|
Mahatmanto T, Poth AG, Mylne JS, Craik DJ. A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. Fitoterapia 2014; 95:22-33. [PMID: 24613804 DOI: 10.1016/j.fitote.2014.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/16/2022]
Abstract
MCoTI-I and MCoTI-II (short for Momordica cochinchinensis Trypsin Inhibitor-I and -II, respectively) are attractive candidates for developing novel intracellular-targeting drugs because both are exceptionally stable and can internalize into cells. These seed-derived cystine knot peptides are examples of how natural product discovery efforts can lead to biomedical applications. However, discovery efforts are sometimes hampered by the limited availability of seed materials, highlighting the need for efficient extraction methods. In this study, we assessed five extraction methods using M. cochinchinensis seeds, a source of well-characterized cystine knot peptides. The most efficient extraction of nine known cystine knot peptides was achieved by a method based on acetonitrile/water/formic acid (25:24:1), followed by methods based on sodium acetate (20 mM, pH 5.0), ammonium bicarbonate (5 mM, pH 8.0), and boiling water. On average, the yields obtained by these four methods were more than 250-fold higher than that obtained using dichloromethane/methanol (1:1) extraction, a previously applied standard method. Extraction using acetonitrile/water/formic acid (25:24:1) yielded the highest number of reconstructed masses within the majority of plant-derived cystine knot peptide mass range but only accounted for around 50% of the total number of masses, indicating that any single method may result in under-sampling. Applying acetonitrile/water/formic acid (25:24:1), boiling water, and ammonium bicarbonate (5 mM, pH 8.0) extractions either successively or discretely significantly increased the sampling number. Overall, acetonitrile/water/formic acid (25:24:1) can facilitate efficient extraction of cystine-knot peptides from M. cochinchinensis seeds but for discovery purposes the use of a combination of extraction methods is recommended where practical.
Collapse
Affiliation(s)
- Tunjung Mahatmanto
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Joshua S Mylne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia; School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
10
|
Moore SJ, Leung CL, Norton HK, Cochran JR. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One 2013; 8:e60498. [PMID: 23573262 PMCID: PMC3616073 DOI: 10.1371/journal.pone.0060498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cystine-knot miniproteins, also known as knottins, have shown great potential as molecular scaffolds for the development of targeted therapeutics and diagnostic agents. For this purpose, previous protein engineering efforts have focused on knottins based on the Ecballium elaterium trypsin inhibitor (EETI) from squash seeds, the Agouti-related protein (AgRP) neuropeptide from mammals, or the Kalata B1 uterotonic peptide from plants. Here, we demonstrate that Agatoxin (AgTx), an ion channel inhibitor found in spider venom, can be used as a molecular scaffold to engineer knottins that bind with high-affinity to a tumor-associated integrin receptor. METHODOLOGY/PRINCIPAL FINDINGS We used a rational loop-grafting approach to engineer AgTx variants that bound to αvβ3 integrin with affinities in the low nM range. We showed that a disulfide-constrained loop from AgRP, a structurally-related knottin, can be substituted into AgTx to confer its high affinity binding properties. In parallel, we identified amino acid mutations required for efficient in vitro folding of engineered integrin-binding AgTx variants. Molecular imaging was used to evaluate in vivo tumor targeting and biodistribution of an engineered AgTx knottin compared to integrin-binding knottins based on AgRP and EETI. Knottin peptides were chemically synthesized and conjugated to a near-infrared fluorescent dye. Integrin-binding AgTx, AgRP, and EETI knottins all generated high tumor imaging contrast in U87MG glioblastoma xenograft models. Interestingly, EETI-based knottins generated significantly lower non-specific kidney imaging signals compared to AgTx and AgRP-based knottins. CONCLUSIONS/SIGNIFICANCE In this study, we demonstrate that AgTx, a knottin from spider venom, can be engineered to bind with high affinity to a tumor-associated receptor target. This work validates AgTx as a viable molecular scaffold for protein engineering, and further demonstrates the promise of using tumor-targeting knottins as probes for in vivo molecular imaging.
Collapse
Affiliation(s)
- Sarah J. Moore
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Cheuk Lun Leung
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Heidi K. Norton
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Stanford Cancer Institute and Bio-X Program, Stanford, California, United States of America
| |
Collapse
|
11
|
Chan LY, He W, Tan N, Zeng G, Craik DJ, Daly NL. A new family of cystine knot peptides from the seeds of Momordica cochinchinensis. Peptides 2013; 39:29-35. [PMID: 23127518 DOI: 10.1016/j.peptides.2012.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 11/27/2022]
Abstract
Momordica cochinchinensis, a Cucurbitaceae plant commonly found in Southeast Asia, has the unusual property of containing both acyclic and backbone-cyclized trypsin inhibitors with inhibitor cystine knot (ICK) motifs. In the current study we have shown that M. cochinchinensis also contains another family of acyclic ICK peptides. We recently reported two novel peptides from M. cochinchinensis but have now discovered four additional peptides (MCo-3-MCo-6) with related sequences. Together these peptides form a novel family of M. cochinchinensis ICK peptides (MCo-ICK) that do not have sequence homology with other known peptides and are not potent trypsin inhibitors. Otherwise these new peptides MCo-3 to MCo-6 were evaluated for antimalarial activity against Plasmodium falciparum, and cytotoxic activity against the cancer cell line MDA-MB-231. But these peptides were not active.
Collapse
Affiliation(s)
- Lai Yue Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Chemical synthesis, backbone cyclization and oxidative folding of cystine-knot peptides: promising scaffolds for applications in drug design. Molecules 2012; 17:12533-52. [PMID: 23095896 PMCID: PMC6268209 DOI: 10.3390/molecules171112533] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/19/2012] [Accepted: 10/22/2012] [Indexed: 02/03/2023] Open
Abstract
Cystine-knot peptides display exceptional structural, thermal, and biological stability. Their eponymous motif consists of six cysteine residues that form three disulfide bonds, resulting in a notably rigid structural core. Since they highly tolerate either rational or combinatorial changes in their primary structure, cystine knots are considered to be promising frameworks for the development of peptide-based pharmaceuticals. Despite their relatively small size (two to three dozens amino acid residues), the chemical synthesis route is challenging since it involves critical steps such as head-to-tail cyclization and oxidative folding towards the respective bioactive isomer. Herein we describe the topology of cystine-knot peptides, their synthetic availability and briefly discuss potential applications of engineered variants in diagnostics and therapy.
Collapse
|
13
|
Abstract
Cystine-knot miniproteins, also known as knottins, contain a conserved core of three tightly woven disulfide bonds which impart extraordinary thermal and proteolytic stability. Interspersed between their conserved cysteine residues are constrained loops that possess high levels of sequence diversity among knottin family members. Together these attributes make knottins promising molecular scaffolds for protein engineering and translational applications. While naturally occurring knottins have shown potential as both diagnostic agents and therapeutics, protein engineering is playing an important and increasing role in creating designer molecules that bind to a myriad of biomedical targets. Toward this goal, rational and combinatorial approaches have been used to engineer knottins with novel molecular recognition properties. Here, methods are described for creating and screening knottin libraries using yeast surface display and fluorescence-activated cell sorting. Protocols are also provided for producing knottins by synthetic and recombinant methods, and for measuring the binding affinity of knottins to target proteins expressed on the cell surface.
