1
|
Sampaio C, Cusicanqui Méndez DA, Buzalaf MAR, Pessan JP, Cruvinel T. Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization. BIOFOULING 2024; 40:743-753. [PMID: 39377107 DOI: 10.1080/08927014.2024.2410781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
This study compared the influence of growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilms and enamel demineralization. Biofilms grown in sucrose-supplemented modified McBain medium, containing 25/50 mmol/L PIPES (buffer), under anaerobiosis/microaerophilia, for 3 and 7 days were evaluated for their acidogenicity, microbial composition, matrix, and enamel mineral content. The viability of total lactobacilli was higher in the group containing 25 mmol/L PIPES grown under anaerobiosis, which also showed lower pH values. The viability of total streptococci and total microorganisms was significantly higher at 7 days in the groups with 50 mmol/L PIPES than at 3 days, regardless of the incubation atmosphere. No significant differences were observed in lactic acid, calcium, superficial hardness loss, or lesion depth. In conclusion, the incubation atmosphere, buffer content in the growth media, and duration of biofilm formation displayed species-varied influence on microcosm biofilms, without causing significant changes in acid metabolism or enamel demineralization.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | | | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
2
|
Takahashi M, Yokomichi M, Takei Y, Horaguchi Y, Makabe K, Konno H, Yano S, Kokeguchi S. Domain structure and function of α-1,3-glucanase Agl-EK14 from the gram-negative bacterium Flavobacterium sp. EK-14. J Biosci Bioeng 2024; 138:118-126. [PMID: 38825558 DOI: 10.1016/j.jbiosc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The α-1,3-glucanase Agl-EK14 from Flavobacterium sp. EK-14 comprises a signal peptide (SP), a catalytic domain (CAT), a first immunoglobulin-like domain (Ig1), a second immunoglobulin-like domain (Ig2), a ricin B-like lectin domain (RicinB), and a carboxy-terminal domain (CTD). SP and CTD are predicted to be involved in extracellular secretion, while the roles of Ig1, Ig2, and RicinB are unclear. To clarify their roles, domain deletion enzymes Agl-EK14ΔRicinB, Agl-EK14ΔIg2RicinB, and Agl-EK14ΔIg1Ig2RicinB were constructed. The insoluble α-1,3-glucan hydrolytic, α-1,3-glucan binding, and fungal cell wall hydrolytic activities of the deletion enzymes were almost the same and lower than those of Agl-EK14. Kinetic analysis revealed that the Km values of the deletion enzymes were similar and uniformly higher than those of Agl-EK14. These results suggest that the deletion of RicinB causes a decline in binding and hydrolytic activity and increases the Km value. To confirm the role of RicinB, Ig1, Ig2, and RicinB were fused with green fluorescent protein (GFP). As a result, RicinB-fused GFP (GFP-RicinB) showed binding to insoluble α-1,3-glucan and Aspergillus oryzae cell walls, whereas Ig1- and Ig2-fused GFP did not. These results indicated that RicinB is involved in α-1,3-glucan binding. The fusion protein GFP-Ig1Ig2RicinB was also constructed and GFP-Ig1Ig2RicinB showed strong binding to the cell wall of A. oryzae compared to GFP-RicinB. Gel filtration column chromatography suggested that the strong binding was due to GFP-Ig1Ig2RicinB loosely associated with itself.
Collapse
Affiliation(s)
- Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Moe Yokomichi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuki Takei
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Susumu Kokeguchi
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
3
|
Takahashi M, Yano S, Horaguchi Y, Otsuka Y, Suyotha W, Makabe K, Konno H, Kokeguchi S. α-1,3-Glucanase from the gram-negative bacterium Flavobacterium sp. EK-14 hydrolyzes fungal cell wall α-1,3-glucan. Sci Rep 2023; 13:21420. [PMID: 38049513 PMCID: PMC10696023 DOI: 10.1038/s41598-023-48627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The glycoside hydrolase (GH) 87 α-1,3-glucanase (Agl-EK14) gene was cloned from the genomic DNA of the gram-negative bacterium Flavobacterium sp. EK14. The gene consisted of 2940 nucleotides and encoded 980 amino acid residues. The deduced amino acid sequence of Agl-EK14 included a signal peptide, a catalytic domain, a first immunoglobulin-like domain, a second immunoglobulin-like domain, a ricin B-like lectin domain, and a carboxyl-terminal domain (CTD) involved in extracellular secretion. Phylogenetic analysis of the catalytic domain of GH87 enzymes suggested that Agl-EK14 is distinct from known clusters, such as clusters composed of α-1,3-glucanases from bacilli and mycodextranases from actinomycetes. Agl-EK14 without the signal peptide and CTD hydrolyzed α-1,3-glucan, and the reaction residues from 1 and 2% substrates were almost negligible after 1440 min reaction. Agl-EK14 hydrolyzed the cell wall preparation of Aspergillus oryzae and released glucose, nigerose, and nigero-triose from the cell wall preparation. After treatment of A. oryzae live mycelia with Agl-EK14 (at least 0.5 nmol/ml), mycelia were no longer stained by red fluorescent protein-fused α-1,3-glucan binding domains of α-1,3-glucanase Agl-KA from Bacillus circulans KA-304. Results suggested that Agl-EK14 can be applied to a fungal cell wall lytic enzyme.
Collapse
Affiliation(s)
- Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuitsu Otsuka
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Wasana Suyotha
- Enzyme Technology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Susumu Kokeguchi
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| |
Collapse
|
4
|
Boutsioukis C, Arias‐Moliz MT, Chávez de Paz LE. A critical analysis of research methods and experimental models to study irrigants and irrigation systems. Int Endod J 2022; 55 Suppl 2:295-329. [PMID: 35171506 PMCID: PMC9314845 DOI: 10.1111/iej.13710] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Irrigation plays an essential role in root canal treatment. The purpose of this narrative review was to critically appraise the experimental methods and models used to study irrigants and irrigation systems and to provide directions for future research. Studies on the antimicrobial effect of irrigants should use mature multispecies biofilms grown on dentine or inside root canals and should combine at least two complementary evaluation methods. Dissolution of pulp tissue remnants should be examined in the presence of dentine and, preferably, inside human root canals. Micro-computed tomography is currently the method of choice for the assessment of accumulated dentine debris and their removal. A combination of experiments in transparent root canals and numerical modeling is needed to address irrigant penetration. Finally, models to evaluate irrigant extrusion through the apical foramen should simulate the periapical tissues and provide quantitative data on the amount of extruded irrigant. Mimicking the in vivo conditions as close as possible and standardization of the specimens and experimental protocols are universal requirements irrespective of the surrogate endpoint studied. Obsolete and unrealistic models must be abandoned in favour of more appropriate and valid ones that have more direct application and translation to clinical Endodontics.