Collapse
Affiliation(s)
- Sarah J Moore
- Department of Bioengineering, Cancer Institute, and Bio-X Program, Stanford University, Stanford, California, USA
| | | |
Collapse
|
14
|
Kimura RH, Jones DS, Jiang L, Miao Z, Cheng Z, Cochran JR. Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLoS One 2011; 6:e16112. [PMID: 21364742 PMCID: PMC3041754 DOI: 10.1371/journal.pone.0016112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/08/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Ecballium elaterium trypsin inhibitor (EETI-II), a 28-amino acid member of the knottin family of peptides, contains three interwoven disulfide bonds that form multiple solvent-exposed loops. Previously, the trypsin binding loop of EETI-II has been engineered to confer binding to several alternative molecular targets. Here, EETI-II was further explored as a molecular scaffold for polypeptide engineering by evaluating the ability to mutate two of its structurally adjacent loops. METHODOLOGY/PRINCIPAL FINDINGS Yeast surface display was used to engineer an EETI-II mutant containing two separate integrin binding epitopes. The resulting knottin peptide was comprised of 38 amino acids, and contained 11- and 10-residue loops compared to wild-type EETI-II, which naturally contains 6- and 5-residue loops, respectively. This knottin peptide bound to α(v)β(3) and α(v)β(5) integrins with affinities in the low nanomolar range, but bound weakly to the related integrins α(5)β(1) and α(iib)β(3). In addition, the engineered knottin peptide inhibited tumor cell adhesion to vitronectin, an extracellular matrix protein that binds to α(v)β(3) and α(v)β(5) integrins. A (64)Cu radiolabeled version of this knottin peptide demonstrated moderate serum stability and excellent tumor-to-muscle and tumor-to-blood ratios by positron emission tomography imaging in human tumor xenograft models. Tumor uptake was ∼3-5% injected dose per gram (%ID/g) at one hour post injection, with rapid clearance of probe through the kidneys. CONCLUSIONS/SIGNIFICANCE We demonstrated that multiple loops of EETI-II can be mutated to bind with high affinity to tumor-associated integrin receptors. The resulting knottin peptide contained 21 (>50%) non-native amino acids within two mutated loops, indicating that extended loop lengths and sequence diversity were well tolerated within the EETI-II scaffold. A radiolabeled version of this knottin peptide showed promise for non-invasive imaging of integrin expression in living subjects. However, reduced serum and metabolic stability were observed compared to an engineered integrin-binding EETI-II knottin peptide containing only one mutated loop.
Collapse
Affiliation(s)
- Richard H. Kimura
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Douglas S. Jones
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Lei Jiang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Zhen Cheng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Jennifer R. Cochran
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| |
Collapse
|
15
|
Walewska A, Jaśkiewicz A, Bulaj G, Rolka K. Selenopeptide analogs of EETI-II retain potent trypsin inhibitory activities. Chem Biol Drug Des 2010; 77:93-7. [PMID: 20958922 DOI: 10.1111/j.1747-0285.2010.01046.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-disulfide-bridged Ecballium elaterium trypsin inhibitor II (EETI-II) is a 28-residue peptide that belongs to the squash family of canonical trypsin inhibitors. Herein, we report synthesis and biological activity of three EETI-II analogs. In each of analog, a pair of cysteine residues forming a native disulfide bridge was individually replaced by a pair of selenocysteine residues. All selenopeptide analogs were chemically synthesized using the Fmoc protocol and subsequently folded in the presence of oxidized and reduced glutathione. The analogs containing a diselenide bridge displayed association constants with trypsin that ranged from 2.6 x 10(9) to 5.1 x 10(9) [M(-1) ]. Our results suggest that the selenopeptide analogs retained low nanomolar inhibitory potencies, and only the diselenide bridge adjacent to the inhibitory binding loop weakened the interactions with trypsin by approximately fivefold. We discuss these findings in the context of a broader use of selenopeptide analogs as proxies to study cysteine-rich peptides.
Collapse
|
16
|
Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS. Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 2010; 51:433-40. [PMID: 20150258 DOI: 10.2967/jnumed.109.068007] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Targeted contrast-enhanced ultrasound imaging is increasingly being recognized as a powerful imaging tool for the detection and quantification of tumor angiogenesis at the molecular level. The purpose of this study was to develop and test a new class of targeting ligands for targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with small, conformationally constrained peptides that can be coupled to the surface of ultrasound contrast agents. METHODS Directed evolution was used to engineer a small, disulfide-constrained cystine knot (knottin) peptide that bound to alpha(v)beta(3) integrins with a low nanomolar affinity (Knottin(Integrin)). A targeted contrast-enhanced ultrasound imaging contrast agent was created by attaching Knottin(Integrin) to the shell of perfluorocarbon-filled microbubbles (MB-Knottin(Integrin)). A knottin peptide with a scrambled sequence was used to create control microbubbles (MB-Knottin(Scrambled)). The binding of MB-Knottin(Integrin) and MB-Knottin(Scrambled) to alpha(v)beta(3) integrin-positive cells and control cells was assessed in cell culture binding experiments and compared with that of microbubbles coupled to an anti-alpha(v)beta(3) integrin monoclonal antibody (MB(alphavbeta3)) and microbubbles coupled to the peptidomimetic agent c(RGDfK) (MB(cRGD)). The in vivo imaging signals of contrast-enhanced ultrasound with the different types of microbubbles were quantified in 42 mice bearing human ovarian adenocarcinoma xenograft tumors by use of a high-resolution 40-MHz ultrasound system. RESULTS MB-Knottin(Integrin) attached significantly more to alpha(v)beta(3) integrin-positive cells (1.76 +/- 0.49 [mean +/- SD] microbubbles per cell) than to control cells (0.07 +/- 0.006). Control MB-Knottin(Scrambled) adhered less to alpha(v)beta(3) integrin-positive cells (0.15 +/- 0.12) than MB-Knottin(Integrin). After blocking of integrins, the attachment of MB-Knottin(Integrin) to alpha(v)beta(3) integrin-positive cells decreased significantly. The in vivo ultrasound imaging signal was significantly higher after the administration of MB-Knottin(Integrin) than after the administration of MB(alphavbeta3) or control MB-Knottin(Scrambled). After in vivo blocking of integrin receptors, the imaging signal after the administration of MB-Knottin(Integrin) decreased significantly (by 64%). The imaging signals after the administration of MB-Knottin(Integrin) were not significantly different in the groups of tumor-bearing mice imaged with MB-Knottin(Integrin) and with MB(cRGD). Ex vivo immunofluorescence confirmed integrin expression on endothelial cells of human ovarian adenocarcinoma xenograft tumors. CONCLUSION Integrin-binding knottin peptides can be conjugated to the surface of microbubbles and used for in vivo targeted contrast-enhanced ultrasound imaging of tumor angiogenesis. Our results demonstrate that microbubbles conjugated to small peptide-targeting ligands provide imaging signals higher than those provided by a large antibody molecule.