Collapse
Affiliation(s)
- Christos Boutsioukis
- Department of EndodontologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | | |
Collapse
|
5
|
Itoh T, Panti N, Hayashi J, Toyotake Y, Matsui D, Yano S, Wakayama M, Hibi T. Crystal structure of the catalytic unit of thermostable GH87 α-1,3-glucanase from Streptomyces thermodiastaticus strain HF3-3. Biochem Biophys Res Commun 2020; 533:1170-1176. [PMID: 33041007 DOI: 10.1016/j.bbrc.2020.09.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
α-1,3-Glucan is a homopolymer composed of D-glucose (Glc) and it is an extracellular polysaccharide found in dental plaque due to Streptococcus species. α-1,3-Glucanase from Streptomyces thermodiastaticus strain HF3-3 (Agl-ST) has been identified as a thermostable α-1,3-glucanase, which is classified into glycoside hydrolase family 87 (GH87) and specifically hydrolyzes α-1,3-glucan with an endo-action. The enzyme has a potential to inhibit the production of dental plaque and to be used for biotechnological applications. Here we show the structure of the catalytic unit of Agl-ST determined at 1.16 Å resolution using X-ray crystallography. The catalytic unit is composed of two modules, a β-sandwich fold module, and a right-handed β-helix fold module, which resembles other structural characterized GH87 enzymes from Bacillus circulans str. KA-304 and Paenibacillus glycanilyticus str. FH11, with moderate sequence identities between each other (approximately 27% between the catalytic units). However, Agl-ST is smaller in size and more thermally stable than the others. A disulfide bond that anchors the C-terminal coil of the β-helix fold, which is expected to contribute to thermal stability only exists in the catalytic unit of Agl-ST.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Niphawan Panti
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Junji Hayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan
| | - Yosuke Toyotake
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Daisuke Matsui
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Johnan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| |
Collapse
|
6
|
Itoh T, Intuy R, Suyotha W, Hayashi J, Yano S, Makabe K, Wakayama M, Hibi T. Structural insights into substrate recognition and catalysis by glycoside hydrolase family 87 α‐1,3‐glucanase from
Paenibacillus glycanilyticus
FH11. FEBS J 2019; 287:2524-2543. [DOI: 10.1111/febs.15161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/02/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology Fukui Prefectural University Eiheiji‐cho Japan
| | - Rattanaporn Intuy
- Department of Biotechnology College of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Wasana Suyotha
- Department of Industrial Biotechnology Faculty of Agro‐industry Prince of Songkla University Hat Yai Thailand
| | - Junji Hayashi
- Department of Biotechnology College of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering Graduate School of Science and Engineering Yamagata University Yonezawa Japan
| | - Koki Makabe
- Department of Biochemical Engineering Graduate School of Science and Engineering Yamagata University Yonezawa Japan
| | - Mamoru Wakayama
- Department of Biotechnology College of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology Fukui Prefectural University Eiheiji‐cho Japan
| |
Collapse
|
7
|
Huang B, Cvitkovitch DG, Santerre JP, Finer Y. Biodegradation of resin–dentin interfaces is dependent on the restorative material, mode of adhesion, esterase or MMP inhibition. Dent Mater 2018; 34:1253-1262. [DOI: 10.1016/j.dental.2018.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
8
|
Zhu W, Liu S, Liu J, Zhou Y, Lin H. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans. J Med Microbiol 2018; 67:641-651. [PMID: 29595415 PMCID: PMC5994696 DOI: 10.1099/jmm.0.000718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Adherence capacity is one of the principal virulence factors of Streptococcus mutans, and adhesion virulence factors are controlled by small RNAs (sRNAs) at the post-transcriptional level in various bacteria. Here, we aimed to identify and decipher putative adhesion-related sRNAs in clinical strains of S. mutans. Methodology RNA deep-sequencing was performed to identify potential sRNAs under different adhesion conditions. The expression of sRNAs was analysed by quantitative real-time PCR (qRT-PCR), and bioinformatic methods were used to predict the functional characteristics of sRNAs. Results A total of 736 differentially expressed candidate sRNAs were predicted, and these included 352 sRNAs located on the antisense to mRNA (AM) and 384 sRNAs in intergenic regions (IGRs). The top 7 differentially expressed sRNAs were successfully validated by qRT-PCR in UA159, and 2 of these were further confirmed in 100 clinical isolates. Moreover, the sequences of two sRNAs were conserved in other Streptococcus species, indicating a conserved role in such closely related species. A good correlation between the expression of sRNAs and the adhesion of 100 clinical strains was observed, which, combined with GO and KEGG, provides a perspective for the comprehension of sRNA function annotation. Conclusion This study revealed a multitude of novel putative adhesion-related sRNAs in S. mutans and contributed to a better understanding of information concerning the transcriptional regulation of adhesion in S. mutans.
Collapse
Affiliation(s)
- Wenhui Zhu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Shanshan Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Jia Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Yan Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Huancai Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| |
Collapse
|
9
|
Abstract
Models of the caries process have made significant contributions toward defining the roles of bacteria in caries. Microbiologists use a variety of in vitro systems to model aspects of the caries process. Also, in situ models in humans provide information on the microbiology of caries in vivo. These models do not involve the entire process leading to natural caries; consequently, the results from such studies are used to deduce the roles of bacteria in natural caries. Therefore, they can be described as Inferential Caries Models. In contrast, animal models and some clinical trials in humans involve natural caries and can be described as Complete Caries Models. Furthermore, these models are used in two distinct ways. They can be used as Exploratory Models to explore different aspects of the caries process, or as Test Models to determine the effects of anticaries agents. This dichotomy in approach to the use of caries models results in modification of the models to suit a particular role. For example, if we consider Exploratory Models, the in situ appliance in humans is superior to others for analyzing the microbiology of plaque development and demineralization in vivo. The chemostat and biofilm models are excellent for exploring factors influencing bacterial interactions. Both models can also be used as Test Models. The in situ model has been used to test the effects of fluoride on the microflora and demineralization, while the chemostat and biofilm models allow for the testing of antibacterial agents. Each model has its advantages and disadvantages and role in analysis of the caries process. Selection of the model depends on the scientific question posed and the limitations imposed by the conditions available for the study.
Collapse
Affiliation(s)
- G.H. Bowden
- Department of Oral Biology Faculty of Dentistry University of Manitoba Winnipeg, Manitoba, Canada R3E OW2
| |
Collapse
|
10
|
Sim CP, Dashper SG, Reynolds EC. Oral microbial biofilm models and their application to the testing of anticariogenic agents. J Dent 2016; 50:1-11. [DOI: 10.1016/j.jdent.2016.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/04/2016] [Accepted: 04/24/2016] [Indexed: 01/05/2023] Open
|
11
|
Suyotha W, Yano S, Wakayama M. α-1,3-Glucanase: present situation and prospect of research. World J Microbiol Biotechnol 2016; 32:30. [PMID: 26748807 DOI: 10.1007/s11274-015-1977-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
Abstract
α-1,3-Glucanases hydrolyze α-1,3-glucan which is an insoluble linear α-1,3-linked homopolymer of glucose and these enzymes are classified into two families of glycoside hydrolases on the basis of amino acid sequence similarity; type-71 α-1,3-glucanases found in fungi and type-87 enzymes in bacteria. α-1,3-Glucan (also called 'mutan') is a major component of dental plaque formed by oral Streptococci and has important physiological roles in various fungal species, including as a component of cell walls, an endogenous carbon source for sexual development, and a virulent factor. Considering these backgrounds, α-1,3-glucanases have been investigated from the perspectives of applications to dental care and development of cell-wall lytic enzymes. Compared with information regarding other glycoside hydrolases such as amylases, cellulases, chitinases, and β-glucanases, there is limited biochemical and structural information available regarding α-1,3-glucanase. Further research on α-1,3-glucanases on enzyme application to dental care and biological control of pathogenic fungi is expected. In this mini-review, we briefly describe how α-1,3-glucanases are categorized and characterized and present our study findings regarding α-1,3-glucanase from Bacillus circulans KA-304. Furthermore, we briefly discuss potential future applications of α-1,3-glucanases.
Collapse
Affiliation(s)
- Wasana Suyotha
- Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
12
|
The impact of dairy consumption on salivary inoculum. Dysphagia 2014; 29:277-82. [PMID: 24385220 DOI: 10.1007/s00455-013-9508-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Quantitative levels of harmful oral microbes present following complex surgical excisions of head and neck cancer are important since wounds are often contaminated through direct connection to the oral cavity and its flora. This possibility is especially important in irradiated patients who have decreased protective salivary function. In addition, high oral microbial levels increase and intensify oral mucositis leading to significant morbidity in patients treated with radiation therapy. One previously untested surgical teaching to decrease the bacterial inoculum present in the oral cavity is to counsel patients against consuming otherwise nutritious dairy products, as they are thought to coat the oral cavity with rate-limiting nutrients vital for bacterial growth. This risk may extend to individuals with chronic laryngeal penetration or aspiration, since salivary bacterial load might represent a lethal threat in the presence of marginal pulmonary reserve. A crossover study using six healthy adult volunteers and six patients who had previously undergone radiation therapy to an oropharyngeal primary site was performed. Saliva samples were quantitatively cultured in both groups with and without the consumption of dairy products at 1-h and 5-h intervals. Analysis of quantitative cultures demonstrated that the consumption of dairy products had no influence on bacterial levels present in previously radiated subjects and nonirradiated controls. Additionally, the consumption of dairy did not affect the composition of microbes present. Due to the lack of changes in both quantity and composition of oral bacteria seen in this study, patients would not benefit from the avoidance of dairy products.
Collapse
|
13
|
Abstract
A model is a representation of some real phenomena and contains aspects or elements of the real system to be modeled. The model reflects (or duplicates) the type of behavior (or mechanisms) seen in the real system. The main characteristic of any model is the mapping of elements or parameters found in the system being studied (e.g. tongue dorsum biofilm in situ) on to the model being devised (e.g. laboratory perfusion biofilm). Such parameters include correct physico-chemical (abiotic) conditions as well as biotic conditions that occur in both model and reality. The main purpose of a model is to provide information that better explains the processes observed or thought to occur in the real system. Such models can be abstract (mental, conceptual, theoretical, mathematical or computational) or 'physical', e.g. in the form of a real disaggregated in vitro system or laboratory model. A wide range of different model systems have been used in oral biofilm research. These will be briefly reviewed with special emphasis on those models that have contributed most to knowledge in breath odor research. The different model systems used in breath odor research are compared. Finally, the requirements for developing an overall 'bad breath model' from considering the processes as a whole (real oral cavity, substrates in saliva, biotransformation by tongue microflora, odor gases in the breath) and extending this to the detection of malodor by the human nose will be outlined and discussed.
Collapse
Affiliation(s)
- J Greenman
- Faculty of Applied Sciences, University of the West of England (UWE), Bristol, UK.
| | | | | | | | | |
Collapse
|
14
|
Biochemical and molecular characterization of a novel type of Mutanase from Paenibacillus sp. strain RM1: identification of its mutan-binding domain, essential for degradation of Streptococcus mutans biofilms. Appl Environ Microbiol 2008; 74:2759-65. [PMID: 18326674 DOI: 10.1128/aem.02332-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel type of mutanase (termed mutanase RM1) was isolated from Paenibacillus sp. strain RM1. The purified enzyme specifically hydrolyzed alpha-1,3-glucan (mutan) and effectively degraded biofilms formed by Streptococcus mutans, a major etiologic agent in the progression of dental caries, even following brief incubation. The nucleotide sequence of the gene for this protein contains a 3,873-bp open reading frame encoding 1,291 amino acids with a calculated molecular mass of 135 kDa. The protein contains two major domains, the N-terminal domain (277 residues) and the C-terminal domain (937 residues), separated by a characteristic sequence composed of proline and threonine repeats. The characterization of the recombinant proteins for each domain which were expressed in Escherichia coli demonstrated that the N-terminal domain had strong mutan-binding activity but no mutanase activity whereas the C-terminal domain was responsible for mutanase activity but had mutan-binding activity significantly lower than that of the intact protein. Importantly, the biofilm-degrading activity observed with the intact protein was not exhibited by either domain alone or in combination with the other. Therefore, these results indicate that the structural integrity of mutanase RM1 containing the N-terminal mutan-binding domain is required for the biofilm-degrading activity.
Collapse
|
15
|
Rukayadi Y, Hwang JK. Effect of coating the wells of a polystyrene microtiter plate with xanthorrhizol on the biofilm formation of Streptococcus mutans. J Basic Microbiol 2006; 46:410-5. [PMID: 17009296 DOI: 10.1002/jobm.200510088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Colonization on the surface of tooth by Streptococcus mutans is an important step in the initiation of dental plaque. Polystyrene microtiter plates have been employed to study bacterial colonization and biofilm formation of periodontal bacteria. The objective of this work was to evaluate the effect of coating the wells of a polystyrene microtiter plate with xanthorrhizol isolated from java turmeric (Curcuma xanthorrhiza Roxb.) on Strep. mutans biofilm formation. Our studies demonstrated that coating of a polystyrene microtiter plate with 5 microg/ml of xanthorrhizol resulted in significant (up to 60%) reduction of adherent cells compared to that of cells in uncoated wells. This result suggests that xanthorrhizol displays potent activity in preventing Strep. mutans biofilm formation.
Collapse
Affiliation(s)
- Yaya Rukayadi
- Department of Biotechnology & Bioproducts Research Center, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
16
|
Hengtrakool C, Pearson GJ, Wilson M. Interaction between GIC and S. sanguis biofilms: Antibacterial properties and changes of surface hardness. J Dent 2006; 34:588-97. [PMID: 16540228 DOI: 10.1016/j.jdent.2005.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 02/02/2005] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the interaction of Streptococcus sanguis with two glass-ionomer formulations (GIC:A containing fluoride and GIC:B without fluoride) with particular reference to bacterial growth and changes in hardness of the cement with respect to time. MATERIALS AND METHODS Discs of two water activated glass-ionomer cements were prepared according to the manufacturer's instruction. Hydroxyapatite discs (HA) were used as controls. 3D laser scanning technique was used to characterize surface roughness and area of the substrate prior to growing biofilms. Surface hardness was evaluated before and after biofilm growth. A constant depth film fermenter system (CDFF) was used to grow S. sanguis biofilms on the specimens in a similar manner to that described previously by Wilson et al. in 1995. For susceptibility measurement, specimens were removed from CDFF aseptically over periods up to 14d after the first colonization with bacteria. Counts of viable bacterial in the accumulating biofilm layer on each surface were measured and converted to colony forming units per unit surface area. To determine the effect of storage media, hardness discs were exposed to distilled water, lactic acid pH 4, lactic acid pH 5, citric acid pH 5, artificial saliva and S. sanguis biofilms. Twenty-four hours after preparing and subsequent autoclaving, specimens were transferred to a vessel containing 40 ml storage medium. The specimens were investigated for periods up to 7d. RESULTS The viable counts of S. sanguis per mm2 on GIC:A were significantly less than those on HA and GIC:B during the first 5d (p<0.05). The viable counts of bacteria on the surface of GIC:B were lower during the initial 5d when compared to HA. Exposure of GIC:A and GIC:B to different medium produced softening to the surface of cement. It is apparent that the effects of the biofilms are significantly greater than storage in water but similar to storage in lactic acid pH 5. CONCLUSIONS This investigation showed that the growth of S. sanguis biofilms were significantly affected by both glass-ionomer formulations, the greater reduction being noted on the surface of the fluoride containing GIC. S. sanguis biofilms produced reduction on the surface hardness of the cement equivalent to that seen after immersion in lactic acid at pH 5. This indicates that while S. sanguis biofilm is affected by the GIC, there is also a decrease in hardness of the cement indicating some cement degradation.
Collapse
Affiliation(s)
- C Hengtrakool
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, 90112, Thailand
| | | | | |
Collapse
|
17
|
Kan B, Ries J, Normark BH, Chang FY, Feldman C, Ko WC, Rello J, Snydman DR, Yu VL, Ortqvist A. Endocarditis and pericarditis complicating pneumococcal bacteraemia, with special reference to the adhesive abilities of pneumococci: results from a prospective study. Clin Microbiol Infect 2006; 12:338-44. [PMID: 16524410 DOI: 10.1111/j.1469-0691.2006.01363.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The incidence of pneumococcal cardiac infections is unknown and the pathogenicity of such complications is poorly understood. In a prospective, international, observational study, eight of 844 patients hospitalised with Streptococcus pneumoniae bacteraemia developed endocarditis (n = 5) or pericarditis (n = 3). The clinical and microbiological characteristics of these patients were compared with those of control patients. The corresponding incidence of pneumococcal endocarditis was c. 1-3/1 million inhabitants/year. There was no common pattern in the medical history of patients with an infectious cardiac complication. The severity of illness upon admission was comparable with that for patients without infectious cardiac complications, as was the 14-day mortality rate (25% and 17%, respectively). For encapsulated S. pneumoniae, no significant differences were found between patients with infectious cardiac complications and controls in adherence assays. However, non-encapsulated S. pneumoniae showed higher hydrophobicity and increased adherence to human epithelial cells.
Collapse
Affiliation(s)
- B Kan
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shen S, Samaranayake LP, Yip HK. In vitro growth, acidogenicity and cariogenicity of predominant human root caries flora. J Dent 2004; 32:667-78. [PMID: 15476962 DOI: 10.1016/j.jdent.2004.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 06/12/2004] [Accepted: 07/06/2004] [Indexed: 10/26/2022] Open
Abstract
Streptococcus mutans (Sm), Lactobacillus acidophilus (La) and Actinomyces israelii (Ai) have been associated with root surface caries, which is an increasing problem in elderly Chinese. The aim of this study therefore, was to evaluate in vitro, the growth, acidogenicity and cariogenicity of these organisms, both in mono- and co-cultures using an in vitro model. Forty-eight root specimens were prepared using intact extracted human molars. Fresh, wild-type bacteria obtained from root caries lesions were assembled into seven experimental groups as either mono- or co-cultures and incubated with the root specimens. Appropriate controls were included. Growth curve of each experimental group was monitored for 24h, aerobically, at 37 degrees C using a microplate reader. The pH of the medium was recorded after 24-h incubation using a pH meter. Mean depths of artificial root lesions produced in each cultural group were measured using polarized light microscopy in specimens cut into thin sections (100+/-20 microm). Compared with mono-cultures, synergistic growth was observed in co-cultures of 'La+Sm', 'Ai+La' and 'Ai+La+Sm'. Mean lesion depth produced in La group was significantly shallower than other mono- or co-culture groups (p<0.01). The pH values of all culture media were similar after 24-h incubation. The current data elucidate the complex interactions of three predominant bacterial species considered prime agents of human root surface caries.