Collapse
Affiliation(s)
- Jürgen K Willmann
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, California 94305-5105, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kimura RH, Levin AM, Cochran FV, Cochran JR. Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 2009; 77:359-69. [PMID: 19452550 DOI: 10.1002/prot.22441] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI-II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin-binding agents. We generated yeast-displayed libraries of EETI-II by substituting its 6-amino acid trypsin binding loop with 11-amino acid loops containing the Arg-Gly-Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high-throughput manner by fluorescence-activated cell sorting to identify mutants that bound to alpha(v)beta(3) integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half-maximal inhibitory concentration values of 10-30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both alpha(v)beta(3) and alpha(v)beta(5) integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to alpha(v)beta(3), alpha(v)beta(5), and alpha(5)beta(1) integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI-II as a scaffold for protein engineering, and highlight the development of unique integrin-binding peptides with potential for translational applications in cancer.
Collapse
Affiliation(s)
- Richard H Kimura
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
18
|
Kimura RH, Cheng Z, Gambhir SS, Cochran JR. Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. Cancer Res 2009; 69:2435-42. [PMID: 19276378 DOI: 10.1158/0008-5472.can-08-2495] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a critical need for molecular imaging agents to detect cell surface integrin receptors that are present in human cancers. Previously, we used directed evolution to engineer knottin peptides that bind with high affinity ( approximately 10 to 30 nmol/L) to integrin receptors that are overexpressed on the surface of tumor cells and the tumor neovasculature. To evaluate these peptides as molecular imaging agents, we site-specifically conjugated Cy5.5 or (64)Cu-1,4,7,10-tetra-azacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) to their N termini, and used optical and positron emission tomography (PET) imaging to measure their uptake and biodistribution in U87MG glioblastoma murine xenograft models. NIR fluorescence and microPET imaging both showed that integrin binding affinity plays a strong role in the tumor uptake of knottin peptides. Tumor uptake at 1 hour postinjection for two high-affinity (IC(50), approximately 20 nmol/L) (64)Cu-DOTA-conjugated knottin peptides was 4.47% +/- 1.21% and 4.56% +/- 0.64% injected dose/gram (%ID/g), compared with a low-affinity knottin peptide (IC(50), approximately 0.4 mumol/L; 1.48 +/- 0.53%ID/g) and c(RGDyK) (IC(50), approximately 1 mumol/L; 2.32 +/- 0.55%ID/g), a low-affinity cyclic pentapeptide under clinical development. Furthermore, (64)Cu-DOTA-conjugated knottin peptides generated lower levels of nonspecific liver uptake ( approximately 2%ID/g) compared with c(RGDyK) ( approximately 4%ID/g) 1 hour postinjection. MicroPET imaging results were confirmed by in vivo biodistribution studies. (64)Cu-DOTA-conjugated knottin peptides were stable in mouse serum, and in vivo metabolite analysis showed minimal degradation in the blood or tumor upon injection. Thus, engineered integrin-binding knottin peptides show great potential as clinical diagnostics for a variety of cancers.
Collapse
Affiliation(s)
- Richard H Kimura
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
19
|
Khalil AM, Qaoud KM. Toxicity and Partial Characterization of Ecballium elaterium Fruit Juice. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/13880209309082930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A. M. Khalil
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| | - K. M. Qaoud
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan
| |
Collapse
|
20
|
Kolmar H. Alternative binding proteins: biological activity and therapeutic potential of cystine-knot miniproteins. FEBS J 2008; 275:2684-90. [PMID: 18435757 DOI: 10.1111/j.1742-4658.2008.06440.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystine-knot miniproteins are members of a large family of small proteins that are defined by a common structural scaffold which is stabilized by three intramolecular disulfide bonds. Cystine-knot miniproteins display a broad spectrum of therapeutically useful natural biological activities and several family members are marketed as therapeutics or are in clinical development. Because of their extraordinary intrinsic chemical and proteolytic stability they provide promising scaffolds for the introduction of therapeutically relevant functionalities. Several successful engineering efforts have been reported to generate miniproteins with novel activities by rational design via functional loop grafting or by directed evolution via screening of scaffold-constrained random libraries. Owing to their small size they are amenable to recombinant as well as to chemical routes of synthesis, which opens up new avenues in optimizing biological activity, specificity and bioavailability by site-specific modification, introduction of non-natural amino acids or chemical conjugation.
Collapse
Affiliation(s)
- Harald Kolmar
- Clemens-Schöpf-Institut für Biochemie und Organische Chemie, Technische Universität Darmstadt, Germany.
| |
Collapse
|
21
|
Attard E, Attard H. Antitrypsin activity of extracts from Ecballium elaterium seeds. Fitoterapia 2008; 79:226-8. [DOI: 10.1016/j.fitote.2007.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
22
|
Kowalska J, Zabłocka A, Wilusz T. Isolation and primary structures of seven serine proteinase inhibitors from Cyclanthera pedata seeds. Biochim Biophys Acta Gen Subj 2006; 1760:1054-63. [PMID: 16635550 DOI: 10.1016/j.bbagen.2006.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 11/23/2022]
Abstract
Seven new trypsin inhibitors, CyPTI I-VII, were purified from ripe seeds of Cyclanthera pedata by affinity chromatography on immobilized chymotrypsin in the presence of 5 M NaCl followed by preparative native PAGE at pH 8.9. The CyPTIs (Cyclanthera pedata trypsin inhibitors) belong to a well-known squash inhibitor family. They contain 28-30 amino acids and have molecular weights from 3031 to 3367 Da. All the isolated inhibitors strongly inhibit bovine beta-trypsin (K(a)>10(11) M(-1)) and, more weakly, bovine alpha-chymotrypsin (K(a) approximately 10(4)-10(6) M(-1)). In the presence of 3 M NaCl the association constants of CyPTIs with alpha-chymotrypsin increased a few hundred fold. Taking advantage of this phenomenon, a high concentration of NaCl was used to isolate the inhibitors by affinity chromatography on immobilized chymotrypsin. It was found that although one of them, CyPTI IV, had split the Asn25-Gly26 peptide bond, its inhibitory activity remained unchanged. The hydrolyzed bond is located downstream of the reactive site. Presumably, the inhibitor is a naturally occurring, double-chain protein arising during posttranslational modifications.