Collapse
Affiliation(s)
- Song Shen
- Oral Bio-Sciences, Faculty of Dentistry, The University of Hong Kong, The Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong SAR, China
| | | | | |
Collapse
|
19
|
Abstract
It is generally reported that fungi like Pleurotus spp. can fix nitrogen (N2). The way they do it is still not clear. The present study hypothesized that only associations of fungi and diazotrophs can fix N2. This was tested in vitro. Pleurotus ostreatus was inoculated with a bradyrhizobial strain nodulating soybean and P. ostreatus with no inoculation was maintained as a control. At maximum mycelial colonization by the bradyrhizobial strain and biofilm formation, the cultures were subjected to acetylene reduction assay (ARA). Another set of the cultures was evaluated for growth and nitrogen accumulation. Nitrogenase activity was present in the biofilm, but not when the fungus or the bradyrhizobial strain was alone. A significant reduction in mycelial dry weight and a significant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be attributed to C transfer from the fungus to the bradyrhizobial strain, because of high C cost of biological N2 fixation. This needs further investigations using 14C isotopic tracers. It is clear from the present study that mushrooms alone cannot fix atmospheric N2. But when they are in association with diazotrophs, nitrogenase activity is detected because of the diazotrophic N2 fixation. It is not the fungus that fixes N2 as reported earlier. Effective N2 fixing systems, such as the present one, may be used to increase protein content of mushrooms. Our study has implications for future identification of as yet unidentified N2 systems occurring in the environment.
Collapse
Affiliation(s)
- H S Jayasinghearachchi
- Biological Nitrogen Fixation Project, Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | | |
Collapse
|
20
|
Welin J, Wilkins JC, Beighton D, Svensäter G. Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl Environ Microbiol 2004; 70:3736-41. [PMID: 15184181 PMCID: PMC427790 DOI: 10.1128/aem.70.6.3736-3741.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells growing on surfaces in biofilms exhibit properties distinct from those of planktonic cells, such as increased resistance to biocides and antimicrobial agents. In spite of increased interest in biofilms, very little is known about alterations in cell physiology that occur upon attachment of cells to a surface. In this study we have investigated the changes induced in the protein synthesis by contact of Streptococcus mutans with a surface. Log-phase planktonic cells of S. mutans were allowed to adhere to a glass slide for 2 h in the presence of a (14)C-amino acid mixture. Nonadhered cells were washed away, and the adhered cells were removed by sonication. The proteins were extracted from the nonadhered planktonic and the adhered biofilm cells and separated by two-dimensional gel electrophoresis followed by autoradiography and image analysis. Image analysis revealed that the relative rate of synthesis of 25 proteins was enhanced and that of 8 proteins was diminished > or =1.3-fold in the biofilm cells. Proteins of interest were identified by mass spectrometry and computer-assisted protein sequence analysis. Of the 33 proteins associated with the adhesion response, all but 10 were identified by mass spectrometry and peptide mass fingerprinting. The most prominent change in adhered cells was the increase in relative synthesis of enzymes involved in carbohydrate catabolism indicating that a redirection in protein synthesis towards energy generation is an early response to contact with and adhesion to a surface.
Collapse
Affiliation(s)
- J Welin
- Department of Oral Biology, Faculty of Odontology, Malmö University, SE-205 06 Malmo, Sweden
| | | | | | | |
Collapse
|
21
|
McNeill K, Hamilton IR. Effect of acid stress on the physiology of biofilm cells of Streptococcus mutans. MICROBIOLOGY-SGM 2004; 150:735-742. [PMID: 14993323 DOI: 10.1099/mic.0.26482-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans is a component of the dental plaque biofilm and an important aetiological agent in dental caries. Although this organism growing in the suspended (planktonic) state has been well characterized, relatively little is known about its physiology in biofilms, particularly in the acidic environments associated with caries development. The authors determined the effect of biofilm age (1-5 days) and cell density on selected metabolic properties under conditions of glucose limitation in a biofilm-chemostat at pH 7.5 and compared these baseline values with those of 3 day biofilms subjected to acid stress. Biofilm cell biomass more than doubled over the 5 day experimental period under baseline conditions, with the glycolytic rate, glucose uptake, glucose-PTS (phosphotransferase system) activity and protein synthesis maximum at 1-2 days. DNA and RNA synthesis increased for the first 3 days before decreasing in the 5 day biofilms, while H(+)/ATPase activity was higher in 5 day biofilms than 1 day biofilms, with overall activity 5-13-fold higher per cell unit than in the associated planktonic cells. Glucose pulsing (50 mM final concentration) for three consecutive days without pH control for 5 h (pH 4.39+/-0.02) resulted in a progressive decrease in planktonic cell numbers; however, the rate of acid formation and glucose utilization in the chemostat by these cells increased per cell unit. Assays for carbohydrate metabolism in the latter cells showed increased activity, as did an assay for H(+)/ATPase (8-fold); however, DNA, RNA and protein synthesis were repressed (0.3-0.7-fold). Although the 3 day biofilm viable cell counts declined by 51 % on glucose pulsing, all the physiological parameters measured by cell unit increased in activity, with notable increases in RNA and protein synthesis (4.6-7.6-fold). The results indicate that the maintenance of intracellular pH homeostasis is the basis of the enhanced physiological status and acid tolerance of biofilm cells.
Collapse
Affiliation(s)
- Karol McNeill
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - I R Hamilton
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Welin J, Wilkins JC, Beighton D, Wrzesinski K, Fey SJ, Mose-Larsen P, Hamilton IR, Svensäter G. Effect of acid shock on protein expression by biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 2004; 227:287-93. [PMID: 14592721 DOI: 10.1016/s0378-1097(03)00693-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Streptococcus mutans is a component of the dental plaque biofilm and a major causal agent of dental caries. Log-phase cells of the organism are known to induce an acid tolerance response (ATR) at sub-lethal pH values ( approximately 5.5) that enhances survival at lower pH values such as those encountered in caries lesions. In this study, we have employed a rod biofilm chemostat system to demonstrate that, while planktonic cells induced a strong ATR at pH 5.5, biofilm cells were inherently more acid resistant than such cells in spite of a negligible induction of an ATR. Since these results suggested that surface growth itself triggered an ATR in biofilm cells, we were interested in comparing the effects of a pH change from 7.5 to 5.5 on protein synthesis by the two cell types. For this, cells were pulse labeled with [(14)C]-amino acids following the pH change to pH 5.5, the proteins extracted and separated by two-dimensional (2D) electrophoresis followed by autoradiography and computer-assisted image analysis. A comparison between the cells incubated at pH 5.5 and the control biofilm cells revealed 23 novel proteins that were absent in the control cells, and 126 proteins with an altered relative rate of synthesis. While the number of changes in protein expression in the biofilm cells was within the same range as for planktonic cells, the magnitude of their change was significantly less in biofilm cells, supporting the observation that acidification of biofilm cells induced a negligible ATR. Mass spectrometry and computer-assisted protein sequence analysis revealed that ATR induction of the planktonic cells resulted in the downregulation of glycolytic enzymes presumably to limit cellular damage by the acidification of the external environment. On the other hand, the glycolytic enzymes in control biofilm cells were significantly less downregulated and key enzymes, such as lactate dehydrogenase were upregulated during pH 5.5 incubation, suggesting that the enhanced acid resistance of biofilm cells is associated with the maintenance of pH homeostasis by H+ extrusion via membrane ATPase and increased lactate efflux.
Collapse
Affiliation(s)
- J Welin
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Streptococcus mutans, a major etiological agent of dental caries, is a component of the dental plaque biofilm and functions during caries progression in acidic lesions that may be at or below pH 4. In this study, we were interested in determining the acid tolerance of 1-7-day chemostat-grown biofilm cells of S. mutans BM71 growing in a semi-defined medium at a rate consistent with that of cells in dental plaque (dilution rate=0.1 h(-1)), as well as, assessing the capacity of 2- and 5-day biofilms to induce an acid tolerance response that would enhance survival at a killing pH (3.5). As expected, biofilm cell growth increased (2.5-fold) from day 1 to day 7 (10.6-25.7 x 10(6) cells cm(-)(2)) with the percentage live cells over that period averaging 79.4%, slightly higher than that of planktonic cells (77.4%). Biofilms were highly resistant to acid killing at pH 3.5 for 2 h with survival ranging from 41.8 (1 day) to 63.9% (7 day), while the percentage of live cells averaged 43.4%. Planktonic and dispersed biofilm cells were very acid-sensitive with only 0.0009%- and 0.0002-0.2% survivors, respectively. Unlike the planktonic cells, the incubation of 2- and 5-day biofilms at pH 5.5 for periods of up to 6 h induced strong acid tolerance responses that enhanced survival during a subsequent exposure to acid killing at pH 3.5.