Collapse
Affiliation(s)
- Jolanta Kowalska
- Institute of Biochemistry and Molecular Biology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland.
| | | | | |
Collapse
|
23
|
Johnson ECB, Durek T, Kent SBH. Total Chemical Synthesis, Folding, and Assay of a Small Protein on a Water-Compatible Solid Support. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600381] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Johnson ECB, Durek T, Kent SBH. Total Chemical Synthesis, Folding, and Assay of a Small Protein on a Water-Compatible Solid Support. Angew Chem Int Ed Engl 2006; 45:3283-7. [PMID: 16596681 DOI: 10.1002/anie.200600381] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erik C B Johnson
- Institute for Biophysical Dynamics, Department of Biochemistry, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
25
|
Niemann HH, Schmoldt HU, Wentzel A, Kolmar H, Heinz DW. Barnase Fusion as a Tool to Determine the Crystal Structure of the Small Disulfide-rich Protein McoEeTI. J Mol Biol 2006; 356:1-8. [PMID: 16337652 DOI: 10.1016/j.jmb.2005.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/28/2005] [Accepted: 11/02/2005] [Indexed: 11/22/2022]
Abstract
We present a fusion system suited to determine the crystal structure of small disulfide-rich proteins. McoEeTI, a hybrid inhibitor cystine knot microprotein, was produced as a soluble fusion to a catalytically inactive variant of the RNAse barnase in Escherichia coli. Functioning as a versatile tag, barnase facilitated purification, crystallization and high-resolution structure determination. Flexibility of the linker region allows for different relative orientations of barnase and the fusion partner in two crystallographically independent molecules and may thereby facilitate crystal packing. Nevertheless, the linker region is well ordered in both molecules. This system may prove more generally useful to determine the crystal structure of peptides and small proteins.
Collapse
Affiliation(s)
- Hartmut H Niemann
- Division of Structural Biology, German Research Centre for Biotechnology (GBF) Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
26
|
Avrutina O, Schmoldt HU, Gabrijelcic-Geiger D, Le Nguyen D, Sommerhoff CP, Diederichsen U, Kolmar H. Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II. Biol Chem 2005; 386:1301-6. [PMID: 16336125 DOI: 10.1515/bc.2005.148] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MCoTI-I and MCoTI-II from the seeds of Momordica cochinchinensis are inhibitors of trypsin-like proteases and the only known members of the large family of squash inhibitors that are cyclic and contain an additional loop connecting the amino- and the carboxy-terminus. To investigate the contribution of macrocycle formation to biological activity, we synthesized a set of open-chain variants of MCoTI-II that lack the cyclization loop and contain various natural and non-natural amino acid substitutions in the reactive-site loop. Upon replacement of P1 lysine residue #10 within the open-chain variant of MCoTI-II by the non-natural isosteric nucleo amino acid AlaG [beta-(guanin-9-yl)-L-alanine], a conformationally restricted arginine mimetic, residual inhibitory activity was detected, albeit reduced by four orders of magnitude. While the cyclic inhibitors MCoTI-I and MCoTI-II were found to be very potent trypsin inhibitors, with picomolar inhibition constants, the open-chain variants displayed an approximately 10-fold lower affinity. These data suggest that the formation of a circular backbone in the MCoTI squash inhibitors results in enhanced affinity and therefore is a determinant of biological activity.
Collapse
Affiliation(s)
- Olga Avrutina
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Wong RCH, Fong WP, Ng TB. Multiple trypsin inhibitors from Momordica cochinchinensis seeds, the Chinese drug mubiezhi. Peptides 2004; 25:163-9. [PMID: 15062996 DOI: 10.1016/j.peptides.2004.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 12/30/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
Five trypsin inhibitors, with N-terminal sequences demonstrating homology to each other and exhibiting a molecular weight of 5100, 4800, 4400, 4100, and 3900, respectively, were isolated from Momordica cochinchinensis seeds with a protocol involving acid extraction, ion exchange chromatography on SP-Sepharose chromatography, and RP-HPLC on a C18 column. Specific inhibitory activity against trypsin was demonstrated by the trypsin isoinhibitors with Ki values ranging from 5.3 x 10(-8) to 1.8 x 10(-6) M. None of the isoinhibitors could be cleaved by trypsin.
Collapse
Affiliation(s)
- Ricardo C H Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
28
|
Hilpert K, Wessner H, Schneider-Mergener J, Welfle K, Misselwitz R, Welfle H, Hocke AC, Hippenstiel S, Höhne W. Design and characterization of a hybrid miniprotein that specifically inhibits porcine pancreatic elastase. J Biol Chem 2003; 278:24986-93. [PMID: 12700244 DOI: 10.1074/jbc.m212152200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studying protease/peptide inhibitor interactions is a useful tool for understanding molecular recognition in general and is particularly relevant for the rational design of inhibitors with therapeutic potential. An inhibitory peptide (PMTLEYR) derived from the third domain of turkey ovomucoid inhibitor and optimized for specific porcine pancreatic elastase inhibition was introduced into an inhibitor scaffold to increase the proteolytic stability of the peptide. The trypsin-specific squash inhibitor EETI II from Ecballium elaterium was chosen as the scaffold. The resulting hybrid inhibitor HEI-TOE I (hybrid inhibitor from E. elaterium and the optimized binding loop of the third domain of turkey ovomucoid inhibitor) shows a specificity and affinity to porcine pancreatic elastase similar to the free inhibitory peptide but with significantly higher proteolytic stability. Isothermal titration calorimetry revealed that elastase binding of HEI-TOE I occurs with a small unfavorable positive enthalpy contribution, a large favorable positive entropy change, and a large negative heat capacity change. In addition, the inhibitory peptide and the hybrid inhibitor HEI-TOE I protected endothelial cells against degradation following treatment with porcine pancreatic elastase.
Collapse
Affiliation(s)
- Kai Hilpert
- Humboldt University of Berlin, Medical Faculty Charité, Department of Biochemistry, Monbijoustrasse 2, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Daly NL, Clark RJ, Craik DJ. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides. J Biol Chem 2003; 278:6314-22. [PMID: 12482862 DOI: 10.1074/jbc.m210492200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (Le-Nguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.
Collapse
Affiliation(s)
- Norelle L Daly
- Institute for Molecular Bioscience, Australian Research Council Centre for Functional and Applied Genomics, University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | | |
Collapse
|
30
|
Baggio R, Burgstaller P, Hale SP, Putney AR, Lane M, Lipovsek D, Wright MC, Roberts RW, Liu R, Szostak JW, Wagner RW. Identification of epitope-like consensus motifs using mRNA display. J Mol Recognit 2002; 15:126-34. [PMID: 12203838 DOI: 10.1002/jmr.567] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mRNA display approach to in vitro protein selection is based upon the puromycin-mediated formation of a covalent bond between an mRNA and its gene product. This technique can be used to identify peptide sequences involved in macromolecular recognition, including those identical or homologous to natural ligand epitopes. To demonstrate this approach, we determined the peptide sequences recognized by the trypsin active site, and by the anti-c-Myc antibody, 9E10. Here we describe the use of two peptide libraries of different diversities, one a constrained library based on the trypsin inhibitor EETI-II, where only the six residues in the first loop were randomized (6.4 x 10(7) possible sequences, 6.0 x 10(11) sequences in the library), the other a linear-peptide library with 27 randomized amino acids (1.3 x 10(35) possible sequences, 2 x 10(13) sequences in the library). The constrained library was screened against the natural target of wild-type EETI, bovine trypsin, and the linear library was screened against the anti-c-myc antibody, 9E10. The analysis of selected sequences revealed minimal consensus sequences of PR(I,L,V)L for the first loop of EETI-II and LISE for the 9E10 epitope. The wild-type sequences, PRILMR for the first loop of EETI-II and QKLISE for the 9E10 epitope, were selected with the highest frequency, and in each case the complete wild-type epitope was selected from the library.