Collapse
Affiliation(s)
- Karol McNeill
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, 780 Bannatyne Ave., Winnipeg, MB, Canada R3E 0W2
| | | |
Collapse
|
24
|
Decker EM, Weiger R, Wiech I, Heide PE, Brecx M. Comparison of antiadhesive and antibacterial effects of antiseptics on Streptococcus sanguinis. Eur J Oral Sci 2003; 111:144-8. [PMID: 12648266 DOI: 10.1034/j.1600-0722.2003.00025.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three antiseptic (chlorhexidine, Olaflur, Octenisept) and one putative antiadhesive (chitosan) agent were investigated for their effect on viable planktonic and attached Streptococcus sanguinis cells. The bacterial pretreatment with each chemotherapeutic was performed in two steps: (i) After the exposure of planktonic streptococci to the antiseptics, the cells were suspended in human sterile saliva and allowed to attach to human enamel for 60 min; (ii) After 60 min in the flow chamber system, initially attached streptococci were treated with these agents. The microbial viability was monitored by the percentage of vital streptococci determined by fluorescence microscopy and cell reproduction. In comparison with the negative control NaCl, the non-bactericidal chitosan derivative showed distinctive antiadhesive properties. For both treatment procedures, the efficacy of the antiseptics in reducing the viability of planktonic and attached streptococci was Octenisept > Olaflur > chlorhexidine > saline > chitosan. Further studies appear warranted to develop new antiplaque/antibiofilm strategies involving highly efficient bactericidals with antiadhesive formulations.
Collapse
Affiliation(s)
- Eva-Maria Decker
- Department of Conservative Dentistry, School of Dental Medicine, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
25
|
Li YH, Tang N, Aspiras MB, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 2002; 184:2699-708. [PMID: 11976299 PMCID: PMC135014 DOI: 10.1128/jb.184.10.2699-2708.2002] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study, a quorum-sensing signaling system essential for genetic competence in Streptococcus mutans was identified, characterized, and found to function optimally in biofilms (Li et al., J. Bacteriol. 183:897-908, 2001). Here, we demonstrate that this system also plays a role in the ability of S. mutans to initiate biofilm formation. To test this hypothesis, S. mutans wild-type strain NG8 and its knockout mutants defective in comC, comD, comE, and comX, as well as a comCDE deletion mutant, were assayed for their ability to initiate biofilm formation. The spatial distribution and architecture of the biofilms were examined by scanning electron microscopy and confocal scanning laser microscopy. The results showed that inactivation of any of the individual genes under study resulted in the formation of an abnormal biofilm. The comC mutant, unable to produce or secrete a competence-stimulating peptide (CSP), formed biofilms with altered architecture, whereas the comD and comE mutants, which were defective in sensing and responding to the CSP, formed biofilms with reduced biomass. Exogenous addition of the CSP and complementation with a plasmid containing the wild-type comC gene into the cultures restored the wild-type biofilm architecture of comC mutants but showed no effect on the comD, comE, or comX mutant biofilms. The fact that biofilms formed by comC mutants differed from the comD, comE, and comX mutant biofilms suggested that multiple signal transduction pathways were affected by CSP. Addition of synthetic CSP into the culture medium or introduction of the wild-type comC gene on a shuttle vector into the comCDE deletion mutant partially restored the wild-type biofilm architecture and further supported this idea. We conclude that the quorum-sensing signaling system essential for genetic competence in S. mutans is important for the formation of biofilms by this gram-positive organism.
Collapse
Affiliation(s)
- Yung-Hua Li
- Dental Research Institute, University of Toronto, 124 Edward Street, Toronto, Ontario, Canada M5G 1G6
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhang H, Tsang TK, Jack CA, Pollack J. Role of bile mucin in bacterial adherence to biliary stents. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2002; 139:28-34. [PMID: 11873242 DOI: 10.1067/mlc.2002.120257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biliary stent placement is a well-established method of relieving obstructive jaundice. However, a frequent complication is occlusion of the stent caused by bacterial biofilm formation and sludge accumulation. In this study we investigated the possible effect of bile mucin on bacterial adherence to biliary stents at the initial stage of biofilm formation. By means of an in vitro bile-perfusion system, polyethylene stents were perfused with pig gallbladder bile infected with Escherichia coli. The concentrations of mucin in the pig bile were adjusted with purified mucin. The amount of bacteria adhering to the inner surface of the stents was measured and compared for stents perfused with bile containing various concentrations of mucin. Furthermore, we conditioned the stent inner surface with purified pig bile mucin and observed the effect of the conditioning on subsequent bacterial adherence. In addition, a common method for assaying bacterial adhesion with polystyrene microtiter plates was also used in this study. The results demonstrated that more bacteria adhered to the inner surface of stents perfused with bile containing 5 mg/mL mucin than of those perfused with bile containing 0.5 and 0 mg/mL mucin. Increased bacterial adherence was demonstrated on the stent surfaces conditioned with purified mucin compared with that seen on the nonconditioned stent surfaces. The optical densities indicating bacterial adhesion in the microtiter plate wells precoated with mucin were higher than those in non-coated plate wells. The in vitro results indicate that when a biliary stent is implanted in vivo, mucin in bile may condition the stent inner surface, modulate subsequent bacterial adherence to the surface, and participate in stent occlusion.
Collapse
Affiliation(s)
- Hongjun Zhang
- Division of Gastroenterology, Department of Medicine, ENH Research Institute, Northwestern University Medical School, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
27
|
Li YH, Hanna MN, Svensäter G, Ellen RP, Cvitkovitch DG. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 2001; 183:6875-84. [PMID: 11698377 PMCID: PMC95529 DOI: 10.1128/jb.183.23.6875-6884.2001] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans normally colonizes dental biofilms and is regularly exposed to continual cycles of acidic pH during ingestion of fermentable dietary carbohydrates. The ability of S. mutans to survive at low pH is an important virulence factor in the pathogenesis of dental caries. Despite a few studies of the acid adaptation mechanism of this organism, little work has focused on the acid tolerance of S. mutans growing in high-cell-density biofilms. It is unknown whether biofilm growth mode or high cell density affects acid adaptation by S. mutans. This study was initiated to examine the acid tolerance response (ATR) of S. mutans biofilm cells and to determine the effect of cell density on the induction of acid adaptation. S. mutans BM71 cells were first grown in broth cultures to examine acid adaptation associated with growth phase, cell density, carbon starvation, and induction by culture filtrates. The cells were also grown in a chemostat-based biofilm fermentor for biofilm formation. Adaptation of biofilm cells to low pH was established in the chemostat by the acid generated from excess glucose metabolism, followed by a pH 3.5 acid shock for 3 h. Both biofilm and planktonic cells were removed to assay percentages of survival. The results showed that S. mutans BM71 exhibited a log-phase ATR induced by low pH and a stationary-phase acid resistance induced by carbon starvation. Cell density was found to modulate acid adaptation in S. mutans log-phase cells, since pre-adapted cells at a higher cell density or from a dense biofilm displayed significantly higher resistance to the killing pH than the cells at a lower cell density. The log-phase ATR could also be induced by a neutralized culture filtrate collected from a low-pH culture, suggesting that the culture filtrate contained an extracellular induction component(s) involved in acid adaptation in S. mutans. Heat or proteinase treatment abolished the induction by the culture filtrate. The results also showed that mutants defective in the comC, -D, or -E genes, which encode a quorum sensing system essential for cell density-dependent induction of genetic competence, had a diminished log-phase ATR. Addition of synthetic competence stimulating peptide (CSP) to the comC mutant restored the ATR. This study demonstrated that cell density and biofilm growth mode modulated acid adaptation in S. mutans, suggesting that optimal development of acid adaptation in this organism involves both low pH induction and cell-cell communication.