Collapse
Affiliation(s)
- Rick Baggio
- Phylos Inc., 128 Spring St, Lexington, MA 02421, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kloutsos G, Balatsouras DG, Kaberos AC, Kandiloros D, Ferekidis E, Economou C. Upper airway edema resulting from use of Ecballium elaterium. Laryngoscope 2001; 111:1652-5. [PMID: 11568622 DOI: 10.1097/00005537-200109000-00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To present a rare occurrence in ear, nose and throat practice of upper airway allergic edema from use of juice extracted from the fruit of Ecballium elaterium. INTRODUCTION Ecballium elaterium is a plant indigenous to the Mediterranean region that bears the common name squirting cucumber. Many people in this region for the treatment of sinusitis use the juice of its fruit. However, allergy-prone patients after using it may sometimes present with edema at various sites of the upper respiratory tract. Otolaryngologists are frequently asked to diagnose and treat such an emergency situation. STUDY DESIGN Retrospective review of the records of 42 patients with this condition during the last 4 years. METHODS Patient records were retrospectively reviewed for age, sex, presenting symptoms, physical examination, and medical treatment. Seasonal distribution and data from the history of the patients were also considered. Skin prick and prick-to-prick testing to various allergens was performed in 12 patients. RESULTS Most of the patients presented with localized swelling of the uvula and the nasal mucosa, whereas in the remainder of the patients various sites of swelling of the upper respiratory tract were observed. Skin tests elicited positive reactions to pollen weeds and to various fruits of the Cucurbitaceae family. Treatment of the patients with corticosteroids and antihistamines resulted in an uneventful recovery, and we did not need to resort to therapeutic modalities, such as intubation or tracheotomy. CONCLUSIONS We think a further study of the pharmaceutical properties of the plant's fruit juice is needed, especially regarding its curative properties of rhinitis and sinusitis. However, adverse reactions in some patients with a positive history of allergy should always be considered.
Collapse
Affiliation(s)
- G Kloutsos
- Ear, Nose and Throat, Tzanion General Hospital of Piraeus, Greece
| | | | | | | | | | | |
Collapse
|
32
|
Chakraborty S, Haldar U, Bera AK, Pal AK, Bhattacharya S, Ghosh S, Mukhopadhyay BP, Banerjee A. Recognition and stabilization of a unique CPRI--structural motif in cucurbitaceae family trypsin inhibitor peptides: molecular dynamics based homology modeling using the X-ray structure of MCTI-II. J Biomol Struct Dyn 2001; 18:569-77. [PMID: 11245252 DOI: 10.1080/07391102.2001.10506689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The high resolution crystallographic structure of MCTI-II complexed with beta trypsin (PDB entry 1MCT) was used to model the corresponding structures of the six inhibitor peptides belonging to Cucurbitaceae family (MCTI-I, LA-1, LA-2, CMTI-I, CMTI-III, CMTI-IV). Two model inhibitors, LA-1 and LA-2 were refined by molecular dynamics to estimate the average solution structure. The difference accessible surface area (DASA) study of the inhibitors with and without trypsin revealed the Arginine and other residues of the inhibitors which bind to trypsin. The hydration dynamics study of LA1 and LA2 also confirm the suitability of water molecules at the active Arg site. Moreover, the presence of a unique 3D-structural motif comprises with the four CPRI residues from the amino terminal is thought to be conserved in all the six studied inhibitors, which seems essential for the directional fixation for proper complexation of the Arg (5) residue towards the trypsin S1-binding pocket. The role of the disulphide linkage in the geometrical stabilization of CPRI (Cysteine, Proline, Arginine, Isoleucine) motif has also been envisaged from the comparative higher intra molecular Cys (3) -Cys (20) disulphide dihedral energies.
Collapse
Affiliation(s)
- S Chakraborty
- Department of Biophysics, Bose Institute, Calcutta, India
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chakraborty S, Bhattacharya S, Ghosh S, Bera AK, Haldar U, Pal AK, Mukhopadhyay BP, Banerjee A. Structural and interactional homology of clinically potential trypsin inhibitors: molecular modelling of cucurbitaceae family peptides using the X-ray structure of MCTI-II. PROTEIN ENGINEERING 2000; 13:551-5. [PMID: 10964984 DOI: 10.1093/protein/13.8.551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several trypsin inhibitor peptides (with 28-32 amino acid residues) belonging to the Cucurbitaceae (LA-1, LA-2, MCTI-I, CMTI-I, CMTI-III, CMTI-IV), characterized by a distinctive tertiary fold with three conserved disulphide bonds and with mostly arginine at their active centre, were modelled using the high-resolution X-ray structure of a homologous inhibitor, MCTI-II, isolated from bitter gourd. All the inhibitors were modelled in both their native and complexed state with the trypsin molecule, keeping the active site the same as was observed in the trypsin-MCTI-II complex, by homology modelling using the InsightII program. The minimized energy profile supported the binding constants (binding behaviour) of the inhibitor-trypsin complexes in the solution state. A difference accessible surface area (DASA) study of the trypsin with and without inhibitors revealed the subsites of trypsin where the inhibitors bind. It revealed that the role of mutation of these peptides through evolution is to modulate their inhibitory function depending on the biological need rather than changing the overall structural folding characteristics which are highly conserved. The minor changes of amino acids in the non-conserved regions do not influence significantly the basic conformational and interactional sequences at the trypsin binding subsites during complex formation.