Collapse
Affiliation(s)
- Y H Li
- Dental Research Institute, University of Toronto, 124 Edward St., Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | |
Collapse
|
28
|
Svensäter G, Welin J, Wilkins JC, Beighton D, Hamilton IR. Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 2001; 205:139-46. [PMID: 11728728 DOI: 10.1111/j.1574-6968.2001.tb10937.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus mutans, a major causal agent of dental caries, functions in nature as a component of a biofilm on teeth (dental plaque) and yet very little information is available on the physiology of the organism in such surface-associated communities. As a consequence, we undertook to examine the synthesis of proteins by planktonic and biofilm cells growing in a biofilm chemostat at pH 7.5 at a dilution rate of 0.1 h(-1) (mean generation time=7 h). Cells were incubated with (14)C-labelled amino acids, the proteins extracted and separated by two-dimensional electrophoresis followed by autoradiography and computer-assisted image analysis. Of 694 proteins analysed, 57 proteins were enhanced 1.3-fold or greater in biofilm cells compared to planktonic cells with 13 only expressed in sessile cells. Diminished protein expression was observed with 78 proteins, nine of which were not expressed in biofilm cells. The identification of enhanced and diminished proteins by mass spectrometry and computer-assisted protein sequence analysis revealed that, in general, glycolytic enzymes involved in acid formation were repressed in biofilm cells, while biosynthetic processes were enhanced. The results show that biofilm cells possess novel proteins, of as yet unknown function, that are not present in planktonic cells.
Collapse
Affiliation(s)
- G Svensäter
- Department of Oral Biology, Centre for Oral Health Sciences, Malmö University, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Cvitkovitch DG. Genetic competence and transformation in oral streptococci. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:217-43. [PMID: 11497374 DOI: 10.1177/10454411010120030201] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The oral streptococci are normally non-pathogenic residents of the human microflora. There is substantial evidence that these bacteria can, however, act as "genetic reservoirs" and transfer genetic information to transient bacteria as they make their way through the mouth, the principal entry point for a wide variety of bacteria. Examples that are of particular concern include the transfer of antibiotic resistance from oral streptococci to Streptococcus pneumoniae. The mechanisms that are used by oral streptococci to exchange genetic information are not well-understood, although several species are known to enter a physiological state of genetic competence. This state permits them to become capable of natural genetic transformation, facilitating the acquisition of foreign DNA from the external environment. The oral streptococci share many similarities with two closely related Gram-positive bacteria, S. pneumoniae and Bacillus subtilis. In these bacteria, the mechanisms of quorum-sensing, the development of competence, and DNA uptake and integration are well-characterized. Using this knowledge and the data available in genome databases allowed us to identify putative genes involved in these processes in the oral organism Streptococcus mutans. Models of competence development and genetic transformation in the oral streptococci and strategies to confirm these models are discussed. Future studies of competence in oral biofilms, the natural environment of oral streptococci, will be discussed.
Collapse
Affiliation(s)
- D G Cvitkovitch
- Dental Research Institute, University of Toronto, Faculty of Dentistry, ON, Canada.
| |
Collapse
|
30
|
Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 2001; 183:897-908. [PMID: 11208787 PMCID: PMC94956 DOI: 10.1128/jb.183.3.897-908.2001] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Streptococcus mutans is a bacterium that has evolved to be dependent upon a biofilm "lifestyle" for survival and persistence in its natural ecosystem, dental plaque. We initiated this study to identify the genes involved in the development of genetic competence in S. mutans and to assay the natural genetic transformability of biofilm-grown cells. Using genomic analyses, we identified a quorum-sensing peptide pheromone signaling system similar to those previously found in other streptococci. The genetic locus of this system comprises three genes, comC, comD, and comE, that encode a precursor to the peptide competence factor, a histidine kinase, and a response regulator, respectively. We deduced the sequence of comC and its active pheromone product and chemically synthesized the corresponding 21-amino-acid competence-stimulating peptide (CSP). Addition of CSP to noncompetent cells facilitated increased transformation frequencies, with typically 1% of the total cell population transformed. To further confirm the roles of these genes in genetic competence, we inactivated them by insertion-duplication mutagenesis or allelic replacement followed by assays of transformation efficiency. We also demonstrated that biofilm-grown S. mutans cells were transformed at a rate 10- to 600-fold higher than planktonic S. mutans cells. Donor DNA included a suicide plasmid, S. mutans chromosomal DNA harboring a heterologous erythromycin resistance gene, and a replicative plasmid. The cells were optimally transformed during the formation of 8- to 16-h-old biofilms primarily consisting of microcolonies on solid surfaces. We also found that dead cells in the biofilms could act as donors of a chromosomally encoded antibiotic resistance determinant. This work demonstrated that a peptide pheromone system controls genetic competence in S. mutans and that the system functions optimally when the cells are living in actively growing biofilms.
Collapse
Affiliation(s)
- Y H Li
- Dental Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1G6
| | | | | | | | | |
Collapse
|
31
|
Saunders KA, Greenman J. The formation of mixed culture biofilms of oral species along a gradient of shear stress. J Appl Microbiol 2000; 89:564-72. [PMID: 11054158 DOI: 10.1046/j.1365-2672.2000.01148.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A chemostat mixed culture system was used to produce two distinct ecological states, state-1 (caries-like microcosm) and state-2 (periodontal-like microcosm). Eleven bacterial species (Streptococcus gordonii, Strep. mitis I, Strep. mutans, Strep. oralis, Actinomyces naeslundii, Lactobacillus casei, Neisseria subflava, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella nigrescens, Veillonella dispar) were used to inoculate the planktonic system. A flow cell, designed to produce convergent flow with increasing shear stress, was attached to the chemostat system, and the resultant biofilms developed from the state-1 and state-2 microcosms along the shear stress gradient were examined and compared using image analysis and viable counts. The biofilm produced from state-1 showed a lower shear stress tolerance (0.146 Pa) than the state-2 biofilm (0.236 Pa). The biofilm compositions did not vary along the gradient of shear stress and were dependent on the initial inoculum conditions. Gram-positive species were predominant in the state-1 biofilm, while Gram-negative species were predominant in state-2.
Collapse
Affiliation(s)
- K A Saunders
- Faculty of Applied Sciences, University of the West of England, Bristol, UK
| | | |
Collapse
|
32
|
Vats N, Lee SF. Active detachment of Streptococcus mutans cells adhered to epon-hydroxylapatite surfaces coated with salivary proteins in vitro. Arch Oral Biol 2000; 45:305-14. [PMID: 10708670 DOI: 10.1016/s0003-9969(99)00139-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the formation of biofilms has been much studied, detachment of adherent cells from biofilms has been relatively neglected. Recent results have shown that adherent Streptococcus mutans cells can actively detach from epon-hydroxylapatite (EHA) rods conditioned with hog gastric mucin. The mechanisms for adherence and detachment of Strep. mutans cells in this system was uncertain. In the present study, resting Strep. mutans cells were used to form a simple monolayer on EHA rods coated with saliva and salivary agglutinin (SAG). Preliminary experiments defined the variables for conditioning EHA with saliva and SAG and establishing the adherence of Strep. mutans to the conditioned surfaces. The results showed that salivary proteins including SAG adsorbed rapidly to EHA and that a relatively stable Strep. mutans NG8 monolayer was formed within 60 min of incubation. The monolayers were subsequently used for detachment studies. The results showed that adherent Strep. mutans cells detached in a temperature-dependent manner and responded to the addition of a preparation of surface protein-releasing enzyme (SPRE) obtained from Strep. mutans in a dose-dependent fashion. The effect of the exogenous SPRE on detachment could be abrogated by pronase treatment. Two putative SPRE-defective mutants (A and E) were generated by Tn917 mutagenesis. Both mutants possessed a single transposon insertion as demonstrated by Southern hybridization and appeared to be different from one another based on the hybridization patterns. Mutant A displayed an increased quantity of cell-surface antigen P1, an adhesin that interacts with SAG. At the same time mutant A was unable to release P1 and other high molecular-weight proteins from the cell surface. Mutant A detached at a significantly lower rate (21%) than the parent strain (37%) (p=0.05). SPRE prepared from mutant A was unable to release Strep. mutans NG8 adherent cells as compared to SPRE obtained from the wild-type cells. Collectively, these results suggest that the detachment of Strep. mutans adherent cells formed on salivary protein-coated EHA was an active process mediated by the action of SPRE.
Collapse
Affiliation(s)
- N Vats
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
33
|
Affiliation(s)
- G H Bowden
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
34
|
Affiliation(s)
- D J Bradshaw
- Research Division, Centre for Applied Microbiology and Research (CAMR), Salisbury, Wiltshire, United Kingdom
| | | |
Collapse
|
35
|
Weiger R, Decker EM, Krastl G, Brecx M. Deposition and retention of vital and dead Streptococcus sanguinis cells on glass surfaces in a flow-chamber system. Arch Oral Biol 1999; 44:621-8. [PMID: 10459773 DOI: 10.1016/s0003-9969(99)00061-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The proportion of vital as compared with dead Streptococcus sanguinis cells attached to glass surfaces was monitored and related to varying proportions of planktonic vital as compared with dead Strep. sanguinis cells. In a flow chamber with six parallel-mounted glass plates, Strep. sanguinis was suspended in pretreated sterile human saliva. Deposition of Strep. sanguinis took place, with a proportion of vital sanguinis streptococci in saliva (%VSs) of 90%, 45% or 22.5%. After exposure times of 30, 60, 90, 120 and 240 min, adherent microorganisms were labelled with two fluorescence stains to differentiate between vital and dead bacteria. Proportions of vital attached streptococci (%VSa) were determined microscopically. Dead bacteria were detected on all glass plates. The %VSa at 30 min and 60 min was significantly lower than the baseline %VSs. During the course of a single run the %VSa frequently increased after either 30, 60 or 90 min without exceeding the %VSs at 4 h. %VSs was the only variable exerting a significant effect on %VSa at 30 and 60 min. It is suggested that during the initial events of microbial attachment the dead rather than vital Strep. sanguinis cells attach preferably to solid surfaces.
Collapse
Affiliation(s)
- R Weiger
- Department of Conservative Dentistry, School of Dental Medicine, University of Tübingen, Germany
| | | | | | | |
Collapse
|
36
|
Netuschil L, Reich E, Unteregger G, Sculean A, Brecx M. A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol 1998; 43:277-85. [PMID: 9839703 DOI: 10.1016/s0003-9969(97)00121-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Confocal microscopy and vital fluorescence techniques were combined for the first time to investigate ex vivo human dental plaque. The vital fluorescence technique used discriminates vital from dead cells, while confocal laser scanning microscopy allows the optical sectioning of undisturbed biofilms leaving the samples intact during analysis. The concomitant use of both methods made an examination of the three-dimensional architecture of dental plaque possible. The topography of plaque biofilms that were allowed to accumulate in situ on glass and enamel was recorded. The distribution of plaque microflora vitality as well as its accumulation varied according to plaque age. A plaque thickness of up to 8, 35 and 45 microm was estimated ex vivo on enamel after 1, 2 and 3 days, respectively. Young and sparse plaque biofilms consisted mainly of dead material. Vital bacteria were observed on top of this dead layers.
Collapse
Affiliation(s)
- L Netuschil
- Dental School, University of the Saarland, Homburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
The ubiquity of biofilm and its classification as a microbial aggregate is discussed. Investigations into any microbial ecological problem operate at four levels: (i) in situ investigations, (ii) the use of microcosms, (iii) experimental model systems, and (iv) mathematical models. Each of these is defined and their use in biofilm research illustrated. It is concluded that all these approaches are valid and that scientific research in general and biofilm research in particular must profit by the use widely different methods if a complete understanding of a system is to be achieved.
Collapse
Affiliation(s)
- J W Wimpenny
- School of Pure and Applied Biology, University of Wales, Cardiff, UK
| |
Collapse
|
38
|
Abstract
The amounts and types of nutrients in the environment influence the development and final bacterial and chemical composition of biofilms. In oligotrophic environments, organisms respond to nutrient stress by alterations in their cell morphology and cell surfaces, which enhance adherence. Little is known of the responses to stress by bacteria in the animal oral cavity. The environment in the oral cavity is less extreme, and saliva provides a constant source of nutrients. Catabolic cooperation among oral bacteria allow carbon and nitrogen from salivary glycoproteins to be utilized. Modification of growth environments of oral bacteria can influence their cell surfaces and adhesion. Studies in experimental animals have shown that feeding either glucose or sucrose diets or fasting has little effect on the initial stages of development of oral biofilms. However, diet can influence the proportions of different bacterial species later in biofilm development. Studies of competition among populations in communities of oral bacteria in vitro and in vivo have shown the significance of carbon limitation and excess and changes in environmental pH. Relatively few studies have been made of the role of a nitrogen metabolism in bacterial competition in biofilms. In keeping with biofilms in nature, oral biofilms provide a sequestered habitat, where organisms are protected from removal by saliva and where interactions among cells generate a biofilm environment, distinct from that of saliva. Oral biofilms are an essential component in the etiologies of caries and periodontal disease, and understanding the biology of oral biofilms has aided and will continue to aid in the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- G H Bowden
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
39
|
Abstract
Difficulties with in vivo studies of natural plaque and its complex, heterogeneous structure have led to development of laboratory biofilm plaque model systems. Technologies for their culture are outlined, and the rationale, strengths, and relative uses of two complementary approaches to microbial models with a focus on plaque biodiversity are analyzed. Construction of synthetic consortia biofilms of major plaque species has established a variety of bacterial interactions important in plaque development. In particular, the 'Marsh' nine-species biofilm consortia systems are powerful quasi steady-state models which can be closely specified, modified, and analyzed. In the second approach, microcosm plaque biofilms are evolved in vitro from the natural oral microflora to the laboratory model most closely related to plaque in vivo. Functionally reproducible microcosm plaques are attainable with a biodiverse microbiota, heterogeneous structure, and pH behavior consistent with those of natural plaque. The resting pH can be controlled by urea supply. Their growth patterns, pH gradient formation, control of urease levels by environmental effectors, and plaque mineralization have been investigated. Microcosm biofilms may be the only useful in vitro systems where the identity of the microbes and processes involved is uncertain. Together, these two approaches begin to capture the complexity of plaque biofilm development, ecology, behavior, and pathology. They facilitate hypothesis testing across almost the whole range of plaque biology and the investigation of antiplaque procedures yielding accurate predictions of plaque behavior in vivo.
Collapse
Affiliation(s)
- C H Sissons
- Department of Pathology, Wellington School of Medicine, University of Otago, New Zealand
| |
Collapse
|
40
|
Weiger R, von Ohle C, Decker E, Axmann-Krcmar D, Netuschil L. Vital microorganisms in early supragingival dental plaque and in stimulated human saliva. J Periodontal Res 1997; 32:233-40. [PMID: 9089490 DOI: 10.1111/j.1600-0765.1997.tb00529.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to compare the percentage of vital microorganisms (= microbial vitality) of saliva with that of supragingival plaque both collected at various times during the early phases of de novo plaque formation. Between intervals of optimal oral hygiene, 14 healthy participants refrained from all oral hygiene measures for periods of 1, 4, 8 and 72 h. Stimulated whole saliva was collected at the beginning (= baseline) and the end of each period. Vestibular plaque was removed from teeth 13-16, and 23-26. Analysis of the pooled plaque (p) and saliva (s) samples comprised the total number of bacterial counts and colony-forming units to estimate the percentage of viable microorganisms (PEp; PEs). The microbial vitality (VFp; VFs) was determined by using a fluorescence staining to differentiate vital from dead bacterial cells. The bulk of the PEs values reached 5-30%. At baseline VFs ranged between 70% and 90%. The VFs values recorded at baseline or in the presence of 1 h and 4 h-old plaque, were significantly (alpha = 0.05) higher than the corresponding VFp values ranging from 5% to 30%. It was concluded that there is a considerable discrepancy between the microbial vitality of a very early dental plaque and that of whole surrounding saliva sampled at the same time. Unfavourable local environmental conditions prevailing at cervical tooth surfaces are suggested to restrain the survival of the majority of the first bacteria adhering to a particular tooth area during the early phases of supragingival plaque formation.
Collapse
Affiliation(s)
- R Weiger
- Department of Conservative Dentistry, School of Dental Medicine, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Lee SF, Li YH, Bowden GH. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun 1996; 64:1035-8. [PMID: 8641755 PMCID: PMC173876 DOI: 10.1128/iai.64.3.1035-1038.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that Streptococcus mutans NG8 possesses an endogenous surface protein-releasing enzyme (SPRE) activity that liberates its own surface proteins (S. F. Lee, Infect. Immun. 60:4032-4039, 1992). The present study was initiated to investigate the possible role of the release of surface proteins by SPRE in the detachment of biofilm cells in vitro. Initially, the characteristics of surface protein release by the strain (S. mutans BM71) used in this study were shown to be the same as those previously described for S. mutans NG8. BM71 displayed characteristics identical to those of NG8 in terms of pH optima and inhibitor sensitivity for protein release. Monolayer biofilms of S. mutans BM71 were formed on hydroxylapatite rods in a modified chemostat. Detachment of the biofilm cells was measured by viable cell counts of bacteria liberated after incubation of the biofilms in buffers. Results showed that biofilm cells were detached in a pH- dependent manner with a maximum rate of pH 5 (P = 0.016) to 6 (P = 0.002), a range similar to that for optimal surface protein release. The detachment of the biofilm cells was found to be inhibited by ZnCl2 (P = 0.002 to 0.023), which also inhibited surface protein release. Detachment was not inhibited significantly by CaCl2 (P = 0.525 to 0.784), precluding an ionic effect on inhibition by ZnCl2. The extent of detachment could be increased (P = 0.046) by the addition of an SPRE preparation from S. mutans but not heat-inactivated SPRE (P = 0.665) or SPRE in the presence of ZnCl2 (P = 0.199). Detachment was also studied by using biofilms of resting (viable but not dividing) cells. Results similar to those for biofilms formed from growing cells were obtained, indicating that cells detached from biofilms were not daughter cells. The results presented above show that monolayer biofilm cells of S. mutans under conditions of minimal shear force have the ability to detach from a surface and suggest that this detachment was mediated by an endogenous SPRE activity.