Collapse
Affiliation(s)
- S Chakraborty
- Department of Biophysics, Bose Institute, P1/2 C.I.T. Scheme VII M, Calcutta-700054, India
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kamei K, Sato S, Hamato N, Takano R, Ohshima K, Yamamoto R, Nishino T, Kato H, Hara S. Effect of P(2)' site tryptophan and P(20)' site deletion of Momordica charantia trypsin inhibitor II on inhibition of proteinases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:6-12. [PMID: 11004551 DOI: 10.1016/s0167-4838(00)00102-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Momordica charantia trypsin inhibitor II (MCTI-II) inhibits the amidolytic activity of factor Xa with a K(i) value 10-100-fold smaller than those of other squash family inhibitors. It also inhibits factor X activation mediated by factor VIIa-tissue factor complex or factor IXa. Comparison of other squash family inhibitors reveal Trp at position 7 (P(2)') and a deletion at position 25 (P(20)') are characteristics of MCTI-II. In order to elucidate the effect of these positions on the inhibitory activity, we chemically synthesized three inhibitors: S-MCTI-II whose amino acid sequence is identical to natural MCTI-II, S-MCTI-II(7L) whose P(2)'(Trp) is substituted with Leu, and S-MCTI-II(25N) whose P(20)'(deletion) is filled with Asn. The dissociation constants of the complexes of human factor Xa with S-MCTI-II, S-MCTI-II(7L), and S-MCTI-II(25N) were 1.3x10(-6) M, 2.8x10(-5) M, and 7.3x10(-6) M, respectively. They inhibited factor X activation mediated by factor VIIa with the same degree. As in the case of natural MCTI-II, S-MCTI-II suppressed factor X activation mediated by factor IXa, while S-MCTI-II(7L) and S-MCTI-II(25N) did not. Both the Trp at the P(2)' position and deletion at the P(20)' position are thus likely required for the inhibition of factor Xa, trypsin, and factor IXa, while these two positions do not affect factor X activation initiated by the factor VIIa-tissue factor complex.
Collapse
Affiliation(s)
- K Kamei
- Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 1999; 294:1327-36. [PMID: 10600388 DOI: 10.1006/jmbi.1999.3383] [Citation(s) in RCA: 584] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several macrocyclic peptides ( approximately 30 amino acids), with diverse biological activities, have been isolated from the Rubiaceae and Violaceae plant families over recent years. We have significantly expanded the range of known macrocyclic peptides with the discovery of 16 novel peptides from extracts of Viola hederaceae, Viola odorata and Oldenlandia affinis. The Viola plants had not previously been examined for these peptides and thus represent novel species in which these unusual macrocyclic peptides are produced. Further, we have determined the three-dimensional structure of one of these novel peptides, cycloviolacin O1, using (1)H NMR spectroscopy. The structure consists of a distorted triple-stranded beta-sheet and a cystine-knot arrangement of the disulfide bonds. This structure is similar to kalata B1 and circulin A, the only two macrocyclic peptides for which a structure was available, suggesting that despite the sequence variation throughout the peptides they form a family in which the overall fold is conserved. We refer to these peptides as the cyclotide family and their embedded topology as the cyclic cystine knot (CCK) motif. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals they can be separated into two subfamilies, one of which tends to contain a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-Pro peptide bond and may conceptually be regarded as a molecular Moebius strip. Here we define the structural features of the two apparent subfamilies of the CCK peptides which may be significant for the likely defense related role of these peptides within plants.
Collapse
Affiliation(s)
- D J Craik
- Centre for Drug Design and Development, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
36
|
Christmann A, Walter K, Wentzel A, Krätzner R, Kolmar H. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides. PROTEIN ENGINEERING 1999; 12:797-806. [PMID: 10506290 DOI: 10.1093/protein/12.9.797] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Ecballium elaterium trypsin inhibitor II (EETI-II), a member of the squash family of protease inhibitors, is composed of 28 amino acid residues and is a potent inhibitor of trypsin. Its compact structure is defined by a triple-stranded antiparallel beta-sheet, which is held together by three intramolecular disulfide bonds forming a cystine knot. In order to explore the potential of the EETI-II peptide to serve as a structural scaffold for the presentation of randomized oligopeptides, we constructed two EETI-II derivatives, where the six-residue inhibitor loop was replaced by a 13-residue epitope of Sendai virus L-protein and by a 17-residue epitope from human bone Gla-protein. EETI-II and derived variants were produced via fusion to maltose binding protein MalE. By secretion of the fusion into the periplasmic space, fully oxidized and correctly folded EETI-II was obtained in high yield. EETI-II and derived variants could be presented on the Escherichia coli outer membrane by fusion to truncated Lpp'-OmpA', which comprises the first nine residues of mature lipoprotein plus the membrane spanning beta-strand from residues 46-66 of OmpA protein. Gene expression was under control of the strong and tightly regulated tetA promoter/operator. Cell viability was found to be drastically reduced by high level expression of Lpp'-OmpA'-EETI-II fusion protein. To restore cell viability, net accumulation of fusion protein in the outer membrane was reduced to a tolerable level by introduction of an amber codon at position 9 of the lpp' sequence and utilizing an amber suppressor strain as expression host. Cells expressing EETI-II variants containing an epitope were shown to be surface labeled with the respective monoclonal antibody by indirect immunofluorescence corroborating the cell surface exposure of the epitope sequences embedded in the EETI-II cystine knot scaffold. Cells displaying a particular epitope sequence could be enriched 10(7)-fold by combining magnetic cell sorting with fluorescence-activated cell sorting. These results demonstrate that E.coli cell surface display of conformationally constrained peptides tethered to the EETI-II cystine knot scaffold has the potential to become an effective technique for the rapid isolation of small peptide molecules from combinatorial libraries that bind with high affinity to acceptor molecules.
Collapse
Affiliation(s)
- A Christmann
- Abteilung für Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
37
|
Huang B, Ng TB, Fong WP, Wan CC, Yeung HW. Isolation of a trypsin inhibitor with deletion of N-terminal pentapeptide from the seeds of Momordica cochinchinensis, the Chinese drug mubiezhi. Int J Biochem Cell Biol 1999; 31:707-15. [PMID: 10404643 DOI: 10.1016/s1357-2725(99)00012-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A trypsin inhibitor, MCCTI-1, with a molecular weight of 3479 Da as determined by mass spectrometry, was isolated from Momordica cochinchinensis seeds with a procedure involving extraction with 5% acetic acid, ammonium sulfate precipitation, ion exchange chromatography on CM-Sepharose and reverse-phase high performance liquid chromatography. The sequence of its first 13 N-terminal amino acid residues was ILKKCRRDSDCPG which was about 85% identical with the sequence of trypsin inhibitor MCTI-1 from Momordica charantia Linn. When compared with the sequences of most other squash family trypsin inhibitors, the sequence of MCCTI-1 was characterized by the deletion of a pentapeptide from the N-terminus. Trypsin inhibitors also existed in seeds of some hitherto uninvestigated Cucurbitaceae species.