Collapse
Affiliation(s)
- S F Lee
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
42
|
Bradshaw DJ, Marsh PD, Schilling KM, Cummins D. A modified chemostat system to study the ecology of oral biofilms. THE JOURNAL OF APPLIED BACTERIOLOGY 1996; 80:124-30. [PMID: 8642010 DOI: 10.1111/j.1365-2672.1996.tb03199.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previously, we developed a chemostat system to study the behaviour and properties of a community of up to 10 species of oral bacteria. The present study describes modification of this system to incorporate removable and replaceable hydroxyapatite (the major mineral in human dental enamel) disks on which biofilms could develop. Hydroxyapatite disks were immersed in the chemostat for known time periods, and the bacterial content of biofilms determined by viable counting. Initial deposition rates were rapid, with all 10 species detected after 1 h, and the numbers of bacteria in biofilms continued to increase for 21 d. The species composition of biofilms reflected that of the surrounding fluid phase, and showed only limited signs of the type of 'species succession' which is observed in developing dental plaque in vivo, although anaerobic species increased in proportion in older biofilms. Four-day biofilms showed the least variability and were chosen as the 'standard biofilm' for more detailed study. Variability in the bacterial composition of 4-d biofilms was comparable both within a single chemostat run and between independent chemostat runs. Glucose pulsing in the absence of pH control resulted in the selection of cariogenic species; the disruption of the biofilm community was less marked than that of the equivalent planktonic culture. The model system has considerable potential in studying the effects of a variety of factors on biofilm development, as well as in comparing the efficacy of antimicrobial systems against biofilms.
Collapse
Affiliation(s)
- D J Bradshaw
- Research Division, CAMR, Salisbury, Wiltshire, UK
| | | | | | | |
Collapse
|
43
|
Abstract
Models of dental caries (laboratory, animal, and human in situ models) vary markedly in their microbiological complexity. Laboratory models range from mono-cultures of cariogenic species providing an acidic challenge to enamel, to the development of diverse mixed cultures growing on a habitat-simulating medium in an artificial mouth or chemostat. The latter systems are of value in determining either mechanisms of action or cause-and-effect relationships--e.g., between dietary components or antimicrobial agents and the microflora. Laboratory models have also shown that the sensitivity of oral bacteria to inhibitors is markedly reduced when growing in biofilms such as dental plaque. Animal models have proved unequivocally that caries is an infectious and transmissible disease. Their use has enabled comparisons to be made of (a) the cariogenic potential of different bacterial species, (b) the role of the diet, and (c) the effects of potential anti-caries agents. It has been claimed that no caries-protective agent currently in use has failed a rodent test. In situ human models have been designed to permit the development of "natural" plaque on standardized enamel surfaces freely exposed to the human oral environment. The microflora that develops on unadulterated surfaces is similar in composition to that found at comparable sites on vital teeth. Demineralization can be accelerated by the inoculation of additional cariogenic bacteria coupled with either intra- or extra-oral sucrose rinses. The increased realism associated with the transition from laboratory to human in situ models is countered by a reduced ability to control or manipulate the system for experimental purposes. Thus a hierarchy of tests is needed for the study of anti-caries agents, each requiring a varying degree of microbiological complexity.
Collapse
Affiliation(s)
- P D Marsh
- Department of Microbial Pathogenicity, Centre for Applied Microbiology and Research, Salisbury, England
| |
Collapse
|
44
|
Sissons CH, Wong L, Cutress TW. Patterns and rates of growth of microcosm dental plaque biofilms. ORAL MICROBIOLOGY AND IMMUNOLOGY 1995; 10:160-7. [PMID: 7567065 DOI: 10.1111/j.1399-302x.1995.tb00137.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rates of growth in wet weight and changes in them over time were established for microcosm dental plaques cultured from the mixed salivary bacteria in an artificial mouth. Standardized conditions included a continuous supply of medium containing 0.25% mucin and 1.5 ml of 5% w/v sucrose in 6 min every 8 h. Plaques were weighed daily. Plaque wet weight and total protein were highly correlated. Plaque doubling times were 3-7 h over day 1 and 9-21 h over day 2, which is similar to in vivo plaques. Subsequently, growth curves were either linear or between a linear and exponential increase. Evidence was obtained for plaque blooms. Methyl paraben (0.2%) applied for 15 min (3.75 ml) 6 times daily inhibited growth but only for 3 days, after which the rate was similar to control plaques, indicating that selection for resistance had occurred. It was concluded that the regulation of plaque growth rates is complex and does not conform to simple growth pattern models. Detailed studies of plaque growth and the effects of antiplaque agents can be carried out using this experimental system.
Collapse
Affiliation(s)
- C H Sissons
- Dental Research Unit HRC, Wellington, New Zealand
| | | | | |
Collapse
|
45
|
Abstract
Bacteria in biofilms are known to be more resistant than bacteria in batch cultures to antimicrobial agents. The purpose of the present study was to develop a flow method for formation of oral biofilms permitting susceptibility testing of plaque bacteria. A brain heart infusion (BHI) Streptococcus sanguis 804 culture was pumped through a modified Robbins Device (MRD) with 25 exchangeable silicone disks at 40 ml/h. After 24-48 h disks were removed and biofilm cells dispersed by vortex mixing and low-output ultrasonication. Colony forming units (cfu)/cm2 were determined after aerobic incubation on blood agar plates. Optimal biofilm formation was found after growth for 48 h at 37 degrees C in BHI + 1% sucrose, using saliva-coated silicone disks in inverted MRDs, yielding on average 4.4 x 10(5) cfu/cm2. Similar results were obtained for S. sanguis ATCC 10556 and five clinical isolates. Testing the susceptibility of S. sanguis to chlorhexidine gluconate showed increased resistance of biofilms compared to batch culture. Thus an appropriate biofilm model for susceptibility testing of oral microorganisms has been established.
Collapse
Affiliation(s)
- T Larsen
- Department of Oral Microbiology, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
46
|
Li YH, Bowden GH. The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. J Dent Res 1994; 73:1615-26. [PMID: 7929976 DOI: 10.1177/00220345940730100601] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The present study was initiated to answer the question, "Does fluoride from the substratum influence the accumulation of bacterial cells in an associated biofilm?" 'Fluoride-bound hydroxyapatite' (FHA) and 'fluoride-free hydroxyapatite' (HA) rods were prepared as test and control surfaces, respectively. Biofilms of S. mutans BM71, A. naeslundii genospecies 2 WVU627, and L. casei BM225 accumulated on the surfaces of rods in a semi-defined, mucin-based medium in a chemostat. Culture conditions were varied from pH 4.5 to 7.0 under carbon (glucose) limitation and excess, at a dilution rate of D = 0.1 h-1. Low environmental pH reduced both the numbers of cells on HA surfaces during the early phases (from 0 to 2 h) of accumulation and the final numbers of cells in mature biofilms (20 h). The initial adherence of cells was unaffected by surface fluoride under any of the conditions tested. Similarly, biofilm cells under carbon limitation and those under carbon excess at pH 7.0 were not affected by surface fluoride. However, at low environmental pH values, pH 5.5 for S. mutans and pH 6.0 for A. naeslundii under glucose excess, the accumulation of biofilm cells on the FHA surfaces was significantly reduced (p < 0.05-0.001). Biofilm cell number doubling times of S. mutans and A. naeslundii were increased on FHA relative to HA. Biofilms of L. casei were not significantly affected, even at pH 4.5 in glucose excess. The results confirmed that fluoride from the substratum affected fluoride-sensitive biofilm cells but only under conditions of glucose excess ad low pH.
Collapse
Affiliation(s)
- Y H Li
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|