Collapse
Affiliation(s)
- B Huang
- Department of Biochemistry, Chinese University of Hong Kong, Shatin
| | | | | | | | | |
Collapse
|
38
|
Daly NL, Koltay A, Gustafson KR, Boyd MR, Casas-Finet JR, Craik DJ. Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity. J Mol Biol 1999; 285:333-45. [PMID: 9878410 DOI: 10.1006/jmbi.1998.2276] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional solution structure of circulin A, a 30 residue polypeptide from the African plant Chassalia parvifolia, has been determined using two-dimensional 1H-NMR spectroscopy. Circulin A was originally identified based upon its inhibition of the cytopathic effects and replication of the human immunodeficiency virus. Structural restraints consisting of 369 interproton distances inferred from nuclear Overhauser effects, and 21 backbone dihedral and nine chi1 angle restraints from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimisation in the program X-PLOR. The final set of 12 structures had mean pairwise rms differences over the whole molecule of 0.91 A for the backbone atom, and 1.68 A for all heavy atoms. For the well-defined region encompassing residues 2-12 and 18-27, the corresponding values were 0.71 and 1.66 A, respectively. Circulin A adopts a compact structure consisting of beta-turns and a distorted segment of triple-stranded beta-sheet. Fluorescence spectroscopy provided additional evidence for a solvent-exposed Trp residue. The molecule is stabilised by three disulfide bonds, two of which form an embedded loop completed by the backbone fragments connecting the cysteine residues. A third disulfide bond threads through the centre of this loop to form a "cystine-knot" motif. This motif is present in a range of other biologically active proteins, including omega-contoxin GVIA and Cucurbita maxima trypsin inhibitor. Circulin A belongs to a novel class of macrocyclic peptides which have been isolated from plants in the Rubiaceae family. The global fold of circulin A is similar to kalata B1, the only member of this class for which a structure has previously been determined.
Collapse
Affiliation(s)
- N L Daly
- Centre for Drug Design and Development, University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Mar RI, Carver JA, Sheil MM, Boschenok J, Fu S, Shaw DC. Primary structure of trypsin inhibitors from Sicyos australis. PHYTOCHEMISTRY 1996; 41:1265-1274. [PMID: 8729457 DOI: 10.1016/0031-9422(95)00734-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three trypsin inhibitors from Sicyos australis, have been isolated, purified and sequenced. Following protein extraction with ammonium sulphate, the mixture of inhibitors was separated from other proteins by trypsin-affinity chromatography. Subsequent purification of the individual inhibitors was accomplished by reversed-phase HPLC. The primary structures of each inhibitor were elucidated by a combination of protein sequencing and electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS-MS) on both the untreated and the reduced and S-carboxymethylated inhibitors. All three inhibitors show extensive sequence similarity with inhibitors from cultivated Cucurbitaceae species, although there are a number of novel residues present. One of the inhibitors has a blocked N-terminus (pyroglutamic acid) and the use of MS-MS was crucial to the elucidation of its primary structure. ESI-MS was further used to characterize the non-covalent complex between one of the inhibitors and trypsin.
Collapse
Affiliation(s)
- R I Mar
- Department of Chemistry, University of Wollongong, N.S.W., Australia
| | | | | | | | | | | |
Collapse
|
41
|
Haldar UC, Saha SK, Beavis RC, Sinha NK. Trypsin inhibitors from ridged gourd (Luffa acutangula Linn.) seeds: purification, properties, and amino acid sequences. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:177-84. [PMID: 8924202 DOI: 10.1007/bf01887398] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two trypsin inhibitors, LA-1 and LA-2, have been isolated from ridged gourd (Luffa acutangula Linn.) seeds and purified to homogeneity by gel filtration followed by ion-exchange chromatography. The isoelectric point is at pH 4.55 for LA-1 and at pH 5.85 for LA-2. The Stokes radius of each inhibitor is 11.4 A. The fluorescence emission spectrum of each inhibitor is similar to that of the free tyrosine. The biomolecular rate constant of acrylamide quenching is 1.0 x 10(9) M-1 sec-1 for LA-1 and 0.8 x 10(9) M-1 sec-1 for LA-2 and that of K2HPO4 quenching is 1.6 x 10(11) M-1 sec-1 for LA-1 and 1.2 x 10(11) M-1 sec-1 for LA-2. Analysis of the circular dichroic spectra yields 40% alpha-helix and 60% beta-turn for La-1 and 45% alpha-helix and 55% beta-turn for LA-2. Inhibitors LA-1 and LA-2 consist of 28 and 29 amino acid residues, respectively. They lack threonine, alanine, valine, and tryptophan. Both inhibitors strongly inhibit trypsin by forming enzyme-inhibitor complexes at a molar ratio of unity. A chemical modification study suggests the involvement of arginine of LA-1 and lysine of LA-2 in their reactive sites. The inhibitors are very similar in their amino acid sequences, and show sequence homology with other squash family inhibitors.
Collapse
Affiliation(s)
- U C Haldar
- Department of Chemistry, Bose Institute, Calcutta, India
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- W Stöcker
- Zoologisches Institut, Universität Heidelberg, Germany
| | | |
Collapse
|
43
|
Nielsen KJ, Alewood D, Andrews J, Kent SB, Craik DJ. An 1H NMR determination of the three-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor from Ecballium elaterium (EETI-II). Protein Sci 1994; 3:291-302. [PMID: 8003965 PMCID: PMC2142802 DOI: 10.1002/pro.5560030213] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 3-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor Ecballium elaterium (EETI-II) have been determined by 1H NMR spectroscopy and simulated annealing calculations incorporating NOE-derived distance constraints. Spectra were assigned using 2-dimensional NMR methods at 400 MHz, and internuclear distances were determined from NOESY experiments. Three-bond spin-spin couplings between C alpha H and amide protons, amide exchange rates, and the temperature dependence of amide chemical shifts were also measured. The structure consists largely of loops and turns, with a short region of beta-sheet. The Leu-5 substitution produces a substantial reduction in affinity for trypsin relative to native EETI-II, which contains an Ile at this position. The global structure of the Leu-5 analogue studied here is similar to that reported for native EETI-II (Heitz A, Chiche L, Le-Nguyen D, Castro B, 1989, Biochemistry 28:2392-2398) and to X-ray and NMR structures of the related proteinase inhibitor CMTI-I (Bode W et al., 1989, FEBS Lett 242:285-292; Holak TA et al., 1989a, J Mol Biol 210:649-654; Holak TA, Gondol D, Otlewski J, Wilusz T, 1989b, J Mol Biol 210:635-648; Holak TA, Habazettl J, Oschkinat H, Otlewski J, 1991, J Am Chem Soc 113:3196-3198). The region near the scissile bond is the most disordered part of the structure, based on geometric superimposition of 40 calculated structures. This disorder most likely reflects additional motion being present in this region relative to the rest of the protein. This motional disorder is increased in the Leu-5 analogue relative to the native form and may be responsible for its reduced trypsin binding. A second form of the protein synthesized with all (D) amino acids was also studied by NMR and found to have a spectrum identical with that of the (L) form. This is consistent with the (D) form being a mirror image of the (L) form and not distinguishable by NMR in an achiral solvent (i.e., H2O). The (D) form has no activity against trypsin, as would be expected for a mirror-image form.
Collapse
Affiliation(s)
- K J Nielsen
- Victorian College of Pharmacy, Monash University, Parkville, Australia
| | | | | | | | | |
Collapse
|
44
|
Rózycki J, Kupryszewski G, Rolka K, Ragnarsson U, Zbyryt T, Krokoszyńska I, Wilusz T. New active analogues of Cucurbita maxima trypsin inhibitor III (CMTI-III) modified in the non-contact region. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:21-3. [PMID: 8003251 DOI: 10.1515/bchm3.1994.375.1.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four new analogues of trypsin inhibitor CMTI-III(3-28) = [desArg1,desVal2,desGly29]CMTI-III which was recently shown to be fully active, were synthesized by the solid-phase method. The introduction of glycine in position 9 (peptide 1) and Gly-Pro-Gly (peptide 2) and Gly-Pro-Asn (peptide 3) in the regions 17-19 and 23-25, respectively, did not change the antitrypsin activity of all modified peptides. All of these substitutions are presumed to be outside the trypsin-binding loop as judged from the X-ray structure of the complex between beta-trypsin and the related inhibitor CMTI-I. Also the fourth analogue which was substituted in all the positions mentioned, exhibited the full activity.
Collapse
Affiliation(s)
- J Rózycki
- Faculty of Chemistry, University of Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
45
|
Rózycki J, Kupryszewski G, Rolka K, Ragnarsson U, Zbytryt T, Krokoszyńska I, Otlewski J. Glycine-rich analogues of Cucurbita maxima trypsin inhibitor (CMTI-III) substituted by valine in position 27 display relatively low antitrypsin activity. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1993; 374:851-4. [PMID: 8267878 DOI: 10.1515/bchm3.1993.374.7-12.851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Five new analogues of the trypsin inhibitor CMTI-III were synthesized by the solid-phase method. All analogues containing a valine residue in position 27 and glycine residues in some or all of the positions 9, 11, 14, 17, 19, 29 as well as in two cases a norleucine residue in position 8 displayed association equilibrium constants by 6-7 orders of magnitude lower than the native CMTI-III inhibitor.
Collapse
Affiliation(s)
- J Rózycki
- Faculty of Chemistry, University of Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
46
|
Le-Nguyen D, Heitz A, Chiche L, el Hajji M, Castro B. Characterization and 2D NMR study of the stable [9-21, 15-27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II. Protein Sci 1993; 2:165-74. [PMID: 8443596 PMCID: PMC2142350 DOI: 10.1002/pro.5560020205] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The three disulfide Ecballium elaterium trypsin inhibitor II (EETI II) reduction with dithiothreitol (DTT) and reoxidation of the fully reduced derivative have been examined. A common stable intermediate has been observed for both processes. Isolation and sequencing of carboxymethylated material showed that the intermediate lacks the [2-19] bridge. The NMR study showed a very strong structural conservation as compared to the native EETI II, suggesting that the bridges are the [9-21] and [15-27] native ones. The differences occurred in sections 2-7 (containing the free cysteine 2 and the Arg 4-Ile 5 active site) and 19-21 (containing the second free cysteine). Distance geometry calculations and restrained molecular dynamics refinements were also in favor of a [9-21, 15-27] arrangement and resulted in a well-conserved (7-28) segment.
Collapse
|
47
|
Rolka K, Kupryszewski G, Rózycki J, Ragnarsson U, Zbyryt T, Otlewski J. New analogues of Cucurbita maxima trypsin inhibitor III (CMTI III) with simplified structure. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1992; 373:1055-60. [PMID: 1418676 DOI: 10.1515/bchm3.1992.373.2.1055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Seven new analogues of trypsin inhibitor CMTI III were obtained by solid-phase peptide synthesis. Three analogues contained only two, instead of three, disulfide bridges, whereas the molecules of the next four analogues were shortened at the N- and/or C-terminus. The elimination of one disulfide bridge in CMTI III induces a decrease in the association equilibrium constants by 6-7 orders of magnitude, whereas the removal of one, two or three amino-acid residues at the N- and/or C-terminus does not significantly affect the activity.
Collapse
Affiliation(s)
- K Rolka
- Faculty of Chemistry, University of Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
48
|
Hocman G. Chemoprevention of cancer: protease inhibitors. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1365-75. [PMID: 1426518 DOI: 10.1016/0020-711x(92)90061-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The defense of the organism against cancer by inhibitors of proteolytic enzymes which are able to block the metastasizing stage of the disease is reviewed. 2. The contemporary views on the possible mechanisms of the process of prevention on both molecular and cellular levels are presented.
Collapse
Affiliation(s)
- G Hocman
- Institute of Preventive and Clinical Medicine, Bratislava, Czechoslovakia
| |
Collapse
|
49
|
Derreumaux P, Vergoten G. Effect of Urey-Bradley-Shimanouchi force field on the harmonic dynamics of proteins. Proteins 1991; 11:120-32. [PMID: 1719528 DOI: 10.1002/prot.340110205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A normal mode analysis of bovine pancreatic trypsin inhibitor is carried out by using a Urey-Bradley-Shimanouchi potential energy function. The density of vibrational states, the magnitudes, and time scales of the atomic fluctuations are compared with experimental and theoretical results obtained by the more commonly used potential energy functions. The atomic fluctuations of Lys-15 are subject to extensive considerations as this residue is buried in the trypsin specificity pocket. It is found that Arg-17 is likely to be of importance in order to understand the way BPTI binds on trypsin.
Collapse
Affiliation(s)
- P Derreumaux
- Université de Lille II, Faculté de Pharmacie, Laboratoire de Génie Biologique et Médical, I.N.S.E.R.M. U279, France
| | | |
Collapse
|
50
|
Stöcker W, Sauer B, Zwilling R. Kinetics of nitroanilide cleavage by astacin. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1991; 372:385-92. [PMID: 1910577 DOI: 10.1515/bchm3.1991.372.1.385] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The investigation of the catalytic properties of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L., has gained importance, because the enzyme represents a novel, structurally distinct family of metalloproteinases which also includes a human bone morphogenetic protein (BMP1). Astacin releases nitroaniline from succinyl-alanyl-alanyl-alanyl-4-nitroanilide (Suc-Ala-Ala-Ala-pNA), a substrate originally designed for pancreatic elastase. This activity was unexpected since only few metalloproteinases cleave small nitroanilide substrates, and, moreover, the primary specificity of astacin toward protein substrates is determined by short, uncharged amino-acid sidechains in the P'1-position, i.e. the new N-terminus after cleavage. The specificity constants, kcat/Km, for the release of nitroaniline from substrates of the general structure Suc-Alan-pNA (n = 2, 3, 5) and Alan-pNA (n = 1, 2, 3) increase with the number of alanine residues. The longest peptide, Suc-Ala(-)-Ala-Ala-Ala-Ala-pNA, is the only one out of eleven substrates used in this study, which is cleaved at two positions by astacin. The first cleavage yields Suc-Ala(-)-Ala and Ala-Ala-Ala-pNA. From the resulting C-terminal fragment, Ala-Ala-Ala-pNA, a second cut releases nitroaniline. The 1200-fold higher specificity constant observed for the first as compared to the second cleavage in Suc-Ala-Ala-Ala-Ala-Ala-pNA reflects the preference of astacin for true peptide bonds and also the importance of a minimum length of the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Stöcker
- Zoologisches Institut, Universität Heidelberg, Fachrichtung Physiologie
| | | | | |
Collapse
